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Abstract

Multimodal Large Language Models (MLLMs)001
have demonstrated remarkable performance002
in complex multimodal tasks. While MLLMs003
excel at visual perception and reasoning in004
third-person and egocentric videos, they are005
prone to hallucinations, generating coherent006
yet inaccurate responses. We present EGOIL-007
LUSION, a first benchmark to evaluate MLLM008
hallucinations in egocentric videos. EGOILLU-009
SION comprises 1,400 videos paired with 8,000010
human-annotated open and closed-ended ques-011
tions designed to trigger hallucinations in both012
visual and auditory cues in egocentric videos.013
Evaluations across ten MLLMs reveal signif-014
icant challenges, including powerful models015
like GPT-4o and Gemini, achieving only 59%016
accuracy. EGOILLUSION lays the foundation017
in developing robust benchmarks to evaluate018
the effectiveness of MLLMs and spurs the019
development of better egocentric MLLMs with020
reduced hallucination rates. Our benchmark021
will be open-sourced for reproducibility1.022

1 Introduction023

Recent advances in Multimodal Large Language024

Models (MLLMs) have expanded their capabilities025

beyond image understanding to video comprehen-026

sion, enabling advanced multimodal perception027

and reasoning (Achiam et al., 2023; Dubey et al.,028

2024; Ye et al., 2024b; Wang et al., 2024a; Wu029

et al., 2024). Depending on the camera viewpoint030

and observer’s position, videos can be categorized031

as third-person (exocentric) videos, captured032

from a stationary or spectator perspective, and033

first-person (egocentric) videos, recorded from an034

active observer’s viewpoint (Jia et al., 2024; Luo035

et al., 2024; Grauman et al., 2024). Egocentric036

videos captured from wearable devices primarily037

capture human-object interactions, providing038

rich multi-sensory information, including actions039

1Please find the examples here
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Hallucinations in
perceiving actions  

Hallucinations in
perceiving objects  

Hallucinations in
perceiving sounds  

Hallucinations in
understanding
temporal order

Q: Did the person
opened the car door? 
A: No, Correct Ans: Yes

Q: Did the phone ring
inside the car? 
A: Yes, Correct Ans: No

Example of Egocentric Video Language Task
Q: Did the person open the house door before the car
horn was heard in the video?
A: No, Correct Ans: Yes

Q: Did the person closed
the house door ?
A: Yes, Correct Ans: No 

Q: Did the person open

the house door after the

car horn was heard in

the video?
A: Yes, Correct Ans: No

Analyzing various sources of hallucinations

Figure 1: Illustration of various sources of hallucination
encountered by MLLMs, such as Gemini (Team et al., 2024),
while performing an egocentric video-language task involving
temporal reasoning between two distinct events, such as a
person opening a house door and a car horn is heard.

performed, object appearances, and the sounds 040

produced during interactions (Chen et al., 2024a; 041

Grauman et al., 2024; Kim et al., 2024; Hatano 042

et al., 2024; Chen et al., 2024b). Unlike exocentric 043

videos, where objects often remain static, egocen- 044

tric interactions dynamically alter object states 045

(e.g., opening a bottle or turning on a device), 046

making inference of object properties and their 047

temporal evolution more challenging. 048

Although MLLMs demonstrate strong perfor- 049

mance on standard image and video bench- 050

marks (Fu et al., 2024), they remain susceptible to 051

hallucinations, producing coherent but incorrect in- 052

terpretations of sensory input that diverge from real- 053

ity. As illustrated in Fig. 1, state-of-the-art MLLMs 054

such as Gemini (Team et al., 2024) exhibit a high 055

1

https://sites.google.com/view/egoillusion-demo/home


Benchmark Size
Modality Skills

Vision Audio Perception Reasoning

POPE (Li et al., 2023b) 3k ✓ × 3k ✓ 0 ×
HallusionBench (Guan et al., 2024) 1.1k ✓ × 0 × 1.1k ✓

MMHal-Bench (Sun et al., 2023) 0.1k ✓ × 0.05k ✓ 0.05k ✓

Bingo (Cui et al., 2023) 0.4k ✓ × 0 × 0.4k ✓

EasyDetect (Chen et al., 2024c) 0.4k ✓ × 0.4k ✓ 0 ×
VHTest (Huang et al., 2024) 1.2k ✓ × 0.6K ✓ 0.6K ✓

VALOR (Chen et al., 2023) 0.2k ✓ × 0.2k ✓ 0 ×
VideoHallucer (Wang et al., 2024b) 1.8k ✓ × 0.9k ✓ 0.9k ✓

EGOILLUSION (ours) 8k ✓ ✓ 4.0k ✓ 4.0k ✓

Table 1: Comparison of EGOILLUSION with existing multi-
modal hallucination benchmarks. EGOILLUSION covers both
vision and audio modality, while having the highest number
of perception and reasoning-based questions.

rate of hallucination when processing multisensory056

information in egocentric video, such as human057

actions, visual objects, and ambient sounds. Accu-058

rate perception of such elements is critical in per-059

forming common egocentric video-language tasks,060

including temporal reasoning between events.061

EGOILLUSION vs. Existing Benchmarks. As062

shown in Table 1, we compare EGOILLUSION with063

existing hallucination benchmarks. Prior work064

has primarily focused on hallucinations in static065

visual attributes like object properties (Grauman066

et al., 2022; Kaul et al., 2024; Wang et al., 2023) or067

factual inconsistencies (Wang et al., 2024b; Guan068

et al., 2024), with limited attention to video-based069

hallucinations. While VideoHallucer (Wang et al.,070

2024b) targets exocentric videos, it overlooks the071

unique challenges of egocentric settings, such as072

occlusions from hand movements, action-centric073

narratives prone to temporal hallucinations074

(Grauman et al., 2022), and rich multisensory075

cues such as auditory cues, often misaligned by076

MLLMs (Su et al., 2024).077

Main Contributions. In this work, we intro-078

duce EGOILLUSION, a benchmark designed to079

evaluate hallucinations in MLLMs when process-080

ing egocentric videos. EGOILLUSION includes081

over 1,400 egocentric videos, ranging from 30082

seconds to 5 minutes, along with 8,000 human-083

annotated question-answer pairs. These ques-084

tions assess hallucinations across diverse egocen-085

tric video-language tasks that demand advanced086

multimodal perception and reasoning skills. To ex-087

amine hallucinations in multimodal perception, we088

design tasks with intricate question-answer pairs089

that test MLLMs’ ability to infer multisensory in-090

formation accurately. These tasks require models to091

reason about actions, sounds, and visual objects in-092

volved in human-object interactions recorded from093

a first-person perspective. To this end, we develop094

novel egocentric video-language tasks to reliably 095

evaluate MLLMs’ temporal reasoning by integrat- 096

ing diverse sensory cues. Additionally, we intro- 097

duce hallucination questions focused on contextual 098

and causal reasoning, which require models to infer 099

the presence or absence of human actions, sounds, 100

and objects before generating factually grounded 101

responses. Our key contributions are: 102

• We present EGOILLUSION, the first hallucination 103

benchmark specifically designed for egocentric 104

video. EGOILLUSION features 8,000 question- 105

answer pairs that capture diverse human-object 106

interactions and enable a systematic evaluation 107

of hallucinations across multimodal perception 108

and understanding. 109

• We evaluate 10 MLLMs, including eight open- 110

source and two proprietary models, demonstrat- 111

ing that state-of-the-art MLLMs exhibit a high 112

degree of hallucinations, with the best perfor- 113

mance of only 59% on EGOILLUSION. 114

• We perform extensive analysis on the models’ 115

responses and uncover key insights such as skill- 116

wise hallucinations, challenges MLLMs face in 117

attending multisensory input, and hallucination 118

against diverse egocentric video-language tasks. 119

2 Related works 120

Egocentric Video Understanding. Egocentric 121

video understanding has gained momentum with 122

benchmarks like Ego4D (Grauman et al., 2022), 123

Ego-Exo4D (Grauman et al., 2024), and EPIC- 124

KITCHENS100 (Nasirimajd et al., 2023), which 125

offer large-scale, annotated recordings for tasks 126

such as activity recognition and object interac- 127

tion. Multimodal datasets like QaEgo4D (Bärmann 128

and Waibel, 2022) and EgoSchema (Mangalam 129

et al., 2023) further enrich semantic understand- 130

ing by incorporating language. Recent modeling 131

efforts—GroundVQA (Di and Xie, 2024), Encode- 132

Store-Retrieve (Shen et al., 2024), and R-VLM (Xu 133

et al., 2023)—focus on long-horizon reasoning and 134

factual consistency. However, existing benchmarks 135

largely emphasize factual recall and recognition, 136

lacking a systematic evaluation of hallucination. 137

Our work fills this gap by introducing the first 138

benchmark designed to assess hallucination in ego- 139

centric video understanding. 140

Multimodal Large Language Models. Recent 141

advances in MLLMs have extended their capabil- 142

ities beyond static image understanding to com- 143

plex video-based perception and reasoning, incor- 144
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Perception Q/A

Audio Q/A
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Q: Why did the person pick
the scissors?

Close-ended Q/A
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Distribution of Tasks in
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Q: Did the person put the
glass down?

Hand-Object Interaction
(HOI)

Q: Where did the
person place the
brush?
A: At Kitchen Table 

Q: Did the person
cut the banana?
A: Yes

Q: Is the dog barking
before the person
cuts rope?
A: Yes

Q: Why did the person
place the cup?

Visual Q/A

Q: Did the person cut
the orange?

Q: Is the dog barking
after the person cuts
rope?

Hallucinated Question Hallucinated Question Hallucinated Question

Figure 2: Overview of the EGOILLUSION benchmark. EGOILLUSION is the first hallucination benchmark for egocentric videos,
featuring 8,000 human-annotated questions covering diverse egocentric video-language tasks. It presents three core challenges:
(1) Perception vs Reasoning: distinguishing between perceptual and reasoning skills by evaluating object recognition, action
understanding, and scene inference; (2) Multisensory Inputs: integrating visual and auditory cues, such as object appearance,
human actions, and environmental sounds, to assess multimodal alignment; (3) Question Types: supporting both closed-ended
and open-ended questions, requiring models to answer factually grounded queries while reasoning about events and interactions.

porating both visual and auditory signals (Wang145

et al., 2024a; Li et al., 2024b,a; Han et al., 2023).146

While some models rely solely on visual inputs,147

others explicitly integrate audio to enrich multi-148

modal understanding (OpenBMB, 2024; Cheng149

et al., 2024). Most are trained primarily on third-150

person videos; only a few incorporate egocentric151

data. For instance, MiniCPM (OpenBMB, 2024)152

uses only third-person videos, VideoLLaMA 2 and153

3 (Cheng et al., 2024; Zhang et al., 2025) mix third-154

person and egocentric views, and MMEgo (Ye155

et al., 2024a) focuses exclusively on egocentric156

content. Despite strong performance on standard157

benchmarks (Fu et al., 2024; Li et al., 2024c), we158

find that these models remain susceptible to halluci-159

nations, with the best achieving just 59% accuracy160

on EGOILLUSION.161

3 The EGOILLUSION Benchmark162

3.1 Overview163

We introduce EGOILLUSION, a novel benchmark164

to systematically evaluate hallucination in MLLMs165

across a diverse set of egocentric video-language166

tasks. EGOILLUSION consists of egocentric videos167

spanning various visual scenarios (Fig. 2), includ-168

ing question types requiring perceptual and rea-169

soning skills. The benchmark features questions170

based on multi-sensory inputs, including visual and171

auditory modalities and open- and closed-ended172

formats. Additionally, it incorporates a range of 173

hallucination-inducing strategies from various ego- 174

centric video-language tasks. Below, we describe 175

the data construction pipeline of EGOILLUSION. 176

3.2 Data Collection and Filtering 177

We illustrate our data construction pipeline in Fig.3. 178

The videos included in EGOILLUSION are care- 179

fully selected from a diverse collection of ego- 180

centric datasets including Ego4D-HCap (Islam 181

et al., 2024), EgoSeg (Poleg et al., 2016), EPIC- 182

KITCHENS (Nasirimajd et al., 2023) and Trek- 183

150 (Dunnhofer et al., 2022), covering a wide range 184

of visual scenarios such as meal preparation in a 185

kitchen, painting a canvas, assembling furniture 186

and navigating urban environments (additional de- 187

tails on these can be found in Appendix G). The 188

videos in EGOILLUSION span a broad range of du- 189

rations, from short clips of 30 seconds to extended 190

recordings exceeding 5 minutes. 191

To ensure coverage of diverse visual content and 192

meaningful temporal dynamics, the dataset con- 193

struction of the EGOILLUSION includes a manual 194

filtering step, which involves selecting videos that 195

depict varied object interactions and human activ- 196

ities. For instance, a video showing a person transi- 197

tioning from preparing ingredients to cooking and 198

serving a meal is retained, but videos with minimal 199

variation, such as someone stirring a pot for sev- 200

eral minutes or walking down an empty hallway 201

3
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Diverse Visual Scenarios 
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Step3: Generating Q/A
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Annotation
Guidelines

Quality
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Egoillusion

Figure 3: Illustration of the EGOILLUSION data construction pipeline. We first collect egocentric videos with detailed narrations
from open-source datasets like Ego4D-HCap (Islam et al., 2024) and EPIC-KITCHENS (Nasirimajd et al., 2023), and manually
filter them to ensure diverse visual scenarios (e.g., cooking, painting). We then develop an automated pipeline to enhance
narrations by inferring active/inactive object states using GPT-4o (Achiam et al., 2023) and incorporating environmental sounds
via Qwen2-Audio (Chu et al., 2024). Finally, we generate question-answer pairs through a rigorous human annotation process
involving egocentric task design, guideline creation for inter-annotator consistency, applying hallucination-inducing strategies,
and QA review.

without significant interaction, are excluded. This202

filtering ensures that the dataset emphasises visu-203

ally and temporally rich scenarios crucial for gen-204

erating complex queries and effectively evaluating205

hallucination in egocentric video-language models.206

3.3 Enhancing Egocentric Narrations207

While prior egocentric VQA benchmarks (Guan208

et al., 2024; Li et al., 2023b; Wang et al., 2024b;209

Chen et al., 2023) provide detailed narrations that210

capture a wide range of human interactions with211

visual elements, referred to as active objects, they212

often omit information about background elements,213

or non-active objects, that appear in the scene but214

are not directly interacted with. Additionally, these215

narrations typically lack descriptions of environ-216

mental sounds essential for comprehensive egocen-217

tric video understanding.218

To address these limitations, we propose an au-219

tomated pipeline to enrich egocentric narrations220

with visual and auditory information. As illus-221

trated in Fig. 3, given a video V with narration222

captions C = {c1, . . . , cn} for n chronologically223

ordered clips, along with a global video description 224

D, our method first identifies active objects, de- 225

noted by OI = {o1, . . . , oM}, based on objects the 226

human interacts with in the narration captions. To 227

detect non-active objects, we use GPT-4o (Achiam 228

et al., 2023) to identify all visible objects OV = 229

{o1, . . . , oP } from key frames sampled from each 230

clip. The set of non-active objects is then com- 231

puted as the difference OS ← OV − OI . In 232

parallel, to capture environmental sounds, we use 233

Qwen2Audio (Chu et al., 2024) to detect relevant 234

audio cues from the soundtrack of each video clip, 235

which results in an enriched set of egocentric nar- 236

rations C ′ = {c′1, . . . , c′n}, where each narration c′i 237

includes not only human actions and active objects, 238

but also associated environmental sounds and non- 239

active objects. Finally, a manual filtering step is ap- 240

plied to correct potential errors and ensure the accu- 241

racy of background object and sound descriptions. 242

3.4 Generating Q/A 243

Task Curation. Leveraging insights from egocen- 244

tric video corpora and our enriched narrations, we 245
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curated six egocentric video-language tasks, re-246

fined from an initial pool of 20, that target core247

capabilities essential for egocentric understanding,248

including episodic reasoning, temporal inference,249

and human-object interaction. Each task in EGOIL-250

LUSION is designed to assess hallucinations in ei-251

ther perception or reasoning, with 4,000 questions252

allocated to each. Perception evaluates a model’s253

ability to interpret multi-sensory inputs by recog-254

nising human actions, sounds, and visual objects in255

egocentric videos. In contrast, reasoning measures256

the model’s capacity to process this information257

to infer knowledge, explain causality, or make de-258

cisions (Fei et al., 2024). The selected tasks in-259

clude Episodic Information Reasoning (EIR), Tem-260

poral Reasoning (TR), Human-Object Interaction261

(HOI), Visual Object Identification (VOI), Object262

State Change Detection (OSCD), and Audio Event263

Recognition (AER) (Additional task details are264

provided in Appendix D). To ensure annotation265

consistency and quality, we developed comprehen-266

sive, task-specific guidelines outlining objectives,267

expected answer formats, edge cases, and anno-268

tated examples (Additional details on the annota-269

tion guidelines are provided in Appendix E).270

Expert Annotation. We employ expert annota-271

tors to generate question-answer pairs for each task272

(see Appendix E for annotator details). Annotators273

were provided with an annotation tool, including274

egocentric videos, our enriched narrations, and de-275

tailed task-specific guidelines. To create halluci-276

nated queries, annotators were instructed to apply277

various hallucination-inducing strategies, such as278

prompt injection, adversarial sampling, and tem-279

poral manipulation. Detailed descriptions of these280

strategies are provided below (refer to Fig 2 for281

examples on each strategy).282

i) Prompt injection is a simple yet effective tech-283

nique for inducing hallucinations by exploiting a284

model’s susceptibility to misleading or adversarial285

instructions (Liu et al., 2024). For example,286

given an episodic reasoning (EIR) question like287

“Where did the person leave their keys?”, we inject288

false information by altering the question type289

and replacing the referenced object with one not290

present in the video, producing a hallucinated291

version such as “Why did the person leave their292

hat?” Extensive experiments reveal that MLLMs293

consistently fail to resist such attacks, lacking the294

ability to implicitly verify object presence before295

generating factually accurate responses.296

ii) Adversarial sampling is employed in our297

benchmark to generate hallucinated queries across 298

diverse multimodal information in egocentric 299

videos, including human actions, sounds, and 300

visual objects. For tasks like Hand-Object Inter- 301

action (HOI), we create hallucinated counterparts 302

by replacing the active object (i.e., the one being 303

interacted with) with a non-active object in the 304

scene. Using this strategy, we ensure that the 305

hallucinated action-object pairs are scene-aware, 306

making them harder to defend against. 307

iii) Manipulating temporal order is used in our 308

benchmark to generate hallucinated queries by al- 309

tering the sequence of events defined by human- 310

object interactions in egocentric videos. By re- 311

ordering these interactions, we create mismatches 312

between actions and the corresponding sounds they 313

produce. This results in temporally inconsistent yet 314

scene-plausible queries, increasing the difficulty 315

for models in detecting hallucinations. 316

Quality Assessment. To ensure the quality and 317

consistency of the annotations, we conducted a 318

structured quality assessment protocol involving 319

iterative feedback and reliability checks. After 320

initial annotation, all question-answer (QA) pairs 321

were reviewed through a back-and-forth process 322

between expert annotators and authors. Annotators 323

were encouraged to flag ambiguous cases or an- 324

notation uncertainties, which were then discussed 325

in weekly review meetings. To quantitatively as- 326

sess annotation reliability, we randomly selected 327

1,000 QA pairs across all six tasks and had them 328

cross-verified by expert reviewers. We measured 329

inter-annotator agreement using Krippendorff’s Al- 330

pha, a standard metric for multi-rater agreement 331

in benchmark construction (Thrush et al., 2022; Li 332

et al., 2023a), and observed an average alpha score 333

of 0.78, indicating substantial agreement across 334

perception and reasoning tasks. 335

4 Experimental Setup 336

We first describe the baselines used to evaluate hal- 337

lucination performance and then outline the human 338

evaluation setup. 339

Baselines. We benchmark a range of MLLMs, 340

including eight open-weight and closed-source 341

models, such as Gemini-1.5 (Team et al., 2024) 342

and GPT-4o (Achiam et al., 2023). These mod- 343

els are selected to cover a wide variety of fac- 344

tors, including model size (LLaVa-OV (Li et al., 345

2024a) contains 0.5B parameters, whereas Vide- 346

oLLaMA2 (Cheng et al., 2024) consists of 7B 347
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Models Size Ego Modality Reasoning Skills Perception Skills Avg (↑)
Vision Audio EIR (↑) TR (↑) HOI (↑) VOI (↑) OSCD (↑) AER (↑)

Human Evaluation

Human 80.1±0.2 86.5±0.2 84.2±0.4 88.4±0.5 91.1±0.3 86.3±0.2 86.1±0.3

Open-Source Models

Qwen2.5VL (Bai et al., 2025) 3B × ✓ × 50.1±0.3 67.3±0.2 54.6±0.4 56.3±0.1 51.1±0.3 - 55.8±0.2
VideoLlama3 (Zhang et al., 2025) 8B ✓ ✓ × 52.1±0.4 59.9±0.3 62.7±0.2 63.9±0.5 53.2±0.1 - 58.3±0.3
InternVideo (Wang et al., 2025) 8B ✓ ✓ × 51.4±0.4 64.3±0.1 65.5±0.2 60.8±0.3 51.7±0.2 - 58.7±0.3
LLaVa-NEXT (Li et al., 2024b) 7B × ✓ × 50.1±0.2 58.4±0.5 64.1±0.1 56.8±0.3 61.9±0.4 - 58.2±0.2
LLaVa-OV 0.5B (Li et al., 2024a) 0.5B ✓ ✓ × 51.2±0.3 64.5±0.1 61.8±0.4 60.5±0.2 52.4±0.5 - 58.1±0.3
LLaVa-OV (Li et al., 2024a) 7B ✓ ✓ × 51.2±0.4 67.5±0.2 62.9±0.3 58.5±0.1 50.3±0.5 - 58.1±0.2
ImageBind-LLM (Han et al., 2023) 7B × ✓ ✓ 55.2±0.3 65.6±0.4 61.6±0.2 52.9±0.1 51.6±0.3 52.2±0.5 57.3±0.2
MiniCPM (OpenBMB, 2024) 8B × ✓ ✓ 57.3±0.4 47.3±0.1 66.9±0.5 69.5±0.3 58.4±0.2 50.1±0.4 58.9±0.3
VideoLlama2 (Cheng et al., 2024) 7B ✓ ✓ ✓ 56.1±0.3 38.9±0.2 40.2±0.5 41.2±0.4 56.8±0.1 52.6±0.3 47.6±0.2

Closed-Source Models

Gemini-Pro (Team et al., 2024) - - ✓ ✓ 51.4±0.2 60.8±0.3 61.8±0.5 68.1±0.4 56.5±0.1 52.5±0.3 59.4±0.2
GPT-4o (Achiam et al., 2023) - - ✓ × 53.2±0.3 47.5±0.2 66.7±0.4 73.9±0.5 58.4±0.1 - 58.8±0.3

Table 2: Performance comparison of various MLLMs on EGOILLUSION across egocentric video-language tasks: Episodic
Information Reasoning (EIR), Temporal Reasoning (TR), Human-Object Interaction (HOI), Visual Object Identification (VOI),
Object State Change Detection (OSCD), and Audio Event Recognition (AER). We indicate whether the models were trained on
egocentric video data and whether they leverage both vision and audio modalities. The best-performing models for each task are
highlighted in bold, while the second-best scores are underlined.

parameters). They also vary in the video type348

used during training (ImageBind-LLM (Han et al.,349

2023) is trained solely on exocentric videos, while350

VideoLLaMA3 (Zhang et al., 2025) and Intern-351

Video (Wang et al., 2025) are jointly trained on352

both exocentric and egocentric videos). Finally, the353

models differ in their multisensory input capabili-354

ties — LLaVa-Next (Li et al., 2024b) and LLaVa-355

OV (Li et al., 2024a) process videos without audio,356

in contrast to models like Gemini-1.5 (Team et al.,357

2024), which process both video and audio signals358

(see Appendix B for additional details).359

Hallucination Evaluation. We conduct separate360

evaluations for both close-ended and open-ended361

questions. For close-ended questions, which362

require binary yes/no answers, we follow prior363

video hallucination benchmarks such as Video-364

Hallucer (Wang et al., 2024b) by applying string365

matching to convert model responses into either366

“Yes” or “No.” For open-ended questions, we adopt367

a two-step approach: first, we determine whether368

the model implicitly assumes the presence of an369

object using an LLM-as-judge framework (Zheng370

et al., 2023) with GPT-4o (Achiam et al., 2023)371

(to reduce model bias, we also use Gemini-Pro for372

LLM-as-judge); second, we independently assess373

the factual correctness of the response. Consistent374

with previous hallucination benchmarks, we report375

accuracy as the primary metric, where lower ac-376

curacy indicates a higher degree of hallucinations.377

Human Evaluation. We recruited three English-378

proficient individuals to evaluate our benchmark, 379

where each individual had strong foundational 380

knowledge of computer vision. To reduce poten- 381

tial evaluator bias, we randomized the order of 382

the question-answer pairs, ensuring that correct 383

and hallucinated responses did not appear consec- 384

utively. Inter-annotator reliability was measured 385

using the Pearson correlation coefficient, yielding 386

a moderate agreement score of 0.58. 387

5 Results 388

5.1 Main Results 389

We benchmark ten state-of-the-art MLLMs on 390

EGOILLUSION and present the results in Table 2. 391

Below, we summarize the key findings: 392

i) EGOILLUSION presents a significant challenge, 393

exposing the vulnerability of current MLLMs to 394

hallucination. We find that existing models strug- 395

gle to defend against hallucinations induced by 396

EGOILLUSION. For instance, the best-performing 397

model, Gemini-Pro, achieves 59.4% accuracy, 398

while human performance on the benchmark is 399

86.1%, revealing a gap of 26.7%. 400

ii) Minimal performance gap between open- and 401

closed-weight model. Unlike other benchmarks, 402

EGOILLUSION reveals only a small performance 403

gap between open- and closed-weight models. In 404

Table 2, we show that the best open-weight model, 405

VideoLlama3, achieves an accuracy of 58.3%, 406

while the best closed-weight model, Gemini-Pro, 407

reaches 59.4%, a marginal difference of 1%. 408
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Models PI (↑) AS (↑) MTO (↑)

Open-Weight Models

ImageBind-LLM 54.5±0.3 61.6±0.4 65.6±0.2
Qwen2.5VL 53.2±0.2 52.8±0.3 67.3±0.5
VideoLlama3 60.1±0.4 66.0±0.2 59.9±0.3
LLaVa-NEXT 58.0±0.1 65.3±0.5 58.4±0.3
LLaVa-OV 0.5B 56.5±0.3 57.2±0.4 64.5±0.2
LLaVa-OV 54.8±0.2 56.8±0.3 67.5±0.4
MiniCPMo-2.6 58.4±0.5 51.0±0.2 47.3±0.3
VideoLlama2 58.9±0.3 51.0±0.4 38.9±0.2

Closed-Source Models

Gemini-Pro 53.9±0.4 64.9±0.2 60.8±0.5
GPT-4o 54.2±0.3 62.1±0.1 59.7±0.3

Table 3: Performance comparison of various MLLMs across
diverse hallucination-inducing strategies employed in EGOIL-
LUSION, including prompt injection (PI), Adversarial Sam-
pling (AS), and Manipulating Temporal Order (MTO).

iii) Minimal performance gap between small and409

large MLLMs. Unlike conventional benchmarks410

where larger models typically outperform smaller411

ones, EGOILLUSION reveals that model size alone412

does not consistently mitigate hallucinations, e.g.,413

the small LLaVA-OV 0.5B model achieves 58.1%414

average accuracy, matching the performance of its415

larger counterpart, LLaVA-OV 7B, suggesting that416

the hallucinations introduced by EGOILLUSION417

are not easily mitigated by scaling model size.418

iv) MLLMs hallucinate less on perception-based419

tasks than on reasoning tasks. As shown in Table 2,420

MLLMs hallucinate less on perception-based tasks421

(Visual Object Identification (VOI) and Audio422

Event Recognition (AER)) compared to reasoning423

tasks (Temporal Reasoning (TR) and Episodic424

Information Reasoning (EIR)). For example, the425

best-performing model, Gemini-Pro, achieves426

68.1% accuracy on VOI and 58.3% on AER, but427

only 60.8% on TR and 51.4% on EIR—a gap of428

over 7%. This suggests that hallucinations are429

more prevalent when models are asked to perform430

complex reasoning rather than perception.431

5.2 Ablation On Hallucination Inducing432

Strategies433

Building on these findings, we further examine434

how different hallucination-inducing strategies af-435

fect MLLM performance on EGOILLUSION. Ta-436

ble 3 compares the performance of various MLLMs437

under different hallucination-inducing strategies438

employed in the EGOILLUSION. Overall, models439

tend to perform close to random guess across all440

strategies, highlighting their consistent vulnerabil-441
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Figure 4: Performance comparison on confounding pairs
generated from the videos Q/A sourced from EGOILLUSION
across visual and audio modality.

ity to hallucinations in egocentric video understand- 442

ing. Among open-weight models, MiniCPM and 443

VideoLlama2 perform the worst, particularly under 444

the Manipulating Temporal Order (MTO) strategy, 445

where their scores drop to 47.3% and 38.9%, re- 446

spectively, indicating significant difficulty in under- 447

standing chronological ordering in unique egocen- 448

tric events. For closed-weight models, Gemini-Pro 449

and GPT-4o perform reasonably well compared 450

to open-weight models but remain susceptible to 451

hallucinations induced by Prompt Injection (PI), 452

where they achieve the lowest score (53.9%), in- 453

dicating that these MLLMs are vulnerable to mis- 454

leading prompts, likely due to learned biases from 455

pretraining data that make them more susceptible 456

to hallucinated inputs. 457

5.3 Which modality does MLLMs attend to? 458

Motivated by the near-random performance of cur- 459

rent MLLMs on our benchmark, we further investi- 460

gate which modality (audio or visual) these models 461

primarily attend to while understanding egocentric 462

videos. We conduct an experiment by randomly 463

selecting 200 video clips from EGOILLUSION and 464

generating confounding pairs to isolate the contri- 465

bution of each modality. For the audio modality, 466

we synthetically add unrelated background sounds; 467

for the visual modality, we replace the main ob- 468

ject in the query with a random object. A model’s 469

response is considered correct only if it answers 470

both versions of the confounding pair correctly. As 471

shown in Fig. 4, when evaluated on MLLMs that 472

process both modalities, we find a significant drop 473

in performance below 50%, on both types of pertur- 474
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Figure 5: Distribution of “Yes” and “No” responses of
Gemini-1.5 Pro and MiniCPM in the hallucinated responses
for closed-ended questions. We observe that the model is
inclined towards affirmative responses in hallucinated outputs.

bations. Notably, the performance degradation is475

more severe for audio, with a 32% drop for Gemini476

and 28% for MiniCPM. These results demonstrate477

that while MLLMs struggle with both modalities,478

they especially fail to leverage audio cues, instead479

relying heavily on language priors, leading to hal-480

lucinated responses.481

5.4 Error Analysis482

Next, we conduct a detailed error analysis with a483

focus on response biases and the failure cases.484

Yes/No Bias. Fig. 5 presents a quantitative analysis485

of how often Gemini-1.5 Pro and MiniCPM486

respond with “Yes” or “No” when generating487

hallucinated responses in closed-ended tasks488

within EGOILLUSION. We observe that despite489

differing hallucination rates, both models exhibit a490

significantly higher proportion of “Yes” responses491

compared to “No” across various tasks, e.g., in ego-492

centric video-language tasks such as Visual-Object493

Identification (VOI), where both models show494

similar hallucination rates, we find that they still495

demonstrate a strong bias toward “Yes” responses.496

A similar pattern emerges in Temporal Reasoning497

(TR), where the models differ in their hallucina-498

tion rates but still predominantly produce “Yes”499

responses. This trend remains consistent across500

other tasks, as shown in Fig. 5, indicating the501

models’ inclination toward affirmative responses502

in hallucinated outputs.503

Finegrained Error Analysis. We conduct a man-504

ual error analysis on 1,000 incorrect responses, rep-505

resenting 12.5% of the total benchmark samples,506

uniformly sampled across all six tasks in EGOILLU-507

SION. Fig. 6 presents a detailed breakdown of the508

different types of errors observed in responses gen-509

erated by Gemini 1.5 Pro (Team et al., 2024) and510

Figure 6: An illustration of the different types of errors
observed in incorrect responses from Gemini 1.5 Pro (Team
et al., 2024) and MiniCPM (OpenBMB, 2024). Additional
details on the various error types can be found in Appendix J.

MiniCPM (OpenBMB, 2024) on EGOILLUSION. 511

The primary source of errors for both models is 512

perception, accounting for 48.6% of Gemini 1.5 513

Pro’s mistakes and 43.7% of MiniCPM’s. This is 514

largely driven by hallucination-inducing questions 515

in EGOILLUSION, revealing the models’ difficulty 516

in accurately perceiving entities in the video before 517

generating factually grounded responses. In addi- 518

tion, logical and procedural errors make up a sub- 519

stantial share of the failures, indicating that even 520

when models identify relevant entities correctly, 521

they often fall short in applying the complex rea- 522

soning needed for accurate answers. Overall, this 523

analysis underscores the critical need for improved 524

perceptual understanding in egocentric video tasks. 525

6 Conclusion 526

In this paper, we introduced EGOILLUSION, the 527

first comprehensive benchmark specifically de- 528

signed to evaluate hallucination in MLLMs within 529

egocentric video understanding. Our benchmark 530

features over 1,400 egocentric videos and 8,000 531

carefully annotated question-answer pairs designed 532

to systematically trigger and assess hallucinations 533

across diverse scenarios involving audio and visual 534

perception and complex reasoning. Experimental 535

results across ten SOTA MLLMs reveal significant 536

vulnerabilities, demonstrating that current models, 537

regardless of scale or training modality, are highly 538

susceptible to hallucinations, achieving accuracies 539

close to random guessing. By introducing novel 540

hallucination inducing techniques, EGOILLUSION 541

provides insights into the MLLM’s limitations and 542

offers a roadmap for future research. 543
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7 Limitation and Future Work544

In this section, we highlight a few limitations and545

future directions:546

• Our benchmark, EGOILLUSION reveals that547

existing Multimodal Large Language Models548

(MLLMs) exhibit a high rate of hallucination549

when evaluated on egocentric video under-550

standing tasks. In future work, we plan to551

develop robust hallucination mitigation strate-552

gies tailored specifically for this domain.553

• While the current version of our benchmark554

evaluates model performance on visual and555

non-speech auditory cues (e.g., background556

sounds) in egocentric videos, it does not yet557

cover speech signals. As egocentric videos558

often contain conversations, we aim to extend559

our benchmark to include the speech modality560

in future iterations, enabling more comprehen-561

sive evaluations and analysis.562
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A Appendix786

In the Appendix, we provide:787

1. Section B: Baseline Details788

2. Section C: Other Benchmark Details789

3. Section D: Tasks790

4. Section E: Annotator Details791

5. Section F: Annotation Guidelines792

6. Section G: Data Source and Filtering793

B Baseline Details794

ImageBind-LLM2 (Han et al., 2023) ImageBind-795

LLM is built on a 7B-parameter LLaMA base, aug-796

mented with a learnable bind network to align Im-797

ageBind’s image encoder with LLaMA. It is trained798

solely on exocentric image-text pairs. Although its799

training data contains only images (without audio),800

its unified embedding space allows it to handle801

audio, video, and 3D point cloud inputs during802

inference.803

VideoLlama23 (Cheng et al., 2024) VideoLlama2804

is a video-language model with 7B parameters that805

leverages a LLaMA-based language model. It pro-806

cesses video inputs comprising both visual frames807

and audio. The model is trained on large-scale exo-808

centric video–text datasets, where the video data is809

provided with audio.810

MiniCPM4 (OpenBMB, 2024) MiniCPM is a mul-811

timodal large language model with 8B parameters.812

It accepts live video frames along with synchro-813

nized speech inputs, making it great for real-time814

multimodal live streaming, especially on edge and815

mobile devices. The model is trained on a vari-816

ety of datasets that include exocentric video data.817

The training data comprises video sequences with818

audio, which allows for effective vision–speech819

alignment and a richer multimodal understanding.820

InternVideo5 (Wang et al., 2025) InternVideo2.5821

is built on a 7B-parameter base using InternLM2.5-822

7B as its language adapter. It takes video inputs823

- sequences of video frames accompanied by text824

instructions, with a focus on visual content (with-825

out audio). The model is trained on a variety of826

2https://github.com/dynamic-superb/
multimodal-llama

3https://github.com/DAMO-NLP-SG/VideoLLaMA2
4https://github.com/OpenBMB/MiniCPM
5https://github.com/OpenGVLab/InternVideo

egocentric and exocentric video datasets, covering 827

both short and long video contexts. 828

Qwen2.5VL6 (Bai et al., 2025) Qwen2.5VL is a 829

multi-modal model with roughly 3B parameters 830

that uses a Qwen-based language model as its 831

adapter. It processes inputs from video, where 832

the data includes visual frames, allowing multi- 833

modal comprehension. The model is pre-trained 834

on large-scale exocentric video-text datasets. It’s 835

training setup ensures that Qwen2.5VL is good at 836

interpreting visual information for tasks like video 837

captioning and question answering. 838

VideoLlama37 (Zhang et al., 2025) VideoLlama3 839

is an advanced video-language model built with 840

8B parameters, using a LLaMA-based language 841

model as its foundation. It accepts video inputs 842

that includes visual frames, which allows it to cap- 843

ture temporal cues. The model is trained on ex- 844

tensive egocentric and exocentric video datasets. 845

It’s training methodology allows VideoLlama3 to 846

perform very well at real-time video understanding 847

and multi-modal reasoning tasks. 848

LLaVa-NEXT8 (Li et al., 2024b) LLaVa-NEXT 849

is a vision-language model having 7B parameters 850

and is built on a LLaMA-derived language model 851

adapter. It accepts video inputs as image frames 852

and text queries, focusing exclusively on visual 853

content without audio. The model is trained on 854

large-scale exocentric image-text datasets. Its train- 855

ing data comprises high-quality images, which en- 856

sures accurate visual-text alignment and great per- 857

formance on tasks such as image captioning and 858

visual question answering. 859

LLaVa-OneVision9 (Li et al., 2024a) LLaVa- 860

OneVision is a vision-language model having 861

approximately 7B parameters and is built on a 862

LLaMA-based language model. It takes static im- 863

age inputs along with text for rich visual-text in- 864

teractions. The model is trained on egocentric and 865

exocentric image-text datasets. Its training data 866

consists of images paired with text, enabling it to 867

deliver high performance on tasks like image cap- 868

tioning, retrieval, and dialogue generation. We 869

have tested our benchmark on both 0.5B and 7B 870

parameter versions of LLaVa-OneVision. 871

Gemini-1.5-Pro (Team et al., 2024) Gemini 1.5 872

6https://github.com/QwenLM/Qwen2.5-VL
7https://github.com/DAMO-NLP-SG/VideoLLaMA3
8https://github.com/LLaVA-VL/LLaVA-NeXT
9https://github.com/LLaVA-VL/LLaVA-NeXT/blob/

main/docs/LLaVA_OneVision_Chat.md
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Pro is a proprietary multimodal model by Google.873

It is state-of-the-art on many video benchmarks.874

It is capable of processing and reasoning over ex-875

tremely long contexts, up to 10 million tokens. It876

outperforms its competitors in long-document QA,877

video and audio analysis, and retrieval tasks.878

GPT-4o (Achiam et al., 2023) GPT-4o is OpenAI’s879

latest multimodal model capable of processing text,880

images, and audio natively, offering faster and more881

accurate responses across modalities. Compared to882

previous versions, GPT-4o demonstrates improved883

reasoning abilities, enhanced real-time interaction,884

and better alignment with user intent, making it885

particularly suitable for interactive and perception-886

heavy tasks.887

C Other Benchmark Details888

POPE (Li et al., 2023b) POPE is an image-based889

hallucination evaluation dataset consisting of 3000890

questions over 500 images. It is designed to assess891

object hallucinations using a binary QA format, fo-892

cusing on detecting whether a specified object is893

present or hallucinated. The dataset is constructed894

from exocentric image data and does not incorpo-895

rate adversarial testing.896

HallusionBench (Guan et al., 2024) Hallusion-897

Bench supports both image and video modalities898

and comprises 1129 questions over 346 instances.899

It evaluates multiple hallucination aspects, such900

as object, relational, and semantic errors, using901

an LLM-based evaluation protocol. The data is902

exocentric, and the benchmark does not include903

adversarial components.904

MMHal-Bench (Sun et al., 2023) MMHal-Bench905

is an image-based evaluation benchmark with 96906

questions on 96 images. It focuses on hallucina-907

tions in object, relational, and semantic details, em-908

ploying an LLM-based evaluation approach. The909

dataset uses exocentric imagery and does not in-910

volve adversarial testing.911

Bingo (Cui et al., 2023) Bingo is an image-focused912

benchmark featuring 370 questions across 370 im-913

ages. It assesses hallucination issues, particularly914

object-level and semantic inconsistencies, using an915

LLM-based evaluation method combined with an916

adversarial component, making it more challenging917

to detect hallucinations reliably.918

EasyDetect (Chen et al., 2024c) EasyDetect is an919

image-based hallucination detection dataset with920

420 questions over 420 images. It targets object,921

TASK # QUES TYPE

Episodic Information Reasoning 1000 Open-ended
Temporal Reasoning 2000 Closed-ended
Hand-Object Interaction 1000 Closed-ended
Visual Object Identification 2000 Closed-ended
Episodic Information Extraction 1000 Closed-ended
Audio Event Recognition 1000 Closed-ended

Table 4: Distribution of number of questions and their
type for each task

relational, and semantic hallucinations using an 922

LLM-based evaluation framework. The data is 923

exocentric, and the benchmark does not include 924

adversarial settings. 925

VHTest (Huang et al., 2024) VHTest is an image 926

dataset containing 1200 questions on 1200 images, 927

designed to evaluate hallucinations in visual out- 928

puts. It focuses on assessing object and semantic 929

hallucination types through an LLM-based eval- 930

uation method without adversarial enhancements. 931

The images are exocentric in nature. 932

VALOR (Chen et al., 2023) In the hallucination 933

evaluation context, VALOR is an image-based 934

dataset with 211 questions on 211 images. It is 935

used to measure object, relational, and semantic 936

hallucinations via an LLM-based evaluation pro- 937

tocol, relying on exocentric imagery and without 938

adversarial testing. 939

VideoHallucer (Wang et al., 2024b) VideoHallucer 940

is a video-based benchmark with 1800 questions 941

across 948 videos. It comprehensively covers a 942

wide range of hallucination types, including object- 943

relation, semantic, temporal, extrinsic factual, and 944

non-factual hallucinations. The evaluation is per- 945

formed using a binary QA method with an adver- 946

sarial component, ensuring robust assessment of 947

LVLMs’ performance on dynamic video content. 948

D Tasks 949

Episodic Information Reasoning (EIR) evaluates 950

MLLMs’ ability to accurately track objects and 951

their interactions over time in egocentric videos and 952

furter reason over this information. This task is par- 953

ticularly challenging in egocentric settings, where 954

the first-person perspective creates a dynamic field 955

of view with objects frequently entering, exiting, 956

and being manipulated through a series of actions. 957

In this task, models must answer "how,", "what", 958

"why,", "where" (not exclusive to these types) ques- 959

tions about objects that appeared in the video while 960
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correctly identifying when questions refer to ob-961

jects that were never present. The task specifically962

targets hallucination tendencies by including plau-963

sible but non-existent objects that fit the scene con-964

text, testing whether models can resist generating965

false information about actions that never occurred.966

Examples:967

• Why did the person push the bicycle?968

• Where did the person place the pliers?969

• What did the person do with their hand?970

The answers to these are open-ended but971

grounded in the visual and acoustic environment of972

the agent.973

Temporal Reasoning (TR) evaluates MLLMs’974

ability to track chronological relationships between975

events in egocentric videos. This task tests whether976

models can accurately determine the temporal or-977

der of actions that are separated by several interven-978

ing events, challenging them to maintain a coherent979

understanding of the activity timeline. In egocen-980

tric settings, where the first-person perspective cre-981

ates a continuous stream of interactions, properly982

sequencing events becomes particularly challeng-983

ing as objects and actions flow in and out of view.984

The task presents questions using "before/after"985

temporal operators to probe if models can correctly986

identify the relative ordering of events without hal-987

lucinating plausible but incorrect sequences.988

Examples:989

• Did the person open the gate after passing the990

broom from his right hand to the left hand?991

• Did the person wash the car after putting the992

hose down?993

The answers to these are closed-ended and can994

be either Yes or No995

Hand-Object Interaction (HOI) evaluates996

MLLMs’ ability to detect physical actions in997

egocentric videos. This task challenges models to998

distinguish between actual hand-object interactions999

that occurred in the video and visually similar1000

but non-occurring actions. By presenting pairs1001

of original actions (e.g., "picking up an object")1002

alongside contrastive alternatives (e.g., "throwing1003

an object"), the task tests whether models halluci-1004

nate plausible interactions or accurately recall the1005

specific physical actions that were performed.1006

Examples:1007

• Did the person pick a cooking spoon? 1008

• Did the person carry the timber? 1009

The answers to these are closed-ended and can 1010

be either Yes or No 1011

Object State Change Detection (OSCD) evalu- 1012

ates MLLMs’ ability to reason about state changes 1013

and action completeness in egocentric videos 1014

through yes/no questions. Unlike Episodic Infor- 1015

mation Reasoning, which tests open-ended reason- 1016

ing through "how," "why," and "where" questions, 1017

this task uses binary questions to assess whether 1018

models can accurately track object state transfor- 1019

mations and recall this information when requested. 1020

The task challenges models to identify complete 1021

action pairs (where objects return to their initial 1022

state, like opening and closing a fridge) versus in- 1023

complete actions (where state changes remain unre- 1024

solved, such as removing an item without replacing 1025

it). 1026

Examples: 1027

• Did the person insert the screw after picking 1028

it up? 1029

• Did the person put down the blender jar after 1030

taking it? 1031

The answers to these are closed-ended and can 1032

be either Yes or No 1033

Visual Object Identification (VOI) evaluates 1034

MLLMs’ ability to correctly determine which ob- 1035

jects were involved in specific activities within 1036

egocentric videos. This task challenges models 1037

to distinguish between objects that were genuinely 1038

part of an activity (e.g., eggs used while cooking) 1039

and plausible but absent objects (e.g., carrots that 1040

would fit the cooking scenario but never appeared). 1041

By providing an activity context through visual 1042

captions, the task creates a particularly challeng- 1043

ing scenario for hallucination detection, as models 1044

must resist the temptation to associate semantically 1045

related but absent objects with the identified activ- 1046

ity. 1047

Examples: 1048

• Did the person remove the plug from the fuel 1049

pipe? 1050

• Did the person peel the potato with a knife? 1051

The answers to these are closed-ended and can 1052

be either Yes or No 1053
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Audio Event Recognition (AER) evaluates1054

MLLMs’ ability to distinguish between actual au-1055

dio cues and plausible but non-existent background1056

sounds in egocentric videos. This task challenges1057

models to identify appropriate moments where syn-1058

thetic background sounds could be added that are1059

coherent with the visual scene but not inherently1060

produced by the actions being performed. By re-1061

quiring models to determine which background1062

sounds would be plausible in specific contexts (e.g.,1063

a phone ringing during cooking or distant dog bark-1064

ing when near a window), the task tests whether1065

models can accurately separate observed audio in-1066

formation from inferred possibilities. This is par-1067

ticularly revealing in egocentric videos, where the1068

first-person perspective often includes rich environ-1069

mental audio that models may hallucinate based on1070

visual cues alone.1071

Examples:1072

• Did you hear the sound of birds chirping1073

• Did you hear the sound of the cash register?1074

The answers to these are closed-ended and can1075

be either Yes or No1076

E Annotator Details1077

We employed five experts to annotate the data,1078

which included 3 males and 2 females. The experts1079

are MS/PhD students witha strong foundational1080

understanding of computer vision. All annotators1081

had prior experience with video annotation tasks1082

and were familiar with the challenges of egocentric1083

vision.1084

Before beginning the annotation process, anno-1085

tators were given training sessions to ensure con-1086

sistency in their understanding of hallucination cat-1087

egories and annotation guidelines. This training1088

included an overview of hallucination categories,1089

followed by short exercises in which they were1090

asked to annotate some examples, which were re-1091

viewed and discussed.1092

The annotation process was conducted over a1093

period of 4 weeks, with regular meetings to ad-1094

dress doubts and calibrate their understanding of1095

the hallucination categories . Annotators were com-1096

pensated fairly for their expertise and time com-1097

mitment. For conducting annotations, we got the1098

approval from our Institution Review Board (IRB)1099

F Annotation Guidelines 1100

We provide a detailed description of the guidelines 1101

shared with annotators for various tasks below: 1102

F.1 Annotation Guidelines for Visual Object 1103

Identification (Object-Centric QA 1104

Generation) 1105

This task involves generating question-answer 1106

(QA) pairs based on egocentric video event data by 1107

leveraging object interactions in different scenes. 1108

F.1.1 Data 1109

• Event List: Chronologically ordered events 1110

describing human actions and the objects in- 1111

volved. 1112

• Object List: A global list of unique objects 1113

present in the events. 1114

Each event consists of: 1115

• Action Caption: Describes the action per- 1116

formed. 1117

• Local Object List: Objects involved in the 1118

action. 1119

F.1.2 Annotation Steps 1120

1. Identify the Visual Scene 1121

• Infer the most likely environment based 1122

on the object list. 1123

• Ensure coherence with the given objects. 1124

2. Select and Replace Objects 1125

• Choose at least two objects from the 1126

global list. 1127

• Replace them with logically relevant 1128

new objects not present in the list. 1129

3. Generate QA Pairs 1130

• Identify events where the selected ob- 1131

jects appear. 1132

• Create a “Yes” answer question using 1133

the original object. 1134

• Replace the object and create a “No” an- 1135

swer question while keeping the action 1136

unchanged. 1137

These guidelines ensure high-quality annotations 1138

for object-centric visual understanding. 1139
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F.2 Annotation Guidelines for Episodic1140

Information Reasoning1141

This task involves generating question-answer1142

(QA) pairs based on egocentric video event data by1143

leveraging object interactions and reasoning about1144

the actions performed.1145

F.2.1 Input Data1146

• Event List: Chronologically ordered events1147

describing human actions and the objects in-1148

volved.1149

• Object List: A global list of unique objects1150

present in the events.1151

Each event consists of:1152

• Action Caption: Describes the action per-1153

formed.1154

• Local Object List: Objects involved in the1155

action.1156

F.2.2 Annotation Steps1157

1. Identify the Visual Scene1158

• Infer the most likely environment based1159

on the object list.1160

• Ensure coherence with the given objects.1161

2. Select and Replace Objects1162

• Choose at least two objects from the1163

global list.1164

• Replace them with logically relevant1165

new objects not present in the list.1166

3. Generate How, Why, or Where Questions1167

• Identify an event containing the selected1168

objects.1169

• Select a question type (How, Why, or1170

Where) based on the event’s nature:1171

– If the event describes a process,1172

choose a "How" question.1173

– If the event describes reasoning,1174

choose a "Why" question.1175

– If the event describes a location,1176

choose a "Where" question.1177

• Generate a corresponding question-1178

answer pair.1179

• If an event with the new object does not1180

exist, state that the action was not per-1181

formed.1182

These guidelines ensure high-quality annotations 1183

for episodic information reasoning in egocentric 1184

videos. 1185

F.3 Annotation Guidelines for Temporal 1186

Reasoning 1187

This task involves generating question-answer 1188

(QA) pairs that require reasoning about the tem- 1189

poral sequence of events in an egocentric video. 1190

F.3.1 Input Data 1191

• Event List: A chronologically ordered se- 1192

quence of unique events describing human 1193

actions. 1194

Each event consists of: 1195

• Action Caption: A description of the action 1196

performed. 1197

F.3.2 Annotation Steps 1198

1. Selecting Events from the Event List 1199

• Randomly select two events from the 1200

chronological list. 1201

• Ensure that there is a sufficient gap (ide- 1202

ally 4 to 5 events apart). 1203

• The order should not be directly inferable 1204

without examining the full sequence. 1205

2. Creating Question-Answer Pairs 1206

• Formulate questions using the selected 1207

events that require reasoning about tem- 1208

poral order. 1209

• Use words like "before" and "after" to 1210

indicate event sequencing. 1211

• Ensure the questions are concise and 1212

clear. 1213

• Generate a corresponding answer based 1214

on the event list. 1215

These guidelines ensure high-quality annotations 1216

for temporal reasoning in egocentric videos 1217

F.4 Annotation Guidelines for Object State 1218

Change Detection 1219

This task involves identifying and categorizing 1220

event sequences from egocentric video data into 1221

complete and incomplete actions, followed by gen- 1222

erating corresponding question-answer pairs. 1223
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F.4.1 Input Data1224

• Event List: A chronologically ordered se-1225

quence of unique events describing human1226

actions.1227

Each event consists of:1228

• Action Caption: A description of the action1229

performed.1230

F.4.2 Annotation Steps1231

1. Identifying Complete and Incomplete Ac-1232

tions1233

• Complete Actions: A sequence of1234

actions where the object’s final state1235

matches its initial state.1236

• Incomplete Actions: A sequence of ac-1237

tions where the object’s final state differs1238

from its initial state.1239

• Identify and pair events that meet the1240

above criteria.1241

2. Generating Question-Answer Pairs1242

• Formulate questions that require identi-1243

fying whether an action was completed1244

or left incomplete.1245

• Ensure questions are clearly structured1246

and answerable based on the event list.1247

• Provide a reasoning statement for each1248

answer.1249

These guidelines ensure accurate extraction and1250

classification of episodic actions for effective infor-1251

mation retrieval.1252

F.5 Annotation Guidelines for Visual Object1253

Identification (Action-Centric)1254

This task involves generating complex question-1255

answer (QA) pairs based on egocentric video event1256

data. The questions should focus on the presence1257

of objects in the activity the person is performing.1258

F.5.1 Input Data1259

• Event List: A chronologically ordered se-1260

quence of unique events describing human1261

actions and interactions with objects.1262

• Object List: A global list of unique objects1263

present in the events.1264

• Visual Caption: A description of the most1265

likely activity the person is performing.1266

Each event consists of: 1267

• Action Caption: Describes the action per- 1268

formed. 1269

• Local Object List: Objects involved in the 1270

action. 1271

F.5.2 Annotation Steps 1272

1. Identify the Activity 1273

• Use the visual caption to infer the most 1274

likely activity the person is performing. 1275

2. Select and Replace Objects 1276

• Choose at least two objects from the 1277

global list. 1278

• Replace them with logically relevant 1279

new objects not present in the list. 1280

3. Generate Question-Answer Pairs 1281

• Use the previously identified activity and 1282

selected objects to generate questions 1283

about whether the person used the object 1284

while performing the activity. 1285

• Ensure that questions align with the 1286

event details. 1287

• Provide a reasoning statement for each 1288

answer. 1289

These guidelines ensure accurate question genera- 1290

tion for action-centric object identification in ego- 1291

centric videos. 1292

F.6 Annotation Guidelines for Hand-Object 1293

Interaction 1294

This task involves generating question-answer 1295

(QA) pairs to assess fine-grained understanding 1296

of human actions by distinguishing between actual 1297

and contrastive actions in an egocentric video. 1298

F.6.1 Input Data 1299

• Event List: A chronologically ordered se- 1300

quence of unique events describing human 1301

actions. 1302

Each event consists of: 1303

• Action Caption: A description of the action 1304

performed. 1305
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F.6.2 Annotation Steps1306

1. Identify Action Pairs1307

• Randomly select two distinct actions1308

from the event list that describe either:1309

– Physical interaction: e.g., "C picks1310

up an object", "C places an object on1311

the table".1312

– Movement-based action: e.g., "C1313

walks towards the fridge".1314

• Ensure a gap of 3-5 events between se-1315

lected actions to prevent trivial answers.1316

• Create contrastive action pairs that invert1317

or contradict the original actions:1318

– Physical interaction contrast: If the1319

original action is "C picks up an ob-1320

ject", the contrast could be "C throws1321

the object".1322

– Movement contrast: If the origi-1323

nal action is "C walks towards the1324

fridge", the contrast could be "C1325

walks away from the fridge".1326

2. Generate Question-Answer Pairs1327

• Formulate four QA pairs:1328

– Two questions for the original actions1329

(answer: Yes).1330

– Two questions for the contrastive ac-1331

tions (answer: No).1332

These guidelines ensure accurate annotation of1333

hand-object interactions for assessing action recog-1334

nition in egocentric videos.1335

F.7 Annotation Guidelines for Audio Event1336

Generation1337

This task involves identifying events in egocen-1338

tric video sequences where a synthetic background1339

sound can be added. The goal is to introduce plausi-1340

ble ambient sounds that were not originally present1341

but fit within the visual scene.1342

F.7.1 Input Data1343

• Event List: A chronologically ordered se-1344

quence of unique events describing human1345

actions.1346

• Visual Caption: A description of the over-1347

all activity and environment where the events1348

take place.1349

Each event consists of:1350

• Action Caption: A description of the action1351

performed.1352

F.7.2 Annotation Steps 1353

1. Identify Suitable Events 1354

• Filter out events with strong inherent 1355

sounds – If an event naturally produces a 1356

dominant sound (e.g., "C is frying some- 1357

thing" → sizzling), avoid adding another 1358

cooking-related sound. 1359

• Select events where plausible back- 1360

ground sounds could occur – Ensure 1361

the sound aligns with the environment 1362

and does not contradict the event. 1363

2. Assign Synthetic Sounds 1364

• Choose a background sound that fits the 1365

scene but is not naturally produced by 1366

the selected event. 1367

• Ensure the sound is plausible given the 1368

visual environment. 1369

• Avoid contradictions, such as adding an 1370

indoor noise in an outdoor setting. 1371

These guidelines ensure high-quality annotations 1372

for introducing synthetic background sounds in 1373

egocentric videos. 1374

G Data Source and Filtering 1375

Our dataset was curated primarily from two 1376

sources: the VideoRecap (Islam et al., 2024) and 1377

Ego4D (Grauman et al., 2022) datasets. Due to 1378

inherent challenges within these datasets, specific 1379

filtering strategies were employed: 1380

• Noise Reduction: Original datasets contain 1381

numerous irrelevant or passive scenes. Thus, 1382

scenes depicting active interactions with ob- 1383

jects were explicitly identified and selected. 1384

• Static Object Annotation: To improve 1385

model interpretability and rigorously assess 1386

recognition capability, all static (non-moving) 1387

objects within scenes were carefully annotated 1388

using VLLMs. 1389

• Partial Visibility: Scenes were specifically 1390

chosen where objects were partially obscured 1391

or occluded. This intentional selection in- 1392

creases the task complexity and potential for 1393

model hallucination. 1394

• Diverse Task Sampling: The final dataset in- 1395

cludes a wide range of tasks to ensure robust- 1396

ness and generalization in model evaluations. 1397
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Figure 7: Details on LLM-as-Judge Prompt

H LLM-as-Judge Prompt1398

We have provided details on the LLM-as-Judge1399

prompt used for evaluating open-ended questions1400

in Fig. 7.1401

I Additional Details: Auxiliary1402

Compute Infrastructure: All our experiments1403

are conducted on ten NVIDIA A6000 GPUs. No1404

training is required, and depending on the down-1405

stream task, a single inference run on a benchmark1406

requires anywhere between 1 to 2 hours.1407

Potential Risks: We manually create all the1408

prompts used in our benchmark to avoid any poten-1409

tial harm or biases.1410

J Error Analysis1411

Apart from hallucinations, we observe the follow-1412

ing types of errors in the incorrect responses from1413

MLLMs1414

Spatial errors occur when MLLMs misinterpret1415

the spatial relationships of or among objects, or1416

confuse spatial attributes (where) with temporal or1417

other attributes. These typically occur in "where"1418

questions, with models often providing when, how,1419

or contextual information instead of location.1420

Factual errors occur when MLLMs make mis-1421

takes about objective information or details pre-1422

sented in the content. These can appear across1423

various question types but often involve misrepre-1424

senting what is actually shown or presented.1425

Procedural errors occur when MLLMs make mis-1426

takes in describing the sequence of actions or steps1427

taken. These typically occur in "how" questions,1428

with models often missing important actions or1429

using similar actions but performed in a different1430

context or with a different object.1431

Logical errors occur when answers lack proper 1432

reasoning or make invalid inferences that extend 1433

beyond what can be supported by the input con- 1434

tent. These errors often occur due to the model 1435

getting confused in either understanding the differ- 1436

ence between after/before or in "why" questions, 1437

where models may attribute motives, intentions, or 1438

broader contexts that aren’t actually demonstrated 1439

in the content. 1440

No Answer occurs when the model refuses to give 1441

an answer to a question. 1442
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Task Hallucination
Type

Modified Question Correct Answer Response

Object State Change De-
tection

Adversarial
Sampling

Did the person climb on the bicycle
and then recycle it?

Yes No

Does the person return the dried
grasses to the pile after holding
them?

Yes No

Episodic Information
Reasoning

Prompt Injec-
tion

Where did the person drop the water
hose?

The person
dropped the
water hose on
the staircase.

The person is walking
back into the garage,
past some equipment,
and the water hose
drops at [03:15].

How did the person collect the nail? The person did
not perform this
action.

The person collects a
small nail that was in
the fuel injector of the
machine using a mag-
net.

Hand-Object Interac-
tion

Adversarial
Sampling

Did the person put the mixture in a
frying pan?

Yes No. The person scoops
a mixture with a spoon
and places it onto a
plate. There is no fry-
ing pan in the video.

Did the person throw the pair of scis-
sors?

No Yes, it appears the per-
son threw the scissors
aside on the floor.

Visual Object Identifica-
tion

Adversarial
Sampling

Did the man take a box on the table? Yes No, he didn’t.

Did the person wipe the oil tank with
the piece of sponge?

No Yes, the person picked
up a piece of sponge and
wiped the oil tank with
it.

Table 5: Few examples of failure cases for Gemini.
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