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Abstract

We propose a hierarchical protein backbone generative model that separates
coarse and fine-grained details. Our approach called LSD consists of two
stages: sampling latents which are decoded into a contact map then sampling
atomic coordinates conditioned on the contact map. LSD allows new ways to
control protein generation towards desirable properties while scaling to large
datasets. In particular, the AlphaFold DataBase (AFDB) is appealing due
as its diverse structure topologies but suffers from poor designability. We
train LSD on AFDB and show latent diffusion guidance towards AlphaFold2
Predicted Alignment Error and long range contacts can explicitly balance
designability, diversity, and noveltys in the generated samples. Our results
are competitive with structure diffusion models and outperforms prior latent
diffusion models.

1 Introduction

A challenge across diffusion models for protein backbone generation has been scaling to large
datasets: ideally benefiting from improved diversity and generalization, but this empirically
results in unwanted biases from low quality protein structures (Huguet et al., 2024). In this
work, we aim to develop a diffusion model that scales to the AlphaFold DataBase (AFDB)
(Varadi et al., 2022) with the ability to control for desired properties. Previous approaches
use structure-based diffusion models (SDMs) over atomic coordinates, but this presents
challenges in respecting equivariance and physical constraints such as bond lengths and angles.
Unfortunately, this can hinder optimization and generalization of deep learning models –
recent works in structure prediction (Abramson et al., 2024), conformer generation (Wang
et al.), and material design (Yang et al., 2023) have found improved results by removing
equivariance and physical constraints.

We hypothesize SDMs can be improved by conditioning the generation process on sampled
contact maps, defined as a 2D binary matrix representing whether each pair of residues are
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Figure 1: Overview. We propose separating protein structure generation into two stages. In
the first stage, we generate coarse representations of proteins as a contact map using latent
diffusion. High-level properties can be enforced in the contact map generation using guidance.
In the second stage, we perform structure diffusion to generate structures conditioned on the
coarse protein representation.

within a short distance of each other. A contact map is sufficient to describe a protein’s
fold topology while the coordinates can capture biomolecular conformations and elucidate a
protein’s function. This work aims to develop LDMs for contact map generation. Our method
called LSD (Latent and Structure Diffusion) allows for training over large datasets then
guiding for desired properties. We evaluate LSD on protein backbone generation by training
on the AlphaFold Database (AFDB) (Varadi et al., 2022) which we show is challenging to
learn with only SDMs. Our results show LSD improves generalization to more diverse fold
topologies which suggests combining LDMs and SDMs can be beneficial for scaling to large
datasets like AFDB. LSD is competitive with SDMs on AFDB and outperforms existing
LDMs for protein backbone generation. Our contributions are summarized as follows:

1. We develop LSD, a novel hierarchical protein generative model that uses LDMs for
contact map generation and SDMs for atomic coordinate generation.

2. We demonstrate the first instance of high-level guidance towards improved diversity
and novelty for protein backbone generation.

3. When trained on AFDB, LSD is competitive with state-of-the-art SDMs on AFDB
and outperforms the only publicly available LDMs for protein backbone generation.

2 Method: Latent and Structure Diffusion (LSD)

In this section, we present our method for hierarchical protein backbone generation. The
method consists of three components: a structure-to-contact autoencoder (Sec. 2.1), LDM
to sample latents from the autoencoder latent space and a SDM to samples structures from
the sampled latents (Sec. 2.2). Lastly, we discuss PAE and LRC guidance in Sec. 2.3. See
App. B for background; App. C.3 for training and inference details.

2.1 Structure-to-contact Autoencoder

We denote a protein backbone’s atomic coordinates as x ∈ RL×3×3 where L is the length
of the protein (number of residues), 3 corresponds to the Nitrogen, Carbonα, and Carbon
atom in each residue. For our encoder, we use the ProteinMPNN (Dauparas et al., 2022)
architecture to embed x into a latent pϕ(x) = z ∈ RL×K where K is the latent dimension.

We aim to learn a coarse representation of x in the latent space. Our approach is to train
the decoder to predict the contact map c ∈ {0, 1}L×L where cij = 1 if the distance between

the Carbonα atoms of xi, xj is less than 8Å and cij = 0 otherwise.1 The decoder pψ takes
the Kronecker product of the latents and predicts contact map probabilities: pψ(zi ⊗ zj) for
all i, j. We parameterize pψ with a 3 layer multi-layer perceptron with ReLU activations.
The Kronecker product zi ⊗ zj ∈ RK×K is the matrix of all possible products between the
entries of zi and zj . The encoder and decoder are trained using the following reconstruction

18Å is commonly used to define a contact (Hopf et al., 2014)
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objective with a Kullback-Leibler (KL) regularization:

Epϕ(z|x)
[ 1

|Z0|
∑

(i,j)∈Z0

− log pψ(cij = 0|zi ⊗ zj) +
1

|Z1|
∑

(i,j)∈Z1

− log pψ(cij = 1|zi ⊗ zj)
]

where Z0 = {(i, j) : cij = 0} and Z1 = {(i, j) : cij = 1} are the set of indices where
cij = 0 and cij = 1 respectively. Due to the sparsity of the contacts, we weight each class
separately by its propensity. For short-hand notation, we will refer to the full decoded
contact probabilities as ĉψ(z) ∈ [0, 1]L×L where ĉψ(z)ij = pψ(zi ⊗ zj).

2.2 Latent and Structure Diffusion Models

The LDM requires learning the latent score function sθ(z
(t), t) where z(t) is a noisy version

of the encoded latents z(0) = pϕ(x) as defined in eq. (4). For neural network architecture,
we use the Diffusion Transformer (DiT) (Peebles & Xie, 2023b) since it is successfully used

across computer vision. We adapt DiT for our purposes by treating each residue latent z
(t)
i

as a token. We use Rotary Positional Encodings (RoPE) (Su et al., 2024) instead of absolute
positional encodings as done in Hayes et al. (2024).

The SDM is a modified version of FrameFlow (Yim et al., 2024a) that is trained to predict
the denoised atomic coordinates x̂φ(x

(t), ĉψ(z
(0)), z(0), t) where φ are the FrameFlow neural

network weights. We condition the SDM by concatenating z(0) and ĉψ(z
(0)) to the initial set

1D and 2D features provided to FrameFlow. FrameFlow uses flow matching over SE(3) (Chen
& Lipman, 2024) which is equivalent to the probabilistic Ordinary Differential Equation
(ODE) perspective of diffusion models. We follow the training and sampling procedure of
FrameFlow with the addition of our latent conditioning.

2.3 PAE and LRC Guidance

Let y denote a property such as a class label associated with each latent z(0). Dhariwal &
Nichol (2021) proposed to train a classifier to predict the property from each noised latent
z(t) which is then used to guide the LDM towards a desired class label. This is achieved
using Bayes rule to approximate the property conditioned score,

∇z(t) log pt(z
(t)|y) = ∇z(0) log pt(z

(t)) +∇z(t) log pt(y|z(t)) ≈ sθ(z(t); t) + s(z(t); t) (1)

where s(z(t); t) is parameterized to approximate ∇z(0) log p0(y|z(t)). We then substitute
eq. (1) as the score into eq. (8) to approximately sample from p(z(0)|y),

dz(t) =
[
a(t)z(t) − b(t)2

(
sθ(z

(t); t) + s(z(t); t)
)]

dt+ γ · b(t)dw(t). (2)

We describe multiple options of s(z(t); t) for guiding towards PAE and long range contacts.

Long range contact (LRC). Protein generative models often exhibit a preference for
predominantly alpha-helical structures – due to the prevalence of alpha-helices in protein
datasets (Dawson et al., 2017) – which can limit the diversity of generated fold topologies.
To address this bias, we use guidance towards more LRCs by leveraging the decoder’s contact
map predictions pψ. Following Hayes et al. (2024), a LRC is defined as a contact cij with
sequence distance greater than 12. Let ZLR = {(i, j) : |i− j| > 12} be the set of pairwise
indices with sequence distance greater than 12. With y = {cij = 1 ∀(i, j) ∈ ZLR} as the
LRC property, we define the LRC guidance score

sLRC(z
(t); t) = e−rLRC·(1−t) · ∇z(t)

[ 1

|ZLR|
∑

(i,j)∈ZLR

log pψ

(
cij = 1|ẑθ(z(t), t)i ⊗ ẑθ(z

(t), t)j

)]
where rLRC ∈ R is a hyperparameter controlling the decay of the score coefficient. To perform
guidance towards more LRCs, we substitute sLRC(y, z

(t); t) for s(z(t); t) in eq. (2).
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Predicted Alignment Error (PAE). Since lower PAE is often correlated with protein
design success (Bennett et al., 2023), we are interested in generating protein structures with
lower PAE. Our main metric, designability, also correlates with lower PAE (see Fig. 9). We
train a neural network fϑ(ẑθ(z

(t), t), t) with weights ϑ to predict the global average PAE
of the structure x corresponding to each latent noised latent z(t). See App. C.2 for data
curation, architecture, and training details. Since PAE is a scalar value, classifier guidance
does not directly work. Instead, we substitute pt(y|z(t)) with a Boltzmann distribution that

assign high probability to lower PAE predictions: pPAE
t (z(t)) ∝ e−ωPAE·fϑ(ẑθ(z

(t),t),t) with
weight ωPAE ∈ R. We define the PAE gudiance score as

sPAE(z
(t), t) = ∇z(t) log pPAE

t (z(t)) = −ωPAE∇z(t)fϑ(ẑθ(z
(t), t).

While not principled, we find sPAE intuitive in guiding towards lower PAE and works well in
practice. To perform guidance towards lower PAE, we substitute sPAE for s in eq. (2) and
sweep over different ωPAE values in the experiments.

3 Experiments

We run experiments with LSD to analyze its performance on protein structure generation.
Sec. 3.1 describe our training and evaluation set-up. App. E.1 analyzes LSD with ablations
and demonstrates improved results over only using FrameFlow. Sec. 3.2 then demonstrates
capabilites with PAE and contact guidance to control high-level properties. Lastly, Sec. 3.3
compares LSD to prior protein structure generation baselines discussed in App. A. App. A
discussed related work including the baselines.

3.1 Set-up

Training Details. We train LSD on the Foldseek (Van Kempen et al., 2024) clustered
AlphaFold DataBase (AFDB) (Varadi et al., 2022) as done in GENIE2 (Lin et al., 2024).
We filter out examples that are longer than 128 residues and minimum pLDDT (AlphaFold2
predicted confidence metric) lower than 80. The latter is a commonly used filter to remove
low quality protein structures from AFDB but is not suffucient (Varadi et al., 2022). This
results in 282936 training examples. Training details of our neural networks are in App. C.1.

Evaluation Details. For each method, we sample 10 proteins of each length between
60-128. Standard metrics for protein backbone generation are designability (Des), diversity
(Div), and novelty (Nov) as described in Yim et al. (2023). Novelty was computed against
the AFDB database. Designable Pairwise TM-score (DPT) is defined as the average
pairwise TM-score (Zhang & Skolnick, 2004) between designable proteins. Designability is
not a accurate indicator of how well a generative model matches the training distribution
since the training dataset is far from 100% designable (Huguet et al., 2024). Instead, we
measure how well a protein structure generative model captures the training distribution
by computing Secondary Structure Distance (SSD), defined as the Wasserstein distance
between the discretized secondary structure distribution of the training dataset and the
generated proteins with no designability filtering. Alg. 1 describes how we compute SSD. See
App. C.4 for more explanation of our metrics.

3.2 LSD Guidance

We next explore the ability to control the properties of the generated samples using guidance.
Here we use γ = 1 to study guidance under the correct reverse SDE eq. (8). In Table 4, we
evaluate structure generation for different guidances and parameters.

Each variant shows a different property being optimized. Using no guidance (LSD) gives the
best fit to the training distribution as indicated by the lowest SSD value. PAE guidance
(LSDPAE) shows designability increases as ωPAE increases but structures become more helical.
Fig. 10 demonstrates that increasing ωPAE leads to decreasing mean PAE values across
varying lengths as computed by AlphaFold2. LRC guidance (LSDLRC) gives the best novelty
and more strands as the weight decay rate rLRC decreases but suffers from low designability.
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Figure 2: Samples at γ=1 with different guidance scales. LSDPAE: Increasing ωPAE leads
to lower PAE of sampled structures with more secondary structure. LSDLRC: Decreasing
rLRC leads to more globular and diverse folds. We see rLRC = 1 leads to increase of coils.

We visualize the structures for PAE and LRC guidance in Fig. 2 as ωPAE and rLRC vary.
Using both guidances (LSDJ) reflects a balance between all metrics while achieving the best
diversity. In summary, we are able to control for different properties using a single diffusion
model and guidance techniques.

Analyzing the contact map diffusion trajectories ĉψ(ẑθ(z
(t))) across t leads to insights into

how guidance affects the generation process. Fig. 11 shows a prototypical trajectory for each
variant. All trajectories start with a blurred contact map at t = 1.0 that sharpens as t = 0.0.
We see PAE guidance encodes helices for most residues early on. PAE guided trajectories
tend to encourage short range contacts (near the diagonal) at the beginning while LRC
guided trajectories encourage long range contacts (far from the diagonal).

3.3 Protein Structure Generation Benchmark

We benchmark our best settings against previous protein structure generative models for
backbone generation. We compare against both LDMs and SDMs described in App. A.
However, LDMs are the most direct comparison since contact map generation with LDM is
the main step in LSD where most of the protein is determined. App. E.4 describes how we
ran each baseline using their open source implementation. As discussed in App. E.1, our
best results are achieved with γ = 0.7. Table 1 shows our results.

Table 1: Protein backbone generation results. ∗ LatentDiff does not allow for controlling
the length of generated proteins since it sample the length. Out of 10,000 samples, we were
unable to sample above length 100. Therefore, only 10 proteins per length 60-100 were
evaluated for LatentDiff.

Type Method Des (↑) Div (↑) DPT(↓) Nov(↓) SSD(↓)

SDM

RFdiffusion 96% 247 0.43 0.71 0.99

ProteinSGM 49% 122 0.37 0.51

FrameFlow PDB 91% 278 0.48 0.65 0.35

FrameFlow AFDB 23% 54 0.42 0.70 1.32

GENIE2 97% 369 0.51 0.62 0.84

Lang. ESM3 61% 127 0.37 0.84 0.21

LDM LatentDiff∗ 17% 34 0.51 0.73 0.75

LDM+

SDM

LSD (γ=0.7) 69% 203 0.46 0.74 0.86

LSDPAE (γ=0.7) 94% 204 0.42 0.71 1.03

LSDLRC (γ=0.7) 33% 182 0.59 0.61 0.24

LSDJ (γ=0.7) 74% 296 0.53 0.66 0.26

Our first observation is that all LSD variants outperform LatentDiff on all metrics thus
achieves state-of-the-art (SOTA) performance for LDMs. LSDJ beats ESM3 on all metrics
except DPT and SSD. SDMs are known to be SOTA in protein backbone generation – we
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focus on comparing to GENIE2 which achieves the best overall results. GENIE2 is impressive
in achieving SOTA performance in most categories with a single setting. LSD requires
different guidances to be competitive in each category. We note GENIE2 is a far more
expensive model that makes use of O(L3) memory intensive triangle update layers (Jumper
et al., 2021). One length 100 protein generation takes 2.3 min. for GENIE2 while LSDJ

takes 0.3 min. on a Nvidia A6000 GPU.

4 Discussion

The goal of LSD is to develop a new framework for protein structure generation capable of
separating high- and low-level details during the generation process. We combined latent
and structure diffusion to break up the generative procedure into first sampling latents,
contact maps, and finally the atomic coordinates. We showed how including intermediate
contact maps helps learn large datasets such as AFDB and how guidance techniques can
improve the quality of the generated structures. We compared LSD to existing protein
structure generation methods and showed that it is competitive with state-of-the-art SDMs
and outperforms prior LDMs for protein backbone generation. We include discussion on
limitations in App. D. While we have demonstrated guidance for in silico structure prediction
metrics, we are actively working towards guidance with experimental data. Enhancing
success for functional protein design using wet-lab data is a long outstanding challenge.
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5 Reproducibility Statement

Our implementations uses FrameFlow’s open source code https://github.com/microsoft/
protein-frame-flow as a starting point. We downloaded foldseek clustered AFDB
dataset from GENIE2 https://github.com/aqlaboratory/genie2 and processed the
data with FrameFlow’s process pdb files.py script to be in a format usable in
the FrameFlow experiment code. To implement DiT, we used https://github.com/
facebookresearch/DiT in which we incorporated RoPE with https://github.com/
lucidrains/rotary-embedding-torch. Our encoder uses ProteinMPNN’s code down-
loaded from https://github.com/dauparas/ProteinMPNN. Code for this work will be
made publicly available on Github with the deanonymized version. We provide sufficient de-
tails and references in our work such that our results can be reproduced. Sec. 2 and App. C.1
provide model and training details. Our metrics are defined in App. C.4. Instructions for
how each baseline were ran is included in App. E.4.

6 Ethics Statement

We develop a novel method for protein structure generation that can be used in real world
protein design applications. Our work is purely academic to advance machine learning
techniques for protein data which can be used in down stream applications that are both
ethical and unethical. Fortunately most applications with protein design are targeted at
developing new drugs and medicines for which the benefits can outweight harmful impact.
Protein design is a rapidly developing field with biosecurity becoming a crucial consideration
to which we refer to responsiblebiodesign.ai for more detail.
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Bautista. Swallowing the bitter pill: Simplified scalable conformer generation. In Forty-first
International Conference on Machine Learning.

Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim,
Helen E. Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles,
Basile I. M. Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler,
Jue Wang, Preetham Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko,
Valentin De Bortoli, Emile Mathieu, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio,
Minkyung Baek, and David Baker. Broadly applicable and accurate protein design by
integrating structure prediction networks and diffusion generative models. bioRxiv, 2022.

Mengjiao Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor
Mordatch, and Ekin Dogus Cubuk. Scalable diffusion for materials generation. arXiv
preprint arXiv:2311.09235, 2023.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina
Barzilay, and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone
generation. arXiv preprint arXiv:2302.02277, 2023.

Jason Yim, Andrew Campbell, Emile Mathieu, Andrew YK Foong, Michael Gastegger, José
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A Related Work

Latent Diffusion Models (LDMs). Latent Score-based Generative Model (LSGM)
(Vahdat et al., 2021) first proposed using a combination of a VAE and diffusion model over
the latent space. Stable diffusion (Rombach et al., 2022) extended LSGM with architectural
and training improvements that achieved state-of-the-art (SOTA) results in image synthesis.
DiT (Peebles & Xie, 2023a) and SiT (Ma et al., 2024) further improved the scalability with
a Transformer (Vaswani, 2017) architecture tailored for diffusion models.

The success of LDMs has motivated their use in protein applications. OmniProt (McPartlon
et al., 2024) is a LDM for protein-protein docking but with no open source code. LatentDiff
(Fu et al., 2023) is the only other LDM for protein structure generation to the best of our
knowledge. We also consider methods FoldToken (Gao et al., 2024) and ESM3 (Hayes et al.,
2024) that learn discrete latent tokens and use autoregressive masked language models to
be discrete LDMs for protein structure generation. Likewise, DiffTopo (Correia, 2024) and
TopoDiff (Zhang et al., 2023) do not exactly fit the LDM framework but are related by using
diffusion to sample a coarse protein fold topology followed by a diffusion model to produce a
structure conditioned on the topology. DiffTopo and TopoDiff do not have open source code
to compare with. In Sec. 3, we use LatentDiff and ESM3 as baselines.

Structure Diffusion Models (SDMs). RFdiffusion (Watson et al., 2022) is a widely
used SDM with proven results in real-world protein design applications. Numerous other
SDMs have been developed such as GENIE2 (Lin et al., 2024), FoldFlow2 (Huguet et al.,
2024), Chroma (Ingraham et al., 2023), MultiFlow (Campbell et al., 2024), and AlphaFold3
(Abramson et al., 2024). See Yim et al. (2024b) for a survey of SDMs. As mentioned in
Sec. 1, a challenge with SDMs has been scaling to large datasets while mitigating unwanted
biases from low quality protein structures. We show LSD is a novel approach to train
on a large dataset, AFDB, with varying data quality and use guidance to control protein
properties. Since our approach is built on top of FrameFlow, we show in Sec. 3 that LSD
improves upon FrameFlow’s limitations when training on AFDB. We include RFdiffusion and
GENIE2 as reference points of SOTA protein structure generation methods. Since MultiFlow
is a co-design extension of FrameFlow, we use FrameFlow’s results as representative of
MultiFlow’s performance. Lastly, we benchmark against ProteinSGM (Lee et al., 2023), a
diffusion model over pairwise distances and dihedral angles.

B Background

Latent Diffusion Models (LDMs) use two components: an autoencoder to embed the data in
a latent space and a diffusion model to generate samples from the latent space which are
decoded back to data with the decoder (Vahdat et al., 2021; Rombach et al., 2022). In this
section, we provide background of both components.

Notation. Superscript with parentheses denote time while subscripts are used to denote

the index of a matrix or vector, i.e. x
(t)
i is the data at index i and time t in the diffusion

process. Scalars and probability distributions will use subscripts for time.

B.1 Autoencoder: Mapping data to latent space

Autoencoders consist of an encoder pϕ(z|x) that maps data x ∼ pdata into a latent variable
z while the decoder pψ(x|z) maps z back to x. The encoder and decoder are parameterized
by neural networks with weights ϕ and ψ respectively. Following (Vahdat et al., 2021), we
use a Variational AutoEncoder (VAE) (Kingma, 2013) which is trained by minimizing the
variational upper bound

Epdata(x)

[
Epϕ(z|x) [− log pψ(x|z)]︸ ︷︷ ︸

Reconstruction

+λKL [pϕ(z|x)||N (0, I)]︸ ︷︷ ︸
Regularization

]
(3)

where λ is the regularization weight for the Kullback-Leibler divergence (KL). Rombach
et al. (2022) utilized additional regularization terms. We plan to explore more regularizations
in future work.
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B.2 Diffusion model over latent space

Once the autoencoder is trained, we define p(0) = pϕ as the target distribution of the latent
diffusion process. Next, a diffusion model is trained to generate data by learning to map
samples from Gaussian noise z(1) ∼ N (0, I) with identity I towards latents z(0) ∼ p0 which
is then decoded back into data pψ(x|z(0)). The time variable t ∈ [0, 1] controls the mapping
between noise and latents based on the time-dependent process2:

z(t) = α(t)z(0) + σ(t)z(1). (4)

While many choices for α(t) and σ(t) have been proposed, we use a simple linear interpolation
popularized in flow models (Lipman et al., 2022; Liu et al., 2022; Albergo et al., 2023):
α(t) = 1− t, σ(t) = t. The conditional distribution and score of eq. (4) can be analytically
computed as

∇z(t) log qt(z
(t)|z(0)) = z(t) − α(t)z(0)

σ(t)2
where qt(z

(t)|z(0)) = N (z(t);α(t)z(0), σ(t)2I). (5)

We require qt=1(·|z(0)) = p1(·) and qt=0(·|z(0)) = p0(·). This allows learning to approximate
the marginal score ∇z(t) log pt(z

(t)) through the score matching objective (Hyvärinen &
Dayan, 2005). Equivalently, we optimize the denoising autoencoder objective (Vincent, 2011)

Ep0 [z(0)|z(t)] ≈ argmin
ẑθ

Eqt(z(t)|z(0))
U(t;0,1)

p0(z
(0))

[
1

σ(t)2
∥ẑθ(z(t), t)− z(0)∥22

]

where U is the uniform distribution and 1/σ(t)2 is a weighting term to encourage equal loss
weighting across t. ẑθ is a neural network with weights θ trained to predict the true latents.

Using eq. (5), the marginal score can then be approximated as sθ(z
(t), t) = z(t)−α(t)ẑθ(z

(t),t)
σ(t)2 .

Once the score is learned, we can obtain samples z(0) by integrating the reverse SDE starting
with z(1) towards z(0),

dz(t) =
[
a(t)z(t) − b(t)2s(z(t); t)

]
dt+ γ · b(t)dw(t) (6)

where w(t) is a Wiener process, a(t) = ∂
∂t logα(t), and b(t) = 2σ(t)(∂σ(t)∂t − a(t)σ(t)). γ is a

scale to control the variance of the noise which by default is set to γ = 1. Prior works have
found setting γ < 1 to improve sample quality (Ajay et al., 2022; Yim et al., 2023). In this
work, we use Euler-Maruyama integrator for all samples.

Here we provide a formal derivation of eq. (6) based on linear SDEs. Using SDEs for
generative modeling can be traced back to Song et al. (2021); Sohl-Dickstein et al. (2015);
Ho et al. (2020). Our derivation is not novel and follows the same steps as Song et al. (2021);
Zheng et al. (2023). It comprises of two main objects: a forward SDE to corrupt data and a
reverse SDE to generate data from noise. The most common SDE for generative modeling is
of the Itô form and with linear drift and diffusion coefficients. The forward SDE is defined as

dz(t) = a(t)z(t)dt+ b(t)dw(t) (7)

where a(t) : [0, 1]→ R and b(t) : [0, 1]→ R are the drift and diffusion coefficients, respectively,
and w(t) is a Wiener process. The seminal result of Anderson (1982) showed that eq. (7)
can be reversed in time analytically with the following reverse SDE

dz(t) =
[
a(t)z(t) − b(t)2∇z(t) log p0(z

(0))
]
dt+ b(t)dw(t) (8)

in the sense that the marginal distributions pt(z
(t)) agree between the two SDEs.

The key idea will be to derive a(t) and b(t) for the forward SDE in eq. (7) that matches
the time-dependent noising process in eq. (4). With this, we can plug a(t) and b(t) into the

2Technically each z(t) qualifies as a latent variable. However, we will strictly refer to z(0) as
latents in our context since these directly map to data via the decoder.
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reverse SDE in eq. (8) to generate samples from the latent space. The time derivative of the
mean and covariance of eq. (7) at each time t is a result found in Section 5.5 of Särkkä &
Solin (2019),

∂

∂t
logE[z(t)] = a(t)

∂

∂t
Var(z(t)) = 2a(t)Var(z(t)) + b(t)2.

From eq. (4), we know the mean and variance: E[z(t)] = α(t)z(0) and Var(z(t)) = σ(t)2I.
First solving for a(t),

a(t) =
∂

∂t
log

(
α(t)z(0)

)
=

∂

∂t
logα(t).

Next solving for b(t),

b(t)2 = 2a(t)σ(t)2 − ∂

∂t
σ(t)2

= 2σ(t)

(
∂

∂t
σ(t)− a(t)σ(t)

)
.

This matches the form of a(t) and b(t) in eq. (6).

C Additional Method

C.1 LSD details

We describe LSD training and neural network architecture details. First, we recall the
training objetives and neural networks described in Sec. 2. As a reminder, L is the length of
the protein and K is the number of latent dimensions.

1. Encoder pϕ with weights ϕ parameterized as a modified version of ProteinMPNN
(Dauparas et al., 2022) to output the mean and variance of the latent distribution
instead than amino acid probabilities. The input to the encoder is the protein
structure x ∈ RL×K while the output is the mean µ ∈ RL×K and log standard
deviation log σ ∈ RL×K of the latent distribution z ∈ RL×K . We use a hidden
dimension of 128, no dropout, and 6 message passing layers. All other details of
ProteinMPNN are kept the same as reported in its original paper.

2. Decoder pψ with weights ψ parameterized as a three layer multi-layer perceptron
with 128 hidden dimensions and ReLU activations. The input to the decoder is the
latent z while the output is the contact map ĉψ ∈ RL×L.

3. Latent Diffusion Model (LDM) ẑθ with weights θ parameterized as a Diffusion
Transformer (DiT) (Peebles & Xie, 2023b). To use DiT for our purposes, we treat
each residue as a token. Specifically, since the noisy latent z(t) is an input to the

model, each z
(t)
i for i ∈ [1, . . . , L] is a token where z(t) = [z

(t)
1 , . . . , z

(t)
L ]. We use

24 DiT blocks with 384 hidden dimension, 0.1 Dropout, and Rotary Positional
Encodings (RoPE) (Su et al., 2024) in place of abolsute positional encodings during
the attention operations.

4. Structure Diffusion Model (SDM) x̂φ with weights φ parameterized as FrameFlow
(Yim et al., 2024a). We use the same hyperparameters as FrameFlow, 256 single
dimension and 128 pair dimension, with the addition of concatenating the latents
z(0) and the predicted contact map ĉψ(z

(0)) to the initial set of 1D and 2D features
provided to FrameFlow. We found rotation annealing, auxiliary losses, and self-
conditioning unnecessary and removed them for a simpler model.

Each model is trained with the following losses. We have slighlty modified each loss from its
initial presentation in the main text to be more explicit:
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Encoder and decoder loss:

Lrec(z,x) =
1

|Z0|
∑

(i,j)∈Z0

− log pψ(cij = 0|zi ⊗ zj) +
1

|Z1|
∑

(i,j)∈Z1

− log pψ(cij = 1|zi ⊗ zj)

LVAE(x) = Epϕ(z|x) [Lrec(z,x)] + λKL [pϕ(z|x)||N (0, I)]

with Z0 = {(i, j) : cij = 0} and Z1 = {(i, j) : cij = 1} as the set of indices where cij = 0
and cij = 1 respectively.

LDM loss:

LLDM(z) = Eqt(z(t)|z)
U(t;0,1)

[
1

σ(t)2
∥ẑθ(z(t), t)− z∥22

]
.

SDM loss: Following FrameFlow, we represent the atomic coordinates x as elements

of SE(3) called frames, T(x) ∈ SE(3)
L
. For brevity, we will use T = T(x). Let T =

[T1, . . . ,TL] be the L frames of the structure obtained by converting atomic coordinates to
frames. Since SE(3) = R3 ⋉ SO(3), we can represent each frame Ti = (τi,R)i for all i by an
translation τi ∈ R3 and rotation Ri ∈ SO(3). Converting atomic coordinates to the frame
representation is achieved by setting the Carbon-alpha coordinate as translation and using
the Gram-Schmidt process to construct the orthonormal basis of the remaining residues

(Yim et al., 2023). For shorthand, we will use T = (τ,R) where τ ∈ RL×3 and R ∈ SO(3)
L
.

In other words, τ and R refers to the translations and rotations of all residues. The SDM’s
predictions can be written as

x̂φ(x
(t), ĉψ(z), z, t) = T̂(x(t), ĉψ(z), z, t) = (τ̂(x(t), ĉψ(z), z, t), R̂(x(t), ĉψ(z), z, t))

We can now write the SDM loss:

Ltrans(T,T
(t), z, t) =

∥∥τ − τ̂(T(t), ĉψ(z), z, t)
∥∥2

σ(t)2

Lrot(T,T
(t), z, t) =

∥∥∥logR(t)(R)− logR(t)(R̂(T(t), ĉψ(z), z, t))
∥∥∥2

σ(t)2
.

LSDM(T, z) = Eq∗t (T(t)|T)
U(t;0,1)

[
Ltrans(x,x

(t), z, t) + Lrot(x,x
(t), z, t)

]
where q∗t (T

(t),T) = [Φt]∗q0(T
(1)) is defined with the prior q0 = U(SO(3))L × N (0, 1)L×3

and push-forward using the conditional flow Φt(T
(1)|T(0)) = T(t) = [T

(t)
1 , . . . ,T

(t)
L ] where

T
(t)
i = (τ

(t)
i ,R

(t)
i ) defined as the geodesics

τ
(t)
i = (1− t)τ (0)i + tτ

(1)
i , R

(t)
i = exp

R
(1)
i

(
(1− t)log

R
(1)
i
(R

(0)
i )

)
.

exp and log refer to the exponential and logarithm map onto the respective manifolds. For
more details of the SDM training, we refer to (Yim et al., 2024a).

Multi-stage training. We use three stages of training as described in App. C.3. In stage
1, the VAE is trained. In stage 2, the SDM is trained and the VAE is fine-tuned jointly with
the SDM. In stage 3, the LDM is trained with the VAE weights fixed. A summary of the
training stages, losses and number of epochs is provided in Table 2. Each stage uses the
AdamW optimizer (Loshchilov, 2017) with learning rate 1e-4 and weight decay 1e-5. We
trained on 8 Nvidia A6000 GPUs for each stage. We used the length-based mini-batching
strategy from (Yim et al., 2023) that came with the FrameFlow codebase.

C.2 PAE guidance details

The training dataset is constructed by sampling 500 proteins of each length in the range 60
to 128 from AFDB. ProteinMPNN samples three sequences per backbone and AlphaFold2
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Table 2: Training stages.

Stage Loss Epochs/Days

1: VAE training Ep(x) [LVAE(x)] 16/0.5

2: VAE & SDM training Ep(x)
[
LVAE(x) + Epϕ(z|x) [LSDM(T(x), z)]

]
16/1

3: LDM training Ep(x),pϕ(z|x) [LLDM(z)] 48/2

in single sequence mode is used to compute a mean PAE value per sequence. The minimum
mean PAE value amongst the sequences for each backbone is used as the corresponding label.
A min-max norm is used to transform the PAE values to lie between 0 and 1. To parameterize
the regressor we use two 1D convolutional layers with kernel size k = 5 and 256 channels.
Following each convolutional layer, ReLU activation and dropout p = 0.2 are applied. An
attention pooling mechanism aggregates the embeddings across the length dimension, and
a linear projection transforms the fixed length embedding to a single dimension. While
Dhariwal & Nichol (2021) propose training the guide function on noisy z(t) samples, we
found pt(y|z(t)) difficult to learn as seen in the Table 4 below.

Table 3: Guide model ablation.

Input PearsonR

Noised latents 0.34

Denoised latents 0.40

Since the LDM is tasked with predicting denoised latents, z(0), we can train with the following
L2 loss:

L = ∥ẑθ(z(t), t)− y∥22
where y ∈ R is the designed PAE label. Models were trained on 2 A100s for 12 hours,
and the best checkpoint was selected by computing PearsonR on a held-out set of designed
backbones from the PDB. Sweeps over ωPAE from 0-200 across proteins of length 75, 100,
and 125 demonstrate the ability of PAE guidance to reduce mean PAE of generated samples
evaluated with Alphafold2 see Figure 6.

C.3 Multi-stage Training and Sampling

The VAE training loss is described in Sec. 2.1 while the LDM and SDM losses are described
in Sec. 2.2. While end-to-end training of all models is possible, we found this to be unstable
and difficult to optimize. We instead use a training procedure inspired by Rombach et al.
(2022) where the autoencoder is frozen during latent diffusion training. It involves three
stages: (1) pre-training the VAE by itself, (2) jointly training the VAE and SDM, and (3)
freezing the VAE weights and training only the LDM. In our experiments, we use the same
optimizer and learning rate across all stages. App. C.1 provides more details on the training
setup.

To sample, we first generate latents z(0) from the LDM using eq. (6) and obtain the contact
map ĉψ(z

(0)). Both z(0) and ĉψ(z
(0)) are then provided to the SDM to sample atomic

coordinates conditioned on ĉψ(z
(0)) using the SE(3) flow, see Yim et al. (2024a). Fig. 1

illustrates the sampling process. In the next section, we describe sampling with guidance
towards desired high-level properties.

C.4 Metric details

We describe each metric used in Sec. 3 for completeness. Designability, diversity, and novelty
are standard metrics used in multiple prior related works (Yim et al., 2023; Watson et al.,
2022; Lin et al., 2024; Bose et al., 2024; Huguet et al., 2024). Designable Pairwise TM-score
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and secondary structure composition are an additional metric reported in recent works
as well (Lin et al., 2024; Bose et al., 2024; Huguet et al., 2024). We introduce Secondary
Structure Distance to supplement the above metrics. Below we describe each metric.

1. Designability (Des): Let x be a protein backbone structure sampled from a
protein structure generative model. We use the open-sourced ProteinMPNN code3

to generate 8 sequences for each backbone. ESMFold (Lin et al., 2023) then predicts
the structure of each sequence. We compute the atomic Root Mean Squared Deviation
(RMSD) of each predicted structure against the sampled structure x. If RMSD <
2.0 then we consider x to be designable in the sense that a sequence can be found
which would fold into the x structure. Clearly this evaluation is purely in-silico and
only serves as a approximation of whether a structure is designable. Despite that,
designability has been found to correlate with wet-lab success especially when more
specialized sequence and structure prediction models are used (Watson et al., 2022;
Zambaldi et al., 2024). We report designability as the percentage of samples that
are designable. It is currently debated whether a protein generative model should
aim to have as high designability as possible since designability is influenced by the
inductive biases of the structure prediction model. Many natural occurring proteins
are known to not pass the designability crition (Huguet et al., 2024; Campbell et al.,
2024) yet are real proteins. We present our experiments with designability as a
metric we wish to increase in order to follow prior works.

2. Diversity (Div): A generative model can achieve 100% designability by repeatedly
sampling the same designable structure. To detect this exploitation, we report
diversity as the number of clusters after running a clustering algorithm over the
designable samples. Following prior works starting with (Trippe et al., 2022), we
MaxCluster (Herbert & Sternberg, 2008) to run hierarchical clustering over all
designable structures with average linkage, 0.5 TM-score cutoff, and no sequence
filtering. The goal is to maximize the number of clusters in the samples.

3. Designable Pairwise TM-score (DPT): Reporting the number of clusters can
be biased since there are many hyperparameters and algorithms for clustering. To
present a unbiased view of diverisy, we report the average TM-score of all the
pairwise TM-scores between designable samples. This is part of an auxiliary output
after running MaxCluster.

4. Novelty: We measure how a method extrapolates beyond the training set
by computing the average of the maximum TM-scores of each designable
structure x when compared to AFDB. We use FoldSeek with the follow-
ing command: foldseek easy-search <path-to-designable-pdb-files>
<path-to-afdb-database> alignments.m8 tmp --alignment-type 1
--format-output query,target,alntmscore,lddt --tmscore-threshold
0.0 --exhaustive-search --max-seqs 10000000000 --comp-bias-corr 0
--mask 0. Foldseek commands are chosen to ignore sequence filtering and turn
off pre-filtering steps before running a efficent structural search algorithm against
all structures in the AFDB. The goal is to minimize the novelty metric as this
corresponds to more extrapolation beyond the training set while adhering to the
designability criterion. We note this is just one definition of novelty and other
definitions as possible but we aim to follow precedent set by prior works.

5. Secondary Structure Distance (SSD): As mentioned in Sec. 3.1, SSD is meant
to supplement the above metrics since none of them address how well a protein
generative model is learning the training distribution. For instance, datasets such as
PDB and AFDB have less than 100% designability; a generative model trained on
these datasets cannot achieve 100% designability if they learn the datasets perfectly.
There is a need for a distributional metric that measures how well a generative model
captures the training distribution. We propose SSD to provide insight into how well
a generative model learns the secondary structure distribution of the training dataset.
The goal is to lower SSD as that corresponds to a lower distributional distance
between the alpha and helical composition of the training set and the generated

3https://github.com/dauparas/ProteinMPNN
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samples. Unlike the above metrics, we compute SSD over all the generated samples
without filtering for designability for the reasons just discussed. Computation of
SSD is provided in Alg. 1.

Algorithm 1 Computation of the Secondary Structure Distance (SSD) Metric

1: Input: Training dataset Dtrain, Generated samples Dgen

2: Dtrain sampled ← Random Sample 10,000 proteins from Dtrain

3: for D ∈ {Dtrain sampled,Dgen} do
4: Initialize set SSD ← ∅
5: for protein p in D do

6: Compute helix percentage P
(p)
H and strand percentage P

(p)
S

7: Store (P
(p)
S , P

(p)
H ) in SSD

8: end for
9: end for

10: Divide [0, 1] into n equal bins B1, B2, . . . , Bn
11: for D ∈ {SStrain sampled,SSgen} do
12: for i = 1 to n do
13: for j = 1 to n do

14: PD(i, j)← |{(PS ,PH)∈SSD|PS∈Bi∧PH∈Bj}|
|SSD|

15: end for
16: end for
17: end for
18: W ←WassersteinDistance(Ptrain sampled, Pgen)
19: return W

D Limitations

Our limitations include not achieving state-of-the-art performance on all metrics with a
single setting compared to SDMs and limiting LSD to unconditional backbone generation.
We propose several directions to address these. First, performance can likely be improved
with further investigation into the neural network architectures, i.e. triangle update layers
that are widely utilized in Huguet et al. (2024); Lin et al. (2024) or swapping out FrameFlow
with GENIE2 as the SDM in our framework. Second, we can optimize the LDM with the
latest techniques report in the LDM for computer vision literature such as Autoguidance
(Karras et al., 2024) and Stable Diffusion 3 (Esser et al., 2024). Lastly, we plan to extend
our method to all-atomic biomolecular generation (Abramson et al., 2024) and design tasks –
binder design and motif-scaffolding (Krishna et al., 2024). Extending to protein complexes
involving multiple chains will require scaling up the model size to handle larger proteins.
Our latent space only encode protein backbone coordinates but a natural extension is to
include side-chain coordinates and protein sequence information. Having a malleable latent
space opens up new possibilities for protein generative modeling and design.
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Figure 3: Visualization of the contact map after sampling latents and structures with LSD.
We observe the agreement between the latent decoded contact map and the structure contact
map is high. The PRAUC and ROCAUC is on average 0.99 and 0.92 between the latent
decoded contact map and structure contact map in our evaluation benchmark with γ=1.

Figure 4: Visualization of long range contacts (LRC) in blue.

E Additional Experiments

E.1 LSD Analysis

Hyperparameter and ablations. We swept over the number of latents K and KL
regularization weight λ in eq. (3) to select the best setting based on performance in the VAE
pre-training stage. To evaluate, we held out 32 random protein clusters based on Foldseek
and computed the decoder’s ROCAUC and PRAUC of long range contacts (LRC) defined as
all contacts cij with |i− j| > 12 which are visualized in Fig. 4. We found LRC performance
to be most indicative of autoencoder performance. Our results are shown in table 5 where we
find K = 4 and λ = 0.1 to be optimal. We next ablated architecture choices of the LDM by
removing RoPE and using a standard Transformer instead of DiT. Table 6 shows RoPE and
DiT all contribute to achieve the best performance. We sweep over noise scales in table 8
where we show γ = 0.7 gives the best designability and diversity trade-off.

LSD samples diverse structures while FrameFlow AFDB collapses to alpha
helices. We consider two versions of FrameFlow: the published FrameFlow PDB trained
on the Protein Data Bank (PDB)4 (Berman et al., 2000) and FrameFlow AFDB where we
re-trained FrameFlow on the same dataset as LSD. We then sampled both FrameFlows
and LSD with the procedure described in Sec. 3.1 and focus on their secondary structure
distributions.

Fig. 5 shows that FrameFlow PDB samples a spread of helix and strand compositions while
FrameFlow AFDB collapses to almost always sampling alpha helices despite the AFDB
training data having a diverse secondary structure distribution. Prior works Huguet et al.
(2024); Lin et al. (2024) have found neural network modifications such as triangle layers to
improve performance on AFDB but this incurs cubic memory consumption. Instead, LSD
uses a hierarchical approach to improve generalization to diverse fold topologies. These
results indicate the contact map generation with LDM is beneficial to help induce diverse
protein folds in the subsequent generation of protein structures with FrameFlow.

4Weights were downloaded from https://github.com/microsoft/protein-frame-flow
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Figure 5: Secondary structure distribution of the training data compared to samples from
LSD Frameflow trained on AFDB or PDB. 10 samples of each length between 60-128 were
generated with 100timesteps each. LSD used γ = 1 while no modifications were made for
FrameFlow. We computed helix and strand percents of each sample then produced a 2D
histogram distribution with 10 bins along each axis. See App. E.1 for discussion.

Contact map and structure generation are consistent. We verify the generated
structures from the SDM are consistent with the conditioned contact maps from the LDM;
in other words, we check the SDM is not ignoring the contact map. The LDM first samples
latents z(0) which are provided to the decoder to produce a latent decoded contact map
ĉψ(z

(0)). Conditioned on ĉψ(z
(0)), the SDM samples structures x from which we can compute

the binary structure contact map c(x) ∈ {0, 1}L×L and look at the contact map difference
|c(x) − argmax(ĉψ(z

(0)))|. Fig. 3 shows a visualization of these quantities. If SDM is
ignoring the contact map, we would expect many contact map differences which is not the
case visually. Quantititatively, the ROCAUC and PRAUC of c(x) and ĉψ(z

(0)) are 0.99 and
0.92 respectively on average when sampling in the protein backbone generation benchmark.
This indicates high consistency between the contact map and the generated structures.

Table 4: Guidance

γ ωPAE rLRC Des Div Nov SSC Helix Strand Coil

0.7 0 0 68.7% 203 0.74 0.86

0.7 20 0 77.4% 181 0.71 0.90 73.9% 5.5% 20.6%

1.0 0 0 15.3% 84 0.74 0.13

1.0 20 0 24.2% 61 0.70 0.59 64.0% 10.2% 25.8%

E.2 LSD experiments

To find the optimal hyperparameters for the VAE, we performed a hyperparameter sweep over
the number of latent dimensions K and the regularization weight λ. For each combination
of K ∈ {2, 4, 8} and the regularization weight λ ∈ {0.01, 0.1, 1.0}, we ran stage 1 training
followed by evaluating long range contact ROC and PRAUC on a held out set of randomly
chosen 32 protein clusters using Foldseek’s cluster assignment. The results are presented in
Table 5 where we see K = 4 and λ = 0.01 to be optimal.

Using K = 4 and λ = 0.01, we ran the full three stage training procedure for different
ablations of the LDM in Table 6. We report the standard Designability, Diversity, and
Novelty metrics where we find using DiT and RoPE presented the best combined of the
metrics.

Next, we investigated if (1) separate training of the autoencoder and FrameFlow is necessary
and (2) if the contact map loss is necessary. We trained three different settings:

1. End-to-end training of autoencoder and FrameFlow from scratch for 32 epochs
without contact map loss.
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Table 5: VAE hyperparameter sweep.

K λ ROCAUC PRAUC

2 0.01 0.5 0.5

2 0.1 0.5 0.5

2 1.0 0.5 0.51

4 0.01 0.99 0.99

4 0.1 0.5 0.5

4 1.0 0.5 0.5

8 0.01 0.99 0.99

8 0.1 0.99 0.99

8 1.0 0.5 0.5

Table 6: Ablations

Ablation Des Div Nov

DiT+RoPE 68.7 % 203 0.74

DiT No RoPE 57.25% 212 0.74

Transformer instead of DiT 51.88% 190 0.73

2. End-to-end training of autoencoder and FrameFlow from scratch for 32 epochs with
contact map loss.

3. Two stage training of autoencoder and FrameFlow as defined in Table 2 with 16
epochs for each stage.

Table 7 shows the results after training where we evaluated the average reconstruction RMSD
on the autoencoder validation set. Specifically, we encoded each protein in the validation
set then sampled with FrameFlow to reconstruction the protein. We take the RMSD of
the sampled protein against the encoded protein and report the average RMSD across all
examples. We clearly see that the two stage training with contact map loss results in the
lowest RMSD. Hence, both the contact map loss and two stage training are necessary.

With K = 4 and λ = 0.01 and our DiT+ROPE LDM, we sampled at different values of γ
and tried the noiseless ODE formulation of sampling. We find γ = 0.7 provided the sweet
spot of highest diversity with good designability. As discussed in App. C.4, one should not
always try to maximize designability but also consider diversity and novelty.

We show scRMSD results across different lengths for each variant of LSD in Fig. 6. We
perform analysis of dihedral angles in Fig. 7 between samples from LSD and the training
dataset.

Table 7: Autoencoder training ablations.

Training Contact map loss Reconstruction RMSD

End-to-end training of autoencoder
and FrameFlow from scratch.

No 12.0

Yes 4.1
Two stage training of autoencoder
then FrameFlow as done in Table 2.

Yes 1.8
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Table 8: γ hyperparameter sweep.

γ Des (↑) Div (↑) Nov (↓) SCC (↓)
0.5 SDE 89.4% 148 0.78 1.094

0.6 SDE 81.1% 197 0.75 1.036

0.7 SDE 68.7% 203 0.74 0.859

0.8 SDE 46.2% 164 0.72 0.589

0.9 SDE 30.9% 130 0.72 0.398

1.0 SDE 15.3% 84 0.70 0.132

ODE 5.5% 20 0.75 0.608

Table 9: AFDB Metrics. We took 10 random proteins across each length between 60-128
and evaluated designability and diversity. This demonstrates the low designability but high
diversity nature of AFDB.

Des (↑) Div

AFDB 12.9% 453

Figure 6: scRMSD plotted against sample length for all variants of our LSD with γ = 0.7.

E.3 LSD guidance experiments

Similar to Table 4, we sweep hyperparameters ωPAE, rLRC at γ = 0.7 to find the best setting
for each model. Our results are shown in Table 10. We selected hyperparameters with the
following logic:

• LSDPAE (ωPAE=25): We increased ωPAE until designability was maximized without
decreasing diversity.

• LSDLRC (rLRC=1): We selected the weight with the best novelty.

• LSDJ (ωPAE=5, rLRC=5): We selected the weights that maximized diversity.

that maximized designability without sacrificing diversity for LSDPAE (ωPAE=25);
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Figure 7: Ramachandran plot of LSD (γ = 0.7) samples from Sec. 3.3 compared to 1000
structures randomly sampled from the AFDB training set. For visualization purposes, we
separated Ramachandran plots between α-helical and mixed α-helical/β-sheet samples. In
the last column we plot the ω dihedral angle. We find LSD and AFDB have very similar
dihedral angle distributions.

Figure 8: Left: Secondary structure distribution of designable samples from GENIE2 and
LSDJ. Despite GENIE2’s increased diversity, we see LSDJ achieves more diverse folds in
terms of secondary structure. Right: Novel samples with diverse folds from LSDLRC where
“novel” is defined as designable and <0.5 max TM-score to the AFDB as computed by
Foldseek. We show 8 out of 19 novel samples from LSDLRC. Notice the diverse secondary
structure topologies while staying novel.

E.4 Baseline experiments

To facilitate a comprehensive comparison with our proposed method, we evaluated several
protein generative models. This section details the procedures followed, including the
selection of hyperparameters.

E.4.1 ESM3 Unconditional Generation

Following Appendix A.3.6 of ESM3, which outlines the procedure for unconditional generation,
we employed the open-source 1.4B parameter model available at https://github.com/
evolutionaryscale/esm.

To generate a protein sequence of length l, we input a sequence of mask tokens of the same
length into the model. We set the temperature to 0.5 and configured the number of decoding
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Figure 9: Correlation of normalized rmsd to input and mean PAE values.

Figure 10: Samples at γ=1 with different guidance scales. Increasing ωPAE leads to lower
mean PAE of sampled structures from Alphafold2.

steps to equal the protein length l. Subsequently, we conditioned the 1.4B model to generate
structure tokens using the same number of decoding steps (l) with argmax decoding, where
the temperature was set to 0.

We conducted ablation studies to determine the optimal number of decoding steps by
testing values of l/2, 2l/3, and l with a temperature of 0.7. Our experiments revealed that
setting the number of decoding steps to l yielded higher diversity than 2l/3 with slightly
lower designability . Additionally, we performed ablation on the temperature parameter by
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Figure 11: Contact map diffusion trajectories. We show prototypical examples of how
the contact map evolves over time as latent diffusion progresses by visualizing the latent
decoded contact map ĉψ(ẑθ(z

(t))) as t goes from 1.0 to 0.0. Each row corresponds to a
different guidance variant discussed in Sec. 3.2. At the far right, we show the structure
generated from the final latent z(0).

Table 10: LSD results with γ = 0.7. We use 100 timesteps for both latent and structure
diffusion.

Method ωPAE rLRC Des (↑) Div (↑) DPT (↓) Nov (↓) SSD (↓)
LSD 69% 203 0.46 0.74 0.86

LSDPAE

50 95% 176 0.4 0.7 1.06

25 94% 204 0.42 0.71 1.03

10 88% 211 0.43 0.73 0.95

5 78% 193 0.43 0.74 0.87

LSDLRC

10 73% 240 0.49 0.69 0.47

5 67% 272 0.53 0.65 0.22

1 33% 182 0.59 0.61 0.24

LSDJ 10 5 76% 262 0.49 0.65 0.26

5 5 74% 296 0.52 0.65 0.26

10 1 48% 232 0.56 0.61 0.47

5 1 38% 265 0.54 0.61 0.23

evaluating temperatures of 0.3, 0.5, and 0.7 for the optimal number of decoding steps l. We
found that a temperature of 0.5 provided the best results.

To verify our baseline results for the ESM3 model, we consulted with the ESM3 authors.
They recommended employing a chain-of-thought experiment that involves sampling the
secondary structure with a temperature of 0.7, followed by sampling structure tokens with
the same temperature. This approach significantly enhances designability. Consequently, the
ESM3 results presented in the main text are based on this approach.

E.4.2 Genie 2

To generate samples using Genie2, we utilize the open-source repository available at
https://github.com/aqlaboratory/genie2. We used a sampling temperature of 0.6.
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Table 11: LSD results with different guidance weights and temperatures (γ). We use 100
timesteps for both latent and structure diffusion.

Method γ ωPAE rLRC Des (↑) Div (↑) DPT (↓) Nov (↓) SSD (↓)
LSD 1.0 15% 84 0.6 0.74 0.13

LSD 0.7 69% 203 0.46 0.74 0.86

LSDPAE

1.0 10 31% 133 0.54 0.7 0.25

1.0 50 66% 204 0.48 0.68 0.58

1.0 100 76% 202 0.46 0.66 0.78

0.7 50 95% 176 0.4 0.7 1.06

0.7 25 94% 204 0.42 0.71 1.03

0.7 10 88% 211 0.43 0.73 0.95

0.7 5 78% 193 0.43 0.74 0.87

LSDLRC

1.0 10 15% 89 0.62 0.67 0.23

1.0 5 16% 94 0.63 0.66 0.32

1.0 1 10% 62 0.66 0.61 0.24

0.7 10 73% 240 0.49 0.69 0.47

0.7 5 67% 272 0.53 0.65 0.22

0.7 1 33% 182 0.59 0.61 0.24

LSDJ

1.0 50 5 61% 217 0.51 0.65 0.22

0.7 10 5 76% 262 0.49 0.65 0.26

0.7 5 5 74% 296 0.52 0.65 0.26

0.7 10 1 48% 232 0.56 0.61 0.47

0.7 5 1 38% 265 0.54 0.61 0.23

Table 12: Ablation on Decoding Steps with Fixed Temperature (0.7)

Decoding Steps Des (↑) Div (↑) Novelty (↓)
l/2 23.1% 62 0.83
2l/3 28.5% 72 0.84
l 26 % 78 0.82

This hyperparameter was selected based on the paper’s findings, which indicated that these
settings yielded the best performance in terms of sample designability and diversity.

E.4.3 Latentdiff

We benchmarked Latentdiff model using the open-source code available at https://github.
com/divelab/AIRS/tree/main/OpenProt/LatentDiff. However, due to stochastic sam-
pling of the length in the reconstruction process, we were unable to control the lengths of
the sampled proteins. During the upsampling stage in the decoder this MLP was used to
process the final node embeddings and predict whether a reconstructed node corresponds to a
padded node, this introduced stochasticity in the lengths of the sampled proteins restricting
our ability to generate specific lengths reliably especially those longer than 100.
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Table 13: Ablation on Temperature with Fixed Decoding Steps (l)

Temperature Des (↑) Div (↑) Novelty (↓)
0.3 44.8% 37 0.9
0.5 40.3% 84 0.87
0.7 26 % 72 0.82
1.0 14.5 % 41 0.81

27


	Introduction
	Method: Latent and Structure Diffusion (LSD)
	Structure-to-contact Autoencoder
	Latent and Structure Diffusion Models
	PAE and LRC Guidance

	Experiments
	Set-up
	LSD Guidance
	Protein Structure Generation Benchmark

	Discussion
	Reproducibility Statement
	Ethics Statement
	Related Work
	Background
	Autoencoder: Mapping data to latent space
	Diffusion model over latent space

	Additional Method
	LSD details
	PAE guidance details
	Multi-stage Training and Sampling
	Metric details

	Limitations
	Additional Experiments
	LSD Analysis
	LSD experiments
	LSD guidance experiments
	Baseline experiments
	ESM3 Unconditional Generation
	Genie 2
	Latentdiff



