
Published as a conference paper at ICLR 2022

MULTI-STAGE EPISODIC CONTROL FOR STRATEGIC
EXPLORATION IN TEXT GAMES

Jens Tuyls1, Shunyu Yao1, Sham Kakade2 & Karthik Narasimhan1

1Department of Computer Science, Princeton University
2John A. Paulson School of Engineering and Applied Sciences, Harvard University
{jtuyls, shunyuy, karthikn}@princeton.edu, sham@seas.harvard.edu

ABSTRACT

Text adventure games present unique challenges to reinforcement learning meth-
ods due to their combinatorially large action spaces and sparse rewards. The inter-
play of these two factors is particularly demanding because large action spaces re-
quire extensive exploration, while sparse rewards provide limited feedback. This
work proposes to tackle the explore-vs-exploit dilemma using a multi-stage ap-
proach that explicitly disentangles these two strategies within each episode. Our
algorithm, called eXploit-Then-eXplore (XTX), begins each episode using an ex-
ploitation policy that imitates a set of promising trajectories from the past, and then
switches over to an exploration policy aimed at discovering novel actions that lead
to unseen state spaces. This policy decomposition allows us to combine global de-
cisions about which parts of the game space to return to with curiosity-based local
exploration in that space, motivated by how a human may approach these games.
Our method significantly outperforms prior approaches by 27% and 11% average
normalized score over 12 games from the Jericho benchmark (Hausknecht et al.,
2020) in both deterministic and stochastic settings, respectively. On the game of
Zork1, in particular, XTX obtains a score of 103, more than a 2x improvement
over prior methods, and pushes past several known bottlenecks in the game that
have plagued previous state-of-the-art methods.1

1 INTRODUCTION

Text adventure games provide a unique test-bed for algorithms that integrate reinforcement learning
(RL) with natural language understanding. Aside from the linguistic ingredient, a key challenge
in these games is the combination of very large action spaces with sparse rewards, which calls for
a delicate balance between exploration and exploitation. For instance, the game of ZORK1 can
contain up to fifty valid action commands per state2 to choose from. Importantly, unlike other RL
environments (Bellemare et al., 2013; Todorov et al., 2012), the set of valid action choices does not
remain constant across states, with unseen actions frequently appearing in later states of the game.
For example, Figure 1 shows several states from ZORK1 where a player has to issue unique action
commands like ‘kill troll with sword’, ‘echo’ or ‘odysseus’ to progress further in the game. This
requires a game-playing agent to perform extensive exploration to determine the appropriateness
of actions, which is hard to bootstrap from previous experience. On the other hand, since rewards
are sparse, the agent only gets a few high-scoring trajectories to learn from, requiring vigorous
exploitation in order to get back to the furthest point of the game and make progress thereon. Prior
approaches to solving these games (He et al., 2016a; Hausknecht et al., 2020; Ammanabrolu &
Hausknecht, 2020; Guo et al., 2020) usually employ a single policy and action selection strategy,
making it difficult to strike the right balance between exploration and exploitation.

In this paper, we propose eXploit-Then-eXplore (XTX), an algorithm for multi-stage control to ex-
plicitly decompose the exploitation and exploration phases within each episode. In the first phase,
the agent selects actions according to an exploitation policy which is trained using self-imitation

1Our code is available at https://github.com/princeton-nlp/XTX
2Valid actions are a feature in the Jericho simulator (Hausknecht et al., 2020) to improve computational

tractability for RL. Without this handicap, the number of possible action commands is almost 200 billion.

1

https://github.com/princeton-nlp/XTX

Published as a conference paper at ICLR 2022

…

“East"“West”

…

“Move rug”

“Open window”

……

Score: 10

Score: 35

Cellar

Living Room

West of House

Score: 0

Troll Room

Score: 35

Loud Room

Score: 40

Cyclops Room

Score: 40

“You are
standing in an
open field …”

“It is pitch
black …”

“… you have a
lantern and a
sword …”

“… a troll
blocks all
passages …”

“Kill troll
with sword”

“Echo”

“Odysseus”

“… The room is
deafeningly
loud …”

“A cyclops,
who looks
prepared …”

… …

“Go up”

“Down”

Figure 1: Sample game paths and state observations from ZORK1. Starting from the leftmost
state (‘West of House’), the agent encounters several novel and unique valid actions (e.g Odysseus,
Echo) (in brown) across different states in the game. In order to make progress, our algorithm
(XTX) strategically re-visits different frontiers in the state space (red and blue circles) and performs
strategic local exploration to overcome bottleneck states (e.g. ‘Troll Room’) and dead-ends (e.g.
‘Cellar’). Solid borders indicate visited states, dotted ones indicate potential future states.

learning on a mixture of promising trajectories from its past experience sampled using a combina-
tion of factors such as episodic scores and path length. This policy allows the agent to return to a
state at the frontier of the state space it has explored so far. Importantly, we ensure that this policy
is trained on a mixture of trajectories with different scores, in order to prevent the agent from falling
into a local minimum in the state space (e.g. red space in Figure 1). In the second phase, an explo-
ration policy takes over and the agent chooses actions using a value function that is trained using a
combination of a temporal difference (TD) loss and an auxiliary inverse dynamics loss (Pathak et al.,
2017). This allows the agent to perform strategic exploration around the frontier by reusing values
of previously seen actions while exploring novel ones in order to find rewards and make progress in
the game. To allow for more fine-grained control, we use a mixture of policies for both exploration
and exploitation, and only change a single interpolation parameter to switch between phases.

The two-stage approach to gameplay in XTX allows an agent to combine global decisions about
which parts of the game space to advance, followed by local exploration of sub-strategies in that
space. This is similar to how humans tackle these games: if a player were to lose to a troll in the
dungeon, they would immediately head back to the dungeon after the game restarts and explore
strategies thereon to try and defeat the troll. XTX’s multi-stage episodic control differs from prior
approaches that add exploration biases to a single policy through curiosity bonuses (Pathak et al.,
2017; Tang et al., 2017) or use different reward functions to train a separate exploration policy (Colas
et al., 2018; Schäfer et al., 2021; Whitney et al., 2021). Moreover, in contrast to methods like Go-
Explore (Ecoffet et al., 2021; Madotto et al., 2020), XTX does not have global phases of random
exploration followed by learning —instead, both our policies are continuously updated with new
experience, allowing XTX to adapt and scale as the agent goes deeper into the game. XTX also does
not make any assumptions about the environment being deterministic, and does not require access
to underlying game simulator or additional memory archives to keep track of game trees.

We evaluate XTX on a set of games from the Jericho benchmark (Hausknecht et al., 2020), consider-
ing both deterministic and stochastic variants of the games. XTX outperforms competitive baselines
on all 12 games, and achieves an average improvement of 5.8% in terms of normalized scores across
all games. For instance, on Zork1, our method obtains a score of 103 in the deterministic setting and
67 in the stochastic setting — substantial improvements over baseline scores of 44 and 41, respec-
tively. We also perform ablation studies to demonstrate the importance of the multi-stage approach,
as well as several key design choices in our exploitation and exploration policies.

2 RELATED WORK

Reinforcement learning for text-based games Prior work on building autonomous agents for text
adventure games has explored several variants of reinforcement learning (RL) agents equipped with
a language understanding module (see Osborne et al. (2021) for a detailed survey). Innovations on

2

Published as a conference paper at ICLR 2022

the language representation side include using deep neural networks for handling text sequences
trained using RL (Narasimhan et al., 2015; He et al., 2016a), knowledge graphs to track states
across trajectories (Ammanabrolu & Hausknecht, 2020; Adhikari et al., 2020; Xu et al., 2020), and
incorporating question answering or reading comprehension modules (Ammanabrolu et al., 2020;
Guo et al., 2020). While these approaches focus mainly on the issues of partial observability and
language semantics, they all suffer from challenges due to the large action space and sparse rewards
found in games from benchmarks like Jericho (Hausknecht et al., 2020). Some approaches aim to
navigate the large action space by filtering inadmissible actions (Zahavy et al., 2018; Jain et al.,
2020), leveraging pre-trained language models for action selection (Yao et al., 2020; Jang et al.,
2020) or word embeddings for affordance detection (Fulda et al., 2017). Recent work has also
explored tackling sparse rewards by employing hierarchical policies (Xu et al., 2021).

Navigating the exploration-exploitation trade-off in RL The trade-off between exploration and
exploitation is a well-known issue in RL (Sutton & Barto, 2018; François-Lavet et al., 2018; Kearns
& Singh, 2002; Brafman & Tennenholtz, 2002). In this respect, we can broadly categorize prior
techniques into two types. The first type includes methods with mixed objectives that balance ex-
ploration with exploitation. Oh et al. (2018) introduced the idea of self-imitation learning on high-
scoring episodes to exploit good trajectories, as an auxiliary objective to standard actor-critic meth-
ods. Prior work has also explored the addition of curiosity bonuses to encourage exploration (Pathak
et al., 2017; Tang et al., 2017; Li et al., 2020; Bellemare et al., 2016; Machado et al., 2020; Taiga
et al., 2021). While we leverage self-imitation learning for exploitation and inverse dynamics
bonuses for exploration, we use a multi-stage mixed policy. Other works learn a mixture of policies
for decoupling exploration and exploitation, either by using a conditional architecture with shared
weights (Badia et al., 2020), pre-defining an exploration mechanism for restricted policy optimiza-
tion (Shani et al., 2019), or learning separate task and exploration policies to maximize different
reward functions (Colas et al., 2018; Schäfer et al., 2021; Whitney et al., 2021). While we also train
multiple policies, our multi-stage algorithm performs distinct exploitation and exploration phases
within each episode, not requiring pre-defined exploration policies or phases. Further, we consider
environments with significantly larger action spaces that evolve dynamically as the game progresses.

The second class of algorithms explicitly separate exploitation and exploration in each episode.
Methods like E3 (Kearns & Singh, 2002; Henaff, 2019) maintain a set of dynamics models to en-
courage exploration. Policy-based Go-Explore (Ecoffet et al., 2021) uses self-imitation learning
to ‘exploit’ high-reward trajectories, but requires choosing intermediate sub-goals for the agent to
condition its policy on. PC-PG (Agarwal et al., 2020) uses a policy cover to globally choose state
spaces to return to, followed by random exploration. Compared to these approaches, we perform
more strategic local exploration due to the use of a Q-function with inverse dynamics bonus and do
not require any assumptions about determinism or linearity of the MDP. We provide a more technical
discussion on the novelty of our approach at the end of Section 3.

Directed exploration in text-based games As previously mentioned, the large dynamic action
space in text games warrant specific strategies for directed exploration. Ammanabrolu et al. (2020)
used a knowledge-graph based intrinsic motivation reward to encourage exploration. Jang et al.
(2020) incorporated language semantics into action selection for planning using MCTS. Both meth-
ods utilize the determinism of the game or require access to a simulator to restart the game from
specific states. Madotto et al. (2020) modified the Go-Explore algorithm to test generalization in the
CoinCollector (Yuan et al., 2018) and Cooking world domains (Côté et al., 2018). Their method has
two phases — the agent first randomly explores and collects trajectories and then a policy is learned
through imitation of the best trajectories in the experience replay buffer. In contrast, our algorithm
provides for better exploration of new, unseen actions in later stages of the game through the use
of an inverse dynamics module and performs multiple rounds of imitation learning for continuous
scaling to deeper trajectories in the game. Recently, Yao et al. (2021) used inverse dynamics to
improve exploration and Yao et al. (2020) used a language model to generate action candidates that
guide exploration. However, both approaches did not employ a two-stage rollout like our work, and
the latter considers a different setup without any valid action handicap.

3

Published as a conference paper at ICLR 2022

3 METHOD

Background Text-adventure games can be formalized as a Partially Observable Markov Decision
Process (POMDP) ⟨S, T,A,O,R, γ⟩. The underlying state space S contains all configurations of
the game state within the simulator, which is unobserved by the agent. The agent receives obser-
vations from O from which it has to infer the underlying state s ∈ S. The action set A consists
of short phrases from the game vocabulary, T (s′|s, a) is the transition function which determines
the probability of moving to the next state s′ given the agent has taken action a in state s, R(s, a)
determines the instantaneous reward, and γ is the reward discount factor.

Existing RL approaches that tackle these games usually learn a value function using game rewards.
One example is the Deep Reinforcement Relevance Network (DRRN) (He et al., 2016b) which
trains a deep neural network with parameters ϕ to approximate Qϕ(o, a). This model encodes each
observation o and action candidate a using two recurrent networks fo and fa and aggregates the rep-
resentations to derive the Q-value through an MLP q: Qϕ(o, a) = q(fo(o), fa(a)). The parameters
ϕ of the model are trained by minimizing the temporal difference (TD) loss on tuples (o, a, r, o′) of
observation, action, reward and the next observation sampled from an experience replay buffer:

LTD(ϕ) = (r + γmax
a′∈A

Qϕ(o
′, a′)−Qϕ(o, a))

2 (1)

The agent samples actions using a softmax exploration policy π(a|o;ϕ) ∝ exp(Qϕ(o, a)).

Challenges There are two unique aspects of text adventure games that make them challenging. First,
the action space is combinatorially large – usually games can accept action commands of 1-4 words
with vocabularies of up to 2257 words. This means an agent potentially has to choose between
O(22574) = 2.6 ∗ 1013 actions at each state of the game. To make this problem more tractable,
benchmarks like Jericho (Hausknecht et al., 2020) provide a valid action detector that filters out the
set of inadmissible commands (i.e. commands that are either unrecognized by the game engine or
do not change the underlying state of the game). However, this still results in the issue of dynamic
action spaces for the agent that change with the state. For example, the action ‘echo’ is unique to
the Loud Room (see Figure 1). Second, these games have very sparse rewards (see Appendix A.1)
and several bottleneck states (Ammanabrolu et al., 2020), making learning difficult for RL agents
that use the same policy for exploration and exploitation (He et al., 2016a; Hausknecht et al., 2020;
Ammanabrolu & Riedl, 2019). This results in issues of derailment (Ecoffet et al., 2021), with agents
unable to return to promising parts of the state space, resulting in a substantial gap between average
episode performance of the agent and the maximum score it sees in the game (Yao et al., 2020).

3.1 OUR ALGORITHM: EXPLOIT-THEN-EXPLORE (XTX)

We tackle the two challenges outlined above using a multi-stage control policy that allows an agent
to globally pick promising states of the game to visit while allowing for strategic local exploration
thereafter. To this end, we develop eXploit-Then-eXplore, where an agent performs the following
two distinct phases of action selection in each episode.

PHASE 1: Exploitation In the exploitation phase, the agent makes a global decision about revisiting
promising states of the game it has seen in its past episodes. We sample k trajectories from the
experience replay D using a combination of factors such as game score and trajectory length. These
trajectories are then used to learn a policy cover πexploit using self-imitation learning (Oh et al.,
2018) (see Section 3.2 for details). The agent then samples actions from πexploit until it has reached
either (1) the maximum score seen during training or (2) a number of steps in the episode equal to
the longest of the k sampled trajectories. The second condition ensures the agent can always return
to the longest of the k sampled trajectories3. Once either of the above conditions is satisfied, the
agent transitions to the exploration phase, adjusting its policy.

PHASE 2: Exploration In the exploration phase, the agent uses a different policy πexplore trained
using both a temporal difference loss and an auxiliary inverse dynamics bonus (Pathak et al., 2017;
Yao et al., 2021) (see Section 3.3 for details). The intuition here is that the exploitation policy
πexploit in phase 1 has brought the agent to the game frontier, which is under-explored and may

3It is possible that the agent needs less steps to return to a particular part of the game space and hence wastes
some steps, but we empirically didn’t find this to be a problem.

4

Published as a conference paper at ICLR 2022

contain a combination of common (e.g. “open door”) and novel (e.g. “kill troll with sword”) ac-
tions. Therefore, using a combination of Q-values and inverse dynamics bonus enables the agent to
perform strategic, local exploration to expand the frontier and discover new rewarding states. The
agent continues sampling from πexplore until a terminal state or episode limit is reached.

3.1.1 MIXTURE OF POLICIES FOR FINE-GRAINED CONTROL

While one could employ two completely disjoint policies for the exploitation and exploration phases,
we choose a more general approach of having a policy mixture, with a single parameter λ that can
be varied to provide more fine-grained control during the two phases. Specifically, we define:

πλ(a|c, o; θ, ϕ, ξ) = λπinv−dy(a|o; θ, ϕ) + (1− λ)πil(a|c; ξ). (2)

Here, πinv−dy refers to an exploration-inducing policy trained using TD loss with an inverse-
dynamics bonus (Section 3.3) and is parameterized by θ and ϕ. πil refers to an exploitation-inducing
policy trained through self-imitation learning (Oh et al., 2018) (Section 3.2) and is parameterized
by ξ. Note that the action distribution over actions a induced by πinv−dy is conditioned only on the
current observation o, while the one induced by πil is conditioned on context c which is an augmen-
tation of o with past information. We can observe that λ provides a trade-off between exploration
(high λ) and exploitation (low λ). In our experiments, we choose a small, dynamic value, λ = 1

2∗T
for exploitation (where T is episode limit) and λ = 1 for exploration. As we demonstrate later
(Section 4.2), the non-zero λ in exploitation is critical for the agent to avoid getting stuck in regions
of local minima (e.g. Zork1). We now describe the individual components of the mixture.

3.2 IMITATION LEARNING FOR BUILDING A GLOBAL POLICY COVER (πil)

We parameterize the imitation policy πil using a Transformer model (Vaswani et al., 2017) based
on the GPT-2 architecture (Radford et al., 2019) that takes in a context c = [at−2; at−1; ot], i.e.
the concatenation of two most recent past actions along with the current observation separated by
[SEP] tokens, and outputs a sequence of hidden representations h0, . . . , hm where m is the number
of tokens in the sequence. hm is then projected to vocabulary size by multiplication with the output
embedding matrix, after which softmax is applied to get probabilities for the next action token. In-
spired by (Yao et al., 2020), the GPT-2 model is trained to predict the next action at given the context
c using a language modeling objective (Equation 5). The training data consists of k trajectories sam-
pled from an experience replay memoryD which stores transition tuples (ct, at, rt, ot+1, terminal).

Sampling trajectories Let us define a trajectory τ as a sequence of observations, actions, and re-
wards, i.e. τ = o1, a1, r1, o2, a2, r2 . . . , ol+1, where lτ denotes the trajectory length (i.e. number
of actions) and thus l ≤ T where T is the episode limit. We sample a trajectory from D using a
two-step process. First, we sample a score u from a categorical distribution:

P (u) ∝ exp (β1(u− µU)/σU) , u ∈ U (3)

where U is the set of all unique scores encountered in the game so far, µU is the mean of the set
U , and σU is its standard deviation. β1 is the temperature and determines how biased the sampling
process is towards high scores. The second step collects all trajectories with the sampled score u
and samples a trajectory τ based on the trajectory length lτ :

P (τ | u) ∝ exp (−β2(lτ − µLu)/σLu) , lτ ∈ Lu (4)

where Lu is the multiset of trajectory lengths lτ with score u, µLu
is the mean of the elements

in Lu, and σLu
is its standard deviation. β2 defines the temperature and determines the strength

of the bias towards shorter length trajectories. We perform this sampling procedure k times (with
replacement) to obtain a trajectory buffer B on which we perform imitation learning. This allows
the agent to globally explore the game space by emulating promising experiences from its past, with
a bias towards trajectories with high game score and shorter lengths. The motivation for sampling
shorter length trajectories among the ones that reach the same score is because those tend to be the
ones that waste less time performing meaningless actions (e.g. “pick up sword”, “drop sword”, etc.).

Learning from trajectories Given the trajectory buffer B containing single-step (c, a) pairs of
context c and actions a from the trajectories sampled in the previous step, we train πil by minimizing
the cross-entropy loss over action commands (Yao et al., 2020):

L(ξ) = −E(c,a)∼B log πil(a|c; ξ), (5)

5

Published as a conference paper at ICLR 2022

where c defines the context of past observations and actions as before, and ξ defines the parameters
of the GPT-2 model. We perform several passes of optimization through the trajectory buffer B until
convergence4 and periodically perform this optimization every n epochs in gameplay to update πil.
Furthermore, πil is renormalized over the valid action set Av during gameplay. Note that while πil is
trained similarly to the GPT-2 model in (Yao et al., 2020), their model generates action candidates.

3.3 EFFICIENT LOCAL EXPLORATION WITH INVERSE DYNAMICS (πinv−dy)

In the second phase of our algorithm, we would like to use a policy that tackles (1) the large action
space and (2) the dynamic nature of the action set at every step in the game, which makes it crucial
to keep trying under-explored actions and is difficult for the Q network alone to generalize over. To
this end, we use the inverse dynamics model (INV-DY) from (Yao et al., 2021). INV-DY is a Q-
based policy πinv−dy similar to DRRN (He et al., 2016a), optimized with the standard TD loss (see
Background of Section 3). In addition, it adds an auxiliary loss Linv capturing an inverse dynamics
prediction error (Pathak et al., 2017), which is added as an intrinsic reward to the game reward
(r = rgame + α1 ∗ Linv) and hence incorporated into the TD loss. Formally, Linv is defined as:

Linv(θ, ϕ) = − log pd(a|ginv(concat(fo(o), fo(o′))), (6)

where θ denotes the parameters for the recurrent decoder d and the MLP ginv (neither of which are
used in πinv−dy during gameplay to score the actions), and fo is the encoder defined in Section 3.
This loss is optimized together with the TD loss as well as with an action decoding loss Ldec to
obtain the following overall objective that is used to train πinv−dy:

L(ϕ, θ) = LTD + α2Linv(ϕ, θ) + α3Ldec(ϕ, θ), (7)

where Ldec(ϕ, θ) = − log pd(a|fa(a)). Here, fa is a recurrent network (see Section 3). Please refer
to Yao et al. (2021) for details. We train the model by sampling batches of transitions from a prior-
itized experience replay buffer D (Schaul et al., 2015) and performing stochastic gradient descent.
Inverse dynamics ameliorates the challenges (1) and (2) mentioned above by rewarding underex-
plored actions (i.e. a high loss in Equation 6) and by generalizing over novel action commands.
Specifically, the INV-DY network might generalize through learning of past bonuses to what new
actions would look like and hence identify novel actions before having tried them once.

3.4 EPISODIC ROLLOUTS WITH XTX (ALGORITHM 1)

We now describe how XTX operates in a single episode. The agent starts in phase 1, where actions at
are sampled from πexploit. Following this exploitation policy brings the agent to the game frontier,
which we estimate to happen when either (1) the current episode score ≥M , the maximum score in
the trajectory buffer B or when (2) the current time step t > lmax, the length of the longest trajectory
in B. The agent then enters phase 2 and switches its strategy to sample actions only from πinv−dy

by setting λ = 1. At every time step t during all phases, a transition tuple (ct, at, rt, ot+1, terminal)
is added to the replay buffer D. The policy πexploit is updated every n episodes using the process in
Section 3.2, while πexplore is updated within episodes at every step using the TD loss in equation 7,
sampling high rewarding trajectories with priority fraction ρ, similar to (Guo et al., 2020)5.

3.5 NOVELTY IN COMPARISON TO PRIOR ALGORITHMS

We now more explicitly discuss comparisons to a few other approaches. The most closely related ap-
proaches are multi-stage algorithms, including Go-Explore (Ecoffet et al., 2021) and PC-PG (Agar-
wal et al., 2020) (and somewhat the E3 algorithm (Kearns & Singh, 2002; Henaff, 2019)). Both of
these algorithms can be viewed as approaches which explicitly use a “roll-in” policy, with the goal
of visiting a novel region of the state-action space. Go-Explore is limited to deterministic MDPs
(where it is easy to re-visit any state in the past), while PC-PG (applicable to more general MDPs
with provable guarantees under certain linearity assumptions) more explicitly builds a set of policies
(‘policy cover’) capable of visiting different regions of the state space. However, in both of these

4We empirically find 40 passes to be sufficient for convergence.
5We slightly differ from their approach as we only prioritize transitions from trajectories that achieve the

maximum score seen so far.

6

Published as a conference paper at ICLR 2022

Algorithm 1 The eXploit-Then-eXplore (XTX) algorithm

1: Initialize prioritized replay memory D to capacity N with priority fraction ρ.
2: Initialize πexploit (with parameters ξ) and πexplore (with parameters θ and ϕ).
3: Set max score M , max length lmax in B to 0.
4: Exploration steps R = 50; episode limit T = 50
5: for episode← 1, . . . , E do
6: for t← 1, . . . , T do
7: Receive observation ot and valid action set Av ⊂ A for current state.
8: if current episode score < M and t < T −R then ▷ PHASE 1
9: λ← 1

2∗T
10: else ▷ PHASE 2
11: λ← 1
12: end if
13: Sample an action at from policy πλ(at|ot, at−1, at−2;ϕ, θ, ξ). ▷ Equation 2
14: Step with at and receive (rt, ot+1, terminal) from game engine.
15: Store transition tuple (ct, at, rt, ot+1, terminal) in D.
16: Update πinv−dy using TD loss with inverse dynamics. ▷ Equation 7
17: end for
18: if n episodes have passed then
19: Sample k trajectories from D to form the new trajectory buffer B. ▷ Section 3.2
20: Update πil with cross-entropy loss. ▷ Equation 5
21: Update M, lmax and set T ← lmax +R.
22: end if
23: end for

approaches, once the agent reaches a novel part of the state-space, the agent acts randomly. A key
distinction in our approach is that once the agent reaches a novel part of the state space, it uses
an exploration with novelty bonuses, which may more effectively select promising actions over a
random behavioral policy in large action spaces.

The other broad class of approaches that handle exploration use novelty bonuses, with either a policy
gradient approach or in conjunction with Q-learning (see Section 2). The difficulty with the former
class of algorithms is the “catastrophic forgetting” effect (see Agarwal et al. (2020) for discussion).
The difficulty with Q-learning approaches (with a novelty bonus) is that bootstrapping approaches,
with function approximation, can be unstable in long planning horizon problems (sometimes re-
ferred to as the “deadly triad” (Jiang et al., 2021)). While XTX also uses Q-learning (with a novelty
bonus), we only use this policy (πinv−dy) in the second phase of the algorithm in contrast to (Yao
et al., 2021) where πinv−dy is used throughout the entire episode; our hope is that this instability
can be alleviated since we are effectively using Q-learning to solve a shorter horizon exploration
problem (as opposed to globally using Q-learning, with a novelty bonus).

4 EXPERIMENTS

Environments We evaluate on 12 human-created games across several genres from the Jericho
benchmark (Hausknecht et al., 2020). They provide a variety of challenges such as darkness, non-
standard actions, inventory management, and dialog (Hausknecht et al., 2020). At every step t, the
observation from the Jericho game engine contains a description of the state, which is augmented
with location and inventory information (by issuing “look” and “inventory” commands) to form
ot (Hausknecht et al., 2019). In addition, we use of the valid action handicap provided by Jericho,
which filters actions to remove those that do not change the underlying game state. We found this
action handicap to be imperfect for some games (marked with * in Table 1), and manually added
some actions required for agent progress from game walkthroughs to the game engine’s grammar.

Evaluation We evaluate agents under two settings: (a) a deterministic setting where the transition
dynamics T (s′|s, a) is a one-hot vector over all the next states s′ and (b) a stochastic setting6 where
the T (s′|s, a) defines a distribution over next states s′, and the observations o can be perturbed with

6Only six games have stochastic variants, and DRAGON was left out due to memory issues in the baselines.

7

Published as a conference paper at ICLR 2022

Games DRRN INV-DY RC-DQN XTX-Uniform XTX (ours) ∆ (%) Game Max
Avg Max Avg Max Avg Max Avg Max Avg Max

ZORK1 40.3 55.0 44.1 105.0 41.7 53.0 34.1 52.3 103.4 152.7 +17% 350
INHUMANE* 34.8 56.7 27.7 63.3 29.8 53.3 59.2 76.7 64.0 76.7 +5% 90
LUDICORP* 17.1 48.7 19.6 49.3 10.9 40.7 67.3 86.0 78.8 91.0 +8% 150
ZORK3* 0.3 4.3 0.5 5.0 3.0 5.0 3.8 4.7 4.2 5.0 +6% 7
PENTARI* 45.6 58.3 34.5 53.3 33.4 46.7 43.4 60.0 49.6 60.0 +6% 70
DETECTIVE 289.9 320.0 289.5 323.3 269.3 346.7 296.0 336.7 312.2 340.0 +4% 360
BALANCES* 14.1 25.0 12.5 25.0 10.0 18.3 21.9 25.0 24.0 26.7 +4% 51
LIBRARY* 24.8 30.0 24.7 30.0 24.2 30.0 26.1 30.0 28.5 30.0 +8% 30
DEEPHOME* 58.8 68.0 58.9 72.7 1.0 1.0 52.6 70.0 77.7 92.3 +6% 300
ENCHANTER* 42.0 66.7 44.2 63.3 26.8 38.3 24.3 28.3 52.0 66.7 +2% 400
DRAGON7 -3.7 8.0 -2.3 8.7 3.2 8.0 40.7 126.0 96.7 127.0 0% 25
OMNIQUEST 8.2 10.0 9.9 13.3 9.3 10.0 8.6 10.0 11.6 13.3 +3% 50
Avg. Norm Score 29.5% 48.8% 28.4% 51.8% 29.7% 44.5% 49.2% 58.6% 56.3% 64.0% 5.8% 100%

Table 1: Results on deterministic games for the best XTX model, where the inverse dynamics
scaling coefficient α1 was tuned per game. We outperform the baselines on all 12 games, achieving
an average normalized game score of 56%. * indicates actions were added to the game grammar.
∆ indicates the absolute performance difference between XTX and the best baseline on Avg scores.
Scores are averaged across 3 seeds. Baselines were rerun with the latest Jericho version.

irrelevant sentences such as “you hear in the distance the chirping of a song bird”. We report both
the episode score average (Avg) over the last 100 episodes at the end of training, as well as the
maximum score (Max) seen in any episode during training.

Baselines We consider four baselines. 1) DRRN (He et al., 2016a): This model uses a Q-based
softmax policy, i.e. π ∝ exp(Q(o, a;ϕ)), parameterized using GRU encoders and decoders, and
trained using the TD loss (Equation 1). 2) INV-DY (Yao et al., 2021): Refer to Section 3.3. 3)
RC-DQN (Guo et al., 2020): This is a state-of-the-art model that uses an object-centric reading
comprehension (RC) module to encode observations and output actions. The training loss is that of
DRRN above, and during gameplay, the agent uses an ϵ-greedy strategy. 4) XTX-Uniform (∼Go-
Explore): Here, we replace πinv−dy with a policy that samples actions uniformly during Phase 2,
keeping all other factors of our algorithm the same. This is closest to a version of the Go-Explore
algorithm (Ecoffet et al., 2021) that returns to promising states and performs random exploration.
However, while conceptually similar to Go-Explore, XTX-Uniform does not make use of any addi-
tional memory archives, and avoids training a goal-based policy. See Appendix A.2 for implemen-
tation details and hyperparameters.

4.1 RESULTS

Deterministic games We report results in Table 1 (refer to Appendix A.5 and A.6 for more details).
Overall, XTX outperforms DRRN, INV-DY, RC-DQN, and XTX-Uniform by 27%, 28%, 27%, and
7% respectively, in terms of average normalized game score (i.e. average episode score divided
by max score, averaged over all the games). Our algorithm performs particularly well on Zork1,
achieving a 17% absolute improvement in average episode score and a 14% improvement in average
maximum score compared to the best baseline. In particular, XTX manages to advance past several
documented bottlenecks like the dark Cellar (see Figure 1) which have proved to be very challenging
for existing methods (Ammanabrolu et al., 2020). While performance with XTX-Uniform is some-
times close, exploration with inverse dynamics instead of random exploration pushes past several
bottlenecks present in Zork1 and leads to significant gains on Deephome, Enchanter, Omniquest,
and Ludicorp, showing the potential usefulness of strategic exploration at the game frontier.

Stochastic games To show the robustness of XTX to stochasticity, we evaluate our agent in the
stochastic setting (Table 2). XTX outperforms the baselines on 4 out of 5 games, and pushes past the
maximum scores of XTX-Uniform on the same fraction. Especially impressive is the performance
on Zork1, which is still higher than the state-of-the-art score in the deterministic setting.

4.2 ABLATION STUDIES

In order to evaluate the importance of the various components in XTX, we perform several ablations
on a subset of the games as described below and shown in Figure 2 (more in Appendix A.3 and A.4).

7Interestingly, XTX manages to achieve a very high score on Dragon by exploiting an integer underflow bug.

8

Published as a conference paper at ICLR 2022

Games DRRN INV-DY RC-DQN XTX-Uniform XTX (ours) ∆ (%) Game Max
Avg Max Avg Max Avg Max Avg Max Avg Max

ZORK1 41.3 55.7 36.9 85.7 40.3 53.0 31.2 48.0 67.7 143.0 +8% 350
ZORK3* 0.2 4.0 0.4 4.7 2.7 4.7 2.3 4.3 2.6 5.0 -1% 7
PENTARI* 38.2 60.0 37.5 55.0 33.3 41.7 38.8 60.0 47.3 60.0 +12% 70
DEEPHOME* 43.0 65.7 58.4 73.0 1.0 1.0 50.7 69.3 70.9 96.0 +4% 300
ENCHANTER* 42.0 56.7 34.5 53.3 27.1 43.3 30.2 45.0 44.8 58.3 +1% 400
Avg. Norm Score 18.9% 39.0% 19.7% 41.5% 20.9% 30.5% 24.3% 39.1% 31.8% 48.9% 4.8% 100%

Table 2: Results on stochastic games. We outperform baselines on 4 out of 5 games, with an average
normalized game score of 32%. Scores are averaged across 3 seeds. Baselines were rerun with the
latest Jericho version.

Zork1 Inhumane Zork3 Ludicorp Deephome Omniquest
Game

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Sc

or
e

Ablation
Pure IL (= 0)
Pure Inv Dy (= 1)
Mix (= 0.5)
XTX (no-mix)
XTX (full model)

Figure 2: Average episode scores for 4 ablation models across 6 games. Overall, we find both the
strategic inverse dynamics policy and the explicit exploitation policy to be key for our algorithm.

Pure imitation learning (λ = 0) This ablation sets λ = 0 in equation 2, meaning the agent will
always use the imitation learning policy πil. As expected, this model performs quite badly since it
is based on pure exploitation and is hence unlikely to reach deep states in the game.

Pure inverse dynamics (λ = 1) This ablation sets λ = 1 in equation 2, hence always using the
inverse dynamics exploration policy πinv−dy, resulting in the model proposed in (Yao et al., 2021).
While this model can sometimes achieve high maximum scores, it is unable to learn from these and
hence its average episode score remains quite low, consistent with findings in (Yao et al., 2021).

Mixing exploration and exploitation (λ = 0.5) By setting λ = 0.5, this ablation constantly alter-
nates between exploitation and exploration, never committing to one or the other. This causes the
agent to suffer from issues of both the λ = 0 and λ = 1 models, resulting in weak results.

Pure separation of exploitation and exploration (XTX no-mix) In this ablation, we examine the
importance of having a mixture policy in Phase 1 of the algorithm instead of setting λ = 0 in Phase 1
and to 1 in Phase 2. This explicitly separated model, denoted as XTX (no-mix), performs a bit better
in the games of Inhumane and Zork3, but sometimes fails to push past certain stages in Ludicorp
and completely gets stuck in the game of Zork1. This shows it is crucial to have a mixture policy in
Phase 1 in order to get past bottleneck states in difficult games.

5 CONCLUSION

We have proposed XTX, an algorithm for multi-stage episodic control in text adventure games. XTX
explicitly disentangles exploitation and exploration into different policies, which are used by the
agent for action selection in different phases of the same episode. Decomposing the policy allows
the agent to combine global decisions on which state spaces in the environment to (re-)explore, fol-
lowed by strategic local exploration that can handle novel, unseen actions – aspects that help tackle
the challenges of sparse rewards and dynamic action spaces in these games. Our method signifi-
cantly outperforms prior methods on the Jericho benchmark (Hausknecht et al., 2020) under both
deterministic and stochastic settings, and even surpasses several challenging bottlenecks in games
like Zork1 (Ammanabrolu et al., 2020). Future work can integrate our algorithm with approaches
that better leverage linguistic signals to achieve further progress in these games.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGEMENTS

We thank the members of the Princeton NLP group and the anonymous reviewers for their valuable
feedback. JT was supported by a graduate fellowship at Princeton University. We are grateful to the
Google Cloud Research program for computational support in running our experiments. We would
also like to thank Matthew Hausknecht for all the help regarding the Jericho environment.

ETHICAL CONSIDERATIONS

This work focuses on building better agents for text-adventure games and hence does not have im-
mediate direct ethical concerns. However, the techniques introduced in this paper may be generally
useful for other autonomous agents that combine sequential decision making with language under-
standing (e.g. dialog systems). As such agents become more capable and influential in our lives, it
is important to make sure their objectives align with those of humans, and that they are free of bias.

REPRODUCIBILITY

Our code is publicly available here https://github.com/princeton-nlp/XTX. We pro-
vide all implementation details such as hyperparameters, model architectures and training regimes
in Appendix A.2. We used Weights & Biases for experiment tracking and visualizations to develop
insights for this paper.

REFERENCES

Ashutosh Adhikari, Xingdi (Eric) Yuan, Marc-Alexandre Côté, Mikulas Zelinka, Marc-Antoine
Rondeau, Romain Laroche, Pascal Poupart, Jian Tang, Adam Trischler, and William L. Hamilton
. Learning dynamic knowledge graphs to generalize on text-based games. In NeurIPS 2020, 2020.

Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. Pc-pg: Policy cover directed explo-
ration for provable policy gradient learning. arXiv preprint arXiv:2007.08459, 2020.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

Prithviraj Ammanabrolu and Matthew J. Hausknecht. Graph constrained reinforcement learning for
natural language action spaces. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=B1x6w0EtwH.

Prithviraj Ammanabrolu and Mark Riedl. Playing text-adventure games with graph-based deep
reinforcement learning. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 3557–3565, Minneapolis, Minnesota, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1358. URL https://www.aclweb.org/anthology/
N19-1358.

Prithviraj Ammanabrolu, Ethan Tien, Zhaochen Luo, and Mark O Riedl. How to avoid being eaten
by a grue: Exploration strategies for text-adventure agents. arXiv preprint arXiv:2002.08795,
2020.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, et al. Never
give up: Learning directed exploration strategies. In International Conference on Learning Rep-
resentations, 2020.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29:1471–1479, 2016.

10

https://github.com/princeton-nlp/XTX
https://openreview.net/forum?id=B1x6w0EtwH
https://openreview.net/forum?id=B1x6w0EtwH
https://www.aclweb.org/anthology/N19-1358
https://www.aclweb.org/anthology/N19-1358

Published as a conference paper at ICLR 2022

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
2013.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. GEP-PG: Decoupling exploration and
exploitation in deep reinforcement learning algorithms. In Jennifer Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pp. 1039–1048. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/colas18a.html.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay, and Adam Trischler.
Textworld: A learning environment for text-based games. CoRR, 2018.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, and Joelle Pineau. An
introduction to deep reinforcement learning. arXiv preprint arXiv:1811.12560, 2018.

Nancy Fulda, Daniel Ricks, Ben Murdoch, and David Wingate. What can you do with a rock?
affordance extraction via word embeddings. In Carles Sierra (ed.), Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, pp. 1039–1045. ijcai.org, 2017. doi: 10.24963/ijcai.2017/144. URL https:
//doi.org/10.24963/ijcai.2017/144.

Xiaoxiao Guo, Mo Yu, Yupeng Gao, Chuang Gan, Murray Campbell, and Shiyu Chang. Interac-
tive fiction game playing as multi-paragraph reading comprehension with reinforcement learn-
ing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 7755–7765, Online, 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.624. URL https://www.aclweb.org/anthology/
2020.emnlp-main.624.

Matthew Hausknecht, Ricky Loynd, Greg Yang, Adith Swaminathan, and Jason D Williams. Nail:
A general interactive fiction agent. arXiv preprint arXiv:1902.04259, 2019.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Inter-
active fiction games: A colossal adventure. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):7903–7910, Apr. 2020. doi: 10.1609/aaai.v34i05.6297. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/6297.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf. Deep
reinforcement learning with a natural language action space. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1621–
1630, Berlin, Germany, August 2016a. Association for Computational Linguistics. doi: 10.18653/
v1/P16-1153. URL https://aclanthology.org/P16-1153.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf. Deep
reinforcement learning with a natural language action space. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1621–
1630, Berlin, Germany, 2016b. Association for Computational Linguistics. doi: 10.18653/v1/
P16-1153. URL https://www.aclweb.org/anthology/P16-1153.

Mikael Henaff. Explicit explore-exploit algorithms in continuous state spaces. arXiv preprint
arXiv:1911.00617, 2019.

Vishal Jain, William Fedus, Hugo Larochelle, Doina Precup, and Marc G. Bellemare. Algorithmic
improvements for deep reinforcement learning applied to interactive fiction. In The Thirty-Fourth

11

https://proceedings.mlr.press/v80/colas18a.html
https://doi.org/10.24963/ijcai.2017/144
https://doi.org/10.24963/ijcai.2017/144
https://www.aclweb.org/anthology/2020.emnlp-main.624
https://www.aclweb.org/anthology/2020.emnlp-main.624
https://ojs.aaai.org/index.php/AAAI/article/view/6297
https://ojs.aaai.org/index.php/AAAI/article/view/6297
https://aclanthology.org/P16-1153
https://www.aclweb.org/anthology/P16-1153

Published as a conference paper at ICLR 2022

AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020,
pp. 4328–4336. AAAI Press, 2020. URL https://aaai.org/ojs/index.php/AAAI/
article/view/5857.

Youngsoo Jang, Seokin Seo, Jongmin Lee, and Kee-Eung Kim. Monte-carlo planning and learning
with language action value estimates. In International Conference on Learning Representations,
2020.

Ray Jiang, Tom Zahavy, Zhongwen Xu, Adam White, Matteo Hessel, Charles Blundell, and Hado
Van Hasselt. Emphatic algorithms for deep reinforcement learning. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume
139. PMLR, 2021.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Ma-
chine learning, 49(2):209–232, 2002.

Jing Li, Xinxin Shi, Jiehao Li, Xin Zhang, and Junzheng Wang. Random curiosity-driven explo-
ration in deep reinforcement learning. Neurocomputing, 418:139–147, 2020.

Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. Count-based exploration with the
successor representation. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):
5125–5133, Apr. 2020. doi: 10.1609/aaai.v34i04.5955. URL https://ojs.aaai.org/
index.php/AAAI/article/view/5955.

Andrea Madotto, Mahdi Namazifar, Joost Huizinga, Piero Molino, Adrien Ecoffet, Huaixiu Zheng,
Alexandros Papangelis, Dian Yu, Chandra Khatri, and Gökhan Tür. Exploration based language
learning for text-based games. In Christian Bessiere (ed.), Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 1488–1494. ijcai.org, 2020.
doi: 10.24963/ijcai.2020/207. URL https://doi.org/10.24963/ijcai.2020/207.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding for text-based
games using deep reinforcement learning. In Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing, pp. 1–11, Lisbon, Portugal, 2015. Association
for Computational Linguistics. doi: 10.18653/v1/D15-1001. URL https://www.aclweb.
org/anthology/D15-1001.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International
Conference on Machine Learning, pp. 3878–3887. PMLR, 2018.

Philip Osborne, Heido Nõmm, and Andre Freitas. A survey of text games for reinforcement learning
informed by natural language. arXiv preprint arXiv:2109.09478, 2021.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019.

Lukas Schäfer, Filippos Christianos, Josiah Hanna, and Stefano V. Albrecht. Decoupling exploration
and exploitation in reinforcement learning. CoRR, abs/2107.08966, 2021. URL https://
arxiv.org/abs/2107.08966.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Lior Shani, Yonathan Efroni, and Shie Mannor. Exploration conscious reinforcement learning re-
visited. In International Conference on Machine Learning, pp. 5680–5689. PMLR, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

12

https://aaai.org/ojs/index.php/AAAI/article/view/5857
https://aaai.org/ojs/index.php/AAAI/article/view/5857
https://ojs.aaai.org/index.php/AAAI/article/view/5955
https://ojs.aaai.org/index.php/AAAI/article/view/5955
https://doi.org/10.24963/ijcai.2020/207
https://www.aclweb.org/anthology/D15-1001
https://www.aclweb.org/anthology/D15-1001
https://arxiv.org/abs/2107.08966
https://arxiv.org/abs/2107.08966

Published as a conference paper at ICLR 2022

Adrien Ali Taiga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Belle-
mare. On bonus-based exploration methods in the arcade learning environment. arXiv preprint
arXiv:2109.11052, 2021.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. # exploration: A study of count-based exploration for deep
reinforcement learning. In 31st Conference on Neural Information Processing Systems (NIPS),
volume 30, pp. 1–18, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

William F. Whitney, Michael Bloesch, Jost Tobias Springenberg, Abbas Abdolmaleki, and Martin A.
Riedmiller. Decoupled exploration and exploitation policies for sample-efficient reinforcement
learning. CoRR, abs/2101.09458, 2021. URL https://arxiv.org/abs/2101.09458.

Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, Joey Tianyi Zhou, and Chengqi Zhang. Deep rein-
forcement learning with stacked hierarchical attention for text-based games. Advances in Neural
Information Processing Systems, 33, 2020.

Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, and Chengqi Zhang. Generalization in text-based
games via hierarchical reinforcement learning. arXiv preprint arXiv:2109.09968, 2021.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep CALM and explore:
Language models for action generation in text-based games. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pp. 8736–8754, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.
704. URL https://aclanthology.org/2020.emnlp-main.704.

Shunyu Yao, Karthik Narasimhan, and Matthew Hausknecht. Reading and acting while blind-
folded: The need for semantics in text game agents. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 3097–3102, Online, June 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.naacl-main.247. URL https://aclanthology.org/2021.
naacl-main.247.

Xingdi Yuan, Marc-Alexandre Côté, Alessandro Sordoni, Romain Laroche, Remi Tachet des
Combes, Matthew J. Hausknecht, and Adam Trischler. Counting to explore and generalize in
text-based games. CoRR, 2018.

Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J. Mankowitz, and Shie Mannor. Learn what
not to learn: Action elimination with deep reinforcement learning. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
3566–3577, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
645098b086d2f9e1e0e939c27f9f2d6f-Abstract.html.

13

https://arxiv.org/abs/2101.09458
https://aclanthology.org/2020.emnlp-main.704
https://aclanthology.org/2021.naacl-main.247
https://aclanthology.org/2021.naacl-main.247
https://proceedings.neurips.cc/paper/2018/hash/645098b086d2f9e1e0e939c27f9f2d6f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/645098b086d2f9e1e0e939c27f9f2d6f-Abstract.html

Published as a conference paper at ICLR 2022

A APPENDIX

A.1 GAME STATISTICS

Game ZORK1 INHUMANE LUDICORP LIBRARY ZORK3 PENTARI
Avg./Max 9 / 51 14 / 28 4 / 45 5 / 6 39 / 41 5 / 16

Game DETECTIVE BALANCES DEEPHOME ENCHANTER DRAGON OMNIQUEST
Avg./Max 2 / 5 12 / 54 6 / 53 15 / 40 9 / 24 13 / 26

Table 3: Average and maximum number of steps between rewards for games in Jericho (based on
human walkthroughs). Several games have long sequences of actions without reward.

Table 3 contains the average and maximum number of steps between rewards in these games, show-
casing their challenging nature.

A.2 IMPLEMENTATION DETAILS

We use a learning rate of 10−3 and 10−4 for πil and πinv−dy, respectively. Both policies are trained
on batches of size 64, with hidden dimensions of size 128. The scaling coefficient α1 for the inverse
dynamics intrinsic reward is set to 1 for all games except for Deephome (α1 = 0.1), Enchanter
(α1 = 0.5), Omniquest (α1 = 2), Ludicorp (α1 = 0.5), Detective (α1 = 2), and Pentari (α1 = 2).
The Transformer πil has 3 layers and 4 attention heads. β1 in equation 3 is set to 1, β2 in equation 4
is set to 10k to encourage picking the shortest length trajectory, and k is set to 10. In equation 6,
α1 = α2 = 1. The priority fraction ρ is set to 0.5. Every time πil is trained, we also scale the
episode length T to have at least R remaining steps of exploration by setting T = lmax +R, where
lmax is the length of the longest trajectory in the trajectory buffer B. In practice, R = 50, and hence
the agent will be guaranteed at least 50 steps of exploration each episode. XTX and DRRN are run
for 800k interaction steps, while RC-DQN which is run for 100k interaction steps following Guo
et al. (2020).

A.3 FULL SET OF ABLATIONS

Zork1 Inhumane Zork3 Ludicorp Deephome Omniquest
Game

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
Sc

or
e

Ablation
Pure IL (= 0)
Pure Inv Dy (= 1)
Mix (= 0.5)
XTX (no-mix)
XTX (full model)

Enchanter Pentari Balances Detective Library Dragon
Game

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

Full set of ablations

Figure 3: Average episode scores for 4 ablation models across 12 games. Overall, we find both the
strategic inverse dynamics policy and the explicit exploitation policy to be key for our algorithm.
Scores for dragon were clipped to be between 0 and 1.

14

Published as a conference paper at ICLR 2022

A.4 ABLATION TRAINING PLOTS

Figure 4: Average episode score throughout training for all ablations on Zork1. Shaded areas
indicate one standard deviation.

Figure 5: Average episode score throughout training for all ablations on Inhumane. Shaded areas
indicate one standard deviation.

15

Published as a conference paper at ICLR 2022

Figure 6: Average episode score throughout training for all ablations on Zork3. Shaded areas
indicate one standard deviation.

Figure 7: Average episode score throughout training for all ablations on Ludicorp. Shaded areas
indicate one standard deviation.

16

Published as a conference paper at ICLR 2022

Figure 8: Average episode score throughout training for all ablations on Balances. Shaded areas
indicate one standard deviation.

Figure 9: Average episode score throughout training for all ablations on Deephome. Shaded areas
indicate one standard deviation.

17

Published as a conference paper at ICLR 2022

Figure 10: Average episode score throughout training for all ablations on Detective. Shaded areas
indicate one standard deviation.

Figure 11: Average episode score throughout training for all ablations on Enchanter. Shaded areas
indicate one standard deviation.

18

Published as a conference paper at ICLR 2022

Figure 12: Average episode score throughout training for all ablations on Omniquest. Shaded areas
indicate one standard deviation.

Figure 13: Average episode score throughout training for all ablations on Pentari. Shaded areas
indicate one standard deviation.

19

Published as a conference paper at ICLR 2022

Figure 14: Average episode score throughout training for all ablations on Dragon. Shaded areas
indicate one standard deviation.

Figure 15: Average episode score throughout training for all ablations on Library. Shaded areas
indicate one standard deviation.

20

Published as a conference paper at ICLR 2022

A.5 FULL DETERMINISTIC AND STOCHASTIC RESULTS

Games DRRN INV-DY RC-DQN XTX-Uniform XTX (ours) ∆ (%) Game Max
Avg Max Avg Max Avg Max Avg Max Avg Max

ZORK1 40.3 (2.2) 55.0 (6.4) 44.1 (12.6) 105.0 (19.9) 41.7 (0.6) 53.0 (0.0) 34.1 (1.5) 52.3 (3.8) 103.4 (10.9) 152.7 (1.7) +17% 350
INHUMANE 31.0 (1.0) 56.7 (4.7) 28.1 (3.6) 60.0 (0.0) 31.8 (1.4) 63.3 (4.7) 68.9 (8.9) 83.3 (9.4) 60.9 (5.9) 70.0 (14.1) -9% 90
INHUMANE* 34.8 (3.9) 56.7 (4.7) 27.7 (5.3) 63.3 (4.7) 29.8 (2.3) 53.3 (4.7) 59.2 (1.2) 76.7 (9.4) 64.0 (7.7) 76.7 (9.4) +5% 90
LUDICORP 15.6 (0.1) 23.0 (0.0) 15.6 (0.2) 23.0 (0.0) 12.4 (1.1) 21.0 (2.2) 19.9 (0.4) 23.0 (0.0) 20.9 (0.1) 23.0 (0.0) +1% 150
LUDICORP* 17.1 (1.7) 48.7 (2.1) 19.6 (5.5) 49.3 (16.2) 10.9 (1.7) 40.7 (2.5) 67.3 (4.2) 86.0 (2.8) 78.8 (5.1) 91.0 (3.6) +8% 150
ZORK3 0.3 (0.0) 4.7 (0.5) 0.4 (0.0) 5.0 (0.0) 3.2 (0.5) 5.0 (0.0) 3.7 (0.2) 4.7 (0.5) 4.2 (0.0) 5.0 (0.0) +7% 7
ZORK3* 0.3 (0.0) 4.3 (0.5) 0.5 (0.1) 5.0 (0.0) 3.0 (0.3) 5.0 (0.0) 3.8 (0.4) 4.7 (0.5) 4.2 (0.1) 5.0 (0.0) +6% 7
PENTARI 43.4 (4.5) 58.3 (2.4) 29.8 (14.1) 46.7 (6.2) 37.4 (7.0) 46.7 (11.8) 43.4 (1.7) 60.0 (0.0) 45.5 (4.3) 60.0 (0.0) +3% 70
PENTARI* 45.6 (1.9) 58.3 (2.4) 34.5 (7.5) 53.3 (6.2) 33.4 (6.9) 46.7 (6.2) 43.4 (0.4) 60.0 (0.0) 49.6 (1.3) 60.0 (0.0) +6% 70
DETECTIVE 289.9 (0.1) 320.0 (8.2) 289.5 (0.4) 323.3 (4.7) 269.3 (14.8) 346.7 (4.7) 296.0 (9.0) 336.7 (12.5) 312.2 (10.3) 340.0 (8.2) +4% 360
BALANCES 10.0 (0.0) 10.0 (0.0) 9.9 (0.0) 10.0 (0.0) 10.0 (0.0) 10.0 (0.0) 9.6 (0.1) 10.0 (0.0) 10.0 (0.0) 10.0 (0.0) 0% 51
BALANCES* 14.1 (0.4) 25.0 (0.0) 12.5 (1.6) 25.0 (0.0) 10.0 (0.1) 18.3 (2.4) 21.9 (0.4) 25.0 (0.0) 24.0 (0.3) 26.7 (2.4) +4% 51
LIBRARY 17.3 (0.7) 21.0 (0.0) 17.0 (0.2) 21.0 (0.0) 16.2 (1.4) 21.0 (0.0) 18.8 (0.4) 21.0 (0.0) 19.7 (0.5) 21.0 (0.0) +3% 30
LIBRARY* 24.8 (0.6) 30.0 (0.0) 24.7 (0.4) 30.0 (0.0) 24.2 (1.4) 30.0 (0.0) 26.1 (0.4) 30.0 (0.0) 28.5 (0.3) 30.0 (0.0) +8% 30
DEEPHOME 57.9 (0.4) 68.7 (0.5) 44.8 (19.9) 76.0 (5.0) 1.0 (0.0) 1.0 (0.0) 46.3 (9.0) 60.7 (13.2) 75.7 (5.0) 93.7 (5.6) +6% 300
DEEPHOME* 58.8 (0.1) 68.0 (0.8) 58.9 (0.2) 72.7 (3.8) 1.0 (0.0) 1.0 (0.0) 52.6 (0.4) 70.0 (0.8) 77.7 (2.1) 92.3 (3.3) +6% 300
ENCHANTER 46.1 (11.1) 70.0 (21.2) 46.0 (3.6) 73.3 (8.5) 25.8 (8.5) 36.7 (14.3) 43.4 (18.9) 53.3 (23.6) 34.7 (21.2) 36.7 (23.6) -3% 400
ENCHANTER* 42.0 (1.2) 66.7 (2.4) 44.2 (18.3) 63.3 (30.6) 26.8 (1.9) 38.3 (4.7) 24.3 (10.8) 28.3 (11.8) 52.0 (23.1) 66.7 (33.0) +2% 400
DRAGON -3.7 (0.4) 8.0 (0.0) -2.3 (0.5) 8.7 (1.7) 3.2 (1.6) 8.0 (0.0) 40.7 (0.0) 126.0 (0.0) 96.7 (1.1) 127.0 (0.0) 0% 25
OMNIQUEST 8.2 (0.1) 10.0 (0.0) 9.9 (0.0) 13.3 (2.4) 9.3 (0.7) 10.0 (0.0) 8.6 (0.1) 10.0 (0.0) 11.6 (1.3) 13.3 (2.4) +3% 50
Avg. Norm Score 29.5% (29.8) 48.8% (28.8) 28.4% (27.2) 51.8% (27.3) 29.7% (25.6) 44.5% (32.1) 49.2% (30.4) 58.6% (33.6) 56.3% (28.1) 64.0% (28.6) 5.8% (4.1) 100%

Table 4: Full Deterministic Results. Standard deviations are in parentheses. Scores are averaged
across 3 seeds. Note that the average normalized scores only take into account the games listed in
Table 1. Baselines were rerun with the latest Jericho version.

Games DRRN INV-DY RC-DQN XTX-Uniform XTX (ours) ∆ (%) Game Max
Avg Max Avg Max Avg Max Avg Max Avg Max

ZORK1 41.3 (3.2) 55.7 (3.3) 36.9 (2.4) 85.7 (14.8) 40.3 (1.6) 53.0 (0.0) 31.2 (1.1) 48.0 (5.0) 67.7 (8.0) 143.0 (10.7) +8% 350
ZORK3 0.2 (0.0) 4.3 (0.5) 0.7 (0.2) 5.0 (0.0) 2.7 (0.0) 5.0 (0.0) 1.8 (0.1) 4.0 (0.0) 2.7 (0.4) 5.0 (0.0) 0% 7
ZORK3* 0.2 (0.0) 4.0 (0.0) 0.4 (0.3) 4.7 (0.5) 2.7 (0.1) 4.7 (0.5) 2.3 (0.5) 4.3 (0.5) 2.6 (0.6) 5.0 (0.0) -1% 7
PENTARI 42.3 (0.8) 60.0 (0.0) 28.9 (8.5) 45.0 (0.0) 31.2 (3.9) 38.3 (11.8) 38.4 (1.3) 60.0 (0.0) 48.2 (0.4) 60.0 (0.0) +8% 70
PENTARI* 38.2 (3.6) 60.0 (0.0) 37.5 (8.0) 55.0 (7.1) 33.3 (6.0) 41.7 (10.3) 38.8 (0.4) 60.0 (0.0) 47.3 (0.4) 60.0 (0.0) +12% 70
DEEPHOME 58.2 (0.6) 72.0 (5.7) 58.2 (0.5) 72.7 (2.5) 1.0 (0.0) 1.0 (0.0) 48.0 (10.1) 62.0 (14.2) 73.9 (4.3) 99.3 (13.9) +5% 300
DEEPHOME* 43.0 (20.0) 65.7 (3.3) 58.4 (0.5) 73.0 (1.4) 1.0 (0.0) 1.0 (0.0) 50.7 (2.3) 69.3 (0.9) 70.9 (2.7) 96.0 (7.8) +4% 300
ENCHANTER 41.0 (0.6) 71.7 (9.4) 38.9 (14.5) 63.3 (30.6) 25.0 (4.0) 30.0 (7.1) 32.1 (10.9) 53.3 (23.6) 46.2 (18.9) 51.7 (22.5) +1% 400
ENCHANTER* 42.0 (18.5) 56.7 (27.2) 34.5 (10.3) 53.3 (23.6) 27.1 (2.7) 43.3 (8.5) 30.2 (9.1) 45.0 (20.4) 44.8 (19.4) 58.3 (27.8) +1% 400
Avg. Norm Score 18.9% (18.2) 39.0% (28.1) 19.7% (17.5) 41.5% (26.0) 20.9% (18.6) 30.5% (27.1) 24.3% (17.9) 39.1% (29.6) 31.8% (19.8) 48.9% (26.0) 4.8% (4.7) 100%

Table 5: Full Stochastic Results. Standard deviations are in parentheses. Scores are averaged
across 3 seeds. Note that the average normalized scores only take into account the games listed in
Table 2. Baselines were rerun with the latest Jericho version.

A.6 AGGREGATE METRICS & PERFORMANCE PROFILES

0.24 0.32 0.40 0.48 0.56
DRRN

INV-DY
RC-DQN

XTX-Uniform
XTX

Median

0.24 0.32 0.40 0.48 0.56

IQM

0.30 0.36 0.42 0.48 0.54

Mean

0.48 0.54 0.60 0.66 0.72

Optimality Gap

Normalized Score

Figure 16: Aggregate metrics with 95% CIs for the deterministic games listed in Table 1, follow-
ing Agarwal et al. (2021). The CIs use percentile bootstrap with stratified sampling.

0.12 0.15 0.18 0.21 0.24
DRRN

INV-DY
RC-DQN

XTX-Uniform
XTX

Median

0.12 0.16 0.20 0.24 0.28

IQM

0.20 0.24 0.28 0.32

Mean

0.68 0.72 0.76 0.80 0.84

Optimality Gap

Normalized Score

Figure 17: Aggregate metrics with 95% CIs for the stochastic games listed in Table 2, follow-
ing Agarwal et al. (2021). The CIs use percentile bootstrap with stratified sampling.

21

Published as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0
Avg. Normalized Score ()

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n
of

 ru
ns

 w
ith

 sc
or

e
>

DRRN
INV-DY
XTX-Uniform
XTX
RC-DQN

Figure 18: Performance profiles based on score distributions for the deterministic games listed in
Table 1, following Agarwal et al. (2021). Shaded regions show pointwise 95% confidence bands
based on percentile bootstrap with stratified sampling.

0.0 0.2 0.4 0.6 0.8 1.0
Avg. Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

DRRN
INV-DY
XTX-Uniform
XTX
RC-DQN

Figure 19: Performance profiles based on score distributions for the stochastic games listed in
Table 2, following Agarwal et al. (2021). Shaded regions show pointwise 95% confidence bands
based on percentile bootstrap with stratified sampling.

22

	Introduction
	Related Work
	Method
	Our Algorithm: eXploit-Then-eXplore (XTX)
	Mixture of policies for fine-grained control

	Imitation learning for building a global policy cover ()
	Efficient local exploration with inverse dynamics ()
	Episodic rollouts with XTX (Algorithm 1)
	Novelty in comparison to prior algorithms

	Experiments
	Results
	Ablation Studies

	Conclusion
	Appendix
	Game statistics
	Implementation Details
	Full set of ablations
	Ablation Training Plots
	Full Deterministic and Stochastic Results
	Aggregate Metrics & Performance Profiles

