
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GOAL-CONDITIONED SUPERVISED LEARNING FOR
MULTI-OBJECTIVE RECOMMENDATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-objective learning endeavors to concurrently optimize multiple objectives
using a single model, aiming to achieve high and balanced performance across
diverse objectives. However, this often entails a more complex optimization prob-
lem, particularly when navigating potential conflicts between objectives, leading
to solutions with higher memory requirements and computational complexity.
This paper introduces a Multi-Objective Goal-Conditioned Supervised Learning
(MOGCSL) framework for automatically learning to achieve multiple objectives
from offline sequential data. MOGCSL extends the conventional GCSL method to
multi-objective scenarios by redefining goals from one-dimensional scalars to multi-
dimensional vectors. It benefits from naturally eliminating the need for complex
architectures and optimization constraints. Moreover, MOGCSL effectively filters
out uninformative or noisy instances that fail to achieve desirable long-term rewards
across multiple objectives. We also introduces a novel goal-selection algorithm for
MOGCSL to model and identify “high” achievable goals for inference.
While MOGCSL is quite general, we focus on its application to the next action
prediction problem in commercial-grade recommender systems. In this context,
any viable solution needs to be reasonably scalable and also be robust to large
amounts of noisy data that is characteristic of this application space. We show
that MOGCSL performs admirably on both counts by extensive experiments on
real-world recommendation datasets. Also, analysis and experiments are included
to explain its strength in discounting the noisier portions of training data in rec-
ommender systems with multiple objectives. Code and data can be found in:
https://anonymous.4open.science/r/MOGCSL-D7A2.

1 INTRODUCTION

Multi-objective learning techniques typically aim to train a single model to determine a policy for
multiple objectives, which are often defined on different types of tasks Ruder (2017); Sener & Koltun
(2018); Zhang & Yang (2021). For instance, two common tasks in recommender systems are to
recommend items that users may click or purchase, and hence the corresponding two objectives
are defined as pursuing higher click rate and higher purchase rate. However, learning for multiple
objectives simultaneously is often nontrivial, particularly when there are potential inherent conflicts
among these objectives Sener & Koltun (2018).

Existing approaches to multi-objective learning broadly address this optimization issue by formulating
and optimizing a loss function that takes into account multiple objectives in a supervised learning
paradigm. Some previous research focused on designing model architectures specifically for multi-
objective scenarios, including the shared-bottom structure Ma et al. (2018), the experts and task
gating networks Ma et al. (2018), and so on. Another line of research studies how to constrain the
optimization process based on various assumptions regarding how to assign reasonable loss weights
Liu et al. (2019) or dynamically adjust gradients Yu et al. (2020). We remark that these approaches
often introduce substantial space and computational complexity Ma et al. (2018); Zhang & Yang
(2021). Also, they treat all the data uniformly. In recommender systems, sometimes none of the items
shown to a user is of interest, rendering their choice uninformative. Also users are often distracted
or their interests temporarily change. These are some of the reasons that the observed interaction
data in real settings suffers from substantial uninformative or noisy components that are better left
discounted. Existing approaches do not cater well to this aspect of our focus application.

1

https://anonymous.4open.science/r/MOGCSL-D7A2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address these issues, we propose a novel method called Multi-Objective Goal-Conditioned
Supervised Learning (MOGCSL). In this framework, we first apply goal-conditioned supervised
learning (GCSL) Yang et al. (2022); Liu et al. (2022) to the multi-objective recommendation problem
by introducing a new multi-dimensional goal. At its core, MOGCSL aims to learn primarily from
the behaviors of those sessions where the long-term reward ends up being high, thereby discounting
noisy user choices coming with low long-term rewards. Unlike conventional GCSL, however, we
represent the reward gained from the environment with a vector instead of a scalar. Each dimension
of this vector indicates the reward for a certain objective. The “goal” in MOGCSL can then be
defined as a vector of desirable cumulative rewards on all of the objectives given the current state. By
incorporating these goals as input, MOGCSL learns to rely primarily on high-fidelity portions of the
data with less noise corresponding to multiple objectives, which helps to better predict users’ real
preference. Extensive experiments indicate that MOGCSL significantly outperforms other baselines
and benefits from lower complexity.

For inference of GCSL, most previous works employ a simple goal-choosing strategy Chen et al.
(2021); Xin et al. (2022) (e.g., some multiple of the average goal in training). Although we observe
that simple choices for MOGCSL do reasonably well in practice, we also introduce a goal-choosing
algorithm that estimates the distribution of achievable goals using variational auto-encoders, and
automates the selection of desirable “high” goals on multiple objectives as input for inference.
This algorithm addresses the key challenge of selecting achievable “high" multi-dimensional goals,
a problem that has remained unexplored yet. By comparing the proposed method with simpler
statistical strategies, we gain valuable insights into the goal-choosing process and trade-offs for
practical implementation.

Our key contributions can be summarized as follows:

• We introduce a general supervised framework called MOGCSL for multi-objective recommen-
dations that, by design, selectively leverages training data with desirable long-term rewards on
multiple objectives. We implement this approach using a transformer encoder optimized with a
standard cross-entropy loss, avoiding more complex architectures or optimization constraints that
are typical for multi-objective learning. Empirical experiments on real-world e-commerce datasets
demonstrate the superior efficacy and efficiency of MOGCSL.

• As a part of MOGCSL, we conduct a formal analysis of goal properties for inference with a theorem.
Then we introduce a novel goal-choosing algorithm that can model the distribution of achievable
goals over interaction sequences and choose desirable “high” goals across multiple objectives. This
is novel even for the single-objective case and addresses a fundamental challenge in GCSL.

• We conduct a comprehensive analysis of MOGCSL’s working mechanism and are the first to reveal
its ability to effectively mitigate harmful effects of noisy instances in the training data with multiple
objectives, which is a crucial challenge in practical applications like recommender systems.

2 RELATED WORK

Multi-Objective Learning. Multi-objective learning typically investigates the construction and
optimization of models that can simultaneously achieve multiple objectives. Existing research focuses
mainly on resolving the problem by model architecture designs Ma et al. (2018); Misra et al. (2016)
and optimization constraints Liu et al. (2019); Lin et al. (2019). All of these works give equal
weight to all instances in the training data, instead of forcefully distinguishing noisy data from
non-noisy data by considering their different effects on multiple objectives. This is fine in many
applications but problematic in commercial recommendation systems. Moreover, these approaches
often introduce substantial space and computational complexity Zhang & Yang (2021), making them
more challenging for large-scale applications in the real world. For example, MMOE Ma et al. (2018)
requires constructing separate towers for each objective. DWA Liu et al. (2019) necessitates recording
and calculating loss change dynamics for each training epoch, while PE Lin et al. (2019) demands
substantial computational resources to solve an optimization problem for Pareto efficiency. A recent
work Liu et al. (2024) aims to improve the efficiency of multi-objective learning, but still suffers from
the complexity of calculating gradient similarities to determine task weights.

Goal-Conditioned Supervised Learning. In contrast, we propose resolving the multi-objective
optimization dilemma within the framework of GCSL Liu et al. (2022); Chen et al. (2021); Janner

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al. (2021). Typically, GCSL can be directly combined with various sequential models with
minor adaptations and trained entirely on offline data. This paradigm effectively transforms offline
reinforcement learning into a supervised learning problem. However, as far as we know, most existing
works focus on optimizing a single objective. Our work extends GCSL to the multi-objective setting,
eliminating the need for scalarization functions or other constraints during training. Additionally,
although some works have explored how to assign more valuable goals to enhance GCSL training
Ajay et al. (2020); Zhuang et al. (2024), the properties and determination inference goals, especially
multi-dimensional ones, remain less explored. We propose a novel algorithm to model the achievable
goals and automatically choose desirable goals on multiple objectives as input during inference stage.
Note that we are solving for next action prediction problem, and use long-term rewards only as
extra information, unlike multi-objective reinforcement learning approaches that aim to maximize
cumulative returns across multiple objectives Cai et al. (2022); Stamenkovic et al. (2022). Also, their
evaluation principles are different, typically relying on long-term metrics and synthetic environments.
Hence we don’t compare with such approaches in this paper.

3 METHODOLOGY

In this section, we first illustrate the general optimization paradigm of MOGCSL. Then we expound
on the training process of MOGCSL and the proposed goal-choosing algorithm for inference. Fur-
thermore, we give a detailed analysis of the capability of MOGCSL to discount potentially highly
noisy samples in the training data.

3.1 A NEW VIEW FOR MULTI-OBJECTIVE LEARNING

Multi-objective learning is typically formulated as an optimization problem over multiple losses Ma
et al. (2018); Misra et al. (2016); Yu et al. (2020); Lin et al. (2019), each defined on a distinct objective.
Consider a dataset D = {(xi, y

1
i , y

2
i , ..., y

n
i)}i∈[1,M], where xi represents the feature, yji is the ground-

truth score on the j-th objective, and M is the total number of data points. For a given model f(x;θ),
multiple empirical losses can be computed, one per objective as Lj(θ) = E(x,yj)∈D[L(f(x;θ), yj)].
The model can then be optimized by minimizing a single loss, which is obtained by combining all the
losses through a weighted summation as: minθ

∑n
j=1 w

jLj(θ).

A fundamental question is how to assign these weights and how to regulate the learning process to
do well on all the objectives concurrently. Earlier research sought to address this issue based on
assumptions regarding the efficacy of certain model architectures or optimization constraints, which
may not be generally valid and can significantly increase complexity Zhang & Yang (2021).

In contrast, we propose to approach the learning and optimization for multi-objective learning from a
different perspective. Specifically, we posit that the interaction process between the agent and the
environment can be formalized as an Multi-Objective Markov Decision Process (MOMDP) Roijers
et al. (2013). Denote the interaction trajectories collected by an existing agent as D = {τi}i∈[1,M]. In
the context of recommender systems, each trajectory τ records a complete recommendation session
between a user entering and exiting the recommender system, such that τ = {(st, at, rt)}t∈[1,|τ |]. A
state st ∈ S is taken as the representation of user’s preferences at a given timestep t. An action at is
recommended from the action space A which includes all candidate items, such that |A| = |V| = N
where V denotes the set of all items. R(st, at) is the reward function, where rt = R(st, at) means
the agent receives a reward rt after taking an action at under state st. Note that the reward function
R(st, at) in MOMDP is represented by a multi-dimensional vector instead of a scalar.

In this context, all the objectives can be quantified using reward rt at each time step. Specifically,
since rt is determined by user’s behavior in response to recommended items, it naturally reflects the
recommender’s performance on these objectives. For example, if the user clicks the recommended
item at, the value on the corresponding dimension of rt can be set to 1; otherwise, it remains 0. In
sequential recommendation scenarios, the target of the agent is to pursue better performance at the
session level. Session-level performance can be evaluated by the cumulative reward from the current
timestep to the end of the trajectory:

gt =

|τ |∑
t′=t

rt′ , (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1: Training of MOGCSL
1 Input: training data Dtr , batch size B, model parameters θ
2 Intialization: initialize parameters θ
3 Relabel all the rewards with goals according to Eq. (1)
4 repeat
5 Randomly sample a batch of (st, at, gt) from Dtr

6 Compute the representation Mst,gt
via Eq. (2)-Eq.(3)

7 Derive the prediction logits via Eq. (4)
8 Calculate the loss function L(θ) via Eq. (5)
9 Update θ by minimizing L(θ) with stochastic gradient descent: θ ← θ − η ∂L(θ)

∂θ

10 until convergence

where gt can be called as a “goal” in the literature of GCSL Yang et al. (2022).

Then, the target of mutli-objective learning for recommender systems can be formulated as devel-
oping a policy that achieves satisfactory performance (i.e., the goals) across multiple objectives in
recommendation sessions. In this research, we address this problem within the framework of GCSL.
During the training stage, the aim is to determine the optimal action to take from a given current
state in order to achieve the specified goal. The agent, denoted as πθ, is trained by maximizing
the likelihood of trajectories in the offline training dataset Dtr through an autoregressive approach,
expressed as argmaxθ EDtr

[logπθ(a|s, g)]. Notably, there are no predefined constraints or assump-
tions governing the learning process. During the inference stage, when an achievable and desirable
goal is specified, the model is expected to select an action based on the goal and the current state,
with the aim of inducing behaviours to achieve that goal.

3.2 MOGCSL TRAINING

The initial step of MOGCSL training is relabeling the training data by substituting the rewards
with goals. Specifically, for each trajectory τ ∈ Dtr, we replace every tuple (st, at, rt) with
(st, at, gt), where gt is defined according to Eq. (1). Subsequently, we employ a sequential model
Kang & McAuley (2018) based on Transformer-encoder (denoted as T-enc) to encode the users’
sequential behaviors and obtain state representations. We chose a transformer-based encoder due to
its widely demonstrated capability in sequential recommendation scenarios Kang & McAuley (2018).
Specifically, let the interaction history of a user up to time t be denoted as v1:t−1 = {v1, ..., vt−1}.
We first map each item v ∈ V into the embedding space, resulting in the embedding representation of
the history: e1:t−1 = [e1, ...,et−1]. Then we encode e1:t−1 by T-enc. Since the current timestep t is
also valuable for estimating user’s sequential behavior, we incorporate it via a timestep embedding
denoted as embt through a straightforward embedding table lookup operation. Similarly, we derive
the embedding of the goal embgt

through a simple fully connected (FC) layer with a subsequent
normalization module. The final representation of state st is derived by concatenating the sequential
encoding, timestep embedding and goal embedding together:

embst = Concat(T-enc(e1:t−1), embt, embgt
). (2)

To better capture the mutual information, we feed the state embedding into a self-attention block:
Mst,gt

= Atten(embgt
)). (3)

Then we use an MLP to map the derived embedding into the action space, where each logit represents
the preference of taking a specific action (i.e., recommending an item):

[πθ(v
1|st, gt), ..., πθ(v

N |st, gt)] = δ(MLP (Mst,gt
)), (4)

where vi denotes the i-th item in the candidate pool, δ is the soft-max function, and θ denotes all
parameters of this model. The model structure is shown in Appendix 1.

The training objective is to correctly predict the subsequent action that is mostly likely lead to a
specific goal given the current state. As discussed in Section 3.1, each trajectory of user’s interaction
history represents a successful demonstration of reaching the goal that it actually achieved. As a
result, the model can be naturally optimized by minimizing the expected cross-entropy as:

L(θ) = E(st,at,gt)∈Dtr [−log(πθ(at|st, gt))]. (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 2: Inference of MOGCSL
1 Input: state s′, sample size K, policy model π, utility principle U , prior q(g′|s′), distribution of

achievable goals P (ga|s′, g′, π)
2 Intialization: set of potential input goals G′ = ∅, set of expected achievable goals Ga = ∅
3 for k = 1, . . . ,K do
4 Sample a g′

k from q(g′|s′)
5 Compute the expectation of the achievable goal through sampling: g̃a

k = Ega
k
∼P (·|s′,g′

k
,π)g

a
k

6 G′ = G′ ∪ g′
k

7 Ga = Ga ∪ g̃a
k

8 Choose the best g̃a
b from Ga according to U(g̃a)

9 Choose corresponding g′
b from G′

10 Return: π(·|s′, g′
b)

The training process is illustrated in Algorithm 1.

3.3 MOGCSL INFERENCE

After training, we derive a model πθ(a|s, g) that predicts the next action based on the given state and
goal. However, while the goal can be accurately computed through each trajectory in the training data
via Eq. (1), we must assign a desirable goal as input for the new state encountered during inference.
GCSL approaches typically determine this goal-choosing strategy based on simple statistics calculated
from the training data. E.g., Chen et al. (2021) and Zheng et al. (2022) set the goals for all states at
inference as the product of the maximal cumulative reward in training data and a fixed factor serving
as a hyperparameter. Similarly, Xin et al. (2022) derive the goals for inference at a given timestep by
scaling the mean of the cumulative reward in training data at the same timestep with a pre-defined
factor. However, a central yet unexplored question is: what are the general characteristics of the
goals and how can we determine them for inference in a principled manner?

In this paper, we investigate the distribution of the multi-dimensional goals that can be achieved
during inference by first stating the following theorem. Proof is given in Appendix A.
Theorem 1. Assume that the environment is modeled as an MOMDP. Consider a trajectory τ that is
generated by the policy π(a|s, g) given the initial state s1 and goal g1, the distribution of goals ga

(i.e., cumulative rewards) that the agent actually achieves throughout the trajectory is determined by
(s1, g1, π).

Based on this theorem, we’d like to learn the distribution of ga conditioned on (s1, g1, π), denoted as
P (ga|s1, g1, π). General generative models, such as GANs Mirza & Osindero (2014) and diffusion
models Ho & Salimans (2022), can be employed to learn this distribution. In this paper, we propose
the use of a conditional variational auto-encoder (CVAE) Sohn et al. (2015) due to its simplicity,
robustness, and ease of formulation.
Specifically, this distribution can be learned directly on the training data Dtr. For each (s, g) ∈ Dtr ,
g should be a sample from the distribution of the achievable goals by the policy π, given the initial
state s and input goal g. That’s because the policy π is trained to imitate the actions demonstrated by
each data point in Dtr, where the achieved goal of the trajectory starting from (s, g) is exactly g. Let
c = (s, g, π). The loss function is:

LCV AE1 = E(s,g)∈Dtr,z∼Q1
[logP1(g|z, c) +DKL(Q1(z|g, c)||P (z))], (6)

where Q1(z|g, c) is the encoder and P1(g|z, c) is the decoder. Based on Gaussian distribution
assumption, they can be written as Q1 = N (µ(g, c),Σ(g, c)) and P1 = N (fCV AE1(z, c), σ

2I)
respectively, where z ∼ N (0, I). Then we can derive a sample of ga by inputting a sampled z into
fCV AE1.

On the inference stage, given a new state s′, we first sample a set of goals g′ as the possible input of
π through a learnable prior q(g′|s′). Similarly, we learn this prior via another CVAE on the training
data. The loss is:

LCV AE2 = E(s,g)∈Dtr,z∼Q2
[logP2(g|z, s) +DKL(Q2(z|g, s)||P (z))]. (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Finally, we’ll choose a desirable goal as the input along with the new state s′ encountered in inference
by sampling from the two CVAE models. Specifically, we propose to: (1) sample from the prior
q(g′|s′) to get a set of potential input goals, denoted as G′, (2) for each g′ ∈ G′, estimate the
expectation of the actually achievable goal g̃a by sampling from P (·|s′, g′, π) and taking the average,
(3) choose a best goal as input for inference from G′ according to the associated expected g̃a by a
predefined utility principle U(g̃a), which generally tends to pick up a “high” goal to achieve larger
rewards on multiple objectives. The exact definition can be customized based on specific business
requirements or objective priorities. E.g., choose by a predefined partial ordering 1. Note that our
algorithm is general and can accommodate adaptations of the utility function, as the desired goals are
always set among the set of achievable goals, which naturally resolves the objective-conflicting issue.
This definition flexibility allows practitioners to easily tailor MOGCSL to various practical scenarios
and objective priorities. See Algorithm 2 for detailed inference pseudocode.

3.4 ANALYSIS OF DENOISING CAPABILITY

An important benefit of MOGCSL is its capability to remove harmful effects of potentially noisy
instances in the training data by leveraging the multiple-objective goals. To illustrate this, we consider
the following setup that is common in recommender systems. There is a recommender system that
has been operational, and recording data. At each interaction, the system shows the user a short
list of items. The user then chooses one of these items. In the counterfactual that the recommender
system is ideal, the action recorded would be a which reveals the user’s true interest. Since the actual
recommender system to collect the data is not ideal, we have no direct access to a, but rather to a
noisy version of it ε(a).

We assume that the noisy portion of the training data originates from users who are presented with
a list of items that are not suitable for them, rendering their reactions to these recommendations
uninformative. Conversely, interactions achieving higher goals are generally less noisy, meaning
ε(a) is closer to a. To illustrate this, consider a scenario where a user clicks two recommended
items (v1 and v2) under the same state. After clicking v1, the user chooses to quit the system,
while he stays longer and browses more items after clicking v2. This indicates that the goal (i.e.,
cumulative reward) with v2 is larger than that with v1. In this case, we argue that v2 should be
considered as the user’s truly preferred item over v1. That’s because the act of quitting, which results
in a smaller goal, indicates user dissatisfaction with the previous recommendation, even though
he did click v1 before. Our proposed MOGCSL can model and leverage this mechanism based on
multi-dimensional goals, which serve as a description of the future effects of current actions on
multiple objectives. Specifically, by incorporating multi-dimensional goals as input, MOGCSL can
effectively differentiate between noisy and noiseless samples in the training data. During inference,
when high goals are specified as input, the model can make predictions based primarily on the patterns
learned from the corresponding noiseless interaction data.

To empirically validate this effect, we conduct experiments that are illustrated in Appendix B.2 due
to limited space. The results demonstrate the denoising capability of MOGCSL.

4 EXPERIMENTS

In this section, we introduce our experiments on two e-commerce datasets, aiming to address the
following research questions: 1) RQ1. How does MOGCSL perform when compared to previous
methods for multi-objective learning in recommender systems? 2) RQ2. How does MOGCSL
mitigate the complexity challenges, including space and time complexity, as well as the intricacies of
parameter tuning encountered in prior research? 3) RQ3. How does the goal-generation module for
inference perform when compared to strategies based on simple statistics?

4.1 EXPERIMENTAL SETUP

Datasets We use two public datasets: Challenge15 and RetailRocket. Both of them include binary
labels indicating whether a user clicked or purchased the currently recommended item. More details
of the datasets, metrics, and implementation specifics are provided in Appendix B.

1See Section 4.4 for the implementation in our experiments.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison between MOGCSL and other baselines on RetailRocket and Challenge15 datasets.
The mean and standard deviation over 5 seeds are reported. Boldface denotes the best results.

[RetailRocket] Purchase (%) Click (%)

HR@10 NG@10 HR@20 NG@20 HR@10 NG@10 HR@20 NG@20

Share-Fix 48.57±0.17 45.79±0.09 49.47±0.10 46.01±0.08 35.51±0.24 25.85±0.16 40.15±0.20 27.03±0.14

Share-DWA 48.11±0.04 45.83±0.08 48.64±0.08 45.96±0.06 34.20±0.27 25.53±0.12 38.43±0.31 26.60±0.13

Share-PE 48.67±0.12 45.94±0.03 49.42±0.04 46.13±0.02 35.69±0.08 26.20±0.08 40.28±0.11 27.37±0.07

Share-FAMO 48.92±0.17 46.11±0.10 50.19±0.09 46.78±0.13 35.97±0.14 26.17±0.09 40.71±0.11 27.35±0.18

MMOE-Fix 47.74±0.09 44.01±0.05 48.61±0.11 44.23±0.04 35.29±0.16 25.67±0.09 40.04±0.26 26.87±0.11

MMOE-DWA 47.78±0.40 44.57±0.13 48.44±0.24 44.79±0.09 35.68±0.46 26.13±0.29 40.22±0.57 27.28±0.32

MMOE-PE 46.58±0.22 43.72±0.15 47.37±0.11 43.94±0.14 35.39±0.27 26.19±0.11 39.78±0.39 27.31±0.14

MMOE-FAMO 47.93±0.32 46.42±0.23 51.24±0.19 47.15±0.21 35.92±0.21 26.14±0.17 41.15±0.39 26.62±0.14

RMTL 62.84±0.24 49.92±0.20 67.04±0.15 50.89±0.25 33.95±0.35 24.23±0.41 39.87±0.32 25.27±0.29

PMORS 63.14±0.15 51.02±0.17 67.45±0.20 52.07±0.13 34.16±0.26 24.09±0.23 39.86±0.19 25.31±0.27

MOPRL 61.18±0.19 50.74±0.10 64.76±0.25 51.65±0.02 33.99±0.11 24.31±0.08 38.98±0.08 25.57±0.08

MOGCSL 65.43±0.15 52.92±0.11 69.28±0.14 53.90±0.14 36.30±0.25 25.24±0.15 41.92±0.55 26.67±0.19

[Challenge15] Purchase (%) Click (%)

HR@10 NG@10 HR@20 NG@20 HR@10 NG@10 HR@20 NG@20

Share-Fix 38.18±0.10 25.47±0.26 43.97±0.18 26.93±0.20 41.61±0.30 25.77±0.16 49.19±0.43 27.70±0.19

Share-DWA 38.27±0.18 25.63±0.08 43.95±0.19 27.07±0.08 41.49±0.24 25.90±0.16 48.90±0.20 27.77±0.14

Share-PE 38.92±0.09 25.83±0.13 44.82±0.12 27.32±0.07 42.46±0.16 26.39±0.06 50.05±0.17 28.32±0.06

Share-FAMO 39.06±0.13 25.94±0.21 44.97±0.18 27.65±0.09 43.25±0.13 27.02±0.11 50.58±0.26 28.94±0.14

MMOE-Fix 35.34±0.12 23.87±0.07 40.68±0.09 25.22±0.12 43.82±0.16 27.33±0.09 51.42±0.19 29.26±0.10

MMOE-DWA 37.04±0.40 24.88±0.13 42.64±0.24 26.30±0.09 42.20±0.46 26.45±0.29 49.48±0.57 28.30±0.32

MMOE-PE 36.40±0.36 24.66±0.19 41.52±0.33 25.96±0.19 44.04±0.09 27.44±0.03 51.60±0.07 29.37±0.03

MMOE-FAMO 37.92±0.56 25.43±0.22 43.63±0.29 27.12±0.15 43.71±0.55 26.98±0.38 50.98±0.66 29.03±0.39

RMTL 53.34±0.46 33.65±0.36 62.89±0.49 34.74±0.37 41.41±0.41 24.87±0.38 49.29±0.43 26.91±0.29

PMORS 54.98±0.31 34.77±0.28 63.52±0.24 37.05±0.35 42.36±0.39 25.10±0.42 50.07±0.30 26.84±0.26

MOPRL 54.79±0.37 35.37±0.26 63.10±0.45 37.49±0.27 42.14±0.21 25.62±0.18 50.18±0.25 27.66±0.19

MOGCSL 56.82±0.25 35.93±0.15 65.64±0.55 38.17±0.19 42.47±0.15 25.64±0.11 50.52±0.14 27.73±0.11

Baselines Prior research on multi-objective learning encompass both model structure adaptation and
optimization constraints. In our experiments, we consider two representative model architectures:
Shared-Bottom Ma et al. (2018) and MMOE Ma et al. (2018). For works on optimization constraints,
we compare four methods: Fixed-Weights Wang et al. (2016) assigns fixed weights for different
objectives based on grid search; DWA Liu et al. (2019) dynamically adjusts weights by considering
the dynamics of loss change; PE Lin et al. (2019) generates Pareto-efficient recommendations across
multiple objectives; FAMO Liu et al. (2024) adjusts weights to achieve balanced task loss reduction
while maintaining relatively low space and time complexity.

Following previous researchYu et al. (2020), we consider all these optimization methods for each
model architecture, resulting in eight baselines denoted as Share-Fix, Share-DWA, Share-PE, Share-
FAMO, MMOE-Fix, MMOE-DWA, MMOE-PE, MMOE-FAMO. Additionally, we introduce a
variant of a recent work called PRL Xin et al. (2022), which firstly applied GCSL to recommender
systems. Specifically, similar to classic multi-objective methods, we compute the weighted summation
of rewards from different objectives at each timestep. Then the overall cumulative reward is calculated
as the goal, which is a scalar following conventional GCSL. We call this variant as MOPRL. Since
we formulate our problem as an MOMDP, we also incorporate a recent baseline RMTL Liu et al.
(2023), which applies offline reinforcement learning for sequential recommendation. Similarly, the
aggregate reward is derived by the weighted summation of all objective rewards. Additionally, we
compare against PMORS Jin et al. (2024), a recent supervised multi-objective learning framework
designed for recommender systems.

Evaluation Metrics We employ two widely recognized information retrieval metrics to evaluate
model performance in top-k recommendation: Hit Ratio (HR@k) and Normalized discounted
cumulative gain (NDCG@k). We use the abbreviation NG to denote NDCG in the tables. For each
experiment, the mean and standard deviation over 5 seeds are reported.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 PERFORMANCE COMPARISON (RQ1)

We begin by conducting experiments to compare the performance of MOGCSL and selected baselines
in terms of top-k recommendation. The experimental results are presented in Table 1. It’s worth
mentioning that a straightforward strategy based on training set statistics is employed to determine
the inference goals in PRL Xin et al. (2022). Specifically, at each timestep in inference, the goal
are set as the average cumulative reward from offline data at the same timestep, multiplied by a
hyper-parameter factor λ that is tuned using the validation set. To ensure a fair and meaningful
comparison, we adopt the same strategy here for determining inference goals in MOGCSL. The
comparison between different goal-choosing strategies is discussed in Section 4.4.

On RetailRocket, MOGCSL significantly outperforms previous multi-objective benchmarks in terms
of purchase-related metrics. Regarding click metrics, MOGCSL achieves the best performance on
HR, while Share-PE slightly outperforms it on NDCG. However, the performance gap between
Share-PE and MOGCSL for purchase-related metrics ranges from 17% to 20%, whereas Share-PE
only marginally outperforms MOGCSL on NDCG for purchase by less than 1%. Additionally, we
observe that the more complex architecture design, MMOE, can perform worse than the simpler
Shared-Bottom structure in many cases. Surprisingly, a naive optimization strategy based on fixed loss
weights can outperform more advanced methods like DWA across several metrics (e.g., Share-Fix vs
Share-DWA). These findings highlight the limitations of previous approaches that rely on assumptions
about model architectures or optimization constraints, which may not be necessarily true in general
environments. Similar trends are observed on Challenge15. While MMOE-PE performs slightly
better on click metrics by 1-2%, MOGCSL achieves a substantial performance improvement on the
more important purchase metrics by 11-20%.

Apart from previous benchmarks for multi-objective learning, MOGCSL also exhibits significant and
consistent performance improvements on both datasets compared to offline RL based RMTL and the
variant MOPRL created on standard GCSL. Especially, at each timestep, the overall reward of them
is calculated as the weighted sum of rewards across all objectives. In our experiments, it’s defined
as r′ = wcr

c + wpr
p, where rc and rp are click and purchase reward and wc + wp = 1. Then the

goal in MOPRL is derived by calculating the cumulative rewards as a scalar. In contrast, MOGCSL
takes the goal as a vector, allowing the disentanglement of rewards for different objectives along
different dimensions. Notably, no additional summation weights or other constraints are required. We
have conducted experiments to compare the performance of MOGCSL to MOPRLs with different
weight combinations. The results show that MOGCSL consistently outperforms MOPRL across all
weight combinations on both click and purchase metrics, demonstrating that representing the goal as
a multi-dimensional vector enhances the effectiveness of GCSL on multi-objective learning. See the
figure for the comparison in Appendix B.5.

4.3 COMPLEXITY COMPARISON (RQ2)

Apart from the performance improvement, MOGCSL also benefits from seamless integration

Table 2: Comparison of time and space com-
plexity on RetailRocket.

Model Size Training time
Share-Fix 14.0M 9.6Ks

Share-DWA 14.0M 5.3Ks
Share-PE 14.0M 5.6Ks

Share-FAMO 14.0M 5.1Ks
MMOE-Fix 14.1M 10.2Ks

MMOE-DWA 14.1M 9.5Ks
MMOE-PE 14.1M 60.5Ks

MMOE-FAMO 14.1M 8.8Ks
RMTL 17.5M 100.2Ks

PMORS 14.2M 10.4Ks
MOPRL 9.1M 3.2Ks

MOGCSL 9.1M 3.0Ks

with classic sequential models, adding minimal addi-
tional complexity. During the training stage, the only
extra complexity arises from relabeling one-step re-
wards with goals and including them as input to the se-
quential model. In contrast, previous multi-objective
learning methods often introduce significantly excess
time and space complexity Zhang & Yang (2021).
For instance, MMOE and Shared-Bottom both design
separate towers for each objective Ma et al. (2018),
leading to a significant increase in model parame-
ters as the number of tasks grows. RMTL needs
an additional RL head for optimization on TD error.
MOGCSL, in the other hand, only requires a simple
MLP layer for action projection. In terms of time
complexity, DWA and FAMO require recording and
calculating loss change dynamics for each training
epoch, while PE and PMORS involve computing the
inverse of a large parameter matrix to solve an optimization problem under KKT conditions. Addi-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

tionally, tuning the weight combinations for multiple objectives using grid search in methods like
Fix-Weight and MOPRL is highly time-consuming, requiring approximately O(mn) repetitive exper-
iments to identify a near-optimal combination, where m is the size of the search space per dimension
and n is the number of objectives. In contrast, MOGCSL inherently avoids this weight-tuning process.

Table 2 summarizes the complexity comparison. It’s evident that MOGCSL significantly benefits
from a smaller model size and faster training speed, while concurrently achieving great performance.

4.4 GOAL-GENERATION STRATEGY COMPARISON (RQ3)

As introduced in Section 3.3, most previous research on GCSL decides the inference goals based
on simple statistics on the training set. However, we demonstrate that the distribution of the goals
achieved by the agent during inference should be jointly determined by the initial state, input goal and
behavior policy. Based on that, we propose a novel algorithm (see Algorithm 2) that leverages CVAE
to derive feasible and desirable goals for inference. Note that an utility principle U(g) is required to
evaluate the goodness of the multi-dimensional goals, which is generally preferable for “high" goals
but could be flexible with specific business requirements. In our experiments, we select the best goal
g̃a
b from the set Ga based on the following rule, which ensures that no goal within the achievable set

is superior to the selected goal across all objectives:
g̃a
b = g̃ ∈ Ga, s.t. ∄ g̃′ ∈ Ga \ g̃ , g̃′i ≥ g̃i ∀i ∈ [1, d]. (8)

We compare two variants of MOGCSL here. MOGCSL-S employs the statistical strategy introduced
in Section 4.2, while MOGCSL-C utilizes the goal-choosing method based on CVAE (Algorithm
2). Due to limited space, the result table is shown in Appendix 3. Surprisingly, we observe that
these two strategies do not significantly differ in overall performance across both datasets. While
MOGCSL-C performs slightly better on RetailRocket, it exhibits worse performance on Challenge15.
To investigate the reason, we conduct an additional experiment by varying the factor λ for the
inference goals of MOGCSL-S. The results reveals that the optimal performance is achieved when
the factor is set between 1 and 2 for all metrics. When it grows larger, performance consistently
declines. The figure is shown in Appendix B.7. Interestingly, similar findings have been reported in
prior research Chen et al. (2021); Xin et al. (2022); Zheng et al. (2022), demonstrating that setting
very large inference goals can indeed harm performance.

We posit that the sparsity of training data within the high-goal space may contribute to the suboptimal
performance of more advanced goal-choosing methods. While we may find some potentially achiev-
able high goals, the model lacks sufficient training data to learn effective actions to reach these goals.
Notably, the mean cumulative reward across all trajectories in both datasets is only around 5.3 for
click and 0.2 for purchase. Consequently, most training data demonstrates how to achieve relatively
low goals, hindering the model’s ability to generalize effectively for larger goals in inference. We
further conduct experiments on a dataset with higher average goals in Appendix B.8 for validation.

The results provide several insights for selecting goal-choosing strategies when applying MOGCSL
in practical applications. First, strategies based on simple statistics on the training data prove to be
efficient and effective in many cases, particularly when low latency or reduced model complexity is
required during inference. Second, if we aim to further enhance performance using more advanced
goal-choosing algorithms, access to a training set with more instances with high-valued goals could
be crucial. Last, it’s worth to note that we explored both a principled and a naive approach to choose
“high” goals on multiple objectives, which is a notion that differs significantly from one-dimensional
GCSL. And that both of these designs work well is itself a non-trivial finding.

5 CONCLUSION

In this work, we propose a novel framework named MOGCSL for multi-objective recommendation.
MOGCSL utilizes a vectorized goal to disentangle the representation of different objectives. Building
upon GCSL, it can be directly combined with conventional sequential models and optimized through
supervised learning, without requiring handcrafted model architecture or optimization constraints.
Beyond training process, we theoretically analyze the properties of inference goals and propose a
novel goal-generation algorithm accordingly. Extensive experiments demonstrate the superiority of
MOGCSL in both effectiveness and efficiency. For future work, we aim to explore a more effective
goal-generation strategy for inference, which may necessitate a change in the training paradigm.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide anonymized code at https://anonymous.4open.science/r/MOGCSL-D7A2 , together with
the datasets used in our experiments. Comprehensive details of the experimental setup, including
hyperparameters, training details, and evaluation methods, are presented in the Experiments section
and Appendix. With these resources, we are confident that readers will be able to reproduce the
results presented in the paper.

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline primitive
discovery for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611, 2020.

Qingpeng Cai, Ruohan Zhan, Chi Zhang, Jie Zheng, Guangwei Ding, Pinghua Gong, Dong Zheng,
and Peng Jiang. Constrained reinforcement learning for short video recommendation. arXiv
preprint arXiv:2205.13248, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Jipeng Jin, Zhaoxiang Zhang, Zhiheng Li, Xiaofeng Gao, Xiongwen Yang, Lei Xiao, and Jie Jiang.
Pareto-based multi-objective recommender system with forgetting curve. In Proceedings of the
33rd ACM International Conference on Information and Knowledge Management, pp. 4603–4611,
2024.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197–206. IEEE, 2018.

Xiao Lin, Hongjie Chen, Changhua Pei, Fei Sun, Xuanji Xiao, Hanxiao Sun, Yongfeng Zhang,
Wenwu Ou, and Peng Jiang. A pareto-efficient algorithm for multiple objective optimization in
e-commerce recommendation. In Proceedings of the 13th ACM Conference on recommender
systems, pp. 20–28, 2019.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimization.
Advances in Neural Information Processing Systems, 36, 2024.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Problems
and solutions. arXiv preprint arXiv:2201.08299, 2022.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1871–1880, 2019.

Ziru Liu, Jiejie Tian, Qingpeng Cai, Xiangyu Zhao, Jingtong Gao, Shuchang Liu, Dayou Chen,
Tonghao He, Dong Zheng, Peng Jiang, et al. Multi-task recommendations with reinforcement
learning. In Proceedings of the ACM web conference 2023, pp. 1273–1282, 2023.

10

https://anonymous.4open.science/r/MOGCSL-D7A2

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling task relationships
in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, pp. 1930–1939, 2018.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3994–4003, 2016.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,
2013.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28, 2015.

Dusan Stamenkovic, Alexandros Karatzoglou, Ioannis Arapakis, Xin Xin, and Kleomenis Katevas.
Choosing the best of both worlds: Diverse and novel recommendations through multi-objective
reinforcement learning. In Proceedings of the Fifteenth ACM International Conference on Web
Search and Data Mining, pp. 957–965, 2022.

Shanfeng Wang, Maoguo Gong, Haoliang Li, and Junwei Yang. Multi-objective optimization for
long tail recommendation. Knowledge-Based Systems, 104:145–155, 2016.

Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, and Joemon M Jose. Self-supervised reinforce-
ment learning for recommender systems. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval, pp. 931–940, 2020.

Xin Xin, Tiago Pimentel, Alexandros Karatzoglou, Pengjie Ren, Konstantina Christakopoulou, and
Zhaochun Ren. Rethinking reinforcement learning for recommendation: A prompt perspective. In
Proceedings of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 1347–1357, 2022.

Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han, and Chongjie
Zhang. Rethinking goal-conditioned supervised learning and its connection to offline rl. arXiv
preprint arXiv:2202.04478, 2022.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems, 33:
5824–5836, 2020.

Guanghu Yuan, Fajie Yuan, Yudong Li, Beibei Kong, Shujie Li, Lei Chen, Min Yang, Chenyun Yu,
Bo Hu, Zang Li, et al. Tenrec: A large-scale multipurpose benchmark dataset for recommender
systems. Advances in Neural Information Processing Systems, 35:11480–11493, 2022.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge and
Data Engineering, 34(12):5586–5609, 2021.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pp. 27042–27059. PMLR, 2022.

Zifeng Zhuang, Dengyun Peng, Jinxin Liu, Ziqi Zhang, and Donglin Wang. Reinformer: Max-return
sequence modeling for offline rl. arXiv preprint arXiv:2405.08740, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PROOF OF THEOREM 1

We begin by first proving the following lemma.
Lemma 1. Assume that the environment is modeled as am MOMDP. Consider a trajectory τ that is
generated by the policy π(a|s, g) given the initial state s1 and goal g1, the distributions of st and
(st, gt) at each timestep are both determined by (s1, g1, π(a|s, g)).

Proof. First, for t = 1 we have:

Pr(r1 = r) =
∑
a

Pr(r|s1, a) = r)π(a|s1, g1). (9)

Note that the reward function R(s, a) is fixed for the given environment. Then, we complete the
proof by mathematical induction.
Statement:The distributions of st and (st, gt) are both determined by (s1, g1, π(a|s, g)), for
t = 2, 3, ..., |τ |.
Base case t = 2: Since s1 and g1 are given and fixed, we have:

Pr(s2 = s) =
∑
a

T (s|a, s1)π(a|s1, g1). (10)

It’s clear that s2 ∼ fs2(s; s1, g1, π) where fs2 is a distribution determined by (s1, g1, π).

For (s2, g2), according the definition of gt in Eq. (1), when a reward rt is received, the desired goal
on next timestep is gt+1 = gt − rt. Combined with Eq. (9), We have:

Pr(s2 = s, g2 = g) =
∑
a

Pr(g1 − g|s1, a) = g1 − g)T (s|s1, a)π(a|s1, g1). (11)

Since the dynamic function T (s′|s, a) is given, it’s clear that (s2, g2) ∼ fs2,g2(s, g; s1, g1, π).
Inductive Hypothesis: Suppose the statement holds for all t up to some n, 2 ≤ n ≤ |τ | − 1.
Inductive Step: Let t = n+ 1, similar to the base case, we have:

Pr(sn+1 = s) =
∑

a′,s′,g′

T (s|s′, a′)π(a′|s′, g′)Pr(sn = s′, gn = g′). (12)

Pr(sn+1 = s, gn+1 = g) =
∑

a′,s′,g′

[Pr(r′ = g′ − g|s′, a′)T (s|s′, a′)

· π(a′|s′, g′)Pr(sn = s′, gn = g′)].

(13)

According to the hypothesis that the distributions of (sn, gn) is determined by (s1, g1, π(a|s, g)),
it’s easy to see that sn+1 ∼ fgn+1

(g; s1, g1, π) and (sn+1, gn+1) ∼ fsn+1,gn+1
(s, g; s1, g1, π).

As a result, the statement holds for t = n + 1. By the principle of mathematical induction, the
statement holds for all t = 2, 3, ..., |τ |. Apparently, that proves Lemma 1.

Then, based on the lemma, we can prove Theorem 1.

Proof. Let |τ | = T , by definition we have:

ga =

T∑
t=1

rt, (14)

Let xn = (rn, ..., r1), according to the Markov property and Bayes’ rules we have:
P (rn|rn−1, ..., r1) = P (rn|xn−1)

=
∑
sn

P (rn|sn,xn−1)P (sn|xn−1)

=
∑
sn

P (rn|sn)
∑
sn−1

P (sn|sn−1,xn−1)P (sn−1|xn−1)

=
∑
sn

P (rn|sn)
∑
sn−1

P (sn|sn−1,xn−1)...
∑
s2

P (s3|s2,xn−1)P (s2|xn−1)

(15)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

For the first term, we have:

P (rn|sn) =
∑
an,gn

Pr(rn = sn, an)π(an|sn, gn)P (sn, gn)

P (sn)
. (16)

Since (s1, g1) is given and fixed, for each m ∈ [2, n− 1] we have:

P (sm+1|sm,xn−1) =
∑
am

π(am|sm, g1 −
m−1∑
i=1

ri)T (sm+1|sm, am)Pr(rm|sm, am). (17)

Similarly, the last term can be written as:

P (s2|xn−1) =
∑
a1

π(a1|s1, g1)T (s2|s1, a1)Pr(r1|s1, a1). (18)

According to Lemma 1, the distributions of sn and (sn, gn) are both determined by
(s1, g1, π(a|s, g)). As a result, by Eq. (15 - 18), it’s clear that the distribution of the conditional
probability distribution P (rn+1|rn, ..., r1) is also determined by (s1, g1, π(a|s, g)). Then, the
distribution of ga can be written as:

Pr(ga = g) =

∫
· · ·

∫
∑T

i=1 ri=g

f(r1, r2, ..., rT)dr1dr2...drT

=

∫
· · ·

∫
∑T

i=1 ri=g

f1(r1)f2(r2|r1)...fT (rT |rT−1, ..., r1)dr1...drT

(19)

Obviously, the distribution of ga is determined by (s1, g1, π(a|s, g)), which is exactly what Theorem
1 states.

B EXPERIMENT DETAILS

B.1 MODEL STRUCTURE

The model structure of MOGCSL is shown in Figure 1.

Figure 1: Model structure of MOGCSL.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 3: Comparison of XGBoost with different inputs. The mean and standard deviation over 5
seeds are reported.

Accuracy M-Logloss
XGBoost-s 0.0576±0.0038 3.7595±0.0393

XGBoost-ug 0.0598±0.0009 3.7262±0.0281

XGBoost-mg 0.0634±0.0027 3.6603±0.0097

B.2 DENOISING CAPABILITY EXPERIMENTS

To illustrate the denoising capability of MOGCSL, we consider the same set-up introduced in Section
3.4, including definitions and notation of state, action, and reward. As described before, we assume
that the noisy portion of the training data originates from users who are presented with a list of items
that are not suitable for them, rendering their choices for these recommendations not meaningful.
Conversely, data samples with higher goals are generally less noisy, meaning ε(a) is closer to a. We
also record a long-term and multidimensional goal (e.g., the cumulative reward) g = (g1, ..., gn) at
each interaction (known only at the end of the session, but recorded retroactively). Thus our training
data is a sample from a distribution D of tuples (s, g, ε(a)), where the state of the user is represented
by a vector s.

To empirically show the effect of this phenomenon in a simple set-up, we generate a dataset as follows:
(1): The states and the goals are sampled from two independent multivariate normal distributions
with dimension of 50 and 5 respectively. (2) The ground-truth action a is entirely determined by s,
whose ID is set to the number of coordinates of s that are greater than 0. (3) Define ε(a) as: ε(a) = a
if gi > −1 for all i; otherwise ε(a) is uniformly random.

Formally, ε(a) is determined by g and s as follows:

ε(a) = (

n∏
i=0

1(gi > −1))a+ (1−
n∏

i=0

1(gi > −1))randint[1, N], (20)

where a =
∑l

j=0 1(sj > 0).

Since MOGCSL is applicable to any supervised model by integrating goals as additional input
features, we choose a simple XGBoost classifier Chen & Guestrin (2016) here for the sake of clarity.
Specifically, we train three variants of XGBoost classifier on this data to predict the action given a
state: (1) XGBoost-s: this variant only takes s as input and ignores g. It cannot detect noisy instances
in D because it lacks access to g. (2) XGBoost-ug: this variant is taken as a single-objective GCSL
model, which takes s and only the first coordinate g1 of g as input. Clearly, it’s also unable to
precisely distinguish noisy data since ε(a) is determined by all dimensions of g (as shown in Eq.
(20)). (3) XGBoost-mg: this variant is based on our multi-objective GCSL, which takes both s and g
as input. It is the only one capable of distinguishing all the noisy data by learning the determination
pattern from g and s to ε(a).

During inference stage, for XGBoost-ug and XGBoost-mg, we adopt a simple strategy to determine
the goals: directly setting each dimension of g to 1, which serves as a high value to satisfy the
condition gi > −1 for the noiseless samples where ε(a) = a.

The results are presented in Table 3. It is evident that XGBoost-mg achieves the best performance. By
incorporating multi-dimensional goals as input, XGBoost-mg can effectively differentiate between
noisy and noiseless samples in the training data based on MOGCSL. During inference, when a high
goal is specified as input, the model can make predictions based solely on the patterns and knowledge
learned from the noiseless data.

B.2.1 DATASETS

We conduct experiments on two publicly available datasets: Challenge15 2 and RetailRocket 3. They
are both collected from online e-business platforms by recording users’ sequential behaviours in

2https://recsys.acm.org/recsys15/challenge
3https://www.kaggle.com/retailrocket/ecommerce-dataset

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

recommendation sessions. Specifically, both datasets include binary labels indicating whether a user
clicked or purchased the currently recommended item. Following previous research Xin et al. (2022;
2020), we filter out sessions with lengths shorter than 3 or longer than 50 to ensure data quality.

After preprocessing, the Challenge15 dataset comprises 200,000 sessions, encompassing 26,702
unique items, 1,110,965 clicks and 43,946 purchases. Similarly, the processed RetailRocket dataset
consists of 195,523 sessions, involving 70,852 distinct items. It documents 1,176,680 clicks and
57,269 purchases. We partition them into training, validation, and test sets, maintaining an 8:1:1
ratio.

B.2.2 BASELINE DETAILS

In the experiments, we compare two representative model architectures for multi-objective learning:

• Shared-Bottom Ma et al. (2018): A classic model structure for multi-objective learning.
The bottom of the model is a neural network shared across all objectives. On top of this
shared base, separate towers are added for each objective, producing predictions specific to
that objective.

• MMOE Ma et al. (2018): A widely used multi-objective model architecture. It first maps
inputs to multiple expert modules shared by all objectives. These experts contribute to each
objective through designed gates. The final input for each tower is a weighted summation of
the experts’ outputs.

Beyond architectural adaptations, other works focus on studying optimization constraints, mainly
through adjusting weights of losses for different objectives. We compare the following methods:

• Fixed-Weights Wang et al. (2016): A straightforward strategy that assigns fixed weights
based on grid search results from the validation set. These weights remain constant through-
out the whole training stage.

• DWA Liu et al. (2019): This method aims to dynamically assign weights by considering the
rate of loss change for each objective during recent training epochs. Generally, it tends to
assign larger weights to objectives with slower loss changes.

• PE Lin et al. (2019): It’s designed for generating Pareto-efficient recommendations across
multiple objectives. The model optimizes for Pareto efficiency, ensuring no further improve-
ment in one objective comes at the expense of any others.

• FAMO Liu et al. (2024): This recent method aims to dynamically adjust the weights for
multi-objective learning, achieving balanced task loss reduction while maintaining relatively
low space and time complexity.

Note that to ensure a fair comparison, we employ the T-enc and self-attention block introduced in
Section 3.2 as the base module to encode sequential data for all compared baselines.

B.3 EVALUATION METRICS

We employ two widely recognized information retrieval metrics to evaluate model performance in
top-k recommendation. Hit Ratio (HR@k) is to quantify the proportion of recommendations where
the ground-truth item appears in the top-k positions of the recommendation list Hidasi et al. (2015).
Normalized discounted cumulative gain (NDCG@k) further considers the positional relevance of
ranked items, assigning greater importance to top positions during calculation Kang & McAuley
(2018). Given our dual objectives in experiments, we evaluate performance using HR@k and
NDCG@k based on corresponding labels for click and purchase events (i.e., whether an item was
clicked or purchased by the user).

B.4 IMPLEMENTATION DETAILS

First, to ensure a fair comparison, we employ the transformer encoder and self-attention block
introduced in Section 3.2 as the base module to encode the input features for all compared baselines.
We preserve the 10 most recent historical interaction records to construct the state representation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

For sequences shorter than 10 interactions, we pad them with a padding token. The embedding
dimensions for both state and goal are set to 64, and the batch size is fixed at 256. We utilize the
Adam optimizer for all models, tuning the learning rate within the range of [0.0001, 0.0005, 0.001,
0.005]. Additionally, for methods that necessitate manual assignment of weights, we fine-tune these
weights in the range of [0.1, 0.2, . . . , 0.9] based on their performance on the validation set. The
sample size K in Algorithm 2 is set to 20 in the experiments. All experiments are conducted five
times, each with different random seeds, and we report the mean and standard deviation of the results.
When comparing the time complexity, each experiment was conducted with a separate NVIDIA RTX
3090 and AMD 3960X.

B.5 COMPARISON BETWEEN MOGCSL AND MOPRLS

Figure 2 shows the performance comparison of MOGCSL to MOPRLs with different weight combi-
nations.

Figure 2: Comparison between MOGCSL and MOPRLs with different weight combinations on
RetailRocket. Performance of MOGCSL is not dependent on the weights.

B.6 COMPARISON OF GOAL-CHOOSING STRATEGIES

Table 4 presents the performance comparison of different goal-choosing strategies on MOGCSL.

Table 4: Comparison between statistical strategy and CVAE-based method for goal-choosing.

[RetailRocket] Purchase (%) Click (%)

HR@10 NG@10 HR@20 NG@20 HR@10 NG@10 HR@20 NG@20

MOGCSL-S 65.43±0.15 52.92±0.11 69.28±0.14 53.90±0.14 36.30±0.25 25.24±0.15 41.92±0.55 26.67±0.19

MOGCSL-C 65.01±0.07 52.89±0.04 69.34±0.05 54.00±0.04 36.54±0.02 25.41±0.04 42.20±0.03 26.84±0.06

[Challenge15] Purchase (%) Click (%)

HR@10 NG@10 HR@20 NG@20 HR@10 NG@10 HR@20 NG@20

MOGCSL-S 56.82±0.25 35.93±0.15 65.64±0.55 38.17±0.19 42.27±0.15 25.64±0.11 50.52±0.14 27.73±0.11

MOGCSL-C 55.13±0.07 35.04±0.02 63.98±0.04 37.30±0.03 42.14±0.04 25.37±0.07 50.12±0.09 27.53±0.05

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.7 COMPARISON OF MOGCSL-S W.R.T FACTORS

The details results of the performance comparison of MOGCSL-S with different factors for inference
goal is shown in Figure 3.

Figure 3: Performance of MOGCSL-S with different factors for inference goal.

B.8 COMPARISON ON DATASET WITH HIGHER GOALS

To validate the findings and assumptions discussed in Section 4.4 regarding the effects of data
properties on goal-choosing strategies, we further conduct experiments on another dataset, Tenrec
Yuan et al. (2022), which features significantly higher average goals. Specifically, we consider click
and like as two dimensions of the multi-objective goals within our MOGCSL framework. The mean
cumulative rewards across all trajectories in this dataset are approximately 28.3 for click and 1.2 for
like, substantially exceeding those observed in the RetailRocket and Challenge15 datasets.

We then conduct experiments on Tenrec to compare the CVAE-based goal-choosing strategy and the
statistical strategy introduced in Section 4.2. These two variants are denoted as MOGCSL-C and
MOGCSL-S, respectively, as described in Section 4.4.

Table 5 shows the comparison results, where MOGCSL-C significantly outperforms MOGCSL-S.
Together with previous experiments conducted on datasets characterized by lower average goals,
these results further validate our findings and reinforce practical insights regarding the appropriate
use of simple versus advanced goal-selection strategies in relation to dataset properties.

Table 5: Comparison between statistical strategy and CVAE-based method for goal-choosing on
Tenrec dataset.

Like (%) Click (%)

HR@10 NG@10 HR@20 NG@20 HR@10 NG@10 HR@20 NG@20

MOGCSL-S 5.96±0.17 2.15±0.12 6.93±0.20 2.70±0.11 4.87±0.13 1.52±0.08 5.67±0.14 1.95±0.11

MOGCSL-C 6.78±0.07 2.99±0.02 7.84±0.05 3.86±0.04 5.66±0.05 2.14±0.05 6.73±0.03 2.68±0.07

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.9 ADDITIONAL DISCUSSIONS

B.10 DISCUSSION ON COMPLEXITY

We have provided a detailed comparison of the space complexity and training cost of MOGCSL
relative to other baselines, demonstrating its advantages in terms of smaller model size and faster
training speed. Here, we give a further examination of the computational complexity of MOGCSL at
inference time.

As outlined in Section 3.2, MOGCSL employs a simple policy network architecture built from basic
attention modules combined with simple fully connected layers. Consequently, inference through the
policy network incurs minimal computational cost, as further evidenced by its smaller model size
compared to architectures such as MMOE or reinforcement learning frameworks (see Table 2).

For the CVAE-based goal-selection module, we also adopt a lightweight MLP architecture with
approximately 1.6M parameters, which converges rapidly during training (within 6 epochs). At
inference, forward propagation through this CVAE introduces only negligible overhead due to the
simplicity of the MLP structure. Although goal sampling introduces additional computation, it is
required only once at the beginning of each inference sequence in practical applications. Subsequent
goals are computed efficiently through iterative subtraction of current rewards, as established in our
theoretical analysis.

One important advantage of MOGCSL lies in its scalability to higher-dimensional objectives. By rep-
resenting multiple objectives as a single vector input, MOGCSL naturally integrates additional goals
without increasing architectural complexity. This vectorized formulation enhances scalability relative
to conventional multi-objective approaches, which typically experience rapidly growing complexity
with dimensionality. Importantly, this design eliminates the need for architectural modifications or
substantial computational overhead when scaling to higher dimensions, as demonstrated in Table 2.

B.11 DISCUSSION ON LEARNING PARADIGM

MOGCSL is designed for automated and effective learning in multi-objective settings by leveraging
offline trajectories conditioned on successfully achieved multi-dimensional goals. The key intuition
is to reframe the challenge of balancing potentially conflicting objectives into the more tractable task
of learning to achieve realistic goals directly from observed trajectories. During training, MOGCSL
directly learns to reach certain goals across multiple objectives by utilizing each trajectory in the
training data as a demonstration of successful achievement of the goal that it actually achieves.

At inference, MOGCSL models the distribution of achievable goals across multiple objectives
conditioned on the initial state. From this distribution, it samples goals that are both realistic and
aligned with practical business requirements, as specified through a customizable utility function. By
always grounding goal selection in attainable outcomes, MOGCSL naturally respects inter-objective
trade-offs and avoids the need for manually imposed constraints or heuristic weight tuning. This
design yields a more robust and flexible framework for multi-objective optimization, readily adaptable
to diverse application scenarios.

B.12 DISCUSSION ON GENERALIZABILITY

From the experiments and discussions in Section 4.4 and Section B.8, we observed that different
goal-choosing strategies perform differently on datasets with varying reward distributions. However,
we emphasize our finding that simpler, statistics-based goal-selection strategies already outperform
existing baselines across diverse scenarios, demonstrating MOGCSL’s practical applicability espe-
cially where lower latency or reduced inference complexity is desired. The advanced CVAE-based
algorithm provides additional performance gains specifically on datasets with higher goal values (as
shown in Appendix B.8), offering practitioners the flexibility to choose strategies based on dataset
characteristics and performance-complexity requirements. Rather than limiting generalizability, this
observation provides valuable insights into appropriate strategy selection tailored to specific use cases
in practice.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.13 DISCUSSION ON CONTRIBUTION AND NOVELTY

To further clarify the contribution and impact of our research, we summarize several important
innovations that distinctly address critical challenges in general goal-conditional supervised learning
and multi-objective recommendation scenarios:

• We are the first to integrate an MOMDP approach into GCSL’s framework, extending the goal from
a scalar to a multidimensional vector. This extension is non-trivial since defining and selecting
achievable "high" multi-dimensional goals is conceptually complex and previously unexplored. Our
paper proposes and evaluates both principled and heuristic goal-selection approaches, demonstrating
their effectiveness across different datasets.

• We provide the first theoretical characterization of achievable goal distributions within the multi-
objective setting of GCSL, formalized through Theorem 1 with complete proof (Section 3.3 and
Appendix A).

• Building upon this theoretical foundation, we developed a novel goal-choosing algorithm that
models the distribution of achievable goals over interaction sequences to select desirable high
goals for inference. This algorithm is novel even for the single-objective case and addresses a
fundamental challenge in GCSL applications.

• We were the first to demonstrate GCSL’s capability to mitigate the harmful effects of noisy instances,
which are common in real-world recommendation data. We showed that MOGCSL can leverage
the future impact of current actions across multiple objectives to achieve this ability (Section 3.4
and Appendix B.2).

B.14 DISCUSSION ON GENERATIVE MODELS

As illustrated in Section 3.3, we chose CVAE for the goal-selection algorithm primarily because
of its simplicity, efficiency, and stable training dynamics, which align closely with our objective
of developing scalable methods suitable for real-world recommendation scenarios. Apart from
that, we’ve conducted some preliminary experiments with diffusion-based methods such as DDPO,
and the results showed no significant performance improvement over CVAE. Additionally, CVAE
demonstrated consistently stable training dynamics and faster inference, essential attributes for
practical deployments.

B.15 DISCUSSION ON DATA ROBUSTNESS

As illustrated in Section 3.2, MOGCSL assumes the availability of reward signals within sequential
data. In recommender systems, such reward signals typically derive naturally and easily from explicit
user feedback, such as clicks, purchases, or engagement durations.

However, clear rewards might not be readily available in some other scenarios. For these situations,
we propose the following discussions:

• Proxy rewards: Intermediate signals often effectively serve as proxies. For instance, browsing
duration, add-to-cart events, or return visits in e-commerce scenarios can reliably approximate user
satisfaction when explicit purchase data is sparse.

• Synthetic rewards: In cases like path planning or robotic control, synthetic metrics such as proximity
to target states or successful task completion checkpoints can be constructed to substitute explicit
rewards.

• Reward inference: Techniques such as inverse reinforcement learning or reward inference from
demonstration could integrate seamlessly into MOGCSL, enabling application in less structured
environments.

Furthermore, as discussed in Section 3.4, one of the MOGCSL’s distinct advantages lies in leveraging
long-term goals to effectively handle potentially noisy immediate reward signals. Our experiments in
Appendix B.2 demonstrate that this mechanism significantly enhances robustness, enabling effective
learning even when datasets contain ambiguous or imprecise signals.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C LLM USAGE

Throughout the preparation of this paper, LLMs were used exclusively for improving clarity of
expression and correcting typographical or grammatical errors. No other substantive assistance was
employed.

20

	Introduction
	Related Work
	Methodology
	A New View for Multi-Objective Learning
	MOGCSL Training
	MOGCSL Inference
	Analysis of Denoising Capability

	Experiments
	Experimental Setup
	Performance Comparison (RQ1)
	Complexity Comparison (RQ2)
	Goal-generation Strategy Comparison (RQ3)

	Conclusion
	Proof of Theorem 1
	Experiment Details
	Model Structure
	Denoising Capability Experiments
	Datasets
	Baseline Details

	Evaluation Metrics
	Implementation Details
	Comparison between MOGCSL and MOPRLs
	Comparison of Goal-Choosing Strategies
	Comparison of MOGCSL-S w.r.t Factors
	Comparison on Dataset with Higher Goals
	Additional Discussions
	Discussion on Complexity
	Discussion on Learning Paradigm
	Discussion on Generalizability
	Discussion on Contribution and Novelty
	Discussion on Generative Models
	Discussion on Data Robustness

	LLM Usage

