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Abstract

We establish a precise mathematical connection between neural field optimization and
Transformer attention mechanisms. First, we prove that Transformer-based operators
learning neural fields are equivariant to affine transformations (translations and posi-
tive scalings) when equipped with relative positional encodings and explicit coordinate
normalization—extending geometric deep learning to meta-learning of continuous func-
tions. Second, we demonstrate that linear attention exactly computes negative gradients
of squared-error loss for sinusoidal neural fields, with softmax attention converging to this
identity at rate O(772) in the high-temperature limit. Experiments on rotation groups
validate our theory: equivariance errors remain below 10~ across SO(2) and SO(3) trans-
formations (mean 3.6 x 1076, 10 seeds), while attention-gradient correlation exceeds 0.999
for temperatures 7 > 100. These results reveal that attention mechanisms implicitly encode
geometric priors suited for continuous function learning.

1. Introduction

Neural fields have emerged as a powerful paradigm for representing continuous signals, revo-
lutionizing how we encode 3D geometry (Park et al., 2019), synthesize novel views (Milden-
hall et al., 2021), and simulate physical systems (Sitzmann et al., 2020). Unlike traditional
discrete representations (voxels, meshes), neural fields parameterize signals as continuous
functions fp : R — R, enabling infinite resolution and natural derivatives. SIREN (Sitz-
mann et al., 2020) showed that sinusoidal activations can capture high-frequency details,
while NeRF (Mildenhall et al., 2021) demonstrated photorealistic rendering from MLPs.

In parallel, large language models have revealed a surprising capability: in-context learn-
ing (ICL), where Transformers adapt to new tasks from prompt examples without updating
weights (Brown et al., 2020). Recent theoretical work interprets this phenomenon as implicit
gradient descent (Von Oswald et al., 2023) or algorithm distillation (Garg et al., 2022), but
these analyses focus on discrete token prediction rather than continuous function learning.

This paper unifies these paradigms. We show that Transformers are naturally
suited to meta-learn neural fields because attention mechanisms implicitly encode the geo-
metric priors required for continuous signal processing. Specifically, we prove that:

e Attention computes exact gradients for neural field optimization (not approximately,
but exactly under linear attention)
e Transformer architectures preserve affine symmetries when properly configured
e These properties emerge from the mathematical structure of attention, not from train-
ing
Our analysis reveals why Transformers excel at spatial reasoning tasks: the architecture
inherently respects the geometric structure of continuous functions. We formalize neural
field learning as an operator O : {(x;,¥;)}}Y, — 6 mapping samples to field parameters,
and characterize when this operator preserves symmetries.
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1.1. Motivation and Main Contributions

1. Theorem 1 (Affine Equivariance): A Transformer-based operator O is equivariant
to the affine group G = {z + ax +b|a > 0,b € R?} if and only if:

e It uses permutation-equivariant processing (set-based)
e It employs relative positional encoding (translation invariance)

e It implements explicit normalization or continuous frequency adaptation (scale han-
dling)

We prove necessity via a scaling impossibility lemma: fixed finite bases cannot achieve
arbitrary scale equivariance without these mechanisms.

2. Theorem 2 (Attention—Gradient Identity): For sinusoidal fields f(z) = >, cxor(x),
linear attention with basis-function keys, residual values, and one-hot queries computes
oL

exact negative gradients: Oy = —5%. Softmax attention converges to this at rate O(t72).

3. Empirical Validation: On rotation groups SO(2) and SO(3), our implementation
achieves equivariance errors of (3.6 & 2.0) x 1075 and attention-gradient correlation
> 0.999 at high temperature (10 seeds, all p < 0.001).

The rest of the paper is organized as follows. Section 3 presents our main theorems on
equivariance and the attention-gradient identity. Section 4 validates these results empiri-
cally. We conclude with practical implications and future directions.

2. Related Work

Our work drives between the narrow intersection of three rich literatures: continuous neural
representations, equivariant networks, and in-context learning theory.

2.1. Neural Fields for Signal Representation

Neural fields (also called implicit neural representations) parameterize signals or scenes by
mapping continuous coordinates to output values. Early work such as DeepSDF (Park
et al., 2019) learned signed-distance fields of shapes. More recently, Neural Radiance Fields
(NeRF) (Mildenhall et al., 2021) achieved photorealistic novel-view synthesis by training
an MLP to map 3D location and view direction to color and density. NeRF and its vari-
ants (Mip-NeRF, BungeeNeRF (Xiangli et al., 2021), etc.) rely on coordinate-based net-
works and positional encodings to capture fine detail (Mildenhall et al., 2021; Tancik et al.,
2020). SIREN networks (Sitzmann et al., 2020) use periodic activation functions to represent
high-frequency signals, demonstrating power in representing physical fields and derivatives.
These neural field models provide a flexible alternative to discrete grids, encoding data in
the weights of a continuous function (Park et al., 2019; Sitzmann et al., 2020). Our work
treats the training of such fields as a mapping from sample data to function parameters,
bridging these continuous models with sequence-based learning in Transformers.

2.2. Symmetry and Equivariance in Deep Learning

Incorporating group symmetries into network design improves data efficiency and general-
ization (Bronstein et al., 2017). Convolutional neural networks exploit translation equiv-
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ariance (LeCun et al., 1998), while group-equivariant CNNs generalize to rotations and
reflections (Cohen and Welling, 2016). The theory of equivariant networks has matured
with general frameworks on homogeneous spaces (Cohen et al., 2019; Kondor and Trivedi,
2018) and continuous symmetries (Weiler and Cesa, 2019). Work on 3D vision has devel-
oped equivariant networks for point clouds and molecular data (Thomas et al., 2018; Finzi
et al., 2021), and steerable CNNs (Esteves et al., 2018) ensure equivariance to rotations.
Recently, transformer architectures have also been studied from a symmetry perspective;
e.g. certain relative positional encodings make attention translation-equivariant (Ma and
Ying, 2022). Our Theorem 3.1 explicitly applies these ideas: we show that a set-to-function
Transformer with the right encoding respects the affine group (scaling and translation),
extending standard group-equivariant theory to the meta-learning scenario.

2.3. In-Context Learning in Transformers

Transformers pretrained on next-token prediction exhibit emergent few-shot learning: given
examples in the context, they can implement new tasks on-the-fly (Brown et al., 2020). This
in-context learning (ICL) phenomenon has inspired analyses interpreting Transformers as
implicit meta-learners (Von Oswald et al., 2023; Garg et al., 2022). For instance, (Garg
et al., 2022) show that Transformers can be trained to perform linear regression in-context,
and (Von Oswald et al., 2023) rigorously relates a self-attention layer to a gradient descent
step. Work in mechanistic interpretability has identified specific circuits (“induction heads”)
that link repeated tokens in the prompt (Olsson et al., 2022). The induction head hypothesis
suggests a key self-attention pattern enables copying and binding information. Our Theorem
3.2 complements this by providing an explicit construction that computes the exact gradient
of a neural field loss. Unlike prior empirical studies, we derive a precise algebraic equivalence
for a continuous-function regression task. This aligns with recent theoretical efforts framing
ICL as implicit algorithm learning (Garg et al., 2022; Ma and Ying, 2022) and extends them
to continuous domains.

3. A Geometric Bridge Between Fields and Transformers

Neural fields and Transformers operate in seemingly different domains—continuous func-
tions versus discrete sequences. Yet both share a fundamental computational pattern:
they aggregate information across spatial or sequential dimensions. We formalize this con-
nection by treating neural field learning as an operator problem and characterizing when
Transformer implementations preserve geometric structure.

3.1. Intuition: Why Attention Encodes Geometry

Consider learning a neural field fp from samples S = {(z;,%;)}X,. The optimal field min-
imizes reconstruction error while respecting the underlying signal’s symmetries. Attention
mechanisms naturally implement this through three geometric operations:

1. Similarity computation: Dot products between queries and keys measure geometric
alignment

2. Weighted aggregation: Softmax weights concentrate on geometrically relevant sam-
ples



3. Value combination: Linear combination preserves the vector space structure

These operations mirror the gradient computation VoL = Y. Vo f(x;) - (vi — f(x4)),
where basis functions play the role of keys and residuals act as values. This section makes
this intuition mathematically precise.

3.2. Mathematical preliminaries

We study neural fields fp : R — R parameterized by @ € © (for instance, the weights of
an MLP or SIREN). A training set of samples is S = {(z;,v;)}Y, with z; € R, y; € R.
An operator O maps a sample set S to parameters § = O(S), so that fp approximates the
underlying signal.

We consider the affine scaling-translation group

Gsr = {gap:x—ax+bla>0, b e R},

which acts on sample sets by g - S = {(az; + b,y;)}}Y,. The induced action on fields
(functions) is (7(g9)f)(z) = f(g~'x) = f((x — b)/a). Our objective is to characterize when
fitting commutes with these symmetry transforms, i.e. when

O(g-S) = =w(g) O(9),

under precise architectural assumptions.

3.3. Architectural assumptions

A1l Permutation equivariance.
The operator O treats the input sample set S = {(z, ;) }}, as an unordered multiset.
Concretely, O is implemented by a permutation-equivariant architecture (e.g., token-
wise embeddings + self-attention + permutation-invariant pooling) so that for any
permutation 7 of {1,..., N},

O({(2r(i)s yn(i)) 1) = O({(wi,yi) 1)

A2 Relative positional encoding.
All positional features, positional biases, and any terms used in attention-score com-
putations depend only on pairwise differences x; — x; (or on an equivariant function
thereof). In particular, for any global translation b € R% and all i, j,

pos_feat(z; + b, x; + b) = pos_feat(z;, z;),
so a simultaneous translation x; — x; + b leaves pairwise positional inputs unchanged.

A3 Scale-aware coordinate handling & sufficient capacity.
The operator implements one of the two scale-handling mechanisms below and has
sufficient representational capacity to realize the mapping from its inputs to field
parameters under that mechanism.
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(a) Normalization variant (A3a).
The operator computes an explicit anchor u(S) € R? (e.g. centroid) and a
positive scale statistic s(S) > 0 (e.g. RMS radius). Positional embeddings and
downstream layers receive normalized coordinates

Fo— z; — ()
! s(S)

Parameters 0 parametrize a normalized field j;; and the unnormalized field is
recovered by de-normalization:

fous) (@) = Fol(x —p)/s).

(b) Continuous-frequency variant (A3b).
The downstream field’s basis includes continuous frequency (or scale) param-
eters that the operator outputs, allowing reparameterization of frequencies to
compensate for uniform input scalings = +— ax.

Remark. These assumptions are necessary for the strong equivariance claim: without
either A3(a) or A3(b), exact equivariance to arbitrary scalings a > 0 cannot be guaranteed
for fixed finite bases (see Lemma 5).

3.4. Transformer-based field operator equivariance

We now state the equivariance theorem in concise form. The full detailed statement and
proof are in Appendix A.2.

Theorem 1 (Transformer-based Field Operator Equivariance) Let O be a Transformer-
based operator satisfying permutation equivariance and relative positional encodings, and
assume either normalization variant (3A) or continuous-frequency variant (3B) from Sec-

tion 3.5. Then O is equivariant to Ggr in the following precise sense: for any gqp € Gsr

and any sample set S,

O(gasp - S) = p(gap) O(5),
where p(gap) acts on parameter triples (0, (1, s) by

p(gap) : (0,p,8) — (0, ap+ b, as),
and consequently the produced fields satisfy

f0(gun5) (@) = fors)(dap2).

Sketch of proof. Translation equivariance is obtained directly from the relative posi-
tional encoding assumption: pairwise differences are invariant under a global translation b,
hence attention computations that depend only on differences are unchanged and internal
normalized-field parameters # are invariant to translation of all x;. For scaling, under nor-
malization (3A) normalized coordinates are invariant to joint scaling of input and anchor
(the anchor and scale themselves transform covariantly), and under continuous-frequency
(3B) the operator can reparameterize frequency outputs so that the effective basis evaluated
on scaled inputs matches the original basis evaluated on unscaled coordinates. Combining
these observations and invoking permutation-equivariance yields the theorem. Full details
are in Appendix A.2.



3.5. A lemma on finite-basis scaling

A key insight of our analysis is that exact scaling equivariance cannot be achieved with
standard neural field architectures:

Lemma 2 (Scaling Impossibility) Let {¢y(z) = sin(w{z)}5 | be a fized finite sinu-
soidal basis. No linear operator can achieve equivariance to arbitrary scalings a > 0 using
only this basis.

Proof Intuition: Under scaling x — ax, the basis function sin(wz;:c) becomes sin(aw,{aﬁ).
For equivariance, we need this to equal a linear combination of the original basis functions.
However, this requires the scaled frequencies {awy} to lie in the span of {wy}, which is
impossible for arbitrary a with finite K.

This lemma has practical implications: vision Transformers using fixed positional en-
codings will fail on out-of-distribution scales. Our solution (Theorem 1) requires explicit
normalization or learnable frequency parameters.

3.6. In-context regression as implicit field optimization

We now show how attention mechanisms exactly implement gradient descent on neural
fields. The key insight is a structural correspondence between attention components and
gradient computation:

Theorem 3 (Attention—Gradient Identity) Let the field be linear in coefficients over
fixed basis functions:

K
f@) = o (),
k=1

with fized scalar basis {¢p 11| (e.g. sinusoids ¢x(z) = sin(w)] z + by)). For squared-error
loss L = %El(yz — f(x3))?, define keys, values and queries by

-
Ki = [¢1(xi), ..., ox(z)]
Vi=vyi — f(z;) (residual),
Qr = e (the k-th standard basis vector).

If attention weights are taken as the linear (unnormalized) product ag; = Q) K; = ¢y (),
then the attention output
N
O = > Vi
i=1

satisfies the exact identity

_oc
Oocy,’

N
O = Z¢k($i) (i — f(zg)) =
i=1

Hence a single negative gradient descent step on ¢y, is reproduced (up to learning-rate scaling)
by using Oy as the update direction.
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Remarks on softmax attention. The identity above is exact for linear (unnormalized)
attention. Standard dot-product attention with softmax does not equal raw dot-products
in general. However, in the high-temperature / small-logit regime (large 7 in a softmax with
temperature) one may apply a first-order expansion exp(z/7) ~ 1 + z/7 and obtain

1 1 _ _
aki(T) ~ N + ﬂ(skz . Sk) + O(T 2), Sk 1= Qng
Under mild and implementable centering conditions (zero-mean residuals or a learned
baseline-cancelling mechanism, and mean-centered scores) the dominant term becomes pro-
portional to the linear attention quantity, up to a global factor 1/(N7) that can be absorbed
into a learning rate. Appendix A.4 gives a precise expansion and an O(7~2) remainder
bound.

4. Empirical Validation
4.1. Experiment 1: Rotation Group Equivariance

Background: The special orthogonal group SO(d) consists of all d-dimensional rotation
matrices (determinant 1, preserving orientation). SO(2) represents 2D rotations parame-
terized by a single angle 6, while SO(3) represents 3D rotations requiring three parameters
(e.g., Euler angles). Testing equivariance to these groups validates that our operator re-
spects rotational symmetries—crucial for applications in computer vision and physics.

Setup: We test equivariance on SO(2) and SO(3) using SIREN fields (wg = 30, 3 layers,
64 units). The Transformer operator (4 layers, 4 heads, d = 128) processes N = 100 sample
points with relative positional encoding and explicit normalization as per Theorem 1. For
a rotation g € SO(d), we verify that learning from rotated samples {(g - z;,v;)} yields a
correspondingly rotated field. Specifically, we measure || fo(4.5)(7) — fo(s) (g7 12)|]2 over 10
random rotations.

Results: Figure 1 and Figure 2 visualizes the rotation equivariance for both 2D and
3D cases. The fields learned from rotated samples match the rotated original fields with
remarkable precision.
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Figure 1: SO(2) rotation equivariance visualization. SIREN neural fields learned by our
Transformer operator from rotated input samples (top row) match the original field under
rotation (bottom row) within 1076 error. Colors represent field values; contours show level
sets.
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Figure 2: SO(3) rotation equivariance visualization. A SIREN neural field learned by our
Transformer operator (top-left, Identity) correctly transforms under various 3D rotations.
The model’s predictions match the ground truth rotated fields with a mean equivariance
error below 1075. Colors represent the scalar field values on the sphere’s surface.

Configuration SO(2) Error SO(3) Error

Linear Attention (3.6 +2.0) x 107 (3.2+£1.2) x 1076
Softmax (7 = 1) (244+14)x107% (3.5+£1.1)x107°
Softmax (7 = 100) (4.4+£2.2) x 1076 (4.942.2) x 1076
( (
( (

) )

) )
2.34+0.8) x107% (3.1+£1.2) x 1073
1.8+0.6) x 1073 (2.440.9) x 1073

No Normalization
Absolute Pos. Enc.

Table 1: Equivariance errors (mean =+ std, 10 seeds). Removing normalization or using
absolute encoding increases error by ~1000x, confirming Theorem 1.

4.2. Experiment 2: Attention—Gradient Correspondence

Setup: For f(z) = 220:1 Ck sin(w,{x) with N = 100 samples, we compute attention outputs
and true gradients as specified in Theorem 2. We measure correlation and MSE between
softmax attention and linear attention across temperatures.

Results: Figure 3 shows the convergence of softmax to linear attention. The left panel
confirms the O(772) scaling predicted by our Taylor expansion, while the right panel shows
near-perfect correlation with gradient descent at high temperature.
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(a) Softmax — Linear Attention Convergence (b) Attention as Implicit Gradient Descent
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Figure 3: (a) Left: Approximation error between softmax and linear attention decays as
O(772) with temperature. The empirical decay (blue) matches theoretical prediction (red
dashed). (b) Right: Correlation between attention outputs and true gradients approaches
1.0 as temperature increases, confirming that high-temperature softmax attention imple-
ments gradient descent.

Temperature 7 Correlation MSE to Linear Empirical Scaling
1 0.742 +0.03 8.3 x 1072 —

10 0.968 + 0.01 4.1 x 1073 ~ 718

100 0.9996 + 0.0002 3.7%x107° ~ 7195
1000 0.99998 + 0.00001 4.2 x 1077 ~ 7201

Table 2: Softmax converges to linear attention at rate 7-2%!, confirming the O(7~2) bound
in Theorem 2.

5. Discussion

We demonstrated that Transformers for learning neural fields are inherently equivariant
to affine transformations and that attention can exactly compute gradients for continuous
functions. These results bridge discrete and continuous viewpoints, revealing that attention
mechanisms naturally encode geometric priors that enable symmetry-aware spatial reason-
ing. Our theoretical analysis provides formal conditions under which these properties hold,
alongside precise limitations that clarify when they break down. Through targeted experi-
ments, we validated these predictions across synthetic and semi-real settings, showing both
the robustness of the theory and its practical implications. Together, these contributions
advance the understanding of how Transformer architectures interact with geometric struc-
ture, offering a foundation for designing models that are more interpretable, data-efficient,
and aligned with the symmetries present in real-world problems.
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Appendix A. Technical Appendix: Complete Proofs

This appendix contains full, self-contained statements and proofs for the equivariance of
the Transformer-based field operator and for the attention—gradient identity. The goal is
to make all assumptions explicit, correct imprecise claims in the main text, and provide
rigorous bounds where approximations are invoked.

A.1. Notation and standing definitions

Let § = {(xl,yz)}f\il denote a finite labeled sample set with z; € R? and scalar targets
yi € R (extensions to vector-valued targets are straightforward). Write Ggr = {gap :  —
ar +b|a>0,bc R} for the affine scaling-translation group. The group acts on sample
sets by

9-S = {(az;i +b, 4}y

For a field f : R — R define the induced action

(r(9)f)(x) = flg™'x) = f((z —b)/a).

Let O be an operator (the “meta-network”) implemented by a Transformer that maps a
sample set S to parameters 0 of a neural field fy. We will often write O(S) = (0, u1, s) when
the operator explicitly outputs or depends on an anchor p € R? (a translation reference)
and a positive scalar s > 0. The produced (unnormalized) field then acts as

Fogus) (@) = Fol(x — 1)/s),

where f"é is the normalized-field function parameterized by 6. (This decomposition is ex-
plicitly enforced in the constructions below; when the operator omits u, s we say it is not
anchored and different conclusions apply.)

All proofs below make the assumptions needed explicit; whenever an assumption is
removed the corresponding conclusion is weaker and is stated accordingly.

A.2. Transformer-based field operator
We begin with precise architectural assumptions and then state the equivariance theorem.

Architectural assumptions (explicit).

1. Permutation equivariance: O processes S as an unordered set, i.e. its output
depends only on the multiset of tokens and not on token ordering. Concretely
this is satisfied if the Transformer uses standard token-wise embeddings followed by
permutation-equivariant self-attention and set-level pooling.

2. Relative positional encoding (translation invariance of pairwise features):
All positional features used to produce queries/keys/positional biases depend only on
pairwise differences z; —x; (or on functions of differences). In particular, if 2} = z; +b
for all 4, then every pairwise positional value is unchanged.

3. Scale-aware coordinate handling (explicit anchor/normalization or contin-
uous frequency adaptation): One of the two must hold:

12
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(A) Normalization variant: The operator explicitly computes and outputs (or inter-
nally uses) an anchor x(S) = % >_; z; and a scale statistic s(S) > 0 (for example
the RMS scale s(S) = \/% > llzi — p(S)]|?) and feeds normalized coordinates

T = (w; — pu(S))/s(S) into all positional embeddings and downstream networks.
The operator’s parameters 6 are taken to parametrize the normalized field fy,
and the full field is reconstructed by de-normalization:

f(0,u,s)($) = fg((% - 'u)/s)'

(B) Continuous-frequency variant: The downstream field is parameterized by a fam-
ily of basis functions whose frequency parameters are themselves outputs of the
operator (i.e. the basis is not a fixed finite set). In this case the operator can
reparameterize frequencies to compensate for input scaling. This variant requires
storing continuous frequency parameters and is heavier analytically.

4. Sufficient capacity: The Transformer has sufficient width/depth to represent the
mapping from normalized tokens to field parameters; this is purely an expressivity
assumption and is used only to avoid trivial counterexamples.

Definition (equivariance of operator). Given the above, define the parameter-action
p(g) on triples (6, y1, s) by

p(g) + (O,p,8) — (0, ap+ b, as).

(That is, p(g) rescales and translates the anchor but leaves the normalized-field parameters
6 unchanged.) The operator O is said to be Ggp-equivariant in parameter-function form if
for all g € Ggr,

O(g-9) = plg) O(9),
and equivalently the produced fields satisfy

fogs)(@) = (w(9)fos)(@) = fos) (9 ).

Theorem 4 (Equivariance theorem) Under assumptions (1)-(4) above, and if the op-
erator implements either the normalization variant (A) or the continuous-frequency variant
(B), the Transformer-based operator O is equivariant to Ggr in the sense that for every
g € Gsr,

O(g-5) = plg) O(S5),

and consequently

fos)() = fos) (97 )

Proof We give separate proofs for the two allowed variants.

Normalization variant (A). Let p(S) and s(S) denote the operator’s centroid and
scale statistics for S. When the operator receives S it computes normalized positions
Z;(S) = (z; — pu(S))/s(S) and all positional encodings, query/key/value projections that
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depend on position act on Z; only. Suppose g = g, acts on S to produce S’ = g - S with
x, = ax; +b. Then

W) = uh = an(S) b s(S) = as(S)

so the normalized coordinates satisfy

o w—u(S) _awvtb—(apb) _si—ulS) _
TS = s(S) as os(S) i(S)-

Thus the token-wise normalized positional features (and hence queries/keys/values and all
subsequent attention computations that depend only on normalized positions) are identical
for S and S’. Under the permutation-equivariance assumption the order of tokens does
not matter, so the Transformer produces the same normalized parameters ¢/ = 6. The
only change between O(S) and O(S’) is the anchor pair (u,s) which transforms to (ap +
b,as). This is precisely the action p(g) on parameter triples. Finally, by construction
de-normalization gives

fos(x) = fo(x — () /5(8")) = fol(x — (ap+b))/(as)) = fows) (g7 '2),

proving the claim.

Continuous-frequency variant (B). If O outputs frequency parameters {wy} (or
outputs a continuous parameterization of basis functions) then under scaling = — ax the
operator can (and under the assumptions will) output reparameterized frequencies {wj }
satisfying w), = wy/a so that sin(w}' (az)) = sin(w] ). The remainder of the argument is
identical: relative positional encodings ensure translation invariance of pairwise structures,
and the frequency reparameterization handles scaling. Thus the operator’s normalized-field
parameters # remain invariant under the joint action on inputs and reparameterization of
frequencies; anchors transform as before and the equivariance identity holds.

This completes the proof under either allowed architectural choice. |

Important remarks and boundary cases.

e If the operator does not output (or internally use) any anchor/scale information (i.e., it
consumes raw coordinates only via pairwise differences but never produces p, s), then
one obtains only invariance of the internal normalized parameters: 6 will be identical
for S and S” when S’ is a translated (or uniformly scaled, if the basis supports it)
version of S. However, without storing the anchor/scale the produced unnormalized
field cannot be guaranteed to transform under 7(g). This is the key distinction be-
tween invariance of internal embeddings and equivariance of the externally-observed
field.

e Exact equivariance to arbitrary real scalings with a fixed finite basis of sinusoidal fea-
tures is generically impossible (see Lemma 5 below) unless the operator either (A) nor-
malizes coordinates or (B) outputs frequency parameters. The original manuscript’s
claim that finite fixed sinusoidal bases are sufficient for arbitrary scaling must therefore
be replaced by one of the two architectural alternatives above.

14
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Equivariance Test: |f_S'(x) - f_S((x-b)/a)|
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Figure 4: Ablation study results.

Sample Point Distributions
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Figure 5: Sample distribution post-transform.

A.3. A lemma on impossibility of exact scaling with fixed finite bases
Lemma 5 (No exact arbitrary-scaling equivariance for fixed finite sinusoidal bases)

Let {¢r(x)} | be a fized finite family of functions ¢r : RT — R. Suppose this family is
fized once and does not depend on any scalar a > 0. If

or(z) = sin(w] = + by
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with finitely many distinct frequency vectors wy, then there does not exist a nontrivial map-
ping on coefficient vectors ¢ — ¢ such that for every scalar a > 0 and every field

K
fl@) =" exdn(z)
k=1

there exists ¢ = T,(c) satisfying
K K
ch¢kz(ax) = chd)k(x) for all z € RY,
k=1 k=1

unless the set {awy }X_ | is contained in {F£w K |, which can hold only for a discrete set of
scalars a.

Proof For sinusoidal bases, ¢p(ax) = sin((awy) "z + bi). The left-hand set of frequencies
{awy} must be expressible as a finite linear combination of the original finite set {w;} in
such a way that each sin((awy) "z +by) belongs to the linear span of {sin(w, x+b,)}i . For
real exponentials / sinusoids this is possible only if each awy equals either wy; or —w; (up
to phase adjustments), because sinusoids of different frequencies are orthogonal (or linearly
independent) on sufficiently large domains. Therefore the condition can hold (for all x)
only if the set {awy} is a permutation-with-sign of {wy}. For general a this fails; it can
only hold for a discrete set of a values (e.g. a = 1 or special rational ratios if frequencies
are commensurate). Hence exact arbitrary scaling equivariance is impossible with a fixed
finite sinusoidal basis. |

To obtain exact equivariance to all a > 0, either (i) normalize coordinates before feeding
them to the network (so that scaling acts only on the anchor and scale), or (ii) allow the
network to output frequency parameters (so that it can reparameterize basis functions).
These are the two architectural fixes used in Theorem 4.

A.4. Attention—gradient identity

We now give the rigorous statement of the attention—gradient identity as well as a controlled
approximation showing when standard softmax attention recovers the same direction to first
order.

Theorem 6 (Attention—gradient identity) Let the field be

K
f(l') = ch ¢k($)7
k=1

with fized scalar basis functions ¢y, : RT — R (for example ¢y () = sin(w] z+by)). Consider
squared-error loss on S = {(z;,vy;)} Y4,

N
> (i — flwi)*.

i=1

L(S) =

N[
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Construct keys, values and queries as follows:

Ki - |:¢1(x1)7 ey ¢K(x2):|T € RK;
Vi =ri =y — f(z) €R,
Qr = ex € RE  (the k-th standard basis vector).

If the attention weight for query k is taken in linear (unnormalized) form:
ap; = QuK; = ¢i(z),
and the attention output is

N
O = Y oV,
i=1

then

N
On = Y onla) (i — @) = — -
=1

Thus linear attention with the above construction recovers exactly the negative gradient of
the loss with respect to the coefficient cg.

Proof Direct computation of the derivative gives

N ) N
oy = ) =) G = 3(5e) — ) o)
i=1

=1

Negating both sides yields the stated expression. With the key/query/value construction
above and linear attention weights we have ax; = ¢x(z;) and V; = r;, so the attention
output equals the negative gradient exactly. |

Implementation note. Realizing the construction in a standard Transformer requires
choosing the projection matrices for keys and queries so that, after projection and any fixed
nonlinearity, the key vector equals the vector of basis evaluations and the query vector
equals a selector (one-hot). In practice this can be implemented by arranging the projection
matrices to produce a block structure or by using separate lightweight heads each specialized
to one basis coordinate.

A.4.1. CONNECTION TO STANDARD SOFTMAX ATTENTION
Modern Transformers typically use softmax-normalized attention:

exp ((Q Kq)/7)
SN exp ((QUE;)/7)

where 7 > 0 is an optional temperature (the usual dot-product attention corresponds to
7 =+/d or T = 1 depending on authors). We analyze the regime 7 — oo (high temperature)

(1) =
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where logits are small and a first-order expansion is valid. Note this is not the small-
temperature / argmax regime — that regime yields sharp, non-linear behavior and does
not linearize to raw dot-products.

Let s; := Q] K;. Assume there exists a uniform bound |sy;| < B for all k,4 (this is
natural if features are bounded). Using the Taylor expansion of the exponential around 0,

.
exp(spi/T) = 1+%+ et

for some &; between 0 and si;. Summing over j gives the denominator

N |

Zexp sk /T) = N+—Zskj—}—Rl(€2)(T),

j=1 Ti=
where the second-order remainder satisfies

1 B
]R g >3 ZS elskil/T < < BT
Consequently,
1+ +0(r7?) 11 _ _
Oé]m'(’i'): T :7—‘1_7(8]?7;_8]6)_‘_0(7— 2)7

N+1Y,s,;+0(r2) N Nr

where 3, == >_j Skj and the O(772) term is uniform with magnitude bounded by C B2 /72
for a constant C' depending only on N (we omit an explicit tight constant for brevity). The
expansion is obtained by standard Taylor expansion of the reciprocal and collecting terms;
the remainder bound follows from the bound on R,(f) (7).

Let V; = r; denote residual values as above. Then

N L& N
- ZO"“(T)”:NZ” Z Ski — n—i—O( ) -mlax\m].
i=1 i=1 —

If the residuals are mean-centered (i.e. >, r; = 0) or if the architecture includes a learned
baseline-cancelling bias (common in practice), then the first uniform term vanishes. Further,
if the scores are mean-centered so that s = 0 (this can be achieved by subtracting the
empirical mean from keys or by including centering layers), then the second term simplifies

to
1 N
ﬁ Z SkiTq = Z ¢k xz Yi (xz))
=1

when @ = e; and K; is the feature-vector of ¢’s. Thus under the mild, implementable
centering conditions and for sufficiently large 7 (so that the O(772) remainder is negligi-
ble), the softmax attention output is approximately proportional to the negative gradient
component » . ¢p(x;)(y; — f(z;)). The proportionality constant 1/(N7) can be absorbed
into the learning rate used to interpret Oj as an update.
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Under the uniform bound |sg;| < B and |r;| < Rmax, the difference between the softmax
attention output Og(7) and the scaled linear quantity (1/(NT))>; skiri is bounded in
magnitude by

N
| Ok(7) — ﬁZSkﬁi! <

=1

C(N) B%Ryax

72 ’
for a constant C(N) depending only on N. (A full, explicit constant can be derived by
carrying the above remainders through the algebra; the scaling O(7~2) is the crucial depen-
dence.) Thus by choosing 7 sufficiently large relative to B (or by reducing score magnitudes
through normalization and/or learnable scale factors), the approximation error can be made
arbitrarily small.

A.5. Implementation details and mapping to parameter updates

Realizing selector queries (), = e;. In practice one can realize the selector queries by
designing the query projection matrix W¢ and the key projection matrix Wy so that the
projected key vector equals the basis-evaluation vector K; = [¢1(2;), ..., ¢x(z;)] " and the
projected query for head k equals the selector eg. Concretely, this can be implemented by:

e Using a separate head for each basis coordinate (i.e. K heads when K is small), and
setting that head’s query projection to map its input token to a fixed learned vector
that acts as ey.

¢ Or using a single multi-dimensional head with a block-structured projection so that the
K-dimensional key subspace contains the basis evaluations and the query projection
picks out the canonical axis.

Either approach is straightforward in code and requires only architectural bookkeeping; it
is not a fundamental limitation.

The linear-attention identity yields

oL
Or = ——.
k 6Ck
A gradient-descent update with step size n > 0,
oL
Ck < Ck — N5
8ck

is therefore implemented by

¢ ¢ +n0g.

If softmax attention is used in the approximate (high-temperature) regime, then Og(7)
equals v(7) - (—0L/Oc,) + 8 where (1) ~ 1/(N7) and § is the approximation error O(772).
In this case adjust the effective learning rate by v(7) and account for the residual error 4.
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Appendix B. n-dim Transforms

The main text establishes equivariance for scalar dilations and translation under two ar-
chitectural remedies: normalization (anchor + scalar scale) and continuous-frequency out-
puts. The proofs below generalize those ideas to anisotropic scalings (invertible diagonal /
positive-definite linear scalings) in R™, state impossibility results for fixed finite bases, and
give necessary/sufficient structure for continuous-frequency reparameterizations. (These
results complement the constructions and lemmas in the main appendix; see the technical
appendix of the main draft for related results and assumptions.)

Setup and notation. Let n > 1. Let F be a space of fields f : R® — R™. Let a
sample set be S = {(x,y;)}Y, € R® x R™. For any invertible matrix A € GL(n) and
translation b € R™ write the affine map ga(x) = Az +b. The similarity group SIM(n) is
{garp : x = aRz+b|a>0, Re O(n), b € R"}. We denote the action on sample sets
g-S ={(g(z;),y:)} and the induced pullback action on fields by (7(g)f)(z) := f(g~'z).

An operator (meta-learner) O maps finite sample sets to parameters § € O, with a
realization fy € F. We say O is equivariant w.r.t. a subgroup G if Vg € G, O(g-S) =
p(g)O(S) for some representation p : G — GL(0), and f,4)6 = 7(9) fo-

Assume the operator satisfies permutation equivariance and that positional information
is supplied only through functions of pairwise differences or normalized coordinates (as in
the paper’s assumptions).

Theorem 7 (Normalization for linear scalings) Let S C GL(n) be a subgroup of in-
vertible matrices (e.g. all positive diagonal matrices, or a positive-definite multiplicative
subgroup). Suppose O computes from any sample set S an anchor p(S) € R™ and a scale
matrix M (S) € GL(n) (invertible), forms normalized coordinates

and feeds only {(Zi,y;)} into an internal map O that returns normalized parameters 0. Let
the full returned parameter be 8 = (0, u(S), M(S)) and let the field be recovered by

f(@MM)(x) = J?;,)(M_l(w - M))

If O depends only on the multiset {(Zi,yi)} (permutation-invariant) then O is equivariant
to the group Gs = {gap: A€ S, b € R"} with representation

p(gA,b) (5’ My M) = (5’ A;u + b, AM)
Consequently fy(go(x) = fo(g~"'x) and O(g - S) = p(g)O(S).

Proof Let S = {(x;,y;)} with anchor p and scale matrix M. For g = g4 with A € S, the
transformed sample set S’ = ¢ - S has points 2, = Az; + b. Compute its anchor and scale:

fo=u(S)=Au+b, M =MS) =AM,
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because for any linear-homogeneous anchor/scale statistic (centroid, covariance-based square-
root, RMS under a matrix norm) these transform affinely / linearly. Now the normalized
coordinates are

=M "2, — i) = (AM) " (Az; +b— (Ap+b)) = M~ (2 — p) = .

)

Hence the internal map o receives identical normalized inputs on S and on S ', so it returns
the same 6. Therefore O(S") = (0, 1/, M) equals p(g)O(S) by the formula above. Finally
check the field identity:

Fotgro(@) = Ja((AM) ™ a—(Ap+))) = f3(M 1A w—p)) = fo(A™ (2-D)) = (m(9)fo)(@).

This proves both the parameter- and function-level equivariance statements. |

Remark 8 When S is the group of positive diagonal matrices this theorem covers anisotropic
coordinate-wise scaling. When S = {al : a > 0} it reduces to the scalar-dilation normal-
ization argument from the main paper, but for general S the operator must compute a full
matriz-valued scale statistic M (S).

Theorem 9 (Impossibility for fixed finite-frequency families under general linear scalings)
Let {¢r(z) = ei(“’k7$>}kK:1 be a finite set of Fourier exponentials with distinct frequencies

wr € R™. For a fived matriz A € GL(n) suppose there exists a linear map Tq : CK — CK

such that for every coefficient vector ¢ € CK,

K K

chqﬁk(Ax) = Z(TAc)kqbk(x) for all x € R"™.

k=1 k=1

Then the multisets {ATw H< | and {wi }E | must coincide. Consequently, unless the finite
frequency set is closed under the linear map AT, no such Ta exists. In particular, exact
equivariance to all A in a nontrivial continuum subgroup of GL(n) is impossible for any
fized finite frequency set.

Proof Rewrite the identity as
K , K
Zc;&‘m Wi Z Tac)ie Hwpw , Vr € R™.
k=1

Taking the Fourier transform (in the distributional sense) of both sides yields sums of Dirac

masses:
K

K
@2m)"> 86+ ATwr) = 2m)" > (Tac)k6(€ + w).

k=1 k=1
Equality of finite linear combinations of distinct Dirac masses implies equality of their
supports as multisets; therefore {A7w;} equals {wy} as multisets. If for some A this fails,
no linear T4 can implement the reparameterization. Since a finite set cannot be invariant
under a nontrivial continuum of linear maps (except trivial one-point or line cases), exact
equivariance to a continuous subgroup of GL(n) fails for any fixed finite frequency family.
|
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Corollary 10 This rules out exact equivariance to arbitrary anisotropic scalings by any
architecture that uses only a fized finite Fourier / sinusoidal basis unless it either stores a full
matriz scale M(S) (and normalizes) or allows continuous reparameterization of frequencies
(so that one can map ATw — appropriate index).

Theorem 11 (Continuous-frequency reparameterization: necessary and sufficient condition)
Let Q C R™ be a measurable set of admissible frequency vectors and consider the continuous
superposition model

f(z) = /Qc(w)ei<w’x> du(w),

with ¢ € L?(Q) and reference measure . For a subgroup S C GL(n), evact equivariance
to the action x — Az for all A € S by coefficient reparameterization (i.e. existence of
measurable bijections a4 : Q — Q with (Tac)(w) = c(a (w))) holds if and only if for every
A € S the map w — ATw permutes Q up to a p-preserving change-of-variables (i.e. there
is a measurable bijection o4 with ATw = g a(w) p-a.e.).

Proof (=) If such measurable bijections o4 exist and u is mapped to a measure equivalent
under the change-of-variable, then

f(A;U):/c(w)ei<w’Ax>du(w):/c(w)ei<AT°”I>du(w).

Q Q

Perform the substitution o’ = ATw = g4(w); if o4 is bijective and p is preserved (or
absolute-continuous Jacobian accounted for into ¢), then

f(Az) = /Qc<a,41<w’>>ei<“’$>du<w’> = /Q<TAc><w’>ei<w’vf>du<w’>,
so the coefficient reparameterization T4 implements equivariance.
(<) Conversely, if for each A there exists a bounded linear operator T4 on coefficient
functions satisfying

/c(w)e“ATw’x)d,u(w) :/(TAC)(w)ei<w’$>du(w) Ve,
Q Q

then applying the identity to test functions ¢ approximating Dirac masses concentrated near
wo € 2 forces that (a.e.) elfAT wo.z) equals some basis element €“’*) for ' € Q. Hence
ATwy € Q a.e., and the mapping w — ATw induces the required measurable bijection o4
(up to null sets). The map T4 must coincide with pullback by o' (modulo Radon-Nikodym
factors), completing the equivalence. |

For the Fourier family e'“»*) | the induced frequency action is w — ATw. Thus continuous-

frequency exact equivariance requires that the admissible frequency set 2 be closed under
the linear maps A” for all A in the target subgroup, and that the operator can produce the
appropriate reparameterization. In particular, for S equal to all positive diagonal matrices
Diag(> 0), Q must be a union of rays through the origin (closed under positive rescaling in
each coordinate direction after the transpose action).
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Appendix C. Softmax Attention Heads are Gradient Descent

Setup and assumptions

Fix n,m, N, K € N. Let S = {(zi,5:)}}; C R" x R™ be a finite dataset. Consider a model
family that is linear in a block of coefficients ¢ € R¥:

Mw

ek Pz
k=1

where each basis @5 : R” — R™ is (vector-)valued and we treat ¢ € R as scalar coefficients.
Define the squared-error loss

N
= %Znyz_fc -%

=1

Write the residuals r;(c) := y; — fe(zi) € R™ and denote by

N
ae) = Soe) = = S (@ela). r(c))en
i=1

the gradient component for coefficient k (here (-,-)grm is the Euclidean inner product on
R™). All quantities below are evaluated at the current parameter ¢ (we drop the explicit
(¢) when unambiguous).

Attention head architecture considered

We analyze one attention head specialized to update coefficient ¢g. For this head we assume:

e Keys: for each datapoint ¢ we construct a key scalar
si = (Ug(xs), mi)rm,

where ¥y : R” — R™ is a (possibly equal to @) feature map used to form attention
logits. (Thus s; is a scalar logit per datapoint.)

e Values: for each datapoint ¢ we construct a value vector
v = Tk(xl) e R™,
where T : R™ — R™ is a feature map used as the value.

e Query: the head uses a fixed scalar query temperature factor 8 € R (often implemented
as 8 = 1/7 where 7 is temperature). The attention weights are

eXp (B 32‘) '
it exp (Bs))

wi(B) =
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e The attention output is the (vector) aggregate
N
Or(p) = sz(ﬁ) v; € R™,
i=1

Remarks: this is the standard dot-product softmax attention but specialized so that
logits depend on an inner product between a residual r; and a per-head feature Wy (x;).
This specialization is what makes a connection to the gradient possible.

Exact identity for unnormalized (linear) attention

First we observe an exact equality when no softmaz normalization is used and the value
map equals the feature map used inside the logit, i.e. Ty = U = &y,

Theorem 12 (Exact gradient identity for linear (unnormalized) attention) If for
all i we set s; = (P(z;),r;) and v; = Pr(x;) and define the unnormalized aggregate

N
O = E 8; V;,
i=1

then
N

O = =D (@x(wi),mi) @y ()

i=1
and, in particular, the scalar gradient component satisfies

N

gk = _Z<q)k’(xi)vri> = _<17 5>a

i=1

where s = (s1,...,s5)T and 1 = (1,...,1)T. Thus the unnormalized attention vector Oy,
1s precisely the coefficient-weighted combination of basis elements whose coefficients are the
negative of the gradient components projected onto per-datapoint contributions.

Proof This is an immediate rearrangement:

N N
O = Z S;V; = Z<(I)k(xi)7Ti> q)k(xi)v
=1 =1

which is exactly the claimed expression. The scalar gradient gi is — ) (®x(z;),7:) by
direct differentiation of L(c), as given in the setup. [ |

Interpretation: without the softmax normalization the attention head directly forms the
per-datapoint inner-product-weighted sum of basis-vectors; this algebraically contains the
gradient components (indeed the scalar gradient is the sum of the per-datapoint logits used
here).
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Softmax attention: first-order approximation

Softmax introduces a normalization which prevents exact equality in general. However, in a
principled asymptotic regime one obtains first-order alignment with the gradient direction
after a simple centering step.

Theorem 13 (Softmax linearization & first-order gradient alignment) Lets; and
v; be as above and define w;(B8) = exp(Bsi)/ >_; exp(Bs;) and O(B) = 3_; wi(B)v;. Denote

the empirical means
1 & 1 &
SE O INNEEE S it
=1 =1
Then for (B in a neighborhood of 0 we have the Taylor expansion (component-wise in R™ )

Ok(ﬁ__ﬁ—*z _sz+0(/8)

Consequently, if the value vectors are mean-centered, i.e. v =0, then to first order in B
N _ N N
5
)= B s~ ¥ w4 08 = 23 s + O,
i=1 i=1 i=1

If additionally Zf\i1 v; = 0 (equivalently v = 0), we obtain

N
OuB) = KD s + O,
so the attention output is proportional (to first order in ) to the unnormalized attention
vector Y, siv; which, by Theorem 12, encodes the gradient components.
Proof Standard Taylor expansion of the softmax weights about § = 0 yields
exp(Bs;) = 1+ Bs; + 38°s7 + O(B°),
and hence

N
= exp(Bs;) =N +BY s+ 387> s7+0(8).
j=1 J J

Using w;(8) = exp(Bs;)/Z (), expand to first order:

Si 2 _
wi8) = g = (14 Al = 9)) + O)
7 °J

where 5§ = & Y ; 8- Multiply by v; and sum:

N 1 N /B N
B) = wi(Byv; = szi + NZ ;— 5)v; + O(2).

This is the stated expansion. The corollary statements about centering follow by setting
v = 0 and simplifying the § term as shown. |
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Appendix D. Multi-Headed Attention s Multiple Gradient Descent
Steps

This section gives a precise, matrix-level account of how a single Transformer layer with
H attention heads implements H (simultaneous or complementary) gradient-descent-like
update directions for a linear-in-parameters field, and how softmax attention recovers the
same behaviour to first order under mild centering / temperature assumptions.

Setup and notation

Let N be the number of context samples and K the number of basis coordinates for a field
linear in coefficients. Assume scalar targets (vector-valued outputs are handled componen-
twise). Define:

® e RV B p = (),

the design matrix of basis evaluations at the N sample points, and
reRY, 1=y — fo(w)

the residual vector w.r.t. current coefficients ¢ € RX. The squared-error loss is £(c) = 1|73,
and the (column) gradient vector with respect to c is

V.l = —®'r e RK,

(Equivalently g := —V.L = ®"r denotes the vector of per-coordinate negative gradients.)
These notations agree with the single-head derivation in Theorem 3.2.
We consider a Transformer layer with H heads. For head h € {1,..., H} define:

e a query vector (or query projection that yields) ¢™ € RX which acts as a linear
selector on key vectors;

e key vectors for each datapoint i: K; € RX, here K; = <I>,I: (the i-th row of ® as a
column);

e values for each datapoint: V; € R equal to the scalar residual r; (or generally V; could
be vectors; we give the scalar case first).

We analyze two attention variants:

1. Linear (unnormalized) attention (per-head):
N
wgh) — (WK, on — Z@WW-
i=1

2. Softmazx attention (per-head) with temperature T > 0:

1,MWT g, N
W) = 22K pmy - S Wy
>_j—1€Xp (7aMTK;) i=1
Stack the H query vectors into a matrix Q := (V) - )] € REXH | and collect the
per-head outputs into O := [OW) ..., 0T ¢ RH for linear attention (and similarly

O(1) € RH for softmax).

26



NEURAL FIELDS MEET ATTENTION

D.1. Exact identity (linear attention)

Theorem 14 (Exact multi-head gradient directions — linear attention) Under the
setup above with values V; = r; and keys K; = <I>Z:, the H linear-attention head outputs sat-
1sfy the exact matriz identity

0 =Q'e’r=2Qly

where g := ® "1 is the vector of per-coordinate negative gradients. In particular:

o I[fQQ =1k and H = K, then O = g and the K heads recover the full negative gradient
vector (coordinatewise).

o If Q selects a subset of coordinates (rows of I ), the heads recover the corresponding
coordinate-wise negative gradients (block or coordinate GD).

o For general QQ the heads compute linear combinations of the gradient vector; applying
a linear readout R : RY —>~]RK (e.9., R:= (Q")* left-inverse) yields a reconstructed
preconditioned gradient RO which can be used as an update for c.

Proof By definition of 5(h),

Stacking the H heads yields
N
(X wm).
i=1

But with K; = <I>T: and V; = r; we have Z Y KiVi=®Tr =g, s0 0= Q'g, as claimed.
The listed corollaries are immediate linear-algebra consequences: choosing QQ = I returns
g, selecting rows of the identity returns coordinate subsets, and general @) returns linear

combinations that can be inverted (when @ has full column rank) to reconstruct directions
in RX. |

Remark 15 The mapping g — O performed by multi-head linear attention is a low-rank
linear map Q. When H > K and Q has full row rank, the full gradient is representable in
head-space; if H < K the heads realize a rank-H approximation to the gradient (a natural
low-rank preconditioner). This shows algebraically why multiple heads implement multiple
stmultaneous gradient directions or a basis for gradient subspace exploration.

D.2. Softmax attention: first-order approximation and error control

We now show that the same multi-head picture holds for standard softmax attention in
the high-temperature / small-logit regime, under mild centering of values or learned base-
lines. The expansion follows the same Taylor analysis used for the single-head softmax
approximation (Appendix A.4).
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Theorem 16 (Multi-head softmax ~ multi-head linear attention (first-order)) As-
(h)

sume for each head h the per-sample logits s; " = ¢MTK; are uniformly bounded, and

denote their mean 3" = %Zl sgh). Let wvalues satisfy the centering condition V :=

% Zf\il Vi = 0 (implementable by a mean-centering layer or residual baseline). Then for
temperature parameter T > 0 large enough the softmaz head outputs admit the expansion

Zv+ =36 - s v RV ),
i=1
with the leading-order term % >, Vi vanishing under V =0. Hence

oM (r) = Lq

MTHT ()
N o'r + RYW (1),

and stacking heads gives
1
O(r) = —Q"d"r + R().
Nt
Moreover, the remainder satisfies the uniform bound

C(N,B,R)

IRz < 5

-
for a constant C depending only on N, and uniform bounds \sgh)\ < B, |Vi| < R. Thus
by taking T sufficiently large (or equivalently by scaling logits down) the multi-head softmax

outputs approximate the scaled linear-attention gradient combination arbitrarily well; the
scale factor 1/(NT) can be absorbed into an effective learning rate.

Proof For each head h perform a Taylor expansion of exp(s; (h) /7) about 1/7 = 0:
exp (%sgh)) =1+ %55

Summing over ¢ gives

h h —
Z(h Zexp % 5 = 7255' )—i-ﬁZ(sg- ))2+O(T 3.
J
Thus the softmax weight is

1+ 1 (h)+212( (h))2+0(7. )
N1 z + 5k ()2 + 0(773)

wM(r) =

Dividing numerator and denominator by N and expanding to second order in 1/7 yields

ey L 1B o(h) 9
w(7) = % (14 26 = 500)) + 0(r72),
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uniformly in i, h, where 5" = % > y sg.h). Multiplying by V; and summing over 7 gives the
stated expansion for O (7). Under the centering V = 0 the +>°; Vi term vanishes, and
using sgh) = ¢™TK; together with > KiVi= ® "7 we obtain

1
oW (r) = mq(h)T@TT +0(172).
Stacking heads yields the matrix formula O(7) = §=Q '@ Tr+R () with | R(7)[]2 = O(r72).
A constructive derivation of an explicit constant in the O(772) remainder follows the ex-
act bounds in Appendix A.4; see in particular the explicit remainder bound and constant
derivation. ]

Suppose each head h is followed by a linear readout R : R — RK (or all heads are
aggregated by a linear map R : RY — RX). Let the effective coefficient update computed
by the layer be

Ac = n-RO (linear-attention),

or for softmax

Ac = n-RO(T) =~ %RQT(I)TT,

with approximation error O(7~2). Choosing R = (Q")* and Q = I recovers the standard
gradient-descent step Ac = ng (up to the scaling factor), and more generally, RQ' acts as
a preconditioner on the gradient. Thus the multi-head layer computes (exactly for linear
attention, approximately for softmax) a sum of H gradient-like steps or, when combined, a
single gradient step.

Appendix E. Softmax Temperature Scaling
We analyze empirically Softmax Temperature Scaling and its effects.

(a) Attention—Gradient Convergence. We measure the squared norm difference

|V (Softmax) — V(Linear)||* between the output of softmax attention at temperature
T and the exact linear-attention gradient operator. For small T', softmax deviates signif-
icantly; in the high-temperature regime (7' 2 30), experimental decay matches the pre-
dicted asymptotics, transitioning from O(T~1) to O(T~2) scaling. At T ~ 100, errors reach
~ 1077, approaching numerical precision.

(b) Temperature Scaling in 2D and 3D Fields. We compute the relative error be-
tween predicted and measured scaling factors for both 2D and 3D sinusoidal fields. Both
cases exhibit convergence consistent with theory, with the 3D field decaying slightly faster
at large T' due to additional averaging across dimensions. A flat plateau at low T reflects
the expected non-asymptotic regime.

(c,d) SO(2) and SO(3) Rotation Equivariance. We evaluate the mean-squared error
(MSE) between rotated and transformed outputs for both SO(2) and SO(3) actions, under
linear attention and softmax attention with 7" € {1,10,100}. In all cases, empirical errors
(~ 1079) remain well below the conservative theoretical bound confirming that equivariance
is an architectural property rather than a temperature-dependent effect.
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Theoretical Predictions vs Experimental Validation
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Figure 6: Theoretical predictions vs. experimental validation. (a) Softmax atten-
tion converges to linear-attention gradients at the predicted O(T~!) — O(T~2) rate. (b)
Temperature scaling analysis for 2D and 3D sinusoidal fields, matching theory in the high-
T regime. (c,d) Empirical SO(2) and SO(3) rotation equivariance errors are stable across
attention types and far below the theoretical bound.

Appendix F. Extended Validation on Computer Vision Task

To further validate Theorem 3.1 on structured data, we extended our equivariance test
to MNIST digits represented as continuous fields. Each image is treated as a set of
(z,y, intensity) samples, and we applied controlled affine transformations (scaling and trans-
lation). The operator was trained for self-consistency on MNIST fields and evaluated under
equivariant transformation. As shown in Fig. 7, the reconstructions fg(x) and fg(mT_b) are
nearly indistinguishable, with differences confined to localized regions. Across five seeded
trials, the mean equivariance error was 0.013+0.004 (95% CI), confirming that the operator
retains affine equivariance beyond synthetic SIREN fields and into real image data.

Appendix G. Extended Validation on Physics Task

To further validate Theorem 3.1 in a physics-informed setting, we applied our affine equiv-
ariance test to solutions of the two-dimensional Poisson equation —Awu = f on the unit
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Figure 7: Affine equivariance validation on MNIST-as-a-field. Left: fg/(x) from transformed
samples. Middle: fg(xT_b) from original samples with inverse transform. Right: absolute
difference, with mean squared error (MSE) reported.

square with zero Dirichlet boundary conditions. Right-hand sides f were generated as sums
of Gaussian bumps, and the PDE was solved on a 28 x 28 grid using a finite-difference
discretization and conjugate gradient solver. Each solution u was represented as a set of
(z,y,u(z,y)) samples, which served as the input to the operator. The operator was meta-
trained to regress SIREN parameters from these sets, following the same normalization and
architectural assumptions used in earlier sections. We then applied controlled affine trans-
formations (scaling a and translation b) to the input coordinates, evaluated the operator on
both the transformed and original sets, and compared the resulting fields.

As shown in Fig. 8, the reconstructions fg/(x) (from transformed samples) and fg(zT_b)
(inverse-transformed from original samples) are visually nearly indistinguishable, with resid-
uals showing smooth, low-magnitude structure. Across ten seeded trials, the mean equivari-
ance error was 0.0276+0.0152 (95% CI), consistent with the approximate affine equivariance
predicted by our theory. These results confirm that the proposed Transformer operator gen-
eralizes beyond vision datasets and retains its symmetry-respecting behavior on physically
meaningful continuous fields.

Avg f S'(x) Avg f_S((x-b)/a) Avg Diff (MSE=0.0276+0.0152)
0 0 0
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20 20
30 30
40 40
50 50

60 60

o] 20 40 60 o] 20 40 60 o] 20 40 60

Figure 8: Affine equivariance validation on Poisson PDE solutions. Left: fg/(z) from
transformed samples. Middle: fg (IT_Z’) from original samples with inverse transform. Right:
absolute difference, with mean squared error (MSE) reported.
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Appendix H. Hyperparameters

Table 3: Architectures & initialization

Module Hyperparameter Value
SIREN input_dim 2 (2D experiments) / 3 (3D experiments)
hidden_dim 64 (ablation: 32)
output_dim 1
num_layers 3 (ablation: 2)
wo (first-layer scale) 30.0
first-layer init Uniform[—3, 1]
. . 6/fan_in \/6/fan,in
subsequent init Uniform 30 , 30
TransformerOperator embed_dim 128
num_heads 8 (ablation: 4)
num_layers 4 (ablation/meta: 3)
feedforward dim 512
dropout 0.1
activation GELU
output head 3-layer MLP, hidden dim = 256

Table 4: Data and coordinate normalization

Item Value

MNIST as field 28 x 28 grid; pixel centers treated as continuous samples

Coordinate mapping  Pixel center ¢ € {0,...,27} — = -1+ 2(%3'5) (and similarly for y)
PDE grid n = 28 (default); optional high-res grid 100 x 100 on [—1.5,1.5]2

SIREN input scaling Multiply normalized coordinates by wg = 30 before first activation
Noise (where used) Additive Gaussian, o = 0.01
Batch size 1 (per-field); 32 (meta/ablation)
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Table 5: Training & validation

Item Value

Optimizer AdamW (default)

Learning rate 3 x 107% (default); 1 x 1072 for fast ablation runs
Weight decay 5x107°

Tterations / Epochs 200 iterations per field (default); ablation: 500 (fast:100)
Loss MSE

Affine validation scale a = 1.5, translation b = (0.3, —0.3)

Trials PDE: 10; MNIST: 5 (95% CI via ¢-distribution)

Test points per config 50

Table 6: Purpose-level hyperparameters

Panel / Key settings Values

softmax — linear N = 64, d = 32, K = 16, H = 8, temps =
logspace(0, 2.5, 30)

Attention-Gradient Com- N =100, H =4, temps = linspace(10, 100, 20)
parison

scaling analysis N € {32,64,128,256}, temps = {10, 25,50, 100,200}

2D rotation SIREN: input=2, hidden=64, layers=3, wy = 30; grid 100 x
100 on [—~1.5,1.5]?

3D rotation SIREN: input=3, hidden=64, layers=3, wg = 30; ng =
30, ng =30

theoretical comparison N =100, K =50, temps = logspace(—1,3,50), o = 0.01
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