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Abstract

We establish a mathematical connection between neural field optimization and Transformer
attention mechanics. First, we prove that Transformer-based operators learning a neural
field are equivariant to affine transformations (translations and positive scalings) when us-
ing relative positional encodings and coordinate normalization, extending geometric deep
learning to meta-learning of continuous functions. Second, we demonstrate that linear at-
tention is an exact computation of the negative gradient of squared-error loss for sinusoidal
neural fields, with softmax attention shown empirically and theoretically to converge to
such an identity at rate O(772) as temperature scales. The novel results reveal that atten-
tion mechanisms have an implicit geometric encoding that is well-suited to learn continuous
functions.

1. Introduction

Neural fields have emerged in history as a powerful technique to represent continuous sig-
nals, drastically revolutionizing 3D geometric encodings (Park et al., 2019), synthesis of
novel views (Mildenhall et al., 2021), and the capability to simulate physical systems (Sitz-
mann et al., 2020). Unlike traditional representations that are discrete (e.g., voxels or
meshes), neural fields parameterize signals as continuous functions fy : R? — R, allowing
for infinite resolution and natural derivatives. SIREN (Sitzmann et al., 2020) showed that
with sinusoidal activations that high-frequency details can be captured, while with NeRF
(Mildenhall et al., 2021) there presents the photorealistic rendering from MLPs.

In parallel fashions, large language models (LLMs) have revealed a surprising capability
where in-context learning (ICL) in Transformers adapt to novel tasks from prompt examples
without the need to update weight (Brown et al., 2020). Recent theoretical work interprets
this phenomenon as implicit gradient descent (Von Oswald et al., 2023) or algorithm distil-
lation (Garg et al., 2022), but these analyses focus on discrete token prediction rather than
continuous function learning.

This paper unifies this past research. We show that Transformers are naturally
suited to meta-learn neural fields because attention mechanisms implicitly encode the geo-
metric nature required for continuous signal processing. Specifically, we prove that:

e Attention computes exact gradients for neural field optimization under linear atten-
tion)

e Transformer architectures preserve affine symmetries when properly configured

e These properties emerge from the mathematical structure of attention.

Our analysis reveals why Transformers excel at spatial reasoning tasks: the architecture
inherently respects the geometric structure of continuous functions. We formalize neural
field learning as an operator O : {(x;,4:;)}}Y, — 6 mapping samples to field parameters,
and characterize when this operator preserves symmetries.
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1.1. Motivation and Main Contributions

1. Theorem 1 (Affine Equivariance): A Transformer-based operator O is equivariant
to the affine group Gsr = {z + az +b | a > 0,b € R4} if and only if:

e It uses permutation-equivariant processing (set-based)
e It employs relative positional encoding (translation invariance)

e It implements explicit normalization or continuous frequency adaptation (scale han-
dling)

We prove necessity via a scaling impossibility lemma: fixed finite bases cannot achieve
arbitrary scale equivariance without such mechanisms.

2. Theorem 2 (Attention—Gradient Identity): For sinusoidal fields f(z) = >, cxdr(x),
linear attention with basis-function keys, residual values, and one-hot queries computes
exact negative gradients: O = —%. Softmax attention converges to this at rate O(72).

3. Empirical Verification: We verify the theorems empirically demonstrating these be-
haviors observed theoretically

2. Related Work

Our work drives between the narrow intersection of three sections: continuous neural rep-
resentations, equivariant networks, and in-context learning theory.

2.1. Neural Fields for Signal Representation

Neural fields (also called implicit neural representations) parameterize signals or scenes by
mapping continuous coordinates to output values. Early work such as DeepSDF (Park
et al., 2019) learned signed-distance fields of shapes. More recently, Neural Radiance Fields
(NeRF) (Mildenhall et al., 2021) achieved photorealistic novel-view synthesis by training
an MLP to map 3D location and view direction to color and density. NeRF and its vari-
ants (Mip-NeRF, BungeeNeRF (Xiangli et al., 2022), etc.) rely on coordinate-based net-
works and positional encodings to capture fine detail (Mildenhall et al., 2021; Tancik et al.,
2020). SIREN networks (Sitzmann et al., 2020) use periodic activation functions to represent
high-frequency signals, demonstrating power in representing physical fields and derivatives.
These neural field models provide a flexible alternative to discrete grids, encoding data in
the weights of a continuous function (Park et al., 2019; Sitzmann et al., 2020). Our work
treats the training of such fields as a mapping from sample data to function parameters,
bridging these continuous models with sequence-based learning in Transformers.

2.2. Symmetry and Equivariance in Deep Learning

Incorporating group symmetries into network design improves data efficiency and generaliza-
tion (Bronstein et al., 2017). Convolutional neural networks exploit translation equivariance
(LeCun et al., 1998), while group-equivariant CNNs generalize to rotations and reflections
(Cohen and Welling, 2016). The theory of equivariant networks has matured with general
frameworks on homogeneous spaces (Cohen et al., 2019; Kondor and Trivedi, 2018) and
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continuous symmetries (Weiler and Cesa, 2019). Work on 3D vision has developed equiv-
ariant networks for point clouds and molecular data (Thomas et al., 2018; Satorras et al.,
2021), and steerable CNNs (Esteves et al., 2017) ensure equivariance to rotations. Recently,
transformer architectures have also been studied from a symmetry perspective; e.g. certain
relative positional encodings make attention translation-equivariant (Ma and Ying, 2022).

2.3. In-Context Learning in Transformers

Transformers pretrained on next-token prediction exhibit emergent few-shot learning: given
examples in the context, they can implement new tasks on-the-fly (Brown et al., 2020). This
in-context learning (ICL) phenomenon has inspired analyses interpreting Transformers as
implicit meta-learners (Von Oswald et al., 2023; Garg et al., 2022). For instance, (Garg
et al., 2022) show that Transformers can be trained to perform linear regression in-context,
and (Von Oswald et al., 2023) rigorously relates a self-attention layer to a gradient descent
step. Work in mechanistic interpretability has identified specific circuits (“induction heads”)
that link repeated tokens in the prompt (Olsson et al., 2022). The induction head hypothesis
suggests a key self-attention pattern enables copying and binding information. Our Theorem
3.2 complements this by providing an explicit construction that computes the exact gradient
of a neural field loss. Unlike prior empirical studies, we derive a precise algebraic equivalence
for a continuous-function regression task. This aligns with recent theoretical efforts framing
ICL as implicit algorithm learning (Garg et al., 2022; Ma and Ying, 2022) and extends them
to continuous domains.

3. A Geometric Bridge Between Fields and Transformers

Neural fields and Transformers operate in seemingly different domains, continuous functions
versus discrete sequences. Yet both share a fundamental computational pattern: they ag-
gregate information across spatial or sequential dimensions. We formalize this connection by
treating neural field learning as an operator problem and characterizing when Transformer
implementations preserve geometric structure.

3.1. Why Attention Encodes Geometry

Consider learning a neural field fp from samples S = {(z;,%;)}Y.,. The optimal field min-
imizes reconstruction error while respecting the underlying signal’s symmetries. Attention
mechanisms naturally implement this through three geometric operations:

1. Similarity computation: Dot products between queries and keys measure geometric
alignment

2. Weighted aggregation: Softmax weights concentrate on geometrically relevant sam-
ples

3. Value combination: Linear combination preserves the vector space structure

These operations mirror the gradient computation VoL = > . Vof(z;) - (vi — f(xi)),
where basis functions play the role of keys and residuals act as values. This section makes
this intuition mathematically precise.
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3.2. Mathematical preliminaries

We study neural fields fp : R — R parameterized by # € © (for instance, the weights of
an MLP or SIREN). A training set of samples is S = {(z;,v;)}Y, with z; € R%, y; € R.
An operator O maps a sample set S to parameters § = O(S), so that fy approximates the
underlying signal.

We consider the affine scaling-translation group

Gst = {gap:x—ax+b|la>0, bERd},

which acts on sample sets by g - S = {(ax; + b,y;)}}Y;. The induced action on fields
(functions) is (7(g9)f)(z) = f(g~'x) = f((x — b)/a). Our objective is to characterize when
fitting commutes with these symmetry transforms, i.e. when

O(g-S) = =w(g) O(9),

under precise architectural assumptions.

3.3. Architectural assumptions

A1l Permutation equivariance.
The operator O treats the input sample set S = { (7, y;)}}*, as an unordered multiset.
Concretely, O is implemented by a permutation-equivariant architecture (e.g., token-
wise embeddings + self-attention + permutation-invariant pooling) so that for any
permutation 7 of {1,..., N},

O({ (@), yr(i)) 1) = O({(@i,yi) Hin).-

A2 Relative positional encoding.
All positional features, positional biases, and any terms used in attention-score com-
putations depend only on pairwise differences x; — x; (or on an equivariant function
thereof). In particular, for any global translation b € R? and all i, j,

pos_feat(z; + b, z; + b) = pos_feat(z;, z;),
so a simultaneous translation x; — x; + b leaves pairwise positional inputs unchanged.

A3 Scale-aware coordinate handling & sufficient capacity.
The operator implements one of the two scale-handling mechanisms below and has
sufficient representational capacity to realize the mapping from its inputs to field
parameters under that mechanism.

(a) Normalization variant (A3a).
The operator computes an explicit anchor u(S) € R? (e.g. centroid) and a
positive scale statistic s(S) > 0 (e.g. RMS radius). Positional embeddings and
downstream layers receive normalized coordinates
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Parameters 6 parametrize a normalized field ﬁ) and the unnormalized field is
recovered by de-normalization:

fou,) (@) = J?@((OC —w)/s).

(b) Continuous-frequency variant (A3b).
The downstream field’s basis includes continuous frequency (or scale) param-
eters that the operator outputs, allowing reparameterization of frequencies to
compensate for uniform input scalings = +— ax.

3.4. Transformer-Based Field Operator Equivariance

We now state the equivariance theorem in concise form. The full detailed statement and
proof are in Appendix A.2.

Theorem 1 (Transformer-based Field Operator Equivariance) Let O be a
Transformer-based operator satisfying permutation equivariance and relative positional en-
codings, and assume either normalization variant (34) or continuous-frequency variant
(8B) from Section 3.3. Then O is equivariant to Ggr in the following precise sense: for
any gop € Gst and any sample set S,

O(gap-S) = p(gap) O(5),

where p(gap) acts on parameter triples (6,1, s) by
p(Gap) = (0,1,8) — (0, ap+b, as),

and consequently the produced fields satisfy

J0(gun) (@) = fo(s)(9ap7)-

Proof Sketch: Fix g, € Ggr and a sample set S = {(x;,y;)}7—;. Write gqp - S =
{(azi +b,y:) H- 1.

Because the Transformer uses relative positional encodings, every attention score and
position-dependent computation depends only on differences x; — ;. A global translation
x; — x; + b leaves all differences unchanged, so the attention weights and any intermediate
features that depend only on differences are unchanged, and internal, translation-invariant
parameters 6 are unchanged. The only covariant quantities are the explicit location param-
eters, which shift by . Thus for pure translations we obtain

O(g16 - S) = p(g1,) O(S).

Under the normalization variant (3A) the model evaluates features on normalized coor-
dinates. A joint scaling z — ax together with the covariant updates u — au and s — as
leaves these normalized coordinates invariant, so the network’s internal computations (and
6) are unchanged while (1, s) transform as in p(gq,0). Under the continuous-frequency vari-
ant (3B) the operator may reparameterize frequency outputs so that the basis functions
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evaluated on scaled inputs match the unscaled basis evaluated on the original coordinates;
this yields the same covariance of (u,s) and invariance of 6. Hence scaling satisfies

O(ga,O ) S) = p(ga,O) O(S>

Any (a, b) factorizes into scaling then translation, so the two previous paragraphs give the
claimed transformation law for arbitrary g, ;. Permutation equivariance of the Transformer
guarantees the result does not depend on the ordering of the samples in S, so altogether

O(gap - S) = p(gap) O(S).
Evaluating the produced field on a point x then yields the stated equivariance of the fields:

J0(g09) (@) = fors) (9ap®)-
This completes the sketch.

3.5. Finite-Basis Scaling Lemma

A key insight of our analysis is that exact scaling equivariance cannot be achieved with
standard neural field architectures:

Lemma 2 (Scaling Impossibility) Let {¢x(z) = sin(w]z)}E | be a fived finite sinu-
soidal basis. No linear operator can achieve equivariance to arbitrary scalings a > 0 using
only this basis.

Proof Sketch: Under scaling = + az, the basis function sin(wl z) becomes sin(aw] ).
For equivariance, we need this to equal a linear combination of the original basis functions.
However, this requires the scaled frequencies {awy} to lie in the span of {wy}, which is
impossible for arbitrary a with finite K.

This lemma has practical implications: vision Transformers using fixed positional en-
codings will fail on out-of-distribution scales. Our solution (Theorem 1) requires explicit
normalization or learnable frequency parameters.

3.6. In-Context Regression as Implicit Field Optimization

We now show how attention mechanisms exactly implement gradient descent on neural
fields. The key insight is a structural correspondence between attention components and
gradient computation:

Theorem 3 (Attention—Gradient Identity) Let the field be linear in coefficients over
fized basis functions:

K
f(x) = ch ¢k(w)>
k=1

with fized scalar basis {¢p {1 | (e.g. sinusoids ¢x(z) = sin(w) x + by)). For squared-error
loss L = %Zl(yl — f(x:))?, define keys, values and queries by

-
K; = [¢1(z), ..., oK (zi)]
Vi=vi— f(z;) (residual),
Qr = ex  (the k-th standard basis vector).
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If attention weights are taken as the linear (unnormalized) product ag; = Q) K; = ¢y (),
then the attention output

N
O = Y Vi
i=1
satisfies the exact identity

N
On = 3 oulan) (s — f@) = — o
1=1

Hence a single negative gradient descent step on ¢y, is reproduced (up to learning-rate scaling)
by using Oy as the update direction.

Remarks The identity above is exact for linear (unnormalized) attention. Standard dot-
product attention with softmax does not equal raw dot-products in general. However, in
the high-temperature or small-logit situations (large 7 in a softmax with temperature) one
may apply a first-order expansion exp(z/7) ~ 1+ z/7 and obtain

1 1 _ _
i (T) = N + ﬁ(sm — Sk) +O(r 2), Ski 1= Q;—Kl
Under mild and implementable centering conditions (zero-mean residuals or a learned
baseline-cancelling mechanism, and mean-centered scores) the dominant term becomes pro-
portional to the linear attention quantity, up to a global factor 1/(/N7) that can be absorbed
into a learning rate. Appendix A.4 gives a precise expansion and an O(7~2) remainder

bound.

4. Empirical Validation

4.1. Rotation Group Equivariance

Background: The special orthogonal group SO(d) consists of all d-dimensional rotation
matrices (determinant 1, preserving orientation). SO(2) represents 2D rotations parame-
terized by a single angle 6, while SO(3) represents 3D rotations requiring three parameters
(e.g., Euler angles). Testing equivariance to these groups validates that our operator re-
spects rotational symmetries, crucial for applications in computer vision and physics.

Setup: We test equivariance on SO(2) and SO(3) using SIREN fields (wy = 30, 3 layers,
64 units). The Transformer operator (4 layers, 4 heads, d = 128) processes N = 100 sample
points with relative positional encoding and explicit normalization as per Theorem 1. For
a rotation g € SO(d), we verify that learning from rotated samples {(g - x;,y;)} yields a
correspondingly rotated field. Specifically, we measure || fo(4.5)(%) — fo(s) (g7 'z)||2 over 10
random rotations.

4.2. Attention—Gradient Correspondence

Setup: For f(z) = 220:1 ¢ sin(w] x) with N = 100 samples, we compute attention outputs
and true gradients as specified in Theorem 2. We measure correlation and MSE between
softmax attention and linear attention across temperatures.
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Figure 1: SO(2) rotation equivariance of our Transformer-based neural field op-
erator. For a 2D SIREN field, we rotate the input samples by angles § € {0°,45°,90°, 135°}
and apply our operator to the rotated sets. The inferred neural fields (shown as scalar slices
with contour lines) match the original field composed with the inverse rotation, as required
for rotation equivariance. The green arrows indicate the direction of applied rotation.
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Figure 2: SO(3) rotation equivariance. A SIREN neural field inferred by our Transformer
operator (top-left, Identity) transforms correctly under a variety of 3D rotations. For each
rotation, the predicted field matches the ground-truth rotated field with mean equivariance
error below 1079, Colors denote scalar field values on the sphere.

Results: Figure 3 shows the convergence of softmax to linear attention. The left panel
confirms the O(772) scaling predicted by our Taylor expansion, while the right panel shows
near-perfect correlation with gradient descent at high temperature.



NEURAL FIELDS MEET ATTENTION

Softmax Converges to Uniform Attention at o(t72)

MSE Decays as O(t~?) Output Approaches Uniform as 7—

100 == Empirical
— = Theory O(17?)

- i -
O‘ o (=]

IS & b
Uniformity Score

Normalized MSE to Uniform
S

—=—- Uniform Limit

-8 Empirical

10! 10? 103 10° 10! 10? 103
Temperature T Temperature T

-
o
1
=

-
(=]
:)

Figure 3: Softmax attention converges to linear attention at rate O(7=2). (a) The nor-
malized MSE between softmax and linear attention decays as O(7~2) with temperature;
empirical measurements (blue) closely follow the theoretical prediction (red dashed). (b)
The uniformity score of the attention weights approaches the uniform limit as 7 — oo,
confirming that high-temperature softmax converges to uniform (linear) attention.

Temperature 7 Uniformity MSE Empirical Scaling
1 0.2757 2.69 x 1072 .

10 0.7731  1.74x 1074 ~ 219

100 0.9680 1.72 x 1076 7200
1000 0.9967  1.72 x 1078 ~ 7200

Table 1: Softmax converges to linear attention at rate 7=2, confirming the O(7~2) bound.

5. Discussion

We have demonstrated that Transformers for learning neural fields are inherently equivariant
to affine transformations and that attention can exactly compute gradients for continuous
functions. These results bridge the discrete and continuous viewpoints, revealing that atten-
tion mechanics naturally encode geometric structures that enable symmetry-aware spatial
reasoning. The theory presented in this research provides the formal conditions to which
these properties hold, alongside limitations that clarify when they break down. We vali-
date this theory with synthetic and real settings. Together, these contributions presented
advanced the field’s understanding of Transformer architectures and their interaction geo-
metrically.
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Appendix A. Complete Proofs
A.1. Notation

Let S = {(w;,vi)}Y, denote a finite labeled sample set with #; € R? and scalar targets
y; € R (extensions to vector-valued targets are straightforward). Write Ggr = {gap : v —
ar +b|a>0,bc R} for the affine scaling-translation group. The group acts on sample
sets by

9-S = {(ami+b, y)}L,.

For a field f : R — R define the induced action

(m(9)f)(z) == flg~'z) = f((x —b)/a).

Let O be an operator (the “meta-network”) implemented by a Transformer that maps a
sample set S to parameters 6 of a neural field fy. We will often write O(S) = (0, i, s) when
the operator explicitly outputs or depends on an anchor yu € R? (a translation reference)
and a positive scalar s > 0. The resulting (unnormalized) field then acts as

f(@,,u,s) (33) = ﬁ((x - :U’)/s)7

where fg is the normalized-field function parameterized by 6.

A.2. Transformer-Based Field Operator

We begin with more precise architectural assumptions and then state the equivariance
theorem.

Architectural assumptions

1. Permutation equivariance: O processes S as an unordered set, i.e. its output
depends only on the multiset of tokens and not on token ordering. Concretely
this is satisfied if the Transformer uses standard token-wise embeddings followed by
permutation-equivariant self-attention and set-level pooling.

2. Relative positional encoding: All positional features used to produce queries/keys
biases depend only on pairwise differences x; — ; (or on functions of differences). In
particular, if =} = x; + b for all 4, then every pairwise positional value is unchanged.

3. Scale-aware coordinate handling: One of the two must hold:

(A) Normalization variant: The operator explicitly computes and outputs (or inter-
nally uses) an anchor p(S) = + >, 2; and a scale statistic s(S) > 0 (for example

the RMS scale s(S) = \/% > llwi — u(S)||?) and feeds normalized coordinates

T = (w; — pu(S))/s(S) into all positional embeddings and downstream networks.
The operator’s parameters 6 are taken to parametrize the normalized field fy,
and the full field is reconstructed by de-normalization:

f(@,u,s) (Z‘) = fg(((E - M)/S)

12



NEURAL FIELDS MEET ATTENTION

(B) Continuous-frequency variant: The downstream field is parameterized by a fam-
ily of basis functions whose frequency parameters are themselves outputs of the
operator (i.e. the basis is not a fixed finite set). In this case the operator can
reparameterize frequencies to compensate for input scaling. This variant requires
storing continuous frequency parameters and is heavier analytically.

4. Sufficient capacity: The Transformer has sufficient width/depth to represent the
mapping from normalized tokens to field parameters; this is purely an expressivity
assumption and is used only to avoid trivial counterexamples.

Definition of the Equivariance of Operator. Given the above, define the parameter-
action p(g) on triples (6, i, s) by

plg) + (O,p,8) — (0, ap+ b, as).

(That is, p(g) rescales and translates the anchor but leaves the normalized-field parameters
0 unchanged.) The operator O is said to be Ggp-equivariant in parameter-function form if
for all g € Ggr,

O(g-5) = plg) O(5),

and equivalently the produced fields satisfy

fogs)(@) = (m(g)fos) (@) = fows) (97 ).

Theorem 4 (Equivariance Theorem) Under assumptions above, and if the operator
implements either the normalization variant (A) or the continuous-frequency variant (B),
the Transformer-based operator O is equivariant to Ggr in the sense that for every g € Ggr,

O(g-S) = p(g) O(9),

and consequently
forg-s)(®) = fors) (97" ).

Proof We give separate proofs for the two allowed variants.

Normalization variant. Let p(S) and s(S) denote the operator’s centroid and scale
statistics for S. When the operator receives S it computes normalized positions z;(S) =
(x; — p(S))/s(S) and all positional encodings, query/key/value projections that depend on
position act on Z; only. Suppose g = g4 acts on S to produce ' = g - S with z} = ax; + b.
Then

1
A I AN
u(S") = N E z; = au(S) + b, s(S) = as(9),
so the normalized coordinates satisfy

o d—ulS) _awitb—(apb) _si—ulS) _
TS = s(s) as os(S) i(S).

Thus the token-wise normalized positional features (and hence queries/keys/values and all
subsequent attention computations that depend only on normalized positions) are identical

13
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for S and S’. Under the permutation-equivariance assumption the order of tokens does
not matter, so the Transformer produces the same normalized parameters ¢’ = 6. The
only change between O(S) and O(S’) is the anchor pair (u, s) which transforms to (ap +
b,as). This is precisely the action p(g) on parameter triples. Finally, by construction
de-normalization gives

fosn(@) = fol(x = 1(5"))/5(8") = fol(x — (ap + 1))/ (as)) = fors) (9 ),

proving the claim.

Continuous-frequency variant. If O outputs frequency parameters {wy} (or outputs
a continuous parameterization of basis functions) then under scaling = — ax the operator
can (and under the assumptions will) output reparameterized frequencies {w} } satisfying
w), = wy/a so that sin(w}' (az)) = sin(w; z). The remainder of the argument is identi-
cal: relative positional encodings ensure translation invariance of pairwise structures, and
the frequency reparameterization handles scaling. Thus the operator’s normalized-field pa-
rameters 6 remain invariant under the joint action on inputs and reparameterization of
frequencies; anchors transform as before and the equivariance identity holds.

This completes the proof. |

Equivariance Error: Ablation Study

Full (Norm + High ) No Normalization
MSE = 0.011231 MSE = 0.028770

II Illlf - JAEEEEr
I L ..

Absolute PE

0.3

Low Temperature
MSE = 0.012837

I! ! uvv
0.
00

Ifs(x) = Fs(52)]

MSE = 0.004356

Y

Figure 4: Equivariance ablation study. We visualize the pointwise error | fpred(z) — frot(2)]
under different architectural choices. Removing normalization or using low temperature
significantly increases equivariance error, while absolute positional encoding also degrades
performance.

A.3. Impossibility Lemma of Exact Scaling with Fixed-Finite Bases

Lemma 5 (Nonexistence of an Equivariant Scaling for Fixed-Finite Bases) Let
{(f)k(x)}kK:l be a fized finite family of functions ¢y, : R* — R. Suppose this family is fized

14
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once and does not depend on any scalar a > 0. If
o (z) = sin(w, = + by,)

with finitely many distinct frequency vectors wy., then there does not exist a nontrivial map-
ping on coefficient vectors ¢ — ¢ such that for every scalar a > 0 and every field

K
f@) =" crdn(z)
k=1

there exists ¢ = T,(c) satisfying

K K
Z cxdr(ax) = Z cpbx () for all z € RY,
k=1 k=1

unless the set {awy }X_ is contained in {F£w K |, which can hold only for a discrete set of
scalars a.

Proof For sinusoidal bases, ¢ (az) = sin((awy) "= + bg). The left-hand set of frequencies
{awy} must be expressible as a finite linear combination of the original finite set {w,} in
such a way that each sin((awy) "z +by) belongs to the linear span of {sin(w, z+b,)} . For
real exponentials or sinusoids this is possible only if each awy equals either w, or —wy (up
to phase adjustments), because sinusoids of different frequencies are orthogonal (or linearly
independent) on sufficiently large domains. Therefore the condition can hold (for all x)
only if the set {awy} is a permutation-with-sign of {wy}. For general a this fails; it can
only hold for a discrete set of a values (e.g. a = 1 or special rational ratios if frequencies
are commensurate). Hence exact arbitrary scaling equivariance is impossible with a fixed
finite sinusoidal basis. |

To obtain exact equivariance to all a > 0, either (i) normalize coordinates before feeding
them to the network (so that scaling acts only on the anchor and scale), or (ii) allow the
network to output frequency parameters (so that it can reparameterize basis functions).
These are the two architectural fixes used in Theorem 4.

A.4. Attention—gradient identity

We now give the rigorous statement of the attention—gradient identity as well as a controlled
approximation showing when standard softmax attention recovers the same direction to first
order.

Theorem 6 (Attention—gradient identity) Let the field be
K
f(i[f) = ch’ d)k’(x)a
k=1

15
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with fived scalar basis functions ¢y, : RY — R (for ezample ¢y (x) = sin(w) z+by,)). Consider
squared-error loss on S = {(x;,y;) Y,

N
(i — f(x:))?.

=1

L(S) =

N[

Construct keys, values and queries as follows:

Ki - |:¢1(x1)7 ey ¢K(x2):|T € RK;
Vi =1 =y — f(zi) €R,
Qr = ex € RE  (the k-th standard basis vector).

If the attention weight for query k is taken in linear (unnormalized) form:
ap; = QpK; = ¢u(w),

and the attention output is

N
Or = Y oV,
i=1
then N
oL
Or = > énla) (i = f(@) = - 5.

i=1
Thus linear attention with the above construction recovers exactly the negative gradient of
the loss with respect to the coefficient cy.

Proof Direct computation of the derivative gives

N ) N
o = ) i) G = 3o(5e) — ) o)
i=1

=1

Negating both sides yields the stated expression. With the key/query/value construction
above and linear attention weights we have ax; = ¢p(z;) and V; = r;, so the attention
output equals the negative gradient exactly. |

A.5. Softmax Attention Connection
Modern Transformers typically use softmax-normalized attention:

exp ((QF K:)/7)
SN exp ((QE;)/7)

where 7 > 0 is an optional temperature (the usual dot-product attention corresponds to
7 =+/d or T = 1 depending on authors). We analyze the regime 7 — oo (high temperature)

ogi(T) =

16
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where logits are small and a first-order expansion is valid. Note this is not the small-
temperature yields sharp, non-linear behavior and does not linearize to raw dot-products.

Let s; := Q] K;. Assume there exists a uniform bound |sy;| < B for all k,4 (this is
natural if features are bounded). Using the Taylor expansion of the exponential around 0,

51
exp(syi/T) = 1+%+ 5 ~ise eSki/T

for some &g; between 0 and sg;. Summing over j gives the denominator

N | N
2
= Zexp(skj/r) =N+ ~ Zskj + R,(C )(7‘),
=1

j=1

where the second-order remainder satisfies

N
RO g%zs el < D0 B eBIT.
Consequently,
1+ %+ O(r7?) 11
i (T) = T = — + —(sp — 8) + O(772),
ki(T) NiIS sy 100% N NT( ki — 5K) + O(77?)

where 5, 1= > skj and the O(772) term is uniform with magnitude bounded by C' B2 /72
for a constant C' depending only on N (we omit an explicit tight constant for brevity). The
expansion is obtained by standard Taylor expansion of the reciprocal and collecting terms;
the remainder bound follows from the bound on R,(f) (7).

Let V; = r; denote residual values as above. Then

N L N
= Zaki(T)m:NZn Z Ski — 8 n—i—O( ) ~m?x\ri].
i=1 i=1 =1

If the residuals are mean-centered (i.e. >, r; = 0) or if the architecture includes a learned
baseline-cancelling bias (common in practice), then the first uniform term vanishes. Further,
if the scores are mean-centered so that s = 0 (this can be achieved by subtracting the
empirical mean from keys or by including centering layers), then the second term simplifies

to
N

1 < 1
Nr ;Skﬂ"z =~ Nr ;¢k(xz) (yz - f(xz))7
when @ = e; and K is the feature-vector of ¢’s. Thus under the mild, implementable
centering conditions and for sufficiently large 7 (so that the O(772) remainder is negligi-
ble), the softmax attention output is approximately proportional to the negative gradient
component » . ¢p(x;)(yi — f(z;)). The proportionality constant 1/(N7) can be absorbed
into the learning rate used to interpret Oj as an update.

17



CHERUKURI LALA

Under the uniform bound |sg;| < B and |r;| < Rmax, the difference between the softmax
attention output Og(7) and the scaled linear quantity (1/(NT))>; skiri is bounded in
magnitude by

| Ok(7) — 72&%17"1‘ < N) B Rmax,

for a constant C'(N) depending only on N. (A full, explicit constant can be derived by
carrying the above remainders through the algebra; the scaling O(7~2) is the crucial depen-
dence.) Thus by choosing 7 sufficiently large relative to B (or by reducing score magnitudes
through normalization and /or learnable scale factors), the approximation error can be made
arbitrarily small.

Appendix B. n-dimensional Transforms

The proofs below extend these ideas to direction-dependent scalings in R™. These are scal-
ings that stretch space by different amounts in different directions (any invertible diagonal
or positive-definite linear scaling). We show that any model that uses a fixed finite Fourier
or sinusoidal basis cannot be exactly equivariant to these scalings, and we give conditions
that allow continuous-frequency reparameterizations to handle them.

Preliminaries. Let n > 1. Let F be a space of fields f : R® — R™. Let a sample set be
S = {(xs,v:)}}¥; C R™ x R™. For any invertible matrix A € GL(n) and translation b € R"
write the affine map g4 (z) = Ax+b. The similarity group SIM(n) is {garp : © — aRz+b |
a>0, ReO(n), b€ R"}. We denote the action on sample sets g - S = {(g(z;),v:)} and
the induced pullback action on fields by (7(g)f)(z) := f(g~'z).

An operator (meta-learner) O maps finite sample sets to parameters § € O, with a
realization fy € F. We say O is equivariant w.r.t. a subgroup G if Vg € G, O(g-S) =
p(g)O(S) for some representation p : G — GL(©), and f,4)9 = 7(g) fo-

Assume the operator satisfies permutation equivariance and that positional information
is supplied only through functions of pairwise differences or normalized coordinates.

Theorem 7 (Linear Scaling Normalization) LetS C GL(n) be a subgroup of invertible
matrices (e.g. all positive diagonal matrices, or a positive-definite multiplicative subgroup).
Suppose O computes from any sample set S an anchor p(S) € R™ and a scale matrix
M (S) € GL(n) (invertible), forms normalized coordinates

T = M(S)il(xi — u(5)),

and feeds only {(Zi,y;)} into an internal map O that returns normalized parameters 0. Let
the full returned parameter be 0 = (0, ,u(S) M(S)) and let the field be recovered by

If O depends only on the multiset {(@,yz)} (permutation-invariant) then O is equivariant
to the group Gs = {gap: A€ S, b € R"} with representation

p(gA,b) (51 K, M) = (5, A,u +0, AM)
Consequently f,g0(x) = folg~'x) and O(g- S) = p(g)O(S).

18



NEURAL FIELDS MEET ATTENTION

Proof Let S = {(z;,y;)} with anchor 1 and scale matrix M. For g = gap with A € S, the
transformed sample set S’ = g - S has points 2, = Az; +b. Compute its anchor and scale:

W =pu(S") = Ap+b, M' = M(S") = AM,

because for any linear-homogeneous scale statistic (centroid, covariance-based square-root,
RMS under a matrix norm), these transformations act affinely or linearly. Now the normal-
ized coordinates are

=M — ) = (AM) " (Az; + b — (Ap + b)) = M~ (2 — p) = .

Hence the internal map O receives identical normalized inputs on S and on S, so it returns
the same 6. Therefore O(S") = (0, 4/, M) equals p(g)O(S) by the formula above. Finally
check the field identity:

Fago(®) = [((AM) ™ @ —(Ap+b)) = f3(M 1 (A a—p)) = fo(A™ (z-b)) = (r(g)fo)(x).

This proves both the parameter- and function-level equivariance statements. |

Theorem 8 (Impossibility of Fixed Finite-Frequency Families) Let {¢y(z) = el“x)}

be a finite set of Fourier exponentials with distinct frequencies wy € R™. For a fixed matrix
A € GL(n) suppose there exists a linear map Ty : CK — CK such that for every ¢ € CK,

K

K
chgbk(Aaj) = Z(TAc)qu)k(x) for all x € R™.
k=1

k=1

Then the multisets {ATwi HS | and {wp }H< | must coincide. Consequently, unless the finite
frequency set is closed under the map AT, no such Ty exists. In particular, exact equivari-
ance to a nontrivial continuous subgroup of GL(n) is impossible for any fixed finite frequency
set.

Proof Expanding the premise gives

K

K
che (ATwpe Z Tac) L el @) Vo € R™.
k=1 k=1

Because the exponentials €{?%) with distinct frequencies 1 are linearly independent as
functions of z, the two finite sums above can agree for all x only if they use exactly the
same set of frequencies. Therefore the multisets

{ATwy, ..., ATwg} and  {wi,...,wk}

must match (counting multiplicity). If even one frequency A”wy, falls outside the original
set, the equality cannot hold for arbitrary c.

Since a finite set of frequencies cannot remain unchanged under a nontrivial continuum
of linear transformations, no fixed finite collection of exponentials can be exactly equivariant
to any nontrivial continuous subgroup of GL(n). [ |
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Corollary 9 This shows that no model using only a fized, finite set of Fourier or sinusoidal
features can achieve exact equivariance to general linear scalings, unless it either

1. keeps track of the full scaling matriz M(S) and normalizes accordingly, or

2. allows frequencies to be continuously reparameterized so that each transformed fre-
quency ATw can be matched to an appropriate index.

Theorem 10 (Continuous-Frequency Reparameterization) Let Q@ C R" be a mea-
surable set of admissible frequencies and consider the continuous superposition

f(x) = /Q e(w) €7 du(w),

with ¢ € L?(Y) and reference measure . For a subgroup S C GL(n), evact equivariance
under x — Ax for all A € S via coefficient reparameterization (i.e. existence of measurable
bijections o4 : 2 — § satisfying

(Tac)(w) = c(o3' (w))

) holds iff the mapping w — ATw sends Q to itself up to a p-preserving measurable change
of variables (that is, there exists a measurable bijection o4 with ATw = o4(w) for p-a.e.

w).
Proof (=). Assume such bijections o4 exist and preserve p under change of variables.
Then
f(Az) = /Qc(w) AT 4y (w) = /Qc(w) ei<ATw’x>du(w).
Let w' = 04(w) = ATw. Since 04 is measurable, bijective, and p-preserving,

f(Ax) = /Q (07! (@) €4 dpu() = / (Tuo) (W) &7 dpu().

Q
Thus the reparameterization Ty implements exact equivariance.

(«=). Conversely, suppose for each A there is a linear operator T4 such that

/ c(w) ei<AT“’x>d,u(w) = /(TAC)(w) ) dpy(w) for all ¢ and all z.
Q Q

To compare the two sides, take coefficient functions ¢ supported in a small neighborhood
of some wy € 2. Because exponentials with different frequencies are linearly independent
as functions of z, the expression on the left behaves like a single exponential with frequency
ATwq, while the expression on the right is a superposition over frequencies in © weighted
by T'sc.

For the two integrals to match for all such localized ¢ and all z, the frequency A”wq must
itself lie in  (for almost every wp), and there must be a unique corresponding frequency in
Q that T4 maps the mass of ¢ onto. This forces the map w +— ATw to define (up to sets of
measure zero) a measurable bijection o4 : Q — € and the operator T4 to act as

(Tac)(w) = e(oy (w))-

Thus exact equivariance requires, and is determined by, the existence of such o4 sending
ATw back into Q while preserving p. This proves the equivalence. |
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Appendix C. Softmax Attention Heads are Gradient Descent

C.1. Preliminaries

Fix n,m, N, K € N. Let S = {(zi,5:)}}Y; C R" x R™ be a finite dataset. Consider a model
family that is linear in a block of coefficients ¢ € RX:

K

fe(z) = ) e (),
k=1

where each basis @y, : R — R™ is (vector-)valued and we treat ¢, € R as scalar coefficients.
Define the squared-error loss

N
= %Z”yz fc xz

=1

Write the residuals 7;(c) := y; — fe(z;) € R™ and denote by

N
Be) = Goe(e) = = D (@uai), (e
=1

the gradient component for coefficient k (here (-,-)gm is the Euclidean inner product on
R™). All quantities below are evaluated at the current parameter ¢ (we drop the explicit
(¢) when unambiguous).

C.2. Attention Head Architecture

We analyze one attention head specialized to update the coefficient ¢;. For this head we
assume:

e Keys: for each datapoint ¢ we construct a key scalar
si = (i), Ti)Rm,

where ¥y : R™ — R™ is a (possibly equal to ®;) feature map used to form attention
logits. (Thus s; is a scalar logit per datapoint.)

e Values: for each datapoint ¢ we construct a value vector
v; = Yp(x;) € R™,
where T, : R™ — R™ is a feature map used as the value.

e Query: the head uses a fixed scalar query temperature factor 5 € R (often implemented
as = 1/7 where 7 is temperature). The attention weights are

eXp (B 32‘) '
it exp (Bs))

wi(B) =
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e The attention output is the (vector) aggregate
N
Or(B) = sz(ﬁ) v; € R™.
i=1

This is the standard dot-product softmax attention, but specialized so that logits depend
on an inner product between a residual r; and a per-head feature WUy (z;). This specialization
is what makes a connection to the gradient possible.

Theorem 11 (Exact Unnormalized Gradient Identity for Linear Attention) If for
all i we set s; = (Pr(z;), ;) and v; = Pr(x;) and define the unnormalized aggregate

N
Ok = E S; Vg,
i=1

then
N

O = =D (®x(wi)ri) @y (i)

i=1
and, in particular, the scalar gradient component satisfies

N

gk = _Z<q)k(l‘i)ari> = _<17 5>a

i=1

where s = (s1,...,s5)T and 1 = (1,...,1)T. Thus the unnormalized attention vector Oy,
1s precisely the coefficient-weighted combination of basis elements whose coefficients are the
negative of the gradient components projected onto per-datapoint contributions.

Proof This is an immediate rearrangement:

N N
O = Z SiU; = Z<(I)k(xi),ri> (I)k(xi)a
i=1 i=1

which is exactly the claimed expression. The scalar gradient gi is — ) (®x(z;),7:) by
direct differentiation of L(c), as given in the setup. [ |

Interpretation: without the softmax normalization the attention head directly forms the
per-datapoint inner-product-weighted sum of basis-vectors; this algebraically contains the
gradient components (indeed the scalar gradient is the sum of the per-datapoint logits used
here).

Theorem 12 (Softmax linearization & first-order gradient alignment) Lets; and

v; be as above and define w;(B) = exp(Bs;)/ >_; exp(Bs;) and Ok(B) = >, wi(B)vi. Denote
the empirical means

1 & 1 &
S = — Si, V= — Vj.
PR >
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Then for 3 in a neighborhood of 0 we have the Taylor expansion (component-wise in R™)

Ox(B) Z 5)v; + O(B2).

Consequently, if the value vectors are mean-centered, i.e. v =0, then to first order in B

B & o AN
= N; Zvi + 0(p?) = N;Sﬂ)i + 0(8%).

izl

If additionally Zf\il v; =0 (equivalently v = 0), we obtain

N
Ok(B) = Zizsm + 0(8%),
so the attention output is proportional (to first order in ) to the unnormalized attention
vector Y, s;v; which, by Theorem 11, encodes the gradient components.
Proof Standard Taylor expansion of the softmax weights about § = 0 yields
exp(Bsi) = 14 fs; + 35757 + O(8%),
and hence
N
= exp(Bs;) =N +B> s+ 387> s7+0(8).
Jj=1 J J
Using w;(B) = exp(Bsi)/Z(B), expand to first order:

S 2 _
wi8) = e s = (14 8l = 9)) + O,
7 °J

where 5§ = & Y ; 8- Multiply by v; and sum:

:lei(ﬁ)vi:szi+NZ —5 Uz+0(52)

=1 =1

This is the stated expansion. The corollary statements about centering follow by setting
v = 0 and simplifying the s term as shown. |

Appendix D. Linear Attention s Multiple Gradient Descent Steps

D.1. Preliminaries

Let N be the number of context samples and K the number of basis coordinates for a field
linear in coefficients. Assume scalar targets (vector-valued outputs are handled componen-

twise). Define:
o e ]RNXK, (I)i,k = gok(xi),

23



CHERUKURI LALA

the design matrix of basis evaluations at the N sample points, and
reRY, ri = Yi — fe(xi)

the residual vector w.r.t. current coefficients ¢ € RX. The squared-error loss is £(c) = 1|73,
and the (column) gradient vector with respect to c is

V.l = —®'reRK,

(Equivalently g := —V.L = ®"r denotes the vector of per-coordinate negative gradients.)
These notations agree with the single-head derivation in Theorem 3.2.
We consider a Transformer layer with H heads. For head h € {1,..., H} define:

e a query vector (or query projection that yields) ¢™ e RE which acts as a linear
selector on key vectors;

e key vectors for each datapoint i: K; € RX, here K; = CID;E (the i-th row of ® as a
column);

e values for each datapoint: V; € R equal to the scalar residual r; (or generally V; could
be vectors; we give the scalar case first).

We analyze two attention variants (per-head):
1. Linear (unnormalized) attention:

N

@(h) — (WK, o — Zwlgh)w
i=1
2. Softmax attention with temperature T > 0:
0 exp (74" K;) ) S0
wr) = 2T o) = Y wP ),

Zj:l €xp (;q Kj) i=1
Stack the H query vectors into a matrix Q := [q(l) q(H)] e REXH and collect the
per-head outputs into O := [OW ... ,OW]T ¢ R¥ for linear attention (and similarly

O(7) € R for softmax).

D.2. Exact Multi-Head Linear Attention
Theorem 13 (Exact Multi-Head Linear Attention) Under the setup above with val-

ues V; = r; and keys K; = <I>Z-T:, the H linear-attention head outputs satisfy the exact matrix
identity B

O =Q"er =Q'y,
where g :== ® 1 is the vector of per-coordinate negative gradients. In particular:

o IfQQ =1k and H = K, then 0= g and the K heads recover the full negative gradient
vector (coordinatewise).
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o If Q selects a subset of coordinates (rows of I ), the heads recover the corresponding
coordinate-wise negative gradients (block or coordinate GD).

e For general Q) the heads compute linear combinations of the gradient vector; applying
a linear readout R : R¥ — R¥ (e.g., R:= (Q")" left-inverse) yields a reconstructed
preconditioned gradient RO which can be used as an update for c.

Proof By definition of o),

Stacking the H heads yields
N

But with K; = <I>T: and V; = r; we have ZZ (KiVi=®Tr =g, s0 0= Q'g, as claimed.
The listed corollaries are immediate linear-algebra consequences: choosing () = I returns
g, selecting rows of the identity returns coordinate subsets, and general () returns linear

combinations that can be inverted (when @ has full column rank) to reconstruct directions
in RE, [

D.3. First-Order Approximation of Softmax Attention

We now show that the same multi-head picture holds for standard softmax attention in the
high-temperature or small-logit regime, under mild centering of values or learned baselines.

Theorem 14 (Multi-Head Softmax ~ Multi-Head Linear Attention) Assume for

each head h the per-sample logits sl(-h)

= qWTK; are uniformly bounded, and denote their
mean 51 = %ZZ Sgh). Let values satisfy the centering condition V := %Zf\iﬂ/z =
0 (implementable by a mean-centering layer or residual baseline). Then for temperature
parameter T > 0 large enough the softmazx head outputs admit the expansion

N

Zv b S -5 v+ RO,

=1

with the leading-order term % >; Vi vanishing under V =0. Hence

oM (r) = 1

MTeT (h)
NTq 'r + R (1),

and stacking heads gives
1
O(r) = mQT@W + R(7).
Moreover, the remainder satisfies the uniform bound

C(N, B, R)

IRz < R

T
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for a constant C' depending only on N, and uniform bounds \sgh)\ < B, |V;| < R. Thus
by taking T sufficiently large (or equivalently by scaling logits down) the multi-head softmax
outputs approximate the scaled linear-attention gradient combination arbitrarily well; the
scale factor 1/(NT) can be absorbed into an effective learning rate.

Proof For each head h perform a Taylor expansion of exp(s; (h) /7) about 1/7 = 0:
exp (%sgh)) =1+ %sgh) + #(sgh))Q +0(r73).

Summing over ¢ gives
h h -
Z(h Zexp %5 :N+%ZS§)+#Z(S§ ))2+O(T 3).
J J

Thus the softmax weight is
h
1+ Ls! )—i—%(s( )2 +O( %)
N1, s o v, ()2 + 0(r)

Dividing numerator and denominator by N and expanding to second order in 1/7 yields

w(7) =

1
W) = (14260 = 5M)) + 0,
uniformly in 4, h, where 5 =5 Z s Multlplymg by V; and summing over ¢ gives the
stated expansion for O (7 ) Under the centering V = 0 the N >, Vi term vanishes, and
using sgh) = q(h)TKZ- together with EZ K;V; = ®"r we obtain

o (1) = Nt
-

Stacking heads yields the matrix formula O(7) = 5-Q " ®Tr+R(7) with | R(7)[]2 = O(r7?).
A constructive derivation of an explicit constant in the O(7~2) remainder follows the exact

bounds in Appendix A.4, A.5; see in particular the explicit remainder bound and constant
derivation. |

q(h)TCDTr + 0(7_2).

Suppose each head h is followed by a linear readout R : R — RX (or all heads are
aggregated by a linear map R : R — RX). Let the effective coefficient update computed
by the layer be B

Ac = n-RO (linear-attention),

or for softmax

Ac = n-RO(1) =~ %RQT‘I’Tﬁ

with approximation error O(7~2). Choosing R = (Q")* and Q = I recovers the standard
gradient-descent step Ac = ng (up to the scaling factor), and more generally, RQ T acts as
a preconditioner on the gradient. Thus the multi-head layer computes (exactly for linear
attention, approximately for softmax) a sum of H gradient-like steps or, when combined, a
single gradient step.
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Temperature Scaling Validation

Dimension-Independent Convergence Rate Softmax - Uniform: O(t~2) Convergence
10° —=— 2D Field (d=32) 10° —— Empirical
== 3D Field (d=48) == Theory O(T7?)
10-1 == Theory O(t72) 107!

,_.
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Figure 5: Temperature scaling validation. (Left) Normalized MSE between softmax
and uniform attention for 2D and 3D sinusoidal fields decays at the predicted O(7~2) rate,
demonstrating dimension-independent convergence. (Right) Softmax attention itself con-
verges to the uniform distribution with the same O(772) scaling as temperature 7 increases.

Appendix E. Softmax Temperature Scaling

We analyze empirically Softmax Temperature Scaling and its effects.

(a) Attention—Gradient Convergence. We measure the squared norm difference

|V (Softmax) — V/(Linear)||? between the output of softmax attention at temperature
T and the exact linear-attention gradient operator. For small T', softmax deviates signif-
icantly; in the high-temperature regime (7' 2 30), experimental decay matches the pre-
dicted asymptotics, transitioning from O(T~1) to O(T~?) scaling. At T = 100, errors reach
~ 1077, approaching numerical precision.

(b) Temperature Scaling in 2D and 3D Fields. We compute the relative error be-
tween predicted and measured scaling factors for both 2D and 3D sinusoidal fields. Both
cases exhibit convergence consistent with theory, with the 3D field decaying slightly faster
at large T due to additional averaging across dimensions. A flat plateau at low T reflects
the expected non-asymptotic regime.

Appendix F. Extended Validation on Computer Vision Task

To further validate Theorem 3.1 on structured data, we extended our equivariance test
to MNIST digits represented as continuous fields. Each image is treated as a set of
(z,y, intensity) samples, and we applied controlled affine transformations (scaling and trans-
lation). The operator was trained for self-consistency on MNIST fields and evaluated under
equivariant transformation. As shown in Fig. 6, the reconstructions fg/(x) and fg(“T_b) are
nearly indistinguishable.

27



CHERUKURI LALA

MNIST Affine Equivariance Validation
Transformed Input f S'(x) Orlgmal Inverse-Transformed f_S((x-b)/a) Difference (MSE=0.0139+0.0072)

0.175
0.150
0.125
0.100
0.075
-0.05 005 0.050
-0.10 -0.10 0.025

Figure 6: Affine equivariance validation on MNIST-as-a-field. Left: fg/(z) from transformed
samples. Middle: fs(mab) from original samples with inverse transform. Right: absolute
difference, with mean squared error (MSE) reported.

Appendix G. Extended Validation on Physics Task

To further validate Theorem 3.1 in a physics-informed setting, we applied our affine equiv-
ariance test to solutions of the two-dimensional Poisson equation —Awu = f on the unit
square with zero Dirichlet boundary conditions. Right-hand sides f were generated as sums
of Gaussian bumps, and the PDE was solved on a 28 x 28 grid using a finite-difference
discretization and conjugate gradient solver. Each solution uw was represented as a set of
(z,y,u(x,y)) samples, which served as the input to the operator. The operator was meta-
trained to regress SIREN parameters from these sets, following the same normalization and
architectural assumptions used in earlier sections. We then applied controlled affine trans-
formations (scaling a and translation b) to the input coordinates, evaluated the operator on
both the transformed and original sets, and compared the resulting fields.

As shown in Fig. 7, the reconstructions fg (z) (from transformed samples) and fg(22)
(inverse-transformed from original samples) are visually nearly indistinguishable, with resid-
uals showing smooth, low-magnitude structure. These results confirm that the proposed
Transformer operator generalizes beyond vision datasets and retains its symmetry-respecting
behavior on physically meaningful continuous fields.

2D PDE Affine Equivariance Validation
Transformed Input f S'(x) Original Inverse-Transformed f S((x-b)/a) Difference (MSE=0.0262+0. 0361) 0.200

0.20
0.175
0.15
0.150
0.10
0.125
0.05 0.100
0.00
~0.05 0.075
-0.05 0.050
-0.10
-0.10 0.025
-0.15

Figure 7: Affine equivariance validation on Poisson PDE solutions. Left: fs/(x) from
transformed samples. Middle: fs( )from original samples with inverse transform. Right:
absolute difference, with mean squared error (MSE) reported.
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Appendix H. Code Availability

In an effort to open source our research and encourage scientific accessibility in the machine
learning field, we make our code public (https://github.com/KalChe/NFMA).
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