

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 A FAST AND SCALABLE EXTENDED HOYER PROJE- CTION FOR STRUCTURED NEURAL NETWORK SPARSITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep networks require sparsity mechanisms that are both scale-invariant and computationally efficient. Existing approaches based on the Hoyer score rely on non-convex projections, resulting in unstable heuristics and potential convergence issues.

In this paper, we introduce a new Cone Alignement Index (CAI), a convex constraint whose level sets form a Lorentz hypercone. This geometric structure enables the first Closed-Form Projection (CFP) onto such a cone, requiring only a single interpolation step and enjoying guaranteed convergence. We derive analytical expressions for: (i) computing the active set through a provably correct threshold rule, and (ii) performing the final projection using a closed-form interpolation coefficient.

Building on this result, we propose a fast bilevel projection method, consisting solely of successive Closed-Form Projection (CFP) algorithms, with guaranteed convergence and naturally inducing hardware-friendly column (or row)-wise sparsity.

Thanks to these Closed-Form Projection (CFP) algorithms, our method is up to 6.5 times faster than the original Hoyer projection on the vector. Our bilevel Closed-Form Projection (CFP) algorithm is 2r times faster than the HALS algorithm on matrices. Applied to transformer attention matrices on biomedical and NLP dataset (GLUE benchmark), it achieves up to 96% sparsity with negligible accuracy degradation, outperforming state-of-the-art “universal Big bird” masks.

Overall, this work provides a principled, convex, and scalable alternative to Hoyer-based sparsification, opening the door to energy-efficient LLMs with controllable structured sparsity.

1 STATE OF THE ART OF NEURAL NETWORK SPARSIFICATION

Modern deep neural networks (DNNs) achieve state-of-the-art performance across a wide range of tasks due to their substantial capacity, typically achieved through a huge number of trainable parameters Krizhevsky et al. (2012); He et al. (2016); Vaswani et al. (2017). However, this parameter abundance entails significant computational and memory requirements, which lead to a huge carbon footprint during training and inference. To address these challenges, a large literature has focused on neural network sparsification: the process of reducing the number of non-zero weights in a model. One of the earliest and most widely adopted approaches to induce sparsity in neural networks was the pruning method Alvarez & Salzmann (2016); Han et al. (2015); Frankle & Carbin (2019). Classical pruning methods citeSanh, RigL Evci et al. (2021), and Sparse GPT Frantar & Alistarh (2023) eliminate weights using magnitude-based or gradient-based heuristics. These approaches produce empirical sparsity but without geometric constraints. Advanced structured pruning methods Xia et al. (2024) Ashkboos et al. (2024), overcomes the inefficiency of classical pruning methods. The Least Absolute Shrinkage and Selection Operator (LASSO) Tibshirani (1996); Hastie et al. (2015) penalize the ℓ_1 -norm. The ℓ_0 norm, which directly counts the number of non-zero weights, offers perfect sparsity control and is scale-invariant but is non-differentiable Louizos et al. (2018). A key limitation of pruning methods, and ℓ_1 and ℓ_0 -induced sparsity is its unstructured nature, which tends to produce random zero-valued weights. A lot of modern hardware performs the multiply-add operation in a single instruction. This irregular pattern fails to translate into practical computational

speed-ups on these hardware accelerators and is incompatible with efficient parallel processing. To overcome the inefficiency of unstructured sparsity, research has turned toward structured sparsity methods, which aim to remove entire groups of parameters such as filters or neurons. Group LASSO and its variants introduce regularizers that enforce sparsity at the group level Yuan & Lin (2006); Kim & Xing (2010); Scardapane et al. (2017); Yoon & Hwang (2017); Simon et al. (2013); Wen et al. (2016); Ma et al. (2019); Alvarez & Salzmann (2016). Despite their improved hardware efficiency, these methods still suffer from the computational overhead associated with solving complex Lagrangian optimization problems Friedman et al. (2010); Mairal & Yu (2012).

An alternative to Lagrangian regularization is optimization under constraints using ℓ_1 projection methods. These methods directly enforce sparsity by projecting weight vectors onto norm balls, typically the ℓ_1 norm ball, using efficient algorithms Duchi et al. (2008); Condat (2016); Perez et al. (2019). ℓ_1 projection-based sparsification benefits from linear-time complexity, but is not scale invariant and does not induce structured sparsity. Of particular interest is the $\ell_{1,\infty}$ projection, which enforces structured sparsity by promoting group-wise shrinkage—e.g., setting entire columns of a weight matrix to zero. Recent work has proposed efficient algorithms for $\ell_{1,\infty}$ projection based on the Moreau proximal identity Moreau (1965); Bauschke & Combettes (2017); Condat et al. (2023) Bejar et al. (2021); Quattoni et al. (2009). However, the worst-case time complexity of these algorithms remains $\mathcal{O}(nm \log(nm))$, which may hinder their scalability to very large neural networks. A promising alternative is the Hoyer score, introduced in Hoyer (2004), which balances sparsity and scale invariance. It has been successfully applied in contexts such as blind deconvolution Repetti et al. (2015), non-negative least squares Esser et al. (2013) Gillis & Glineur (2012), neural network regularization Yang et al. (2020), Ohib et al. (2022), Thom et al. (2015) and biomedical applications Duan et al. (2019).

Large pretrained Transformer models such as BERT Devlin et al. (2019) and RoBERTa Liu et al. (2020) have defined the modern landscape of NLP. These networks are fully dense and employ a standard self-attention mechanism with quadratic complexity $\mathcal{O}(n^2)$ in sequence length n . Structured-sparse attention mechanisms have been explored in BigBird Zaheer et al. (2020b;a), and reformer Kitaev et al. (2020). These methods reduce complexity through architectural biases but do not solve a principled optimization problem.

1.1 CONTRIBUTION AND ORGANIZATION OF THIS WORK

In this work, we provide the following contributions: i) A new Cone Alignement Index (CAI) (referred as extended Hoyer score). ii) A Closed-Form Projection (CFP) algorithm with selection of the active set using a threshold which performs a single projection onto the cone (never used in machine learning to the best of our knowledge), iii) An extension to structured sparsity via a bilevel projection, enabling structured column-wise sparsity in neural networks. iv) An empirical benchmark on classification tasks, on Transformer architecture, demonstrating both accuracy performance and significant sparsity.

2 MATHEMATICAL PROPERTIES OF THE NEW CONE ALIGNEMENT INDEX (CAI)

2.1 A NEW CONE ALIGNEMENT INDEX (CAI)

Let define the *a Cone Alignement Index (CAI)* of a vector $\mathbf{x} \in \mathbb{R}^n$ as

$$H_e(\mathbf{x}) = \frac{(\sum_{i=1}^n x_i)^2}{\sum_{i=1}^n x_i^2} = \frac{(\mathbf{1}^\top \mathbf{x})^2}{\mathbf{x}^\top \mathbf{x}}, \quad (1)$$

where $\mathbf{1}$ denotes the all-ones vector in \mathbb{R}^n .

Lemma 2.1. *Geometric structure. The level sets of $H_e(\mathbf{x})$ define a family of second-order surfaces*

$$(\mathbf{1}^\top \mathbf{x})^2 = l \|\mathbf{x}\|_2^2, \quad (2)$$

which can be rewritten as

$$\langle \mathbf{u}, \mathbf{x} \rangle^2 = \frac{l}{n} \|\mathbf{x}\|_2^2.$$

with $\mathbf{u} = \mathbf{1}/\sqrt{n}$ the unit vector along the diagonal axis.

108 This equation corresponds to the boundary of a revolution hypercone with apex at the origin and
 109 axis along the diagonal direction $\mathbf{1} = (1, 1, \dots, 1)$ and aperture angle $\delta = \arccos(\sqrt{l/n})$. For
 110 $l \in [0, n]$, the quantity $H_e(\mathbf{x})$ measures how well \mathbf{x} is aligned with this diagonal axis: $H_e(\mathbf{x}) = n$
 111 if \mathbf{x} is collinear with $\mathbf{1}$, and $H_e(\mathbf{x}) = 0$ if \mathbf{x} is orthogonal to it. The interior of this cone is convex,
 112 while its boundary corresponds to a quadratic (Lorentz-type) cone.
 113

114 **Relation with the Hoyer score.** The Hoyer score $H(\mathbf{x})$ was originally defined as the square of
 115 the ratio between ℓ_1 and ℓ_2 norms of the vector \mathbf{x} Hoyer (2004) and update following Yang et al.
 116 (2020):

$$117 \quad H(\mathbf{x}) = \left(\frac{|\mathbf{x}|_1}{|\mathbf{x}|_2} \right)^2 \quad (3)$$

120 Unlike the original Hoyer ratio $\|\mathbf{x}\|_1/\|\mathbf{x}\|_2$, which is non-convex, the Cone Alignment Index (CAI)
 121 $H_e(\mathbf{x})$ leads to convex cone level sets, making it more suitable for optimization and projection-based
 122 algorithms.

123 **Relation with GSP constraint.** The GSP constraint (Group sparse Projection) following the defi-
 124 nition Ohib et al. (2022) is given by :

$$126 \quad GSP(\mathbf{x}) = \left(\sum_{i=1}^r \frac{\sqrt{n_i} - |x_i|_1}{\sqrt{n_i} - 1} \right) \quad (4)$$

129 We emphasize that this GSP constraint is mathematically different from our Cone Alignment Index
 130 (CAI) without *second-order (Lorentz) revolution hypercone geometry*.
 131

Property	Cone Alignment Index (CAI)	Hoyer	GSP
Convex Lorentz Cone geometry	Yes	No	No
Ratio norm constraint	No	Yes	Yes
Iterative algorithm	No (Closed-Form Projection (CFP))	Yes	Yes

132 Table 1: Comparison between Cone Alignment Index (CAI) projection, the Hoyer projection and
 133 the GSP projection.

134 **Lemma 2.2.** *H_e is scale-invariant, as a direct consequence of the definition of the CAI.*

135 This scale-invariance property yields the following lemma:

136 **Lemma 2.3.** *The projection \mathbf{x} of a point \mathbf{y} onto \mathcal{H}_e satisfies*

$$137 \quad \langle \mathbf{x}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle \iff \|\mathbf{x}\|_2 = \sqrt{\langle \mathbf{x}, \mathbf{y} \rangle}. \quad (5)$$

138 As a consequence, once the line containing the projection point is known, the optimal norm of \mathbf{x} can
 139 be directly computed. Substituting this relation into the objective yields

$$140 \quad \|\mathbf{x} - \mathbf{y}\|_2^2 = \|\mathbf{y}\|_2^2 - \langle \mathbf{x}, \mathbf{y} \rangle \quad (6)$$

141 which shows that the objective is minimized when $\langle \mathbf{x}, \mathbf{y} \rangle$ is maximized, i.e., when the angle
 142 between \mathbf{x} and \mathbf{y} is minimized.

143 3 CONE ALIGNMENT INDEX (CAI) PROJECTION

144 3.1 ITERATIVE HYPERCONE PROJECTION ALGORITHM

145 Since the Cone Alignment Index (CAI) cone is a convex (Lorentz) cone, projection onto it is rela-
 146 tively straightforward (convex optimization). We adopt the classical interpolation:

$$147 \quad \mathbf{x} = \lambda \mathbf{y} + (1 - \lambda) \mathbf{d}. \quad (7)$$

148 Substituting this expression into the Cone Alignment Index (CAI) yields the following quadratic
 149 equation in λ :

$$150 \quad a\lambda^2 + b\lambda + c = 0 \quad (8)$$

162 with coefficients

$$\begin{aligned} a &= \ell_1^2 - l\ell_2^2 + \rho(n-l)(n\rho - 2\ell_1), \\ b &= 2\rho(n-l)(\ell_1 - n\rho), \\ c &= n\rho^2(n-l), \end{aligned} \tag{9}$$

167 where $\mathbf{d} = (\rho, \rho, \dots, \rho)$ and ℓ_i denotes the ℓ_i -norm of \mathbf{y} . This quadratic equation always admits
 168 two real solutions, except in the degenerate case, where \mathbf{y} lies exactly on the hypercone axis. Proofs
 169 are provided in supplementary material (appendix).

170 **Choosing an Efficient Value for \mathbf{d}** Selecting \mathbf{d} such that $\|\mathbf{d}\|_1 = \|\mathbf{y}\|_1$ yields a simplified
 171 quadratic equation, since the coefficient b vanishes:

$$a = l \left(\frac{\ell_1^2}{n} - \ell_2^2 \right), \quad b = 0, \quad c = \ell_1^2 \left(1 - \frac{l}{n} \right). \tag{10}$$

175 This leads to the following Closed-Form Projection (CFP) solution for λ :

$$\lambda = \sqrt{\frac{\ell_1^2 \left(\frac{l}{n} - 1 \right)}{l \left(\frac{\ell_1^2}{n} - \ell_2^2 \right)}} = \sqrt{\frac{H(\mathbf{y})(n-l)}{l(n-H(\mathbf{y}))}}. \tag{11}$$

182 **Iterative Cone Alignment Index (CAI) Projection** Based on these lemmas, we propose the
 183 following iterative algorithm: Ensure all components of \mathbf{y} are nonnegative. i) Compute the projection
 184 of \mathbf{y} onto \mathcal{H}_e . ii) Compute the projection onto \mathbb{R}_+^n . iii) Iterate between these two projections until
 185 the projection onto \mathcal{H}_e lies inside \mathbb{R}_+^n , and therefore belongs to \mathcal{H}_s .

186 Finally, restore the original signs of \mathbf{y} and rescale to satisfy relation 5. Following Remark 2.2, the
 187 generating line can be obtained by considering two points lying on the diametral hyperplane that
 188 contains \mathbf{y} and computing their intersection with \mathcal{H}_e . In practice, we approximate this step using
 189 interpolation (Equation 7) with \mathbf{y} and \mathbf{d} , where \mathbf{d} lies on the axis of the revolution hypercone. In our
 190 implementation, we enforce $\|\mathbf{d}\|_1 = \|\mathbf{y}\|_1$.

Algorithm 1 Iterative Hypercone Projection Algorithm

```

193 Input:  $\mathbf{y}, l$ 
194  $\mathbf{x}_i \leftarrow |\mathbf{y}_i|, \forall i \in [1, \dots, n]$ 
195 while  $H(\mathbf{x}) > l$  do
196    $\nu \leftarrow \ell_0(\mathbf{x})$  (hyperplane dimension)
197    $\mathbf{d} \leftarrow \left( \frac{\ell_1}{\nu} \text{ if } \mathbf{x}_j \neq 0 \text{ else } 0 \quad \forall j \in [1, \dots, n] \right)$ 
198    $\lambda \leftarrow \sqrt{\frac{H(\mathbf{x})(\nu-l)}{l(\nu-H(\mathbf{x}))}}$ 
199    $\mathbf{x} \leftarrow \lambda\mathbf{x} + (1-\lambda)\mathbf{d}$ 
200    $\mathbf{x}_i \leftarrow \max(0, \mathbf{x}_i), \forall i \in [1, \dots, n]$ 
201 end while
202  $\mathbf{x}_i \leftarrow \mathbf{x}_i \times \text{sign}(\mathbf{y}_i), \forall i \in [1, \dots, n]$  (restore sign)
203  $\mathbf{x} \leftarrow \mathbf{x} \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle}$  (normalize using relation 5)
204 Output:  $\mathbf{x}$ 
  
```

207 where λ is the interpolation coefficient.

209 **3.2 A CLOSED-FORM PROJECTION (CFP) ALGORITHM PERFORMING A SINGLE PROJECTION
 210 ONTO THE LORENTZ HYPERCONE**

212 The main drawback with this iterative algorithm is its computational cost and the potential convergence issue. Thus, we propose the following Closed-Form Projection (CFP) algorithm.

214 **Lemma 3.1.** *Using Equation 7, the following condition holds:*

$$\mathbf{x}_i \geq 0 \quad \Rightarrow \quad \lambda(\mathbf{y}_i - \rho) + \rho \geq 0. \tag{12}$$

216 Then, from Equation 12, we obtain the following threshold: any component y_i smaller than α will
 217 be projected to zero.

$$\boxed{\begin{aligned} y_i &\geq \frac{\lambda - 1}{\lambda} \frac{\ell_1}{n} = \alpha \\ \alpha &= n^{-1} \ell_1 \left(1 - \sqrt{\frac{l(n-H(\mathbf{y}))}{H(\mathbf{y})(n-l)}} \right). \end{aligned}} \quad (13)$$

236 Thanks to the closed-form of Equation 13, we can identify which components of \mathbf{y} must be set to
 237 zero without explicitly computing the projection onto the hypercone \mathcal{H}_e . Consequently, the pro-
 238 jection is required only once, at the final step, since every point lying in the plane generated by
 239 the hypercone axis and the point \mathbf{y} converges to the same generating line. Based on these lemmas,
 240 we propose the following procedure: i) Ensure all components of \mathbf{y} are nonnegative. ii) Determine
 241 the active set using the closed form threshold (Equation 13). iii) Compute the projection using one
 242 interpolation using the closed-form of λ

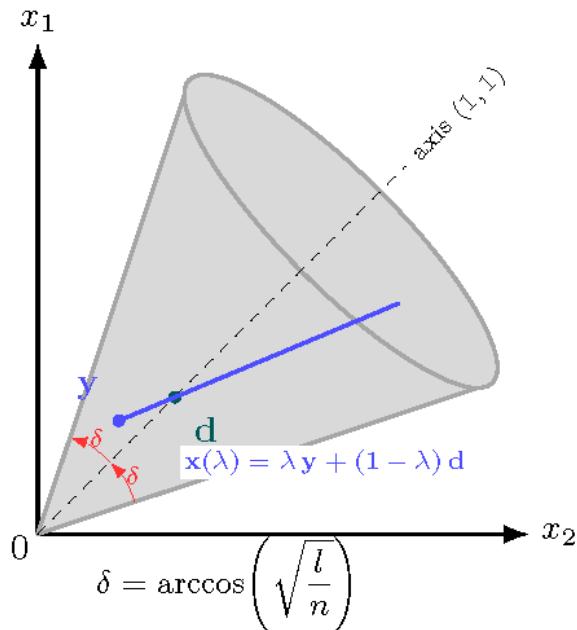


Figure 1: 2D illustration of the interpolation

270 **Algorithm 2** A Closed-Form Projection (CFP) algorithm performing a single projection onto the
 271 Lorentz Hypercone

272 **Input:** \mathbf{y}, l
 273 $x_i \leftarrow |\mathbf{y}_i|, \forall i \in [1, \dots, n]$
 274 $\alpha \leftarrow 0$
 275 $\nu \leftarrow \ell_0(\mathbf{x}) + 1$
 276 **while** $\nu \neq \ell_0(\mathbf{x})$ **do**
 277 $\nu \leftarrow \ell_0(\mathbf{x})$ (*hyperplane dimension*)
 278 $\alpha \leftarrow \nu^{-1} \ell_1 \left(1 - \sqrt{\frac{l(\nu - H(\mathbf{x}))}{H(\mathbf{x})(\nu - l)}} \right)$
 279 $\mathbf{x} \leftarrow (\mathbf{x}_i \text{ if } \mathbf{x}_i \geq \alpha \text{ else } 0 \quad \forall i \in [1, \dots, n])$
 280 **end while**
 281 $\lambda \leftarrow \frac{1}{1 - \frac{\alpha \nu}{\ell_1}}$ (*recompute λ*)
 282 $\mathbf{d} \leftarrow \left(\frac{\ell_1}{\nu} \text{ if } \mathbf{x}_j \neq 0 \text{ else } 0 \quad \forall j \in [1, \dots, n] \right)$
 283 $\mathbf{x} \leftarrow \lambda \mathbf{x} + (1 - \lambda) \mathbf{d}$
 284 $\mathbf{x}_i \leftarrow \mathbf{x}_i \times \text{sign}(\mathbf{y}_i), \forall i \in [1, \dots, n]$ (*restore signs*)
 285 $\mathbf{x} \leftarrow \mathbf{x} \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle}$ (*normalize using relation 5*)
 286 **Output:** \mathbf{x}

290 where λ is the interpolation coefficient, α is the threshold and ν is the active set size.

291 The while loop in this algorithm simply determines the number of components that must be set to
 292 zero. The key difference with the iterative algorithm is that the fast algorithm requires only one
 293 interpolation step, which guaranteed convergence.

294 **Theorem 3.2** (Finite-time convergence of the active set selection). *Given a threshold $\alpha \geq 0$, we
 295 define the hard-thresholding operator $T_\alpha : \mathbb{R}_+^n \rightarrow \mathbb{R}_+^n$ by*

$$297 \quad (T_\alpha(\mathbf{x}))_i = \begin{cases} x_i, & \text{if } x_i \geq \alpha, \\ 0, & \text{otherwise,} \end{cases} \quad i = 1, \dots, n. \quad (14)$$

300 The fixed-point equation

$$301 \quad \mathbf{x} = T_{\alpha(\mathbf{x})}(\mathbf{x}) \quad (15)$$

302 captures the idea that the support of \mathbf{x} and the threshold $\alpha(\mathbf{x})$ must be mutually consistent: the
 303 entries below the threshold are zeroed out, and the threshold itself is computed from the nonzero
 304 entries only. The iterative loop for computing α converges in at most n iterations to a fixed point
 305 of equation 15. More precisely, there exists $K \leq n$ such that

$$306 \quad \boxed{\begin{aligned} \mathbf{x}^{(K+1)} &= \mathbf{x}^{(K)}, \\ 307 \quad \mathbf{x}^{(K)} &= T_{\alpha(\mathbf{x}^{(K)})}(\mathbf{x}^{(K)}). \end{aligned}} \quad (16)$$

3.3 BILEVEL CONE ALIGNMENT INDEX (CAI) PROJECTION

313 Let define the ℓ_∞ norm of a vector \mathbf{y} is

$$314 \quad \ell_\infty(\mathbf{y}) = \max_{i=1, \dots, n} y_i \quad (17)$$

316 The $\ell_{1,\infty}$ projection enforces structured sparsity by promoting group-wise shrinkage, setting entire
 317 columns of a weight matrix to zero. This property significantly enhances computational efficiency.
 318 However, since the Hoyer score is not a norm, we cannot derive an efficient algorithm for $\ell_{H,\infty}$
 319 projection based on the Moreau proximal identity Moreau (1965); Bauschke & Combettes (2017);
 320 Bejar et al. (2021). In this paper, we propose an alternative based on a bilevel method Zhang et al.
 321 (2022; 2024b); Barlaud et al. (2024). Specifically, we propose a bilevel $\ell_{H,\infty}$ -projection. Let \mathbf{Y} be
 322 a matrix with n rows and m columns, and let $\mathbf{y}_1, \dots, \mathbf{y}_n$ denote its column vectors. Let define the
 323 row vector composed of the infinity norms of the columns of \mathbf{Y} .

$$324 \quad \mathbf{v}_\infty = (\|\mathbf{y}_1\|_\infty, \dots, \|\mathbf{y}_n\|_\infty), \quad (18)$$

324 The bilevel projection optimization problem is then defined as:
 325

$$\begin{aligned}
 326 \quad & BP_l^{H,\infty}(\mathbf{Y}) = \{\mathbf{x} \mid \forall j, \\
 327 \quad & \mathbf{x}_j = \arg \min_{\mathbf{x}} \|\mathbf{x} - \mathbf{y}_j\|_2 \quad \text{s.t. } P^\infty(\mathbf{x}_j) < u_j\}, \\
 328 \quad & \text{where } \hat{u} \in \arg \min_u \|\mathbf{u} - \mathbf{v}_\infty\|_2 \quad \text{s.t. } P^H(u) < l.
 329 \\
 330
 \end{aligned} \tag{19}$$

331 A possible implementation is provided below:
 332

333 **Algorithm 3** Bilevel $\ell_{H,\infty}$ Projection ($BP_\eta^{H,\infty}(\mathbf{Y})$)

335 **Input:** \mathbf{Y}, η
 336 $u \leftarrow P_l^H(\|\mathbf{y}_1\|_\infty, \dots, \|\mathbf{y}_n\|_\infty)$
 337 **for** $j \in [1, \dots, n]$ **do**
 338 $\mathbf{x}_j \leftarrow P_{u_j}^\infty(\mathbf{y}_j)$
 339 **end for**
 340 **Output:** \mathbf{x}

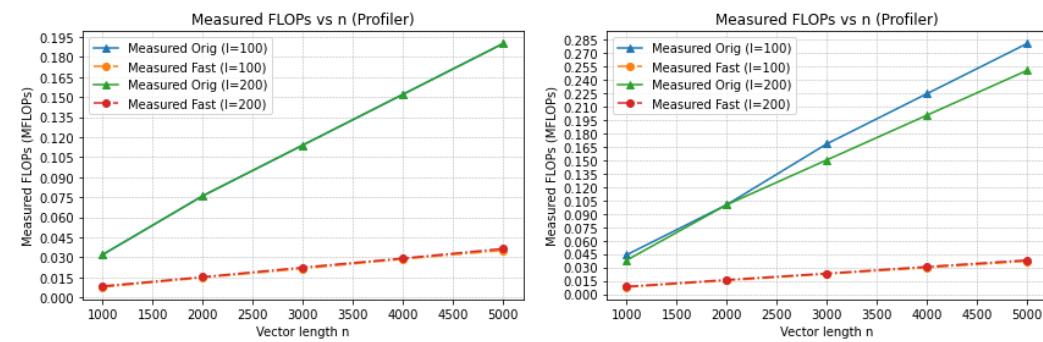
341
 342 Note that the Closed-form projection and the ℓ_∞ projection are closed-form algorithms, which guar-
 343 anteed convergence of the bilevel algorithm.
 344

345
 346 **4 EXPERIMENTAL RESULTS**

347
 348 **4.1 BENCHMARK OF THE FAST CLOSED-FORM PROJECTION**

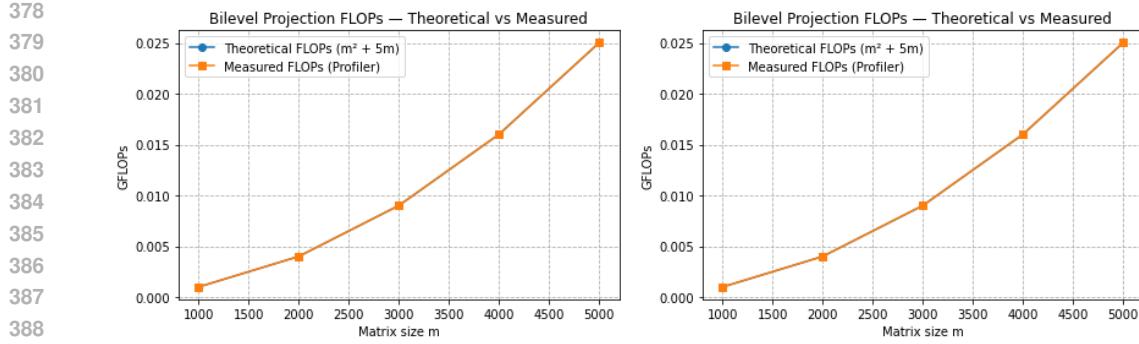
350 For the implementation of the original iterative Hoyer projection, we use the efficient projection onto
 351 the ℓ_1 ball initially proposed in Duchi et al. (2008) and later corrected in Condat (2016). Although
 352 the empirical computational cost of this projection is $\mathcal{O}(m)$, no theoretical proof of this complexity
 353 currently exists.

354 We use the torch.Profiler which counts operations at the PyTorch level, not at the hardware level. It
 355 tracks the computational graph and sums up flops based on the operations executed in the forward
 356 pass. As long as the code and inputs are identical, the count should be consistent across devices. Our
 357 code (available in supplementary material) reports the same number of flops (floating-point operations)
 358 across different GPUs such as NVIDIA or CPU such as Apple M3 or Intel, assuming the same
 359 input data, algorithm, and PyTorch version. Based on this metric, Figure 2 shows that the Closed-
 360 Form Projection (CFP) fast algorithm has a complexity Km with $K \approx 6$ and is approximately 6.5
 361 times faster than the original Hoyer projection (depending slightly on the data distribution).

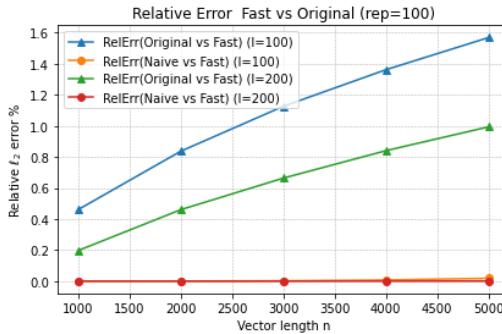


373
 374 Figure 2: Comparison of two algorithms CFP versus original: Flops Left Gaussian; Right Uniform
 375

376 For an $m \times m$ attention matrix, the complexity of the bilevel algorithm is $K*m$ for the projection +
 377 $m*(m-1)$ for calculating the norm of each column (or row) and 1 flop for the clamp for each column.
 Therefore, the total flops = $m(m - 1) + Km + m$ (with $K=6$), or approximately $\approx m^2$ flops.

389
390 Figure 3: computational cost of the bilevel algorithm: Flops Left Gaussian; Right Uniform
391

392 The figure 3 shows the perfect match between theoretical and measured flops of our bilevel algorithm.
 393 The computational cost for the HALS algorithm Gillis & Glineur (2012) for an $m \times m$ attention
 394 matrix is total flops = $r(2m^2 + 4mr + m)$ flops, where r is the rank of the matrix Gillis & Glineur
 395 (2012), thus approximately $\approx 2rm^2$ flops. Therefore, our bilevel algorithm is $2r$ times faster than
 396 the HALS algorithm. A-HALS is faster than HALS in practice, but since even the first iteration
 397 of A-HALS (which is the same as the first iteration of HALS) is already more expensive than our
 398 bilevel projection (even with $r=1$ or $r=2$), A-HALS remains less efficient than our CFP.
 399

411
412 Figure 4: Comparison of two algorithms CFP versus original: Relative norm comparison of the
413 solutions

414 As illustrated in Figure 4, the relative norm comparison of the solution of our algorithm versus the
 415 original shows that solutions are slightly different (The original constraint is a ratio of norms while
 416 it is not for the Cone Alignment Index (CAI) constraint).
 417

418 4.2 CONSTRAINT OPTIMIZATION OF ATTENTION MATRICES IN TRANSFORMERS
419

420 Let $\mathbf{W} \in \mathbb{R}^{m \times m}$ denote the attention matrix, where m is the number of tokens. Let $\mathbf{z} \in \mathbb{R}^{m \times 1}$
 421 represent the true labels, and \mathbf{z}^* the estimated labels obtained from a soft max classifier. To sparsify
 422 the weights \mathbf{W} of the attention matrix, we employ the bilevel projection method $BP^{H,\infty}$ as a
 423 constraint to enforce structured sparsity in the model. The global optimization criterion is defined
 424 as:

$$425 \quad \underset{\mathbf{W}}{\text{minimize}} \quad \phi(\mathbf{z}, \mathbf{z}^*) \quad \text{subject to} \quad BP^{H,\infty}(\mathbf{W}) \leq l, \quad (20)$$

426 where $\phi(\mathbf{z}, \mathbf{z}^*)$ is the cross-entropy loss.
 427

428 For minimizing this criterion, we follow the work developed by Frankle & Carbin (2019) who pro-
 429 posed a double descent masked gradient algorithm, as follows: after training a network, set all
 430 weights smaller than some threshold to zero, rewind the rest of the weights to their initial config-
 431 uration, and then retrain the network from this starting configuration but keeping the zero weights
 frozen (untrained). We replace the thresholding by our bilevel projection.

432 4.3 SPARSIFICATION OF ATTENTION MATRICES IN TRANSFORMER ARCHITECTURES
433

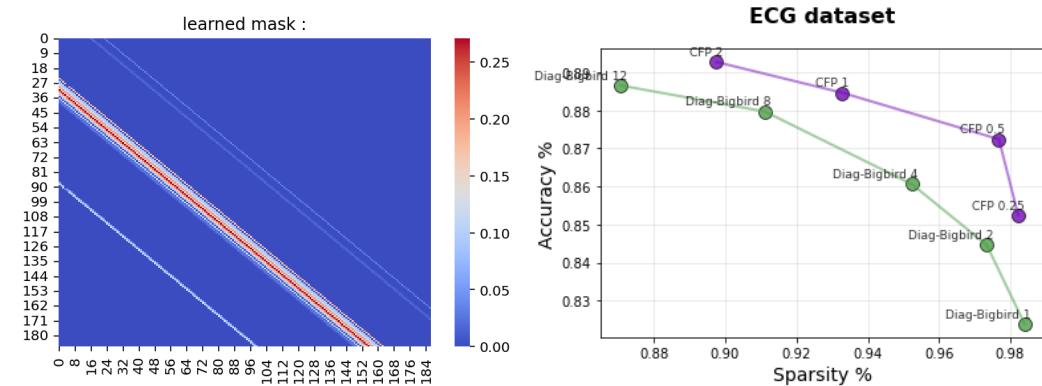
434 We implemented our classification method using the PyTorch framework for the model, optimizer,
435 schedulers and loss functions. We chose the ADAM optimizer Kingma & Ba (2015), as the standard
436 optimizer in PyTorch. We use the smooth SiLU activation function.

437 Generative Pre-trained Transformers (GPT) are a class of large language models (LLMs) that have
438 recently attracted significant attention due to their ability to perform a wide range of natural lan-
439 guage processing tasks. However, transformer architectures entail substantial computational costs
440 and carbon footprints Strubell et al. (2019); Faiz et al. (2024). This motivates the exploration of
441 sparsity as a strategy to design more efficient models. In this context, we apply our Fast Extended
442 Hoyer projection to the sparsification of attention matrices in transformer architectures Vaswani et al.
443 (2017), with the aim of reducing computational cost. Specifically, we compare our learned diagonal
444 mask, obtained via bilevel projection, against the uniform diagonal mask of Big bird Zaheer et al.
445 (2020b;a) which performs consistently well overall Tay et al. (2021).

446 The classification framework is implemented in PyTorch, including the model, optimizer, sched-
447 ulers, and loss functions. For all sparsity levels and both datasets, we set the number of training
448 epochs to 15, the batch size to 32 and the learning rate to 2×10^{-5} .

449 4.3.1 EXPERIMENT ON A BIOMEDICAL DATASET: ECG
450

451 There are now requirements for classification and interpretation in biomedical applications, such as
452 Single-cell Chen et al. (2023) and ECG for diagnosis of Heart failure, which is a syndrome with
453 complex clinical manifestations Wagner et al. (2020). In this paper, we report results on the Physio
454 Net ECG dataset Goldberger et al. (2000). The challenge of the PTB Diagnostic ECG Database
455 is formulated into a binary classification task with 10,505 abnormal and 4,045 normal ECG. The
456 signals correspond to electrocardiogram (ECG) shapes of heartbeats for the normal case and the
457 abnormal cases affected by different arrhythmias and myocardial infarction. These signals are pre-
458 processed and segmented, with each segment corresponding to a heartbeat with 187 features.

473 Figure 5: ECG dataset. BigBird versus bilevel $\ell_{H,\infty}$: sparsity–accuracy trade-off.
474

	Baseline	Diagonal BigBird	Diagonal $\ell_{1,\infty}$
Sparsity (%)	0	97.34	97.11
Accuracy (%)	89.44	84.46	87.04

480 Table 2: ECG dataset. Comparison of Big bird, and bilevel $\ell_{H,\infty}$: sparsity–accuracy trade-off.
481

482 Figure 5 (Left) shows the learned mask obtained with our method; (Right) illustrates that the ac-
483 curacy curve as a function of sparsity. Our bilevel $\ell_{H,\infty}$ projection outperforms the diagonal Big
484 bird method. As shown in Table 2, for the same sparsity (97%), our learned mask with the bilevel
485 method outperforms the diagonal Bigbird by 3% in accuracy.

486 4.3.2 EXPERIMENT ON A NATURAL LANGUAGE PROCESSING (NLP) TASK
487488 Specifically, we apply our CFP projection to a pretrained transformer-based model Devlin et al.
489 (2019).490 We report the accuracy–sparsity trade-off on the GLUE benchmark, focusing on the single-sentence
491 classification task SST-2 Socher et al. (2013). The SST-2 dataset contains approximately 67,000
492 samples.503
504 Figure 6: SST-2 dataset. Left: Learned mask using our method. Right: Bigbird versus bilevel $\ell_{1,\infty}$
505 and $\ell_{H,\infty}$: sparsity–accuracy trade-off.
506510 Figure 6 (Left) shows the learned mask obtained with our method on the second layer of BERT
511 model. Figure 6 (Right) illustrates that the accuracy curve as a function of sparsity is very flat for
512 the CFP projection, while it decreases rapidly for Diagonal Big bird.
513514
515

	Baseline	Diagonal Bigbird 2	MGPP	Diagonal $\ell_{H,\infty}$
Sparsity (%)	0	92.33	90	96.11
Accuracy (%)	92.7	91.13	90.3	92.5

516 Table 3: SST-2 dataset. Comparison of methods for the BERT model: Bigbird, MGPP, and bilevel
517 Hoyer: sparsity–accuracy trade-off.
518521 Table 3 shows that our learned mask with the bilevel method outperforms the diagonal Bigbird
522 mask method by achieving 30% higher sparsity. Our method achieves 96% sparsity with negligible
523 performance degradation of the baseline (full attention matrix). For comparison, we include in table
524 3 the best results reported in Zhang et al. (2024a).
525526 5 DISCUSSION AND CONCLUSION
527528 While pretrained models such as BERT and RoBERTa are fully dense Transformers, some later
529 architectures (e.g., BigBird, Longformer, Reformer) introduce sparse attention mechanisms.
530 However, these models rely on predefined structural masks or heuristic approximations rather than
531 mathematically-grounded sparsity.
532533 In contrast, our method introduces a new Cone Alignement Index (CAI), a convex constraint whose
534 level sets form a Lorentz hypercone.
535536 and the first closed-form projection algorithm requiring a single interpolation operation, with
537 guaranteed convergence and linear complexity. In contrast, our method performs a principled,
538 convex, bilevel projection that analytically determines the active attention support, yielding sparse
539 Transformers with full interpretability and guaranteed convergence.540 Our method achieves up to 96% attention sparsity with negligible accuracy loss NLP glue dataset
541 and outperforming state of the art “universal” diagonal Big Bird masks.
542

540 REFERENCES
541

542 Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. In
543 *Advances in Neural Information Processing Systems*, pp. 2270–2278, 2016.

544 Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefer, and James
545 Hensman. Slicegept: Compress large language models by deleting rows and columns. *International
546 Conference on Learning Representations*, 2024.

547 Michel Barlaud, Guillaume Perez, and Jean-Paul Marmorat. A new linear time bi-level $\ell_{1,\infty}$
548 projection ; application to the sparsification of auto-encoders neural networks. *arXiv, CS.LG*,
549 2407.16293, 2024.

550 H. H. Bauschke and P. L. Combettes. *Convex Analysis and Monotone Operator Theory in Hilbert
551 Spaces*. Springer, New York, 2nd edition, 2017.

552 Benjamin Bejar, Ivan Dokmanić, and Rene Vidal. The fastest $\ell_{1,\infty}$ prox in the West. *IEEE transac-
553 tions on pattern analysis and machine intelligence*, 44(7):3858–3869, 2021.

554 J Chen, H Xu, W Tao, Z Chen, Y Zhao, and J. Han. Transformer for one stop interpretable cell type
555 annotation. *Nature Commun.*, 2023.

556 L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi. Proximal splitting algorithms for convex
557 optimization: A tour of recent advances, with new twists. *SIAM Review*, 65(2):375–435, May
558 2023.

559 Laurent Condat. Fast projection onto the simplex and the l_1 ball. *Mathematical Programming Series
560 A*, 158(1):575–585, 2016.

561 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
562 bidirectional transformers for language understanding. *Proceedings of the 2019 Conference of
563 the North American Chapter of the Association for Computational Linguistics: Human Language
564 Technologies, Volume 1 (Long and Short Papers)*, 2019.

565 Kuaikuai Duan, Rogers F. Silva, Jiayu Chen, Dongdong Lin, Vince D. Calhoun, and Jingyu Liu.
566 Sparse infomax based on hoyer projection and its application to simulated structural mri and snp
567 data. In *2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)*, 2019.

568 J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l_1 -ball for
569 learning in high dimensions. In *Proceedings of the 25th international conference on Machine
570 learning*, pp. 272–279. ACM, 2008.

571 Ernie Esser, Yifei Lou, and Jack Xin. A method for finding structured sparse solutions to non-
572 negative least squares problems with applications. *arXiv, stat.ML*, 2013.

573 Utlu Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
574 Making all tickets winners, 2021. URL <https://arxiv.org/abs/1911.11134>.

575 Ahmad Faiz, Sotaro Kaneda, Ruhan Wang, Rita Osi, Prateek Sharma, Fan Chen, and Lei Jiang.
576 LLMCarbon: Modeling the end-to-end carbon footprint of large language models. In *ICLR 2024,
577 International Conference on Learning Representations*, 2024.

578 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
579 networks. *International Conference on Learning Representations*, 2019.

580 Elias Frantar and Dan Alistarh. Sparsegept: Massive language models can be accurately pruned in
581 one-shot, 2023.

582 Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization path for generalized linear
583 models via coordinate descent. *Journal of Statistical Software*, 33:1–122, 2010.

584 Nicolas Gillis and François Glineur. Accelerated multiplicative updates and hierarchical als algo-
585 rithms for nonnegative matrix factorization. *Neural Computation*, 24(4):1085–1105, 04 2012.

594 A Goldberger, L Amaral, L Glass, P Ivanov, and R Mark. Physiobank, physiotookit, and physionet:
 595 Components of a new research resource for complex physiologic signals. *RRID:SCR*, 2000.
 596

597 Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
 598 efficient neural network. In *Advances in neural information processing systems*, pp. 1135–1143,
 599 2015.

600 Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: The
 601 lasso and generalizations. *CRC Press*, 2015.
 602

603 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
 604 tion. *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.

605 Patrik O. Hoyer. Non-negative matrix factorization with sparseness constraints. *Journal of Machine*
 606 *Learning Research*, 2004.
 607

608 Seyoung Kim and Eric P. Xing. Tree-guided group lasso for multi-task regression with structured
 609 sparsity. In *Proceedings of the 27th International Conference on International Conference on*
 610 *Machine Learning*, ICML'10, pp. 543–550, 2010.

611 Durk Kingma and Jimmy Ba. a method for stochastic optimization. *International Conference on*
 612 *Learning Representations*, pp. 1–13, 2015.
 613

614 Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. *Interna-
 615 tional Conference on Learning Representations*, 2020.

616 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
 617 volutional neural networks. In *Advances in Neural Information Processing Systems*, volume 25,
 618 2012.

619 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 620 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
 621 approach. *International Conference on Learning Representations*, 2020.

622 Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through
 623 l_0 regularization. *ICLR,International Conference on Learning Representations*, 2018.

624 Rongrong Ma, Jianyu Miao, Lingfeng Niu, and Peng Zhang. Transformed ℓ_1 regularization for
 625 learning sparse deep neural networks. *arXiv preprint arXiv:1901.01021*, 2019.

626 J. Mairal and B. Yu. Complexity analysis of the lasso regularization path. In *Proceedings of the 29th*
 627 *International Conference on Machine Learning (ICML-12)*, pp. 353–360, 2012.

628 J.J Moreau. Proximité et dualité dans un espace hilbertien. *Bull. Soc.Math. France.*, 93, pp. 273–299,
 629 1965.

630 Riyasat Ohib, Nicolas Gillis, Niccolò Dalmasso, Sameena Shah, Vamsi K. Potluru, and Sergey
 631 Plis. Explicit group sparse projection with applications to deep learning and nmf. *International*
 632 *Conference on Learning Representations*, 2022.

633 Guillaume Perez, Michel Barlaud, Lionel Fillatre, and Jean-Charles Régis. A filtered bucket-
 634 clustering method for projection onto the simplex and the ℓ_1 -ball. *Mathematical Programming*,
 635 May 2019.

636 Ariadna Quattoni, Xavier Carreras, Michael Collins, and Trevor Darrell. An efficient projection
 637 for $\ell_{1,\infty}$ regularization. In *Proceedings of the 26th Annual International Conference on Machine*
 638 *Learning*, pp. 857–864, 2009.

639 Audrey Repetti, Mai Quyen Pham, Laurent Duval, Emilie Chouzenoux, and Jean-Christophe Pes-
 640 quet. Euclid in a taxicab: Sparse blind deconvolution with smoothed 11/12 regularization. *IEEE*
 641 *Signal Processing Letters*, 22(5), 2015.

642 Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse regu-
 643 larization for deep neural networks. *Neurocomputing*, 241:81–89, 2017.

648 N Simon, J Friedman, T Hastie, and R Tibshirani. A sparse-group lasso. *Journal of Computational
649 and Graphical Statistics*, 22(2):231–245, 2013.
650

651 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
652 and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
653 treebank. *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing*, 2013.
654

655 Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
656 learning in nlp. In *ACL*, 2019.
657

658 Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
659 Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
660 transformers. In *International Conference on Learning Representations*, 2021.
661

662 Markus Thom, Matthias Rapp, and Günther Palm. Efficient dictionary learning with sparseness-
663 enforcing projections. *International Journal of Computer Vision*, 114(2–3), 2015.
664

665 Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical
666 Society. Series B (Methodological)*, pp. 267–288, 1996.
667

668 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
669 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Infor-
670 mation Processing Systems*, 2017.
671

672 Patrick Wagner, Nils Strothoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima Lunze, Wojciech
673 Samek, and Tobias Schaeffter. PtB-XL, a large publicly available electrocardiography dataset.
674 *Scientific Data*, 2020.
675

676 Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
677 deep neural networks. In *Advances in neural information processing systems*, pp. 2074–2082,
678 2016.
679

680 Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
681 model pre-training via structured pruning, 2024.
682

683 Huanrui Yang, Wei Wen, and Hai Li. Deepoyer: Learning sparser neural network with differen-
684 tiable scale-invariant sparsity measures. *ICLR, International Conference on Learning Represen-
685 tations*, 2020.
686

687 Jaehong Yoon and Sung Ju Hwang. Combined group and exclusive sparsity for deep neural net-
688 works. In *Proceedings of the 34th International Conference on Machine Learning-Volume 70*, pp.
689 3958–3966. JMLR. org, 2017.
690

691 Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. *Journal
692 of the Royal Statistical Society: Series B (Statistical Methodology)*, 68(1):49–67, 2006.
693

694 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
695 Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: transformers
696 for longer sequences. In *Proceedings of the 34th International Conference on Neural Infor-
697 mation Processing Systems*, NIPS '20. Curran Associates Inc., 2020a.
698

699 Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
700 Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Trans-
701 formers for longer sequences. *Advances in Neural Information Processing Systems*, 2020b.
702

703 Mingxuan Zhang, Yan Sun, and Faming Liang. Magnitude pruning of large pretrained transformer
704 models with a mixture gaussian prior. *Journal of Data Science*, pp. 1–21, 11 2024a.
705

706 Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen, Mingyi Hong, Yanzhi Wang,
707 and Sijia Liu. Advancing model pruning via bi-level optimization. *Advances in Neural Infor-
708 mation Processing Systems*, 2022.
709

710 Yihua Zhang, Prashant Khanduri, Ioannis Tsaknakis, Yuguang Yao, Mingyi Hong, and Sijia Liu.
711 An introduction to bilevel optimization: Foundations and applications in signal processing and
712 machine learning. *IEEE Signal Processing Magazine*, 41(1):38–59, 2024b.
713

702 **A APPENDIX**
703704 **A.1 ANALYSIS OF THE QUADRATIC EQUATION**
705706 We consider the following parametric line:
707

708
$$\lambda \mathbf{y} + (1 - \lambda) \mathbf{d},$$

709 with $\mathbf{d} = (\rho, \rho, \dots, \rho)$, and the extended Hoyer surface $\mathcal{H}_{e,l}$ defined by
710

711
$$H_e(\mathbf{x}) = l.$$

712 Solving for the intersection, we obtain:
713

714
$$\begin{aligned} H_e(\lambda \mathbf{y} + (1 - \lambda) \mathbf{d}) &= l \\ \Leftrightarrow \frac{(\sum_i \lambda(y_i - \rho) + \rho)^2}{\sum_i (\lambda(y_i - \rho) + \rho)^2} &= l \\ \Leftrightarrow \frac{\lambda^2(\ell_1 - n\rho)^2 + n^2\rho^2 + 2\lambda n\rho(\ell_1 - n\rho)}{\lambda^2(\ell_2^2 + n\rho^2 - 2\rho\ell_1) + n\rho^2 + 2\rho\lambda(\ell_1 - n\rho)} &= l. \end{aligned} \tag{21}$$

718
719
720

721 After simplification, this leads to the following quadratic equation in λ :
722

723
$$a\lambda^2 + b\lambda + c = 0, \tag{22}$$

724 where the coefficients are given by:
725

726
$$\boxed{\begin{aligned} a &= \ell_1^2 - l\ell_2^2 + (n-l)(n\rho^2 - 2\rho\ell_1), \\ b &= 2(n-l)\rho(\ell_1 - n\rho), \\ c &= (n-l)n\rho^2. \end{aligned}} \tag{23}$$

729

730 Note that when $\ell_1 = n\rho$, i.e., when \mathbf{y} lies exactly on the cone axis, the linear term b vanishes and
732 the quadratic reduces to a simpler form.
733734 **Condition on \mathbf{d}** using this parameter λ with the points \mathbf{y} and \mathbf{d} provides the following condition
735 for ensuring a positive solution:
736

737
$$\begin{aligned} \rho &> n^{-1} \left(\ell_1 - \sqrt{\frac{l(n\ell_2^2 - l\ell_1^2)}{n-l}} \right) \\ \Leftrightarrow \|\mathbf{d}\|_1 &> \|\mathbf{y}\|_1 - \sqrt{\frac{l(n\|\mathbf{y}\|_2^2 - l\|\mathbf{y}\|_1^2)}{n-l}}. \end{aligned} \tag{24}$$

739
740

741 **Special case $b = 0$ (choosing $\|\mathbf{d}\|_1 = \|\mathbf{y}\|_1$).** If $\ell_1 = n\rho$ (i.e., $b = 0$), the quadratic reduces to
742 $a\lambda^2 + c = 0$ with
743

744
$$a = \ell_1^2 - l\ell_2^2, \quad c = n\rho^2(n-l) = \frac{\ell_1^2}{n}(n-l).$$

745 Solving for $\lambda > 0$ gives
746

747
$$\boxed{\lambda^* = \sqrt{\frac{c}{-a}} = \sqrt{\frac{\frac{\ell_1^2}{n}(n-l)}{l\ell_2^2 - \ell_1^2}} = \sqrt{\frac{H(\mathbf{y})(n-l)}{l(n-H(\mathbf{y}))}}},$$

748
749

750 where $H(\mathbf{y}) = (\|\mathbf{y}\|_1/\|\mathbf{y}\|_2)^2$. This is the closed form used in the one-shot projection when $\|\mathbf{d}\|_1 =$
752 $\|\mathbf{y}\|_1$.
753754 **Feasibility check.** After computing λ^* , form $x(\lambda^*) = \lambda^*\mathbf{y} + (1 - \lambda^*)\mathbf{d}$ and project to the
755 correct orthant/sign if needed, then rescale using the relation $\|x\|_2 = \sqrt{x \cdot y}$ to satisfy the projection
optimality condition.

756 A.2 CONVERGENCE OF THE FAST THRESHOLDING ALGORITHM
757758 Let $\mathbf{y} \in \mathbb{R}_+^n$ be a given nonnegative vector (e.g., $|\mathbf{y}|$ in our algorithm), and let $\mathbf{x} \in \mathbb{R}_+^n$ be a candidate
759 solution. We denote by

760
$$\nu(\mathbf{x}) = \ell_0(\mathbf{x}) = |\{i : x_i \neq 0\}| \quad \text{and} \quad \ell_1(\mathbf{x}) = \|\mathbf{x}\|_1.$$

761

762 We also denote by $H(\mathbf{x})$ a sparsity score depending only on the nonzero components of \mathbf{x} (e.g., the
763 Hoyer or Cone Alignement Index (CAI)). For a given level l and integer ν , we define the threshold

764
$$\alpha(\mathbf{x}) = \frac{1}{\nu(\mathbf{x})} \ell_1(\mathbf{x}) \left(1 - \sqrt{\frac{l(\nu(\mathbf{x}) - H(\mathbf{x}))}{H(\mathbf{x})(\nu(\mathbf{x}) - l)}} \right), \quad (25)$$

765

766 whenever the expression is well-defined. Given a threshold $\alpha \geq 0$, we define the hard-thresholding
767 operator $T_\alpha : \mathbb{R}_+^n \rightarrow \mathbb{R}_+^n$ by

768
$$(T_\alpha(\mathbf{x}))_i = \begin{cases} x_i, & \text{if } x_i \geq \alpha, \\ 0, & \text{otherwise,} \end{cases} \quad i = 1, \dots, n. \quad (26)$$

769

770 The fixed-point equation
771

772
$$\mathbf{x} = T_{\alpha(\mathbf{x})}(\mathbf{x}) \quad (27)$$

773

774 captures the idea that the support of \mathbf{x} and the threshold $\alpha(\mathbf{x})$ must be mutually consistent: the
775 entries below the threshold are zeroed out, and the threshold itself is computed from the nonzero
776 entries only.777 We now consider the iterative thresholding scheme used in our fast algorithm. Starting from $\mathbf{x}^{(0)} =$
778 $|\mathbf{y}|$, we define the sequence

779
$$\nu^{(k)} = \ell_0(\mathbf{x}^{(k)}), \quad (28)$$

780

781
$$\alpha^{(k)} = \frac{1}{\nu^{(k)}} \ell_1(\mathbf{x}^{(k)}) \left(1 - \sqrt{\frac{l(\nu^{(k)} - H(\mathbf{x}^{(k)}))}{H(\mathbf{x}^{(k)})(\nu^{(k)} - l)}} \right), \quad (29)$$

782

783
$$\mathbf{x}^{(k+1)} = T_{\alpha^{(k)}}(\mathbf{x}^{(k)}), \quad (30)$$

784

785 and stop as soon as the support stabilizes, i.e.,

786
$$\ell_0(\mathbf{x}^{(k+1)}) = \ell_0(\mathbf{x}^{(k)}).$$

787

788 **Lemma A.1** (Monotone support decrease). *For the sequence defined in equation 28, the support
789 sizes satisfy*

790
$$\nu^{(k+1)} \leq \nu^{(k)} \quad \text{for all } k,$$

791

792 and $\nu^{(k+1)} < \nu^{(k)}$ whenever $\mathbf{x}^{(k+1)} \neq \mathbf{x}^{(k)}$. \square 793 *Proof.* By definition of $T_{\alpha^{(k)}}$, the transition from $\mathbf{x}^{(k)}$ to $\mathbf{x}^{(k+1)}$ can only set some coordinates of
794 $\mathbf{x}^{(k)}$ to zero; it never activates new coordinates. Therefore, the number of nonzero entries cannot
795 increase, i.e., $\nu^{(k+1)} \leq \nu^{(k)}$. Moreover, if $\mathbf{x}^{(k+1)} \neq \mathbf{x}^{(k)}$, at least one coordinate that was previously
796 nonzero is set to zero, hence $\nu^{(k+1)} < \nu^{(k)}$. \square 797 **Theorem A.2** (Finite-time convergence). *The iterative scheme equation 28 converges in at most n
798 iterations to a fixed point of equation 27. More precisely, there exists $K \leq n$ such that*

799
$$\mathbf{x}^{(K+1)} = \mathbf{x}^{(K)},$$

800

801 and $\mathbf{x}^{(K)}$ satisfies $\mathbf{x}^{(K)} = T_{\alpha(\mathbf{x}^{(K)})}(\mathbf{x}^{(K)})$.
802803 *Proof.* By Lemma A.1, the sequence $\{\nu^{(k)}\}$ is nonincreasing and takes values in $\{0, 1, \dots, n\}$.
804 Therefore, it must stabilize in at most n steps: there exists $K \leq n$ such that,

805
$$\nu^{(K+1)} = \nu^{(K)}.$$

806

807 By definition of $\mathbf{x}^{(K+1)}$, we have $\mathbf{x}^{(K+1)} = T_{\alpha^{(K)}}(\mathbf{x}^{(K)})$. If the support size is unchanged, then
808 no new zero has been introduced, hence the thresholding operator leaves all nonzero coordinates
809 unchanged. Consequently $\mathbf{x}^{(K+1)} = \mathbf{x}^{(K)}$, and $\mathbf{x}^{(K)}$ is a fixed point of the map $\mathbf{x} \mapsto T_{\alpha(\mathbf{x})}(\mathbf{x})$,
810 which is exactly equation 27. \square

810 A.3 BACKGROUND: DENSE VS. SPARSE PRETRAINED TRANSFORMERS
811812 Large pretrained Transformer models such as BERT Devlin et al. (2019) and RoBERTa Liu et al.
813 have defined the modern landscape of NLP. These networks are fully dense and employ
814 a standard self-attention mechanism with quadratic complexity $\mathcal{O}(n^2)$ in sequence length n .
815 However, growing model sizes, energy costs, and the environmental impact of training—including
816 the carbon cost of operating LLMs—motivate the development of sparse alternatives that maintain
817 accuracy while lowering resource consumption. BERT Devlin et al. (2019) introduced bidirectional
818 Transformer pretraining using masked language modeling (MLM) and next-sentence prediction
819 (NSP). RoBERTa Liu et al. (2020) retains the same architecture but modifies the training pipeline:
820 i) removes NSP ii) trains on 10× more data and larger batch sizes; iii) applies dynamic masking.
821 This yields a consistent boost in accuracy across major language benchmarks.
822823 While pretrained models such as BERT and RoBERTa are fully dense, later architectures (e.g.,
824 BigBird, LongFormer, Reformer) incorporate sparsity through predefined local or random attention
825 masks. However, these methods rely on heuristic or architectural sparsity rather than mathematically
826 grounded constraints. Our work provides the first convex, closed-form projection onto a Lorentz
827 cone, enabling principled sparsification with theoretical guarantees, explicit sparsity control, and
828 interpretability of the resulting attention patterns.
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863