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ABSTRACT

Deep networks require sparsity mechanisms that are both scale-invariant and com-
putationally efficient. Existing approaches based on the Hoyer score rely on non-
convex projections, resulting in unstable heuristics and potential convergence is-
sues.

In this paper, we introduce a new Cone Alignement Index (CAI), a convex con-
straint whose level sets form a Lorentz hypercone. This geometric structure en-
ables the first Closed-Form Projection (CFP) onto such a cone, requiring only a
single interpolation step and enjoying guaranteed convergence. We derive ana-
lytical expressions for: (i) computing the active set through a provably correct
threshold rule, and (ii) performing the final projection using a closed-form inter-
polation coefficient.

Building on this result, we propose a fast bilevel projection method, consisting
solely of successive Closed-Form Projection (CFP) algorithms, with guaranteed
convergence and naturally inducing hardware-friendly column (or row)-wise spar-
Sity.

Thanks to these Closed-Form Projection (CFP) algorithms, our method is up to
6.5 times faster than the original Hoyer projection on the vector. Our bilevel
Closed-Form Projection (CFP) algorithm is 2r times faster than the HALS algo-
rithm on matrices. Applied to transformer attention matrices on biomedical and
NLP dataset (GLUE benchmark), it achieves up to 96% sparsity with negligible
accuracy degradation, outperforming state-of-the-art “universal Big bird ” masks.

Overall, this work provides a principled, convex, and scalable alternative to Hoyer-
based sparsification, opening the door to energy-efficient LLMs with controllable
structured sparsity.

1 STATE OF THE ART OF NEURAL NETWORK SPARSIFICATION

Modern deep neural networks (DNNs) achieve state-of-the-art performance across a wide range of
tasks due to their substantial capacity, typically achieved through a huge number of trainable pa-
rameters |[Krizhevsky et al.|(2012)); He et al.|(2016)); Vaswani et al.| (2017). However, this parameter
abundance entails significant computational and memory requirements, which lead to a huge carbon
footprint during training and inference. To address these challenges, a large literature has focused on
neural network sparsification: the process of reducing the number of non-zero weights in a model.
One of the earliest and most widely adopted approaches to induce sparsity in neural networks was
the pruning method |Alvarez & Salzmann|(2016); Han et al.| (2015)); Frankle & Carbin|(2019). Clas-
sical pruning methods citeSanh, RigL |[Evci et al.| (2021)), and Sparse GPT |[Frantar & Alistarh|(2023)
eliminate weights using magnitude-based or gradient-based heuristics. These approaches produce
empirical sparsity but without geometric constraints. Advanced structured pruning methods Xia
et al.| (2024)) |Ashkboos et al.[(2024), overcomes the inefficiency of classical pruning methods.

The Least Absolute Shrinkage and Selection Operator (LASSO) [Tibshirani| (1996); Hastie et al.
(2015)) penalize the ¢1-norm. The ¢y norm, which directly counts the number of non-zero weights,
offers perfect sparsity control and is scale-invariant but is non-differentiable Louizos et al.[(2018)). A
key limitation of pruning methods, and ¢; and ¢y-induced sparsity is its unstructured nature, which
tends to produce random zero-valued weights. A lot of modern hardware performs the multiply-add
operation in a single instruction. This irregular pattern fails to translate into practical computational



Under review as a conference paper at ICLR 2026

speed-ups on these hardware accelerators and is incompatible with efficient parallel processing.

To overcome the inefficiency of unstructured sparsity, research has turned toward structured spar-
sity methods, which aim to remove entire groups of parameters such as filters or neurons. Group
LASSO and its variants introduce regularizes that enforce sparsity at the group level [Yuan & Lin
(2006); [Kim & Xing| (2010); |Scardapane et al.| (2017); [Yoon & Hwang (2017); |Simon et al.| (2013);
‘Wen et al.| (2016); Ma et al.|(2019); |Alvarez & Salzmann|(2016). Despite their improved hardware
efficiency, these methods still suffer from the computational overhead associated with solving com-
plex Lagrangian optimization problems |Friedman et al.|(2010); |Mairal & Yu|(2012).

An alternative to Lagrangian regularization is optimization under constraints using ¢; projection
methods. These methods directly enforce sparsity by projecting weight vectors onto norm balls,
typically the /1 norm ball, using efficient algorithms Duchi et al.|(2008)); Condat| (2016); Perez et al.
(2019). ¢; projection-based sparsification benefits from linear-time complexity, but is not scale in-
variant and does not induce structured sparsity.Of particular interest is the ¢; o projection, which
enforces structured sparsity by promoting group-wise shrinkage—e.g., setting entire columns of a
weight matrix to zero. Recent work has proposed efficient algorithms for ¢; , projection based on
the Moreau proximal identity Moreau| (1965); Bauschke & Combettes| (2017));|Condat et al.| (2023)
Bejar et al.| (2021); |Quattoni et al.| (2009). However, the worst-case time complexity of these algo-
rithms remains O(nm log(nm)), which may hinder their scalability to very large neural networks.
A promising alternative is the Hoyer score, introduced inHoyer| (2004)), which balances sparsity and
scale invariance. It has been successfully applied in contexts such as blind deconvolution Repetti
et al|(2015), non-negative least squares |[Esser et al.| (2013)Gillis & Glineur| (2012), neural network
regularization [Yang et al.|(2020),0hib et al.|(2022)),[Thom et al.|(2015) and biomedical applications
Duan et al.|(2019).

Large pretrained Transformer models such as BERT Devlin et al| (2019)and RoBERTa |Liu et al.
(2020) have defined the modern landscape of NLP. These networks are fully dense and em-
ploy a standard self-attention mechanism with quadratic complexity O(n?) in sequence length n.
Structured-sparse attention mechanisms have been explored in BigBird|Zaheer et al.|(2020b;a)), and
reformer Kitaev et al.|(2020). These methods reduce complexity through architectural biases but do
not solve a principled optimization problem.

1.1 CONTRIBUTION AND ORGANIZATION OF THIS WORK

In this work, we provide the following contributions: i) A new Cone Alignement Index (CAI) (re-
ferred as extended Hoyer score). ii) A Closed-Form Projection (CFP) algorithm with selection of the
active set using a threshold which performs a single projection onto the cone (never used in machine
learning to the best of our knowledge), iii) An extension to structured sparsity via a bilevel pro-
jection, enabling structured column-wise sparsity in neural networks. iv) An empirical benchmark
on classification tasks, on Transformer architecture, demonstrating both accuracy performance and
significant sparsity.

2  MATHEMATICAL PROPERTIES OF THE NEW CONE ALIGNEMENT INDEX
(CAD

2.1 A NEW CONE ALIGNEMENT INDEX (CAI)

Let define the a Cone Alignement Index (CAI) of a vector x € R" as

He(.’B) —_ (ZZL:I xi)Q — (]'Tx)Q (1)

n P) T )
Do X x'x

where 1 denotes the all-ones vector in R™.

Lemma 2.1. Geometric structure. The level sets of H.(x) define a family of second-order surfaces
(1T2)* =13, 2
which can be rewritten as

l
(w,2)? = = .

with u = 1/+/n the unit vector along the diagonal axis.
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This equation corresponds to the boundary of a revolution hypercone with apex at the origin and
axis along the diagonal direction 1 = (1,1,...,1) and aperture angle 6 = arccos(W). . For
l € [0,n), the quantity H.(x) measures how well  is aligned with this diagonal axis: H.(x) = n
if x is collinear with 1, and H.(x) = 0 if x is orthogonal to it. The interior of this cone is convex,
while its boundary corresponds to a quadratic (Lorentz-type) cone.

Relation with the Hoyer score. The Hoyer score H(x) was originally defined as the square of
the ratio between ¢; and /5 norms of the vector x [Hoyer (2004) and update following |Yang et al.

(2020): ,
|$|1)

H(z) = — 3

@ = (2 G)

Unlike the original Hoyer ratio ||x||1 /||x||2, which is non-convex, the Cone Alignement Index (CAI)
H,(x) leads to convex cone level sets, making it more suitable for optimization and projection-based
algorithms.

Relation with GSP constraint. The GSP constraint (Group sparse Projection) following the defi-
nition |Ohib et al.|(2022)) is given by :

GSP(z) = (Z Vm> 4)

We emphasize that this GSP constraint is mathematically different from our Cone Alignment Index
(CAI) without second-order (Lorentz) revolution hypercone geometry.

Property Cone Alignment Index (CAI) Hoyer | GSP

Convex Lorentz Cone geometry Yes No No
Ratio norm constraint No Yes Yes
Iterative algorithm No (Closed-Form Projection (CFP) Yes Yes

Table 1: Comparison between Cone Alignment Index (CAI) projection, the Hoyer projection and
the GSP projection.

Lemma 2.2. H. is scale-invariant, as a direct consequence of the definition of the CAL

This scale-invariance property yields the following lemma:

Lemma 2.3. The projection x of a point y onto ‘H. satisfies

(@, z) =(x,y) < |zla=V(z, ). (5)

As a consequence, once the line containing the projection point is known, the optimal norm of x can
be directly computed. Substituting this relation into the objective yields

lz—yll5=lyl3—(z, y) (6)

which shows that the objective is minimized when (x , y) is maximized, i.e., when the angle
between x and y is minimized.

3 CONE ALIGNMENT INDEX (CAI) PROJECTION

3.1 ITERATIVE HYPERCONE PROJECTION ALGORITHM

Since the Cone Alignment Index (CAI) cone is a convex (Lorentz) cone, projection onto it is rela-

tively straightforward (convex optimization). We adopt the classical interpolation:
z=y+(1-N)d. @)

Substituting this expression into the Cone Alignment Index (CAI) yields the following quadratic
equation in \:
aX? +bA+c=0 (8)
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with coefficients
a =016+ p(n —1)(np — 201),

b=2p(n—10)¢ —np), 9)
c=np*(n—1),
where d = (p, p,...,p) and ¢; denotes the ¢;-norm of y. This quadratic equation always admits

two real solutions, except in the degenerate case, where y lies exactly on the hypercone axis. Proofs
are provided in supplementary material (appendix).

Choosing an Efficient Value for d Selecting d such that ||d||; = ||y||; yields a simplified
quadratic equation, since the coefficient b vanishes:

a:l(ﬁ—zg), b=0, c=0(1-1), (10)

n

This leads to the following Closed-Form Projection (CFP) solution for A:

H(y)(n=1)
=V Iin—H@)" (11)

Iterative Cone Alignement Index (CAI) Projection Based on these lemmas, we propose the
following iterative algorithm:Ensure all components of y are nonnegative. i) Compute the projection
of y onto H,. ii) Compute the projection onto R”’. iii) Iterate between these two projections until
the projection onto . lies inside R’} , and therefore belongs to .

Finally, restore the original signs of ¢ and rescale to satisfy relation [5} Following Remark [2.2] the
generating line can be obtained by considering two points lying on the diametral hyperplane that
contains y and computing their intersection with H.. In practice, we approximate this step using
interpolation (Equation|[7) with y and d, where d lies on the axis of the revolution hypercone. In our
implementation, we enforce ||d||1 = ||y||1.

Algorithm 1 Iterative Hypercone Projection Algorithm

Input: y, [
x; + |y;|, Vi€ l,...,n]
while H(x) > [ do
v < Lo(x) (hyperplane dimension)
d+ (Lifx; #0else0 Vje[l,...,n])

H(z)(v—1)
A=\ = H@)

x— dx+(1-Nd

x; < max(0,x;), Vi € [1,...,n]
end while
x; + x; X sign(y;), Vi € [1,...,n] (restore sign)
T x éz : Zi (normalize using relation |5

Output: x

where ) is the interpolation coefficient.

3.2 A CLOSED-FORM PROJECTION (CFP) ALGORITHM PERFORMING A SINGLE PROJECTION
ONTO THE LORENTZ HYPERCONE

The main drawback with this iterative algorithm is its computational cost and the potential conver-
gence issue. Thus, we propose the following Closed-Form Projection (CFP) algorithm.

Lemma 3.1. Using Equation[7} the following condition holds:
2 >0 = Ay;—p)+p>0. (12)
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Then, from Equation [[2] we obtain the following threshold: any component y; smaller than o will
be projected to zero.

13)

H(y)(n—1)

Thanks to the closed-form of Equation we can identify which components of y must be set to
zero without explicitly computing the projection onto the hypercone H.. Consequently, the pro-
jection is required only once, at the final step, since every point lying in the plane generated by
the hypercone axis and the point y converges to the same generating line. Based on these lemmas,
we propose the following procedure:i) Ensure all components of y are nonnegative. ii) Determine
the active set using the closed form threshold (Equation [[3)). iii) Compute the projection using one
interpolation using the closed-form of A

I
4 A
(\-,‘\
o
r‘b:*:}
y
~3 0 d
/;é x(A) =Xy +(1-x)d
// :L‘
0 ; - Lo
& = arccos —
7

Figure 1: 2D illustration of the interpolation
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Algorithm 2 A Closed-Form Projection (CFP) algorithm performing a single projection onto the
Lorentz Hypercone

Input: y,!
T < |yi|a Vi€ [177’”}
a+0
UV 4 go(ﬂﬁ) +1
while v # {y(x) do
v < Lo(x) (hyperplane dimension)

a<+— vl (1 — 71(”_1{@)))

H(x)(v—1)
T (x;ifx; > aelsed Vie[l,... ,n])
end while
A 1%71, (recompute \)
£y

d (4ifx; £0else0 Vje[l,...,n])
© e dx+(1-N)d

x; « x; xsign(y;), Vi€ [l,...,n] (restore signs)
T x éz : Zi (normalize using relation |5

Output: x

where ) is the interpolation coefficient, « is the threshold and v is the active set size.

The while loop in this algorithm simply determines the number of components that must be set to
zero. The key difference with the iterative algorithm is that the fast algorithm requires only one
interpolation step, which guaranteed convergence.

Theorem 3.2 (Finite-time convergence of the active set selection ). Given a threshold o > 0, we
define the hard-thresholding operator T, : R} — R”} by

_ Ty, lf'r7 Z [ .
(Ta(x)), = {0’ otherwise, i=1,...,n. (14)
The fixed-point equation
z =Ty () (15)

captures the idea that the support of  and the threshold o(x) must be mutually consistent: the
entries below the threshold are zeroed out, and the threshold itself is computed from the nonzero
entries only. The iterative loop for computing o converges in at most n iterations to a fixed point
of equation[I3] More precisely, there exists K < n such that

pE+D — m(K)’ 16)
iL'(K) = Ta(m(K)) (QE(K)).
3.3 BILEVEL CONE ALIGNMENT INDEX (CAI) PROJECTION
Let define the £, norm of a vector y is
lo(y) = max y; (17)

The ¢, ~ projection enforces structured sparsity by promoting group-wise shrinkage, setting entire
columns of a weight matrix to zero. This property significantly enhances computational efficiency.
However, since the Hoyer score is not a norm, we cannot derive an efficient algorithm for {p
projection based on the Moreau proximal identity Moreau| (1965); Bauschke & Combettes (2017);
Bejar et al.| (2021). In this paper, we propose an alternative based on a bilevel method |Zhang et al.
(2022} 2024b); Barlaud et al.| (2024). Specifically, we propose a bilevel £ o.projection. Let Y be
a matrix with n rows and m columns, and let y1, . .., y, denote its column vectors. Let define the
row vector composed of the infinity norms of the columns of Y.

Voo = ([[Y1llocs - - 5 [|Unlloo), (18)
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The bilevel projection optimization problem is then defined as:

BP"™(Y) = {= | Vj,
xj = argmwin lx —yjll2 st P(x;) <uy}, (19)

where @ € argmin ||u — voo||2 s.t. PP (u) < 1.
u

A possible implementation is provided below:

Algorithm 3 Bilevel /f ., Projection (BP,{I 2 (Y))

Input: Y, 7

u P ([yillse, - - [ynllsc)
forjel,...,n]do

end for

Output: x

Note that the Closed-form projection and the /., projection are closed-form algorithms, which guar-
anteed convergence of the bilevel algorithm.

4 EXPERIMENTAL RESULTS

4.1 BENCHMARK OF THE FAST CLOSED-FORM PROJECTION

For the implementation of the original iterative Hoyer projection, we use the efficient projection onto
the ¢, ball initially proposed in Duchi et al.| (2008) and later corrected in (Condat| (2016). Although
the empirical computational cost of this projection is O(m), no theoretical proof of this complexity
currently exists.

We use the torch.Profiler which counts operations at the PyTorch level, not at the hardware level. It
tracks the computational graph and sums up flops based on the operations executed in the forward
pass. As long as the code and inputs are identical, the count should be consistent across devices. Our
code (available in supplementary material) reports the same number of flops (floating-point opera-
tions) across different GPUs such as NVIDIA or CPU such as Apple M3 or Intel, assuming the same
input data, algorithm, and PyTorch version. Based on this metric, Figure 2] shows that the Closed-
Form Projection (CFP) fast algorithm has a complexity KmwithK =~ 6 and is approximately 6.5
times faster than the original Hoyer projection (depending slightly on the data distribution).
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Figure 2: Comparison of two algorithms CFP versus original: Flops Left Gaussian; Right Uniform

For an m x m attention matrix, the complexity of the bilevel algorithm is K*m for the projection +
m*(m-1) for calculating the norm of each column (or row) and 1 flop for the clamp for each column.
Therefore, the total flops = m(m — 1) + Km + m (with K=6), or approximately ~ m? flops.
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Bilevel Projection FLOPs — Theoretical vs Measured Bilevel Projection FLOPs — Theoretical vs Measured
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Figure 3: computational cost of the bilevel algorithm: Flops Left Gaussian; Right Uniform

The figure[Bshows the perfect match between theoretical and measured flops of our bilevel algorithm.
The computational cost for the HALS algorithm |Gillis & Glineur| (2012) for an mam attention
matrix is total flops = 7(2m? + 4mr + m) flops, where r is the rank of the matrix Gillis & Glineur
(2012), thus approximately == 2rm? flops. Therefore, our bilevel algorithm is 2r times faster than
the HALS algorithm. A-HALS is faster than HALS in practice, but since even the first iteration
of A-HALS (which is the same as the first iteration of HALS) is already more expensive than our
bilevel projection (even with r=1 or r=2), A-HALS remains less efficient than our CFP.
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Figure 4: Comparison of two algorithms CFP versus original: Relative norm comparison of the
solutions

As illustrated in Figure [ the relative norm comparison of the solution of our algorithm versus the
original shows that solutions are slightly different (The original constraint is a ratio of norms while
it is not for the Cone Alignment Index (CAI) constraint).

4.2 CONSTRAINT OPTIMIZATION OF ATTENTION MATRICES IN TRANSFORMERS

Let W € R™*™ denote the attention matrix, where m is the number of tokens. Let z € R™*1
represent the true labels, and z* the estimated labels obtained from a soft max classifier. To sparsify
the weights W of the attention matrix, we employ the bilevel projection method BPH> as a
constraint to enforce structured sparsity in the model. The global optimization criterion is defined
as:

minimize #(z,z*) subjectto BPH(W) <1, (20)

where ¢(z, z*) is the cross-entropy loss.

For minimizing this criterion, we follow the work developed by [Frankle & Carbin| (2019) who pro-
posed a double descent masked gradient algorithm, as follows: after training a network, set all
weights smaller than some threshold to zero, rewind the rest of the weights to their initial config-
uration, and then retrain the network from this starting configuration but keeping the zero weights
frozen (untrained). We replace the thresholding by our bilevel projection.
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4.3  SPARSIFICATION OF ATTENTION MATRICES IN TRANSFORMER ARCHITECTURES

We implemented our classification method using the PyTorch framework for the model, optimizer,
schedulers and loss functions. We chose the ADAM optimizer[Kingma & Ba (2015)), as the standard
optimizer in PyTorch. We use the smooth SiLLU activation function.

Generative Pre-trained Transformers (GPT) are a class of large language models (LLMs) that have
recently attracted significant attention due to their ability to perform a wide range of natural lan-
guage processing tasks. However, transformer architectures entail substantial computational costs
and carbon footprints [Strubell et al.| (2019); |[Faiz et al.| (2024). This motivates the exploration of
sparsity as a strategy to design more efficient models. In this context, we apply our Fast Extended
Hoyer projection to the sparsification of attention matrices in transformer architectures[Vaswani et al.|
(2017), with the aim of reducing computational cost. Specifically, we compare our learned diagonal
mask, obtained via bilevel projection, against the uniform diagonal mask of Big bird
(2020bffa) which performs consistently well overall [Tay et al.| (2021).

The classification framework is implemented in PyTorch, including the model, optimizer, sched-
ulers, and loss functions. For all sparsity levels and both datasets, we set the number of training
epochs to 15, the batch size to 32 and the learning rate to 2 x 1072,

4.3.1 EXPERIMENT ON A BIOMEDICAL DATASET: ECG

There are now requirements for classification and interpretation in biomedical applications, such as
Single-cell |Chen et al.| (2023) and ECG for diagnosis of Heart failure, which is a syndrome with
complex clinical manifestations (2020). In this paper, we report results on the Physio
Net ECG dataset [Goldberger et al.| (2000). The challenge of the PTB Diagnostic ECG Database
is formulated into a binary classification task with 10,505 abnormal and 4,045 normal ECG. The
signals correspond to electrocardiogram (ECG) shapes of heartbeats for the normal case and the
abnormal cases affected by different arrhythmias and myocardial infarction. These signals are pre-
processed and segmented, with each segment corresponding to a heartbeat with 187 features.

ECG dataset

learned mask :

T H-‘
d - EFP‘
Diag-Big hlr:la -
TTGRR 06
Diag-Bighicd
ooy
CFRO %
Dlag-Blghird‘
Dlag-Blghlrd‘
T T T T T T
0.88 090 0.92 094 096 0.98
Sparsity %

Figure 5: ECG dataset. BigBird versus bilevel £ o: sparsity—accuracy trade-off.

Baseline | Diagonal BigBird | Diagonal ¢
Sparsity (%) 0 97.34 97.11
Accuracy (%) 89.44 84.46 87.04

Table 2: ECG dataset. Comparison of Big bird, and bilevel £f : sparsity—accuracy trade-off.

Figure |3| (Left) shows the learned mask obtained with our method; (Right) illustrates that the ac-
curacy curve as a function of sparsity. Our bilevel {f o, projection outperforms the diagonal Big
bird method. As shown in Table for the same sparsity (97%), our learned mask with the bilevel
method outperforms the diagonal Bigbird by 3% in accuracy.
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4.3.2 EXPERIMENT ON A NATURAL LANGUAGE PROCESSING (NLP) TASK

Specifically, we apply our CFP projection to a pretrained transformer-based model
(2019).

We report the accuracy—sparsity trade-off on the GLUE benchmark, focusing on the single-sentence
classification task SST-2 [Socher et al.| (2013). The SST-2 dataset contains approximately 67,000
samples.

Accuracy vs £y Sparsity on 55T2

learned mask : e Diag CER4 Diag CED Tiag CFP 1
10 3| @ @ @ @
I Diag Bighird 4
-038 92 q
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=]
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o
-04 < 904
0.2 89 1 .
Diag BigBird 1
@
T T T T T T
0.0 88 90 9z 94 96 98
03 6 9121518212427303336394245485154 576063 .
Iy Sparsity %

Figure 6: SST-2 dataset. Left: Learned mask using our method. Right: Bigbird versus bilevel ¢;
and {7 . sparsity—accuracy trade-off.

Figure [0| (Left) shows the learned mask obtained with our method on the second layer of BERT
model. Figure [6] (Right) illustrates that the accuracy curve as a function of sparsity is very flat for
the CFP projection, while it decreases rapidly for Diagonal Big bird.

Baseline | Diagonal Bigbird 2 | MGPP | Diagonal {f o
Sparsity (%) 0 92.33 90 96.11
Accuracy (%) 92.7 91.13 90.3 92.5

Table 3: SST-2 dataset. Comparison of methods for the BERT model: Bigbird, MGPP, and bilevel
Hoyer: sparsity—accuracy trade-off.

Table [3] shows that our learned mask with the bilevel method outperforms the diagonal Bigbird
mask method by achieving 30% higher sparsity. Our method achieves 96% sparsity with negligible
performance degradation of the baseline (full attention matrix). For comparison, we include in table

(] the best results reported in Zhang et al| (2024a).

5 DISCUSSION AND CONCLUSION

While pretrained models such as BERT and RoBERTa are fully dense Transformers, some later
architectures (e.g., BigBird, Longformer, Reformer) introduce sparse attention mechanisms.
However, these models rely on predefined structural masks or heuristic approximations rather than
mathematically-grounded sparsity.

In contrast, our method introduces a new Cone Alignement Index (CAI), a convex constraint whose
level sets form a Lorentz hypercone.

and the first closed-form projection algorithm requiring a single interpolation operation, with
guaranteed convergence and linear complexity. In contrast, our method performs a principled,
convex, bilevel projection that analytically determines the active attention support, yielding sparse
Transformers with full interpretability and guaranteed convergence.

Our method achieves up to 96% attention sparsity with negligible accuracy loss NLP glue dataset
and outperforming state of the art “universal” diagonal Big Bird masks.

10
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A APPENDIX

A.1 ANALYSIS OF THE QUADRATIC EQUATION

We consider the following parametric line:
Ay + (1= )M)d,
withd = (p, p, ..., p), and the extended Hoyer surface . ; defined by
H.(x)=1.

Solving for the intersection, we obtain:
H. O y+(1—=X\d) =1
(i My —p) +0)* _ ;
S (i —p) +p)° 2D
A2(61 —np)? +n?p? + 2\np(l; — np)
A2(03 +np2 — 2ply) + np2 + 2pA (61 — np)

=1.

After simplification, this leads to the following quadratic equation in A:
aX? + b+ c =0, (22)

where the coefficients are given by:

a=107-106+n-1)(np®—2pb),
b=2(n—1p (s —np), (23)
c=(n—np°.

Note that when ¢; = np, i.e., when y lies exactly on the cone axis, the linear term b vanishes and
the quadratic reduces to a simpler form.

Condition on d using this parameter A with the points y and d provides the following condition
for ensuring a positive solution:

_ 02102
p >n 1 <€1 o l(nrf—ll 1)>

l 21yl
& ldl > flylly -/ Clliivid),

Special case b = 0 (choosing ||d||1 = ||y||1). If {1 = np (i.e., b = 0), the quadratic reduces to
aX? + ¢ = 0 with

(24)

2
a=102—10, c=np*(n—1) = e—l(n—l).
n

02
. e [y [E@e-D
A= —a 103 — 03 l(n—H(y)) [

where H(y) = (|lyll 1/||y||2)2 This is the closed form used in the one-shot projection when ||d||; =
Iyl

Solving for A > 0 gives

Feasibility check. After computing A*, form z(A\*) = Ay + (1 — A*)d and project to the
correct orthant/sign if needed, then rescale using the relation ||z||2 = /= -y to satisfy the projection
optimality condition.
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A.2 CONVERGENCE OF THE FAST THRESHOLDING ALGORITHM

Let yc R” be a given nonnegative vector (e.g., |y| in our algorithm), and let z € R”} be a candidate
solution. We denote by

v(iz) = bo(x) =|{i:x; #0} and {i(x)=|z|;-

We also denote by H (x) a sparsity score depending only on the nonzero components of x (e.g., the
Hoyer or Cone Alignement Index (CAI)). For a given level [ and integer v, we define the threshold

o i) @)
@) = Sy i ’(1 ¢ H(w)(v(w)—o)’ )

whenever the expression is well-defined. Given a threshold o« > 0, we define the hard-thresholding
operator T, : R} — R’ by

x;, ifx; >«
T, .= v t= ,=1,...,n. 2
( a(m))Z {0, otherwise, ! R (26)

The fixed-point equation
x = Toa)(x) (27

captures the idea that the support of « and the threshold a(x) must be mutually consistent: the
entries below the threshold are zeroed out, and the threshold itself is computed from the nonzero
entries only.

We now consider the iterative thresholding scheme used in our fast algorithm. Starting from z(®) =
|y|, we define the sequence

NORYNPON (28)
1 l(V(k‘) — H(w(k)))
(k) — _— (k) _
a® = 5 (=) (1 \/H(x(k)) 1) ) (29)
2t = Ty (™), (30)

and stop as soon as the support stabilizes, i.e.,
EO (.’B(kJrl)) = ZO (iI}(k)) .

Lemma A.1 (Monotone support decrease). For the sequence defined in equation 28] the support
sizes satisfy
pEHD) < (k) forall k,

and v*tY < v F) whenever k1) £ k),

Proof. By definition of T, ), the transition from x®) to (**1 can only set some coordinates of

x*) to zero; it never activates new coordinates. Therefore, the number of nonzero entries cannot
increase, i.e., vt < p(¥) Moreover, if £*t1) = (%) atleast one coordinate that was previously
nonzero is set to zero, hence v(*+1) < (k) O

Theorem A.2 (Finite-time convergence). The iterative scheme equation 28| converges in at most n
iterations to a fixed point of equation[27] More precisely, there exists K < n such that

2B+ — ().

and £ satisfies %) = Toy(z) (w<K)).

Proof. By Lemma the sequence {v(*)} is nonincreasing and takes values in {0,1,...,n}.
Therefore, it must stabilize in at most n steps: there exists K < n such that,

JUHD) | (K)

By definition of (X *1), we have 5+ = T, x)(xX)). If the support size is unchanged, then
no new zero has been introduced, hence the thresholding operator leaves all nonzero coordinates
unchanged. Consequently z(X 1) = z(5) and %) is a fixed point of the map & — Tiy(q) (),
which is exactly equation[27]
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A.3 BACKGROUND: DENSE VS. SPARSE PRETRAINED TRANSFORMERS

Large pretrained Transformer models such as BERT |Devlin et al.| (2019) and RoBERTa |Liu et al.
(2020) have defined the modern landscape of NLP. These networks are fully dense and employ
a standard self-attention mechanism with quadratic complexity O(n?) in sequence length n.
However, growing model sizes, energy costs, and the environmental impact of training—including
the carbon cost of operating LLMs—motivate the development of sparse alternatives that maintain
accuracy while lowering resource consumption. BERT |Devlin et al.|(2019) introduced bidirectional
Transformer pretraining using masked language modeling (MLM) and next-sentence prediction
(NSP). RoBERTa |Liu et al.| (2020) retains the same architecture but modifies the training pipeline:
i) removes NSP ii) trains on 10x more data and larger batch sizes; iii) applies dynamic masking.
This yields a consistent boost in accuracy across major language benchmarks.

While pretrained models such as BERT and RoBERTa are fully dense, later architectures (e.g.,
BigBird, Long-former, Reformer) incorporate sparsity through predefined local or random attention
masks. However, these methods rely on heuristic or architectural sparsity rather than mathematically
grounded constraints. Our work provides the first convex, closed-form projection onto a Lorentz
cone, enabling principled sparsification with theoretical guarantees, explicit sparsity control, and
interpretability of the resulting attention patterns.
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