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Abstract

Zero-resource named entity recognition (NER)
severely suffers from data scarcity in a spe-
cific domain or language. Most studies on
zero-resource NER transfer knowledge from
various data by fine-tuning on different aux-
iliary tasks. However, how to properly se-
lect training data and fine-tuning tasks is still
an open problem. In this paper, we tackle
the problem by transferring knowledge from
three aspects, i.e., domain, language and task,
and strengthening connections among them.
Specifically, we propose four practical guide-
lines to guide knowledge transfer and task fine-
tuning. Based on these guidelines, we design
a target-oriented fine-tuning (TOF) framework
to exploit various data from three aspects in
a unified training manner. Experimental re-
sults on six benchmarks show that our method
yields consistent improvements over baselines
in both cross-domain and cross-lingual scenar-
ios. Particularly, we achieve new state-of-the-
art performance on five benchmarks.

1 Introduction

Named Entity Recognition (NER) is one of the
fundamental tasks in natural language processing.
Recently, zero-resource NER draws more and more
attention in recent studies (Täckström et al., 2012;
Jia et al., 2019; Bari et al., 2020; Liu et al., 2020b;
Wu et al., 2020a). This task describes that, in a
specific domain or language, there is no labeled
training data for NER. Therefore, zero-resource
NER severely suffers from data scarcity.

As shown in Figure 1, the ideal training data
for zero-resource NER is regarded as the Targets,
which should satisfy two conditions at the same
time: a) in the target domain or language, and b)
annotated with NER labels. Thus it is intuitive to
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Spanish: Sao Paulo (Brasil), 23 may (EFECOM).
NER: <Sao Paulo, LOC>, <Brasil, LOC>, <EFECOM, LOC>

Spanish: Como se
conoce popularmente en
Brasil al tenista.
English: Brazil to use
hovercrafts for Amazon
travel.

News: Santander, 23 may
(EFE)
Twitter: RT @Gabriele_Corno:
Beach by Josh
Adamski #meditation
#inspiration #CGE
http://t.co/ParMW4CG4X

NER: <Brazil, LOC>, <Amazon, ORG>
MRC: Who has the most to lose?  I apologize. W NJ has the
most to lose.

DomainLanguage

Task

Targets

Figure 1: The example of the Targets and essential
knowledge from three aspects, i.e., Task, Language,
and Domain. The middle rectangle denotes an Span-
ish NER example in news domain, which is referred
as the Targets. The rounded rectangle above the Tar-
gets denotes knowledge from different tasks. The bot-
tom left one denotes essential knowledge in Spanish
and English languages. The bottom right one denotes
knowledge in News and Twitter domains.

augment training data or transfer knowledge from
three aspects, i.e., task, language, and domain. The
aspect of domain/language can be divided into the
source and the target, and the mainstream solution
for zero-resource NER is transferring NER annota-
tions from source domains/languages to target ones,
e.g., from news to Twitter (Strauss et al., 2016) or
from English to Spanish (Bari et al., 2020), where
the former is referred as cross-domain and the latter
as cross-lingual.

Based on the mainstream approach, recent re-
searches have conducted further exploration by
fine-tuning the contextualized word embeddings on
different data. Their results show that only exploit-
ing source labeled data for NER is not enough, due
to the discrepancy of domain/language between
the source and the target. To alleviate this prob-
lem, some studies focus on utilizing a large amount
of target unlabeled data to transfer domain- or
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language-specific knowledge. AdaptaBERT (Han
and Eisenstein, 2019) fine-tunes the masked lan-
guage model (MLM) on unlabeled data in the tar-
get domain (e.g., social media). Both Pfeiffer et al.
(2020) and Vidoni et al. (2020) add extra compo-
nents to learn from unlabeled data in the target
language (e.g., Spanish). Besides, Phang et al.
(2020) apply non-NER labeled data in the source
language (i.e., English) to transfer knowledge for
cross-lingual NER, which suggests that annotations
for non-NER tasks (e.g., MRC) are useful for NER
task. However, they only exploit non-NER annota-
tions in the source language and ignore that in the
target languages (e.g., Spanish).

Though the aforementioned studies have im-
proved the performance of zero-resource NER in
cross-domain or cross-lingual scenarios, there are
two main problems in these methods: a) they
conduct knowledge transferring by only consid-
ering unlabeled target data and labeled source data,
which is insufficient for knowledge transfer. Par-
ticularly, they ignore the fact that labeled target
data from non-NER tasks is available. b) They
fine-tune contextualized word embeddings on var-
ious auxiliary tasks in a pipeline manner, where
each task is performed only once. We argue that
the fine-tuning procedure can not capture enough
knowledge from various data when trained only
once. Besides, it lacks effective strategies to ap-
proach the Targets closer. Target at these issues, we
suggest it is necessary to exploit more diverse data
and design strategies more oriented to the Targets.

Therefore, we propose four practical guidelines
on how to fully exploit available data to allevi-
ate data scarcity. Concretely, we highlight the ne-
cessity of transferring knowledge from three as-
pects, i.e., task, language, and domain (Guideline-
I). Then for domain/language, we pay attention
to the gap between the source and target data
(Guideline-II). For task, we focus on the gap be-
tween non-NER tasks and NER (Guideline-III). Fi-
nally, we emphasize the importance of knowledge
fusion between the target domain/language and
NER task (Guideline-IV). According to our pro-
posed guidelines, we design a target-oriented fine-
tuning (TOF) framework for zero-resource NER
to approach the Targets. This framework applies
three tasks (i.e., MLM, MRC, and NER) to cap-
ture the knowledge from above three aspects. It
enhances the training with MRC task, pseudo data,
and continual learning, respectively. To validate the

effectiveness and superiority of our approaches, we
conduct experiments on six popular benchmarks
for zero-resource NER in cross-domain and cross-
lingual scenarios.

Our contributions1 are summarized as follows:

• We analyze the key factor of zero-resource
NER and propose four practical guidelines to
transfer knowledge from three aspects, i.e.,
Task, Language, and Domain, and strengthen
connections among them.

• We design a target-oriented fine-tuning (TOF)
framework based on our guidelines to exploit
more diverse knowledge and approach the Tar-
gets closer.

• Experimental results verify the effectiveness
of our method in both cross-domain and cross-
lingual scenarios on six benchmarks. Particu-
larly, our method achieves the state-of-the-art
performance on five benchmarks.

2 Background

2.1 Task Definition
The goal of zero-resource NER task is to transfer
NER knowledge from labeled source data to unla-
beled target data. Therefore, we assume that there
are three kinds of data available for training: a)
NER labeled source data, b) unlabeled target data,
and c) non-NER labeled target data (e.g., MRC).

2.2 Basic Framework
Our method is built on AdaptaBERT proposed by
Han and Eisenstein (2019). This network is de-
signed for unsupervised domain adaptation on se-
quence labeling tasks (e.g., NER). A two step fine-
tuning approach is applied in AdaptaBERT, and in
this section, we will describle it in detail.

Step-1: Domain Tuning. They fine-tune contex-
tualized word embeddings by training a masked
language model (MLM) to reconstruct randomly
masked tokens. And this is performed on a dataset
containing all available target domain data and an
equal amount of unlabeled source domain data.

Step-2: Task Tuning. They fine-tune contextu-
alized word embeddings continually and learn the
prediction model for the sequence labeling task.
Following (Devlin et al., 2018), they build a strong

1Code and data are publicly available at https://
github.com/Yarkona/TOF

https://github.com/Yarkona/TOF
https://github.com/Yarkona/TOF
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NER system by simply feeding the contextualized
embeddings into a linear classification layer. The
log probability can be computed by the log softmax,

log p(yt|w1:T ) = βyt · xt − log
∑
y∈Y

exp(βy · xt),

(1)
where contextualized word embedding xt captures
information from the entire sequence w1:T =
w1, w2, ..., wT , and βy is a vector of weights for
each tag y ∈ Y = {PER,ORG,LOC,MISC}.
They train the model on labeled source domain
data by minimizing the negative conditional log-
likelihood of labeled data.

3 Our Approach

For zero-resource NER, we firstly analyze the prob-
lem of data scarcity. Then we propose four practi-
cal guidelines to guide knowledge transfer from dif-
ferent data, which is adapted to both cross-domain
and cross-lingual scenarios. According to these
guidelines, we design a target-oriented fine-tuning
(TOF) framework for zero-resource NER.

3.1 Problem Analysis

The nature of zero-resource NER task is to perform
NER with no labeled target domain/language data.
And to deal with this task, it is intuitive to transfer
essential knowledge from other available data. Con-
cretely, when the data satisfies the two conditions
at the same time: a) in the target domain/language
(e.g., Twitter/Spanish), and b) annotated for the tar-
get task (i.e., NER), we consider it as our Targets.
While the Targets is unavailable under the zero-
resource setting, there is abundant data meeting
either condition. Therefore, we transfer knowledge
from three aspects, i.e., Domain, Language, and
Task, as shown in Figure 1.
Domain. It contains knowledge from specific do-
mains (e.g., Twitter). As shown in the bottom right
rectangle of Figure 1, ‘@Garbriele Corno:’ is the
special expression that only exists in tweets and ‘#’
is used to highlight something.
Language. It refers to linguistic knowledge in
various languages. For example, the word order of
‘Como se conoce popularmente en Brasil al tenista’
in Spanish is different from its English expression
‘As the tennis player is popularly known in Brazil’.
Besides, the expressions of ‘Brazil’ and ‘tenista’ in
English vary from those in Spanish.

Task. It describes hand-crafted annotations for
different tasks, which is expensive and difficult to
obtain (e.g., NER and MRC). For example, NER
labels LOC and ORG denote names of locations
and organizations, respectively. For MRC task in
Figure 1, ‘W NJ’ is annotated as the answer to
question ‘Who has the most to lose?’ .

Furthermore, we divide domain/language aspect
into the source and target. Particularly, NER is
regarded as the target task for zero-resource NER.

3.2 Four Practical Guidelines

Based on our analysis, we propose four practical
guidelines on how to fully exploit available knowl-
edge to alleviate data scarcity.

Guideline-I: It is necessary to exploit available
knowledge from domain, language, and task.

Guideline-II: Bridge the gap between source do-
mains/languages and target domains/languages.

Guideline-III: Bridge the gap between annota-
tions for non-NER tasks and NER task.

Guideline-IV: Fuse the knowledge of both the
target domain/language and NER task.

3.3 Target-Oriented Fine-tuning Framework

As shown in Figure 2, we design a Target-Oriented
Fine-tuning (TOF) framework for zero-resource
NER. It contains two components: a) Knowledge
Transfer, which displays how to transfer not only
domain/language but also task knowledge from
various data, and b) Fine-tuning Process, which
demonstrates a flow diagram of the complete fine-
tuning process. Both components are designed
based on our proposed guidelines, and their rela-
tions are illustrated in Figure 2.

3.3.1 Knowledge Transfer
As the right part of Figure 2 shows, to transfer
both domain/language and task knowledge for the
Targets, we consider six kinds of corpora: a) un-
labeled NER dataset Dt,no, b) unlabeled NER
dataset Ds,no, c) labeled MRC dataset Dt,m, d) la-
beled MRC datasetDs,m , e)unlabeled NER dataset
Dt,no, and f) labeled NER dataset Ds,n, where {a),
c), e)} is in the target domain and {b), d), f)} is
in the source domain. Note that e) is the Targets
without considering labels.

According to Guideline-I, since there is no avail-
able data that satisfies the Targets, it is necessary
to transfer knowledge relevant to the Targets from
other data as much as possible. Apart from source
NER labeled data, we not only exploit unlabeled
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Figure 2: The overall architecture of our Target-Oriented Fine-tuning (TOF) framework. Orange rectangles denote
our proposed four guidelines, and dotted lines with arrows denote how they guide Knowledge Transfer and Fine-
tuning Process. Rectangles and solid lines in green, blue, and red color correspond to three fine-tuning tasks (i.e.,
MLM, MRC, NER), respectively. And the black solid lines with arrows denote the training steps.‘Target Data’ and
‘Source Data’ denote data in target and source domains/languages, respectively. i in the circle denotes Step-i.

target data, but also utilize non-NER labeled target
data. Therefore, three kinds of data are consid-
ered as shown in Figure 2: for ‘Target Data’, a)
unlabeled NER dataset Dt,no and c) labeled MRC
dataset Dt,m ; for ‘Source Data’, and f) labeled
NER dataset Ds,n.

According to Guideline-II, there is discrepancy
between the source and target domain/language.
To deal with the gap, it is essential to apply fine-
tuning tasks on the mixture of the source and target
data. Besides, an effective way to bridge the gap
is transforming source data into the target format,
e.g., translate the source language data into target
language. Therefore, we collect b) unlabeled NER
dataset Ds,no and d) labeled MRC dataset Ds,m in
the ‘Source Data’.

3.3.2 Fine-tuning Process
Based on AdaptaBERT, we novelly introduce a
MRC task between domain-tuning and task-tuning
process. Thus, our fine-tuning process contains
three fine-tuning tasks as follows.

Masked Language Model (MLM). To adapt
contextualized word embeddings to both the source
and target data, we use MLM (Devlin et al., 2018).

Based on Guideline-II, We train the model on a
mixture of dataset Dt,no and Ds,no. We use the
same strategy with (Han and Eisenstein, 2019) to
generate 10 random maskings for each instance.

Machine Reading Comprehension (MRC).
Based on the Guideline-III, we add a span
extraction MRC task, which has three advantages:
a) MRC can enhance the ability of NER model
on span extraction and help NER better capture
semantic information of different entity types; b)
MRC framework can be used to solve NER task
(Li et al., 2020) and it becomes a bridge between
NER and other tasks; and c) Recent work on
framing other tasks as MRC (Wu et al., 2019; Liu
et al., 2020a) provides an idea for transferring
knowledge from different tasks with a unified
framework. The MRC model is implemented
by feeding the contextualized word embedding
of each token xt into two linear classification
layers, respectively. The probability of each token
being the start or the end index of a span can be
computed as follows:

pstartt =softmax(Wstart · xt),
pendt =softmax(Wend · xt),

(2)
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where Wstart and Wend ∈ R d1×2 are learnable
parameters, and d1 denotes the dimensions of con-
textualized word embedding. Finally, the model
is trained by optimizing the Cross-Entropy loss
over pstartt and pendt . According to Guideline-II,
we train the MRC model on all available MRC data
Dt,m, Ds,m and NER dataDs,n that is transformed
into MRC format Ds,nm following (Li et al., 2020).

Named Entity Recognition (NER). To fine-
tune contextualized word embeddings continually
and learn the prediction model, we feed contex-
tualized word embeddings into a linear classifica-
tion layer and maximize the probability of each to-
ken with the ground-truth entity label. Concretely,
given an input token sequence x = {xi}Ni=1 with
N words, we firstly feed it into the feature en-
coder fθ to obtain contextualized word embeddings
h = {hi}Ni=1 for all tokens:

h = fθ(x), (3)

where hi is the feature vector corresponding to
the i-th token xi and fθ is based on pre-trained
language model, i.e., BERT (Devlin et al., 2018),
where θ denotes model parameters. Then hi is fed
into a linear classification layer with the softmax
function to predict the probability distribution of
entity labels, which is formulated as follows:

p(ŷ|xi) = softmax(Whi + b), (4)

where ŷ ∈ Y with Y being one-hot vectors cor-
responding to different entity labels, and {W, b}
denotes learnable parameters. The loss function is
defined as the cross entropy between the predicted
probability distribution of each entity label and the
ground-truth one for each word. We train NER
model on Ds,n and predict labels on Dt,no.

3.3.3 Training
A novel training process is proposed to narrow the
gap between the knowledge from available data
and the Targets, which contains three processes,
i.e., MRC enhancing, pseudo data enhancing, and
continual learning enhancing.
MRC Enhancing. We fine-tune contextualized
word embeddings by sequentially training the
MLM f(·, θmlm), MRC g(·, θmrc), and NER
h(·, θner) at Step-1∼3 in Figure 2.
Pseudo Data Enhancing. According to Guideline-
IV, we use the trained NER model (Step-3) to
generate pseudo labels on NER unlabeled target
data D̂t,n (Step-4) and then fine-tune NER model
h(·, θ(0)ner) continually on generated pseudo-labeled

target data at Step-5.

Algorithm 1 The training process of TOF.
Input: Dataset Dt,no, Ds,no, Dt,m, Ds,m,

Ds,n, and Ds,nm; MLM f(·; θmlm); MRC
g(·; θmrc); NER h(·; θner); pre-trained BERT
θ(0); Number of pseudo-data iterations T .

Output: h(·, θ(T )ner).
1: Initialize θmlm = θ(0)

2: Fine-tune f(·, θmlm) on {Dt,no, Ds,no}
3: Initialize θmrc = θmlm
4: Fine-tune g(·, θmrc) on{Dt,m, Ds,m, Ds,nm}
5: Initialize θner = θmrc
6: Fine-tune h(·, θner) on {Ds,n}
7: Gen pseudo-NER D̂t,n ← h(·, θner)on Dt,no

8: Initialize θ(0)ner = θner
9: Fine-tune h(·, θ(0)ner) on {D̂t,n}

10: Gen pseudo-NER D
(0)
t,n ← h(·, θ(0)ner) on D̂t,no

11: Gen pseudo-MRC D̂
(0)
t,m ← D̂

(0)
t,n

12: for i = 1→ T do
13: Initialize θ(i)mrc = θ(i−1)ner

14: Fine-tune g(·, θ(i)mrc) on {Dt,m, D̂
(i−1)
t,m }

15: Initialize θ(i)ner = θ(i)mrc
16: Fine-tune h(·, θ(i)ner) on {D̂(i−1)

t,n }
17: Gen pseudo-NER D̂

(i)
t,n ← h(·, θ(i)ner) on

Dt,no

18: Gen pseudo-MRC D̂
(i)
t,m ← D̂

(i)
t,n

19: end for
20: Predict h(·, θ(T )ner) on Dt,no

21: return h(·, θ(T )ner)

Continual Learning Enhancing. We design a
continual learning strategy to make full use of
pseudo data and imitate the training procedure on
the Targets. We continually perform fine-tuning
between MRC and NER with considering pseudo
data (Step-6∼7 ), based on the following three con-
siderations: 1) pseudo-labeled target NER data
can be refined by the fine-tuned NER model af-
ter each iterations, 2) pseudo data is transformed
into MRC format, which directly introduces entity
type knowledge in target data through definition
of MRC questions, and 3) pseudo data participates
in both MRC and NER training, which can en-
hance knowledge connections between two tasks.
At Step-8∼9, we refine pseudo data with newly
fine-tuned NER model and take it as training data.
After T times iteration, we conduct predictions on
unlabeled target data with NER model h(·, θ(T )ner)
(Step-10).
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The training procedure is summarized as 1.
Dt,no and Ds,no demote unlabeled NER data in the
target and source domain/language, respectively.
Dt,m andDs,m denote labeled MRC data in the tar-
get and source domain/language, respectively. Dt,n

and Ds,n denote labeled NER data in the target
and source domain/language, respectively. Partic-
ularly, Dt,n is the pseudo-labeled NER data in the
target domain/language generated by NER model.
And we transformed it into the MRC format, as
Ds,nm. f(·; θmlm), g(·; θmrc) and h(·; θner) de-
note the model of MLM, MRC, and NER, respec-
tively. Note that ‘Gen’ in Algorithm 1 denotes the
generalize operation.

4 Experiments

4.1 Data Preparation

We take CoNLL03 for English (en) in the news
domain as the source dataset for both cross-lingual
and cross-domain tasks.
Cross-Lingual. We consider three NER datasets
in target languages: CoNLL03 for German
(de) (Tjong Kim Sang and De Meulder, 2003),
CoNLL02 for Dutch (nl) and Spanish (es) (Tjong
Kim Sang, 2002). All datasets are labeled with
4 entity types: PER, ORG, LOC, MISC. Each of
them is split into training, validation and test sets
following (Wu et al., 2020b). We use three MRC
datasets in target languages: MLQA (es) (Lewis
et al., 2019), XQuAD (de) (Artetxe et al., 2019),
and SQuAD (en) (Rajpurkar et al., 2016).
Cross-Domain. We use three English datasets in
target domains: CBS SciTech News dataset (Jia
et al., 2019), short as CBS, in the science and
technology news domain, Twitter NER (Zhang
et al., 2018b) and WNUT16 (Strauss et al., 2016)
in the social media domain. We use two English
MRC datasets from news and twitter domains re-
spectively: NewsQA (Trischler et al., 2016) and
TweetQA (Xiong et al., 2019). The statistics of
datasets are shown in 5 in Appendix A.

4.2 Data Preprocessing

NER datasets are processed in the ‘BIO’ scheme
with four entity types, i.e., PER, LOC, ORG, and
MISC except for WNUT16. We perform entity
span detection task on WNUT16. Since there are
ten entity types annotated in WNUT16, it is differ-
ent from annotations in source domain/language.
For MRC datasets, we transform all of them into a
unified format following (Li et al., 2020) for MRC

training. Besides, following (Li et al., 2020), we
map the labeled NER datasets to labeled MRC
dataset. Concretely, we use the description of each
entity for annotators as the query, and each sen-
tence as context. The corresponding answers for
each query are entity spans with the same entity
type in the sentence. We delete all entity labels on
the target data and only use the unlabeled data. We
use training and validation sets from the source for
training and evaluation, and do predictions on test
sets from different target domains/languages.

4.3 Implementation Details

We use BERT-base and multilingual BERT (De-
vlin et al., 2018) to initialize contextualized word
embeddings in cross-domain and cross-lingual sce-
narios, respectively. We empirically follow the
hyperparameter settings of (Han and Eisenstein,
2019) and (Li et al., 2020) except for the learning
rate and batch size. Due to the discrepancy between
various datasets, we choose the learning rate for
Adam (Zhang et al., 2018a) optimizer according
to the best performance of checkpoints on the vali-
dation set. And the batch size is set to 32, 16 and
64 for MLM, MRC and NER, respectively. More
hyperparameters for training procedure are listed
in Appendix B.

4.4 Systems

We evaluate following systems by entity-level F1
scores (Sang and De Meulder, 2003). Moreover,
we conduct each experiment 5 times and report the
mean F1-score.
BERT-ML. Moon et al. (2019) apply the multilin-
gual BERT to cross-lingual NER.
TSL. Wu et al. (2020a) propose a teacher-student
learning method for cross-lingual NER.
UniTrans. Wu et al. (2020b) unify data transfer
and model transfer for cross-lingual NER.
mCell LSTM. Jia and Zhang (2020) design a multi-
cell compositional LSTM for cross-domain NER.
COFEE-MRC. Xue et al. (2020) inject coarse-
to-fine automatically mined entity knowledge in a
pre-trained language model for cross-domain NER.
AdaptaBERT. Han and Eisenstein (2019) perform
domain-tuning and task-tuning as described in Sec-
tion 2.2. We take the AdaptaBERT as our baseline
in the cross-domain scenario.
AdaptaBERT + translation. Another baseline is
set for the cross-lingual scenario. We apply trans-
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Systems cross-lingual cross-domain
es nl de avg CBS Twitter WNUT16 avg

BERT-ML(Moon et al., 2019)† 76.53 83.35 72.44 77.44 - - - -
TSL (Wu et al., 2020a)† 78.00 81.33 75.33 78.22 - - - -
UniTrans(Wu et al., 2020b)† 79.31 82.90 74.82 79.01 - - - -
+ ensemble 79.29 83.07 75.55 79.29 - - - -

mCell LSTM(Jia and Zhang, 2020)† - - - - 75.19 - - -
COFEE-MRC(Xue et al., 2020)† - - - - - 54.56 - -

AdaptaBERT(Han and Eisenstein, 2019)
∗ 75.30 78.52 70.90

75.20
75.30 65.61 63.03‡

67.98
(± 0.30) (± 0.25) (± 0.54) (± 0.37) (± 0.46) (± 0.23)

+ translation
76.18 80.30 72.47

76.32 - - - -
(± 0.13) (± 0.52) (± 0.75)

TOF(ours)
80.35 82.79 76.57 79.90 76.41 67.94 67.86 70.74

(± 0.29) (± 0.17) (± 0.16) (± 0.5) (± 0.09) (± 0.27)

w/o continual learning
79.44 81.64 76.39

79.16
75.95 67.13 67.70

70.26
(± 0.08) (± 0.17) ± 0.17 (± 0.38) (± 0.05) (± 0.08)

w/o pseudo data & w/o continual learning
78.32 80.56 73.61

77.50
75.34 66.18 66.45

69.32
(± 1.11) (± 0.35) ± 0.61 (± 0.51) (± 0.17) (± 0.39)

Table 1: Results of our method and previous state-of-the-art methods for zero-resource NER in cross-lingual and
cross-domain. ‘avg’ denotes the average of F1 scores (%) on three benchmarks. ‘†’ denotes original results reported
in their original papers. ‘∗’ denotes results re-implemented by us. Note that ‘‡’ denotes our re-implemented result
on WNUT16 and the previous state-of-the-art result on it is 62.8 reported by Han and Eisenstein (2019).

lations of source data2 to both domain-tuning and
task-tuning of AdaptaBERT.
TOF. Our method is built on two baselines for
the cross-lingual and cross-domain scenario, re-
spectively. ‘w/o continual learning’ denotes the
framework without Step-6∼9. ‘w/o pseudo data &
w/o continual learning’ denotes the framework only
performs MRC enhancing at Step-1∼3 of Figure 2.

5 Results and Analysis

5.1 Overall Performance

Table 1 lists main results of our method in con-
trast with previous state-of-the-art methods in both
cross-lingual and cross-domain scenarios.
Cross-Lingual. Our baseline on three cross-
lingual benchmarks is implemented by train-
ing AdaptaBERT with additional translations
of source language data, referred as ‘Adapt-
aBERT+translations’ in Table 1. Our method
achieves significant improvements over baseline
of F1-scores 4.17, 2.49, and 4.1 for es, nl, and de,
respectively. Compared to previous methods, our
TOF framework achieves the new state-of-the-art
results on two benchmarks es and de. Besides, Ta-
ble 1 shows the results of our TOF after removing
‘pseudo data’ and ‘continual learning’, respectively,
which demonstrates the effectiveness of these two

2We translate the source language data into the target lan-
guage following (Wu et al., 2020b) using MUSE (Conneau
et al., 2017).

enhancing strategies. The improvement of our TOF
on nl (2.49 ↑) is not as good as other two languages
(es:4.17 ↑ and de: 4.1 ↑), which results from the
scarcity of MRC data in nl. The results well demon-
strate the effectiveness of our proposed framework,
which benefit from our four guidelines.
Cross-Domain. We regard re-implemented re-
sults of AdaptaBERT as our baseline, since it
not only achieves the state-of-the-art performance
on WNUT16, but also outperforms the previous
state-of-the-art methods on both CBS and Twitter.
Our framework yields obvious improvements over
the baseline (CBS: 1.11 ↑, Twitter: 2.33 ↑ and
WNUT16: 4.83 ↑) and achieves new state-of-the-
art results on three datasets. In conclusion, all these
results verify the effectiveness and generalizability
of our TOF in cross-domain setting.

5.2 Ablation Study

We conduct ablation studies to explore how MRC
datasets make difference at step 1∼3 in Figure 2.
Table 2 highlights the impact of different MRC data
in both cross-lingual and cross-domain scenarios.

In the cross-lingual scenario, we consider five
kinds of MRC data: 1) ‘w/o target MRC data’ de-
noting training without MRC data in the target lan-
guage; 2) ‘w/o source MRC data’ denoting train-
ing without MRC data in English; 3) ‘w/o source
MRC data (trans)’ denoting without translating the
source MRC data into the target language; 4) ‘w/o
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# Methods cross-lingual cross-domain
es nl de avg CBS Twitter WNUT16 avg

0 TOFMRC−enhancing 78.32 80.30 73.61 77.41 75.34 66.18 66.45 69.32

1 w/o target MRC data 0.34 ↓ - 0.72 ↓ - 0.44 ↓ 1.99 ↓ 0.39 ↓ 0.93 ↓
2 w/o source MRC data 1.82 ↓ 1.26 ↓ 1.96 ↓ 1.68 ↓ 0 0.25 ↓ 0.78 ↓ 0.54 ↓
3 w/o source MRC data (trans) 2.57 ↓ 0.05 ↓ 1.65 ↓ 1.42 ↓ - - - -

4 w/o NER-MRC data 3.69 ↓ 0.83 ↓ 1.48 ↓ 2.00 ↓ 0.88 ↓ 0.65 ↓ 0.26 ↓ 0.59 ↓
5 w/o NER-MRC data (trans) 3.02 ↓ 1.01 ↓ 1.30 ↓ 1.77 ↓ - - - -

Table 2: Ablation study for TOFMRC−enhancing , which only performs step 1∼3 in Figure 2. Row 1∼5 list the
performance changes compared with Row 0. ‘↓’ denotes the drop of performance.

cross-lingual cross-domain
es nl de avg CBS Twitter WNUT16 avg

MLM→MRC→ NER 78.32 80.30 73.61 77.41 75.34 66.18 66.45 69.32
MRC→MLM→ NER 73.17 81.06 73.06 75.76 74.90 65.87 66.13 68.97

Table 3: Results of our TOF framework with different fine-tuning orders.

NER-MRC data’ denoting without transforming
the NER data into MRC format; and 5) ‘w/o NER-
MRC data (trans)’ denoting without translating the
NER-MRC data into the target language.

Results demonstrate that removing any data gen-
erally causes a performance drop. Therefore, we
draw more in-depth observations as follows. For
es, ‘NER-MRC data’ brings the greatest drop of
the performance (Row 4). For nl and de, ‘source
MRC data’ has the greatest impact (Row 2). Be-
sides, ‘source MRC data’ affects the performance
more than ‘target MRC data’ (Row 2 vs. Row 1).
We think it is because ‘source MRC data’ is twice
as much as the target one.

In the cross-domain scenario, since all of three
target datasets are in English but in different do-
mains, we do not consider the translated data (Row
3 and 5) in Table 2. Therefore, we conduct ablation
studies on three kinds of data: 1) ‘w/o target MRC
data’ denoting training without the target domain
MRC data; 2) ‘w/o source MRC data’ denoting
without the source domain MRC data; and 4) ‘w/o
NER-MRC’ data denoting without transforming
the NER data into MRC format.

According to the average results in Table 2, we
observe that ‘target MRC data’, ‘NER-MRC data’,
and ‘source MRC data’ are in descending order of
impact. It is intuitive that on Twitter, as shown in
Table 2 (Row 1 vs. Row 2 and Row 4), ‘target MRC
data’ has the greatest impact on the performance,
when the amount of the target MRC data is greater

than or equal to that of ‘source MRC data’ and
‘NER-MRC data’. However, CBS is affected most
by ‘NER-MRC data’ (Row 4), since its target MRC
data are collected from news domain, not science
and technology news. For WNUT16, both ‘target
MRC data’ and ‘source MRC data’ bring more
drops than ‘NER-MRC data’ (Row 1 and Row 2
vs. Row 4). We conjecture that since WNUT16 is
an entity span detection task rather than standard
NER, it is affected more by the golden MRC data
than NER-MRC data.

5.3 Impact of Task Order
We explore the impact of two different sequences
for MRC-enhancing, i.e, ‘MLM→MRC→ NER’
and ‘MRC → MLM → NER’ as shown in Ta-
ble 3. The results demonstrate that the former
outperforms the latter in both cross-lingual and
cross-domain scenarios. We conjecture that MLM
can capture knowledge of data itself, e.g., domain-
specific information and linguistic characters, and
MRC captures task-specific information with an-
notations. Besides, MRC is more relevant to NER
than MLM according to task relevance. Therefore,
MRC is appropriate to be an intermediate task.

5.4 Comparison with SpanBERT
We replace the pre-trained language model BERT
with SpanBERT (Joshi et al., 2020) in the Adapt-
aBERT and MRC-enhancing of our TOF to com-
pare the span-enhancing method with ours. The
results are shown in Table 4. 1) SpanBERT is
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# Methods CBS Twitter WNUT16 avg

1 AdaptaBERT 75.30 65.61 63.03 67.98
2 +MRC-enhancing 75.34 66.18 66.45 69.32

3 SpanBERT 75.37 67.11 64.17 68.88
4 +MRC-enhancing 75.48 67.46 67.80 70.25

Table 4: AdaptaBERT vs SpanBERT (Joshi et al.,
2020) in cross-domain NER.

superior to BERT-base for NER task (Row 3 vs.
Row 1). Different from BERT with masking differ-
ent tokens for each instance, SpanBERT masks a
span with several adjacent tokens, which is more
related to NER task. 2) ‘SpanBERT’ underper-
forms ‘AdaptaBERT+MRC-enhancing’ on CBS
and WNUT16 (Row 2 vs. Row 3), which sug-
gests that although SpanBERT is trained on a large
amount of corpus, it is not appropriate for some
specific domains. Our MRC-enhancing method
uses limited MRC data but achieves more improve-
ments, which shows that MLM can not capture
enough task-specific information and it is neces-
sary to introduce other NER-related tasks. 3) Our
MRC-enhancing method can make further improve-
ments based on SpanBERT (Row 4 vs. Row 3).

6 Related Work

Zero-resource NER. Some studies (Jia and Zhang,
2020; Pfeiffer et al., 2020; Vidoni et al., 2020) fo-
cus on improving architectures of existing models,
which add new components into networks to cap-
ture specific knowledge, i.e., entity types, language
and task characteristics. Different from these meth-
ods, our approach only modifies the training pro-
cedure without changing model structures. Other
studies introduce different auxiliary tasks to allevi-
ate data scarcity (Han and Eisenstein, 2019; Xue
et al., 2020; Phang et al., 2020). They are usu-
ally based on multi-task learning or two-phrase
fine-tuning. Multi-task learning requires balance
between the target task and auxiliary tasks, which
needs carefully designed objectives. Although two-
phrase fine-tuning is effective, it is still inadequate
for available data and depends on valid data selec-
tion. Our work differs in that we not only propose
four practical guidelines to guide data selection
and task fine-tuning, but also design a task-oriented
fine-tuning framework to exploit more diverse data
and target-oriented training strategies.
Data Augmentation. Our approach is inspired by
some studies on text classification. Gururangan

et al. (2020) utilize unlabeled data in different do-
mains and tasks. Ben-David et al. (2020) exploit
unlabeled corpora from multiple domains. Unlike
these methods, we focus on target domain/language
data with annotations for other tasks, which not
only transfers domain/language knowledge, but
also utilizes available annotations for other tasks.
MRC for Different Tasks. Although most re-
searches on NER focus on the sequence labeling
framework (Huang et al., 2015; Ma and Hovy,
2016; Akbik et al., 2018; Liu et al., 2019), our
work is also inspired by formatting other tasks as
MRC, such as NER (Li et al., 2020), co-reference
resolution (Wu et al., 2019), and event extraction
(Liu et al., 2020a). These studies show the su-
periority and scalability of MRC framework and
provide a reference for our work. Different from
(Li et al., 2020) using MRC to build a new solution
architecture for NER, we exploit MRC to improve
the training procedure of NER that is based on se-
quence labeling. Besides, we perform continual
learning between MRC and NER to enhance the
impact of MRC on NER.

7 Conclusion and Future Work

In this paper, we analyze the problem of data
scarcity in zero-resource NER. To alleviate this
issue, we propose four practical guidelines on trans-
ferring knowledge from three aspects, i.e., domain,
language, and task, and strengthening connections
between the source and target data. Based on these
guidelines, we design a task-oriented fine-tuning
framework to enhance the training procedure with
various strategies. Our approach yields significant
improvements on six benchmarks and achieves the
state-of-the-art on five benchmarks. In the future,
we will extend our framework on different target
tasks and more task-specific enhancing strategies.
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Word translation without parallel data. arXiv
preprint arXiv:1710.04087.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Suchin Gururangan, Ana Marasović, Swabha
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Orthogonal language and task adapters in zero-shot
cross-lingual transfer.

Qianhui Wu, Zijia Lin, Börje Karlsson, Jian-Guang
Lou, and Biqing Huang. 2020a. Single-/multi-
source cross-lingual NER via teacher-student learn-
ing on unlabeled data in target language. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6505–
6514, Online. Association for Computational Lin-
guistics.

Qianhui Wu, Zijia Lin, Börje F Karlsson, Biqing
Huang, and Jian-Guang Lou. 2020b. Unitrans: Uni-
fying model transfer and data transfer for cross-
lingual named entity recognition with unlabeled
data. arXiv preprint arXiv:2007.07683.

Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Ji-
wei Li. 2019. Coreference resolution as query-based
span prediction. arXiv preprint arXiv:1911.01746.

Wenhan Xiong, Jiawei Wu, Hong Wang, Vivek Kulka-
rni, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and
William Yang Wang. 2019. TWEETQA: A social
media focused question answering dataset. CoRR,
abs/1907.06292.

Mengge Xue, Bowen Yu, Zhenyu Zhang, Tingwen Liu,
Yue Zhang, and Bin Wang. 2020. Coarse-to-fine pre-
training for named entity recognition. arXiv preprint
arXiv:2010.08210.

Guodong Zhang, Chaoqi Wang, Bowen Xu,
and Roger B. Grosse. 2018a. Three mecha-
nisms of weight decay regularization. CoRR,
abs/1810.12281.

Qi Zhang, Jinlan Fu, Xiaoyu Liu, and Xuanjing Huang.
2018b. Adaptive co-attention network for named
entity recognition in tweets. In AAAI, pages 5674–
5681.

A Statistics

The statistics of all datasets are listed in Table 5.
We regard CoNLL03 in English as the source NER
data in both cross-lingual and cross-domain scenar-
ios. For target NER datasets, we consider cross-
lingual and cross-domain scenarios, respectively.

In the cross-lingual scenario, CoNLL03 in Ger-
man, CoNLL02 in Spanish, and CoNLL02 in
Dutch denote the benchmark datasets in the tar-
get languages, i.e., German (de), Spanish (es),
and Dutch (nl), respectively. In terms of MRC
datasets, we apply MLQA in Spanish and XQuAD
in German as labeled MRC datasets in the target
languages, i.e., on es and de. Note that we use
the initial validation and test splits in MLQA and
XQuAD as the training and validation sets in our
work. Since it is difficult to obtain labeled MRC
datasets for nl, we consider the MRC data in the
source language, i.e., English (en).

In the cross-domain scenario, CBS SciTech
News NER datasets, short as CBS, in science and
technology news domain, Tiwtter NER dataset in
twitter domainm, and the shared task on entity
span detection for WNUT2016 in twitter domain
are considered as the target domain NER datasets.
All of these three cross-domain benchmarks are
in English. We use NewsQA in news domains for
MRC fine-tuning on CBS, due to lack of available
MRC data in science and technology news domain.
TweetQA is applied to both Twitter and WNUT16
NER as the MRC data in the target domain.

B Hyperparameters
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Benchmark Task Language Domain Training Validation Test

CoNLL03 NER English(en) News 14987 3466 3684

Cross-Lingual

CoNLL03 NER German(en) News 12705 3068 3160
CoNLL02 NER Spanish(es) News 8323 1915 1517
CoNLL02 NER Dutch(nl) News 15806 2895 5195
MLQA MRC Spanish(es) Multi-domain 5254 500 -
XQuAD MRC German(de) Multi-domain 1190 428 -
SQuAD MRC English(en) Multi-domain 10000 1000 -

Cross-Domain

CBS SciTech NER English(en) Science-technoloy news - - 2000
TwitterNER NER English(en) Social-media 4000 1000 3256
WNUT16 ESD∗ English(en) Social-media 2394 1000 3856
NewsQA MRC English(en) News 92550 5167 5127
TweetQA MRC English(en) Social-media 10692 1086 1979

Table 5: Dataset statistics. ‘∗’ denotes the entity span detection task.

Methods cross-lingual cross-domain
es nl de CBS Twitter WNUT16

MRC-enhancing MRC 2e-6 1e-6 1e-6 2e-5 2e-5 2e-5
MRC-enhancing NER 5e-5 2e-5 2e-5 5e-5 2e-5 5e-5

Pseudo data NER 2e-5 1e-5 1e-5 8e-5 1e-6 1e-6
Continual learning MRC 5e-5 2e-6 2e-5 8e-6 3e-5 1e-6
Continual learning NER 5e-5 5e-6 1e-6 3e-5 5e-6 2e-6

Table 6: Learning rate of MRC and NER model on different datasets.
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for 6 epochs. Besides, we perform continual learn-
ing for one iteration and achieve the best perfor-
mance. To re-implement our results easily, we set
the seed to a fixed value as 2019 following (Han
and Eisenstein, 2019). The learning rate of MLM
on each dataset is set to 5e-5. The learning rate
of MRC and NER model on different datasets is
listed in Table 6. To find the proper learning rate,
we perform the hyperparameter search on a set of
learning rete values, i.e., 1e-6, 2e-6, 5e-6, 8e-6,
1e-5, 2e-5, 3e-5. 5e-5, 8e-5. And we choose hyper-
parameter values according to the best validation
performance. We train our model on one NVIDIA
Tesla P40 (24GB). The average runtime of our TOF
framework on different datasets varies from 6 hours
to 2 days, due to the data size of different datasets.
Other hyperparameters are set following (Han and
Eisenstein, 2019) and (Li et al., 2020).


