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Abstract

Image captioning systems are unable to generate fine-grained captions as they are trained on
data that is either noisy (alt-text) or generic (human annotations). This is further exacerbated
by maximum likelihood training that encourages generation of frequently occurring phrases.
Previous works have tried to address this limitation by fine-tuning captioners with a self-
retrieval (SR) reward. However, we find that SR fine-tuning has a tendency to reduce
caption faithfulness and even hallucinate. In this work, we circumvent this bottleneck by
improving the MLE initialization of the captioning system and designing a curriculum for
the SR fine-tuning process. To this extent, we present (1) Visual Caption Boosting, a novel
framework to instill fine-grainedness in generic image captioning datasets while remaining
anchored in human annotations; and (2) BagCurri, a carefully designed training curriculum
that more optimally leverages the contrastive nature of the self-retrieval reward. Jointly,
they enable the captioner to describe fine-grained aspects in the image while preserving
faithfulness to ground-truth captions. Our approach outperforms previous work by +8.9% on
SR against 99 random distractors (RD100) (Dessì et al., 2023); and +7.6% on ImageCoDe.
Additionally, existing metrics to evaluate captioning systems fail to reward diversity or
evaluate a model’s fine-grained understanding ability. Our third contribution addresses
this by proposing self-retrieval from the lens of evaluation. We introduce TrueMatch, a
benchmark comprising bags of highly similar images that uses SR to assess the captioner’s
ability to capture subtle visual distinctions. We evaluate and compare several state-of-the-art
open-source MLLMs on TrueMatch, and find that our SR approach outperforms them all by
a significant margin (e.g. +4.8% - 7.1% over Cambrian) while having 1-2 orders of magnitude
fewer parameters. We also outperform vanilla SR by +14.4% to +19.5%.

1 Introduction

Image captioning, or generating natural language image descriptions, has witnessed remarkable progress over
the last decade. Today’s captioning systems are composed of sophisticated deep learning architectures (Mokady
et al., 2021; Stefanini et al., 2022; Dai et al., 2024; Liu et al., 2023) trained on vast datasets (Lin et al., 2014;
Sharma et al., 2018; Thomee et al., 2016; Desai et al., 2021; Schuhmann et al., 2022). However, even with
these advances, approaches often generate generic captions that are unable to differentiate similar images (see
Figure 1), violating the fundamental purpose of a caption: to facilitate accurate and efficient communication
of visual content (Fisch et al., 2020; Kreiss et al., 2022; Dessì et al., 2023). We attribute the shortcomings of
image captioning systems to three key factors: (i) the nature of their training data, (ii) captioning evaluation
metrics, and (iii) the maximum likelihood estimation (MLE) training approach.

I. Challenges with the training data. Training datasets may be divided into two: curated datasets
(COCO (Lin et al., 2014), Flickr30k (Plummer et al., 2015)) or large-scale alt-text data (e.g. CC3M (Sharma
et al., 2018)). While alt-text is noisy and may be unaligned with the image, human-annotated captions
(COCO) may be generic (Kornblith et al., 2023) and lack world knowledge (Bavishi et al., 2023) as annotators
describe visual concepts in a simplistic manner (e.g. labeling a Golden Retriever as a dog). Recently,
foundation models are being used to enhance large-scale alt-text data by making them denser (Doveh et al.,
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A man flying through the air while 
riding a bike .

A man flying through the air while 
riding a bike .

A man wearing a helmet and gloves 
performs a stunt on a blue dirt bike,  
while riding on a cloudy day. 

A man flying through the air while 
riding a bike .

Two people jumping in the air on 
their dirt bikes. 

 A motorcyclist wearing a helmet and 
black attire performs tricks on his 
bike, jumping high in the air. 

A man flying through the air while 
riding a bike .

A man flying through the air while 
riding a bike .

A person wearing a helmet performs 
an aerial stunt on a red and white 
dirt bike, flying through cloudy sky. 

 COCO SR 
(CVPR’23)

COCO MLE

OURS SR

Figure 1: For a set of similar images, captioning systems struggle to generate meaningful captions that
uniquely describe each image. In this example, COCO MLE: A model trained on COCO with MLE
generates the same generic description for all images. COCO SR (Dessì et al., 2023): While the SR objective
may help, the COCO captions are not rich enough and lead to hallucinations of incorrect attributes such as
“two people” (middle). OURS SR: Our improved data and training recipe result in captions that are able to
correctly distinguish 2 of 3 images (middle and right). Even though correct fine-grained details are captured
for the left image, they may be insufficient, indicating the challenging nature of SR on our benchmark.

2024; Urbanek et al., 2024). However, such methods are prone to inherit biases (e.g. gender, geography)
present in foundation models (Hall et al., 2023; Sirotkin et al., 2022; Basu et al., 2023; Salman et al.) and
exhibit verbose language modeling priors (Liu et al., 2024).

To address these data inadequacies, we propose Visual Caption Boosting (VCB), a model agnostic framework
designed to generate dense captions that holistically capture different aspects of the image (objects, attributes,
relations, scene, etc.) while remaining anchored in human annotations (see Section 2). In brief, multiple
human annotated captions are blended together using a Large Language Model (LLM) and expanded with
an image description generated from a Multimodal Large Language Model (MLLM). To prevent conflicting
visual details, we prompt the LLM to prefer the blended caption over the description from the MLLM. Thus,
VCB creates fine-grained captions that are grounded in human annotations, enabling rich and informative
datasets to train image captioning systems.

II. Image caption evaluation metrics can be broadly classified into reference-based and reference-
free. Reference-based metrics such as BLEU (Papineni et al., 2002), CIDEr (Vedantam et al., 2015), and
SPICE (Anderson et al., 2016) rely on comparisons to ground-truth (GT) captions that may not include image
details beyond salient objects. These metrics tend to penalize captions that are more specific than the ground-
truth, often favoring generic descriptions (Wang et al., 2020). Reference-free metrics like CLIPScore (Hessel
et al., 2021) alleviate this issue by directly measuring image-text similarity, but may fail to encourage diverse
and discriminant captions. These limitations necessitate the development of new evaluation strategies that
incentivize models to produce fine-grained and distinct captions.

In this work, we ask what makes a “good” description when evaluating captioning systems? We posit that
a caption should enable a listener to pick out a target image from a bag of images with similar visual
elements (Liu et al., 2018). To this extent, we propose to evaluate captioning systems through the lens of
self-retrieval (SR) i.e., their ability to retrieve an image using its generated caption against of bag of highly
similar distractor images. Traditionally, improvements in text-to-image (T2I) retrieval have focused on either
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enhancing the embedding spaces of scoring functions (Faghri et al., 2017) or recently, making denser, more
detailed text queries (Lai et al., 2023; Li et al., 2024; Singla et al., 2024; Shvetsova et al., 2023). In this work,
we introduce a novel perspective: by curating image sets of highly similar images, we can use T2I retrieval to
assess whether the query (caption) captures fine-grained visual concepts necessary to retrieve the correct
image. Specifically, we construct bags of highly similar images, where uniquely describing each image within a
bag requires describing various facets of visual understanding. For example, retrieving the target image from
Figure 1 requires the caption to incorporate information about attributes (red bike) or orientation (inverted
body). Hence, we evaluate whether the captioning system captures subtle visual distinctions by retrieving
the target image using its generated caption without looking at the other candidate images in the bag.

While previous works have incorporated SR as a reward signal during training (Dessì et al., 2023), to
our knowledge, we are the first to curate bags of similar images and leverage SR to evaluate fine-grained
understanding exhibited by captioning systems. To this end, we introduce TrueMatch, a benchmark of
image sets with varying size. TrueMatch offers a comprehensive evaluation framework to assess the ability of
captioning systems to capture various aspects of visual discrimination such as positioning, action, orientation.

III. Guiding captioners away from their language modeling priors. MLE training incentivizes
captioning systems to overuse common concepts and statistically probable phrases when describing visually
similar images. While previous works have optimized for self-retrieval (SR) reward to learn discriminant
captioners (Luo et al., 2018; Liu et al., 2018; Rennie et al., 2017; Dessì et al., 2023), the models are first trained
via MLE on generic caption datasets (e.g. COCO). This is suboptimal and we show that SR fine-tuning is
sensitive to initialization: it is necessary to start with a captioning system that captures fine-grained details in
order to better preserve faithfulness to GT captions. In fact, we discover a propensity of captioning systems
to hallucinate (Section 4.4) when trained via SR on generic captions (Dessì et al., 2023). Thus, current SR
approaches face two distinct challenges: a trade-off between retrieval performance and caption faithfulness,
and sub-optimal fine-grained retrieval performance.

To enhance SR’s ability to instill fine-grained visual information, we (i) fine-tune both components (language
and visual) of the captioning system (Section 4.5), and (ii) mine multiple hard negatives (visually similar
sets of images) to create training bags. We also introduce a curriculum learning approach that progressively
increases the bag size during training to leverage the contrastive nature of our retrieval-based reward
(Section 4.6). Our carefully designed curriculum enables SR to leverage the rich initialization provided
by VCB, improving retrieval performance as well as the faithfulness of the generated captions. Through
our training procedure, we are able to circumvent the aforementioned trade-off and achieve substantial
performance gains, surpassing (Dessì et al., 2023) by 20% on TrueMatch without making any modifications
to the model architecture or reward. Our results demonstrate that a well-crafted training paradigm achieves
performance comparable to MLLMs that are orders of magnitude larger. Figure 1 shows images of a bag from
TrueMatch and captions generated by the same model architecture trained with different datasets (COCO
vs. Ours) and paradigms (MLE vs. vanilla SR vs. Ours SR).

Key contributions. We address three challenges plaguing current image captioning systems: Data,
Evaluation, and the MLE training. (i) We begin by identifying the inadequacies of image captioning datasets
in Section 2, and propose Visual Caption Boosting, a novel caption enhancement strategy that leverages
LLMs and MLLMs to generate dense, informative, and unbiased captions that are anchored in human
annotations. (ii) We then introduce TrueMatch (Section 3), a benchmark consisting of curated bags of highly
similar images that uses self-retrieval (SR) to assess the ability of captioning systems to capture fine-grained
visual distinctions. (iii) Section 4 leverages the rich data and effective evaluation methods introduced in
the previous two sections to train fine-grained captioning systems with SR. We offer new insights into SR
fine-tuning through extensive ablations revealing its sensitivity to MLE initialization, failure to preserve
caption faithfulness, and tendency to hallucinate. (iv) Finally, we design a simple “plug and play” training
recipe that enables SR to improve caption faithfulness while significantly outperforming vanilla SR (Dessì
et al., 2023) on TrueMatch and achieving state-of-the-art results on ImageCoDe (Krojer et al., 2022), another
benchmark for fine-grained image retrieval.
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LLM 
(Blender)

MLLM

LLM 
(Anchored
Expander)

Several zebras are grazing and 
standing near a watering hole in the 
wild, with a bird flying overhead

In this image, there is a group of 
zebras standing near a body of water, 
such as a river or a lake. The zebras 
appear to be grazing or drinking from 
the water. There is also a bird flying 
overhead, which adds to the natural 
setting of the image. The zebras and 
the bird seem to be coexisting 
peacefully in their respective habitats

A herd of zebras is gathered 
around a watering hole in the 
wild, where they appear to be 
grazing. A bird flies overhead, 
coexisting peacefully with the 
zebras in their respective 
habitats

Holistic Caption

Some zebra chilling in the wild with a 
bird flying over.

A herd of zebra on the plains at a 
watering hole.

There is a herd of zebras standing 
around.

A group of zebras and birds are 
gathered around water.

There are several zebras grazing 
near the water as a bird flies over.

Blended Caption

Visual Caption

Figure 2: Example of Visual Caption Boosting transforming the original human annotated captions to a
Holistic Caption. First, an LLM blends the human annotations to create a Blended Caption. Next, an MLLM
generates a dense visual caption that may be noisy. Finally, we create a Holistic Caption by instructing the
LLM to incorporate fine-grained details from the Visual Caption with the Blended Caption, while staying
anchored in human annotations in case of conflicts. Specific prompts are shared in Appendix A.1. The colors
indicate various concepts extracted from the human annotations or the visual caption. The red underlined
text (illustrated by us for ease of understanding), indicating hallucinations or verbose text, is ignored in the
holistic caption as we anchor the visual caption to human annotations.

2 Improving Datasets through Visual Caption Boosting

Training with dense ground-truth descriptions benefits vision-language models (Doveh et al., 2024; Urbanek
et al., 2024; Lai et al., 2023). Although existing image captioning datasets like COCO (Lin et al., 2014)
provide multiple annotations per image, they do not elicit detailed captions. This leads to generic annotations
such as “There is a herd of zebras standing around” (see Figure 2) that ignore finer visual concepts and fail
to describe the image holistically. This bottleneck reflects in trained captioning systems as well.

To address this, recent works leverage foundation models to synthetically expand visual information within
captions (Doveh et al., 2024; Li et al., 2024; Singla et al., 2024; Lai et al., 2023), instilling a wider range of
visual details. However these methods are prone to inherit biases present in foundation models (Sirotkin
et al., 2022; Basu et al., 2023; Salman et al.). Moreover, the descriptions generated by some of these
methods are excessively long making them susceptible to hallucinations (Favero et al., 2024). They also pose
challenges to training captioning systems as they exceed the token capacity of current VLMs (e.g. CLIP
with 77 tokens) (Urbanek et al., 2024). Nevertheless, while the individual COCO captions are sparse, we
find they describe complementary facets of the image, e.g. “watering hole”, “bird flying over”, “herd of
zebras” (Figure 2) that may provide additional details. This also corroborates findings by Ye et al. (2023)
that annotators from different cultural backgrounds describe different visual concepts when viewing the same
image.

Building upon these findings, we introduce Visual Caption Boosting (VCB), a novel two-stage approach to
enrich the training data with dense, more informative captions that encourage captioning systems to learn
and generate rich descriptions. VCB leverages foundation models and the diverse perspectives offered by
human annotators to generate rich descriptions while being anchored in human data.

BlendCap leverages an off-the-shelf LLM to create a blended caption that combines multiple facets of visual
information that the human annotators describe. Figure 2 shows an example of how a few captions can be
blended together into a comprehensive description of the image using our method. Notably, we prompt the
LLM to minimize redundant information resulting in short descriptions.
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HolisticCap builds upon BlendCap by incorporating a fine-grained visual description produced by an
MLLM1. Specifically, we prompt the LLM to instill the visual caption into the blended caption while
preferring human-grounded BlendCap in case of conflicting visual information. As seen in Figure 2, this
enables the LLM to ignore hallucinations present in Visual Caption such as “river or lake” and “drinking”,
as they conflict with BlendCap’s description like “watering hole” and “grazing and standing”. Additionally,
the anchoring of semantic visual information in human annotations encourages the LLM to eliminate verbose
tendencies of MLLMs, producing rich and succinct captions that capture fine-grained details. Although
recent works (Urbanek et al., 2024; Lai et al., 2023) address similar challenges, they have some drawbacks as
they anchor synthetic visual information in alt-text (Lai et al., 2023) or depend on manual annotation for
incorporating dense visual information (Urbanek et al., 2024).

Anchored captions hallucinate less. We conduct a human study on 60 randomly sampled images to
measure the degree of hallucinations in BlendCap and HolisticCap (see Appendix A.2 for more details). We
find that 7/60 Blended Captions contain hallucinations. Of these, 5 stem from incorrect COCO human
annotations and only 2 are induced by the LLM. Furthermore, anchoring the Visual Captions in human
annotations reduces the hallucinations from 12 (in VisualCap) to 7 (in HolisticCap), a reduction of 41.7%.

In summary, Visual Caption Boosting is able to efficiently instill fine-grained visual information into image
caption datasets while being anchored in human annotations less prone to hallucinations. Appendix A.1
presents the LLM and MLLM prompts and Appendix A.3 analyzes the caption lengths distributions.

3 TrueMatch: Fine-grained evaluation through Self-Retrieval

Existing self-retrieval (SR) approaches require models to select the target image from a set of N random
distractor images in the dataset (Dessì et al., 2023). However, randomly chosen distractors often have simple
differences (e.g. the primary object or scene), making it easy for captioning systems to distinguish between
them. This evaluation is suboptimal as they neither encourage the model to generate detailed captions nor
do they evaluate fine-grained abilities of captioning systems.

In this section, we present the SR setup used in our work. We propose TrueMatch, a benchmark of carefully
curated bags of highly similar images that enables SR to evaluate whether captioning systems capture different
facets of fine-grained visual discrimination. The results in Section 3.2, show that most captioning systems
(including MLLMs) struggle to generate captions that would allow distinguishing fine-grained visual details.

Self-retrieval setup. Within a bag of images B (or a minibatch during training), we require the generated
caption c for an image i to retrieve itself (image i) from B. Note, B contains i and a set of visually similar
distractor images D. The caption c and all images in B are encoded using CLIP text and vision encoders and
ranking is performed by computing the cosine similarity sim(c, i) in the CLIP embedding space. Consequently,
the caption is deemed to be good ⇐⇒ sim(c, i) > sim(c, i′), ∀i′ ∈ D.

3.1 Benchmark Creation

Given a dataset, the benchmark creation process involves curating bags of highly similar images. We use
10,000 images from COCO’s validation and test sets (Karpathy & Fei-Fei, 2015) for our benchmark.

Creating candidate bags of images. We use the fine-grained descriptions generated through HolisticCap
and encode visual and textual features in the CLIP embedding space. We treat each multimodal embedding
(concatenation of the two modalities) as a query and use a simple nearest neighbour search to create bags
of highly similar images. Algorithm 1 provides details on the bag creation process, especially for creating
bags of variable size. Having bags of varying size facilitates SR evaluation at multiple levels of difficulty as
increasing the bag size limits the number visual concepts that can be used to uniquely describe each image.
This is different from previous works that typically use image pairs (Jhamtani & Berg-Kirkpatrick, 2018;
Park et al., 2019; Tong et al., 2024b) or random distractors (Dessì et al., 2023) to evaluate captioners.

1https://huggingface.co/Salesforce/instructblip-vicuna-7b
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Automated bag curation. We compute intra-bag similarity α, an average pairwise cosine-similarity
between multimodal embeddings of all images in the bag to quantify the difficulty of uniquely describing
each image in the bag (details in Algorithm 2). To create TrueMatch, we sort the list of bags created
above in the descending order based on α and use a set V to keep track of images that are included in
TrueMatch. Going down the sorted list, a bag is added to the benchmark only if none of its images exist in V .
This ensures that only the hardest bags with highest visual similarity are added to the benchmark for each
visual concept in the embedding space. Bags within TrueMatch unlike previous works involving image sets,
are fine-grained (Dunlap et al., 2024) and capture different aspects of visual discrimination beyond object
positioning and negation (Krojer et al., 2022; Jhamtani & Berg-Kirkpatrick, 2018; Park et al., 2019).

A manual filtering process is performed to retain only those bags that would require captioning systems to
capture some aspect of fine-grained visual discrimination (see example in Figure 10). For example, for bag
size 3, this reduces the number of bags in TrueMatch from 680 to 254.

3.2 Experiment 1: Results on TrueMatch Table 1: Recall@1 for several open-source captioning models,
MLLMs, and SR-based methods on TrueMatch. The number
of bags in #3 is 254, #5 is 104, and #7 is 93.

Method Params TrueMatch
#3 #5 #7

Random chance - 33.3 20.0 14.3
OFA (Wang et al., 2022) 180M 50.4 36.3 37.2
ClipCap (Mokady et al., 2021) 240M 50.8 36.5 33.8
CoCa (Yu et al., 2022) 640M 52.2 40.4 38.2
PaliGemma-224 (Beyer et al., 2022) 3B 48.3 35.6 32.7
PaliGemma-448 (Beyer et al., 2022) 3B 49.3 38.5 33.3
InstructBLIP (Dai et al., 2024) 13B 53.7 42.7 42.1
LLaVA 1.6 (Liu et al., 2023) 34B 57.9 46.9 47.9
Cambrian-1 (Tong et al., 2024a) 3B 58.3 48.8 52.8
Cambrian-1 (Tong et al., 2024a) 8B 60.6 53.3 53.1
Discritune (Dessì et al., 2023) 240M 53.3 42.3 38.4
Ours (best) 240M 67.7 58.7 57.9

We evaluate several open-source captioning ap-
proaches, MLLMs, and SR trained models on
TrueMatch. Recall@1 is reported in Table 1 for
bag sizes 3, 5, and 7.

Approaches lack fine-grained details. Ir-
respective of their size, captioning approaches
struggle to capture fine-grained visual details
leading to poor performance on TrueMatch.

Doing more with less. Although billion-
parameter MLLMs have achieved impressive
results (Liu et al., 2023; Tong et al., 2024a), Ta-
ble 1 demonstrates that they still struggle with
fine-grained visual discrimination. In fact Dis-
criTune (Dessì et al., 2023), that trains ClipCap
with the vanilla SR setup matches InstructBLIP
despite being two orders of magnitude smaller.
Cambrian-1 is the best-performing open-source
model and although it surpasses DiscriTune,
our proposed approach outperforms it by a significant margin. This demonstrates the effectiveness of both:
TrueMatch for evaluating captioning systems, and our approach of using SR to improve captioning (Section 4).

3.3 Experiment 2: Benchmarking Visual Caption Boosting with Self-Retrieval

Table 2: R@1 scores for COCO and VCB
captions evaluated on RD100 (100 random
distractors) and TrueMatch.

Caption RD100 TrueMatch
R@1 ClipSc #3 #5 #7

COCO 80.9 26.4 51.1 41.3 39.6
VisualCap 86.9 32.2 53.7 42.7 42.1
BlendCap 88.9 32.6 53.6 44.8 43.4
HolisticCap 91.3 33.4 57.5 48.1 49.1

We evaluate the quality of captions adopted in VCB in Table 2.
Along with TrueMatch, we also adopt the SR evaluation strat-
egy of Dessì et al. (2023) with 100 random distractors (RD100).
On RD100, BlendCap outperforms original COCO captions
by a large margin of 8% on R@1 and 6.2% on ClipScore,
confirming that human annotations capture complementary
visual aspects of the same image. However, this sizeable gap
shrinks to 2.5% on TrueMatch (bags of size #3). This con-
firms that even though annotated captions blended together
work better, they inherently lack fine-grained details (see Fig-
ure 2) necessary to perform well on TrueMatch. HolisticCap,
on the other hand, yields remarkable performance gains over
COCO and BlendCap across both setups: RD100 and all bag sizes of TrueMatch. This demonstrates the
effectiveness of VCB in instilling fine-grained information into standard image captioning datasets.
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Effectiveness of anchoring visual captions. Table 2 shows that the standalone visual caption (generated
using InstructBLIP) is slightly worse than BlendCap. However, creating HolisticCap by anchoring the visual
caption in human annotations results in about +4% improvement over BlendCap on TrueMatch. By drawing
comparisons to Table 1, we observe that HolisticCap, which uses InstructBLIP, achieves performance on par
to larger (LLaVa 1.6) and newer (Cambrian-1-3B) MLLMs.

Finding 1. Self-retrieval with TrueMatch evaluates models’ ability to produce fine-grained captions
and Visual Caption Boosting is a promising way to enrich captioning datasets with granular details.

In summary, SR within TrueMatch enables fine-grained evaluation of captioning systems, probing different
facets of visual discrimination. It encourages captions be to unique while also capturing semantic similarity
with images, addressing the limitations of traditional captioning metrics.

4 Improving Captioning Systems with Self-Retrieval as a Training Objective

In this section, we present key insights on improving training with self-retrieval (SR), resulting in significant
performance gains over previous works (Dessì et al., 2023). We begin by outlining the method (Section 4.1)
and experimental setup (Section 4.2). Our experiments reveal that captioners trained with SR are highly
sensitive to their MLE initialization (Section 4.3). In fact, we discover a trade-off between caption faithfulness
and retrieval performance plaguing captioning systems fine-tuned with previous SR approaches (Dessì et al.,
2023; Liu et al., 2018). To address this we: (1) initialize our model with more detailed captions from
HolisticCap, (2) fine-tune the visual encoder with SR (Section 4.5), and (3) mine hard training bags and
design a curriculum over bag sizes (Section 4.6). Finally we show that our training strategy is complementary
to CIDEr optimization (Rennie et al., 2017) resulting in further improvements (Section 4.8).

4.1 Methodology

Model architecture. Similar to Dessì et al. (2023), we adopt ClipCap (Mokady et al., 2021), a lightweight
simplification of the modern MLLMs (e.g. LLaVA, InstructBLIP, Cambrian). ClipCap connects a pretrained
visual encoder (CLIP (Radford et al., 2021)) to a pretrained language model (GPT-2 (Radford et al., 2019))
through a simple MLP adapter. The adapter is tasked with mapping the rich visual embeddings from CLIP
into a fixed number of prefix tokens. These tokens capture essential visual information and guide the language
model towards generating an image-conditioned caption.

Training this captioning system has two steps: (1) model pretraining with maximum likelihood estimation
(MLE), and (2) model fine-tuning by maximizing the SR reward with Reinforce (Williams, 1992). We
outline both training objectives, followed by an experimental investigation of their properties and limitations.

Maximum Likelihood pretraining models the training data distribution. Specifically, captioning models
are often teacher-forced to learn the word (token) distribution that maximizes the log-likelihood of the
ground-truth captions given an input image. However, this results in strong language modeling priors
resulting in generic captions that use a small vocabulary (see Table 6).

Maximizing self-retrieval with Reinforce. A fine-tuning step that optimizes a metric (e.g. CIDEr) is
popular in training captioners (Rennie et al., 2017). We adopt Dessì et al. (2023)’s contrastive formulation of
SR that compares the generated caption against distractors, providing an optimal learning signal:

Reward R(c, i,D) = log esim(c,i)∑
i′∈D∪{i} esim(c,i′) . (1)

We use Reinforce to optimize the captioning system by estimating the gradient of the expected reward
Ec∼P [R(c, i, D)∇θ log P (c|i; θ)], since backpropagation is broken due to auto-regressive sampling. Further
discussion on using Reinforce and variance reduction of the gradient estimates is in Appendices C.1 and C.2.
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4.2 Experiment Setup and Metrics

We present results for all our experiments on ClipCap. During MLE pretraining, the ClipCap MLP adapter is
trained from scratch, CLIP is frozen, and GPT-2 is fine-tuned. When fine-tuning with Reinforce, ClipCap’s
MLP adapter is trained normally while CLIP and GPT-2 are fine-tuned with LoRA adapters (Hu et al.,
2021) with rank 32. The model is trained with the AdamW optimizer (Loshchilov & Hutter, 2018) on a single
A6000 GPU. Further details about the hyperparameters are provided in Appendix C.3.

We evaluate the quality of captions with NLG metrics: BLEU-4 and CIDEr. On RD100, a setup with 100
random distractors (Dessì et al., 2023), we use R@1 and ClipScore. On TrueMatch, we report R@1.

4.3 Experiment 3: Improving SR with Richer MLE Initialization

Following the findings of Section 3.3, we use TrueMatch to investigate the impact of different MLE initializations
on SR fine-tuning in Table 3. We study SR in the same setting as previous work (Dessì et al., 2023), i.e. we
only fine-tune the language model (SR-L), but using LoRA adapters.

Table 3: Results for different training methods and captions show the
effectiveness of improved initialization with HolisticCap and SR-L.

MLE Training CIDEr RD100 TrueMatch
Dataset R@1 ClipSc #3 #5 #7

1 COCO 107.8 76.5 29.9 50.8 36.5 33.8
2 BlendCap MLE 80.2 84.9 31.6 51.8 42.5 42.2
3 HolisticCap 26.6 84.7 31.7 55.9 43.7 42.2
4 COCO 108.2 83.7 30.2 53.3 42.3 38.4
5 BlendCap SR-L 80.1 87.5 31.7 54.7 47.5 44.2
6 HolisticCap 27.8 87.6 31.9 59.1 47.7 46.5

MLE pretraining yields generic
captions. Table 3 rows 1-3 report
the performance of MLE training
on captioning datasets with increas-
ing level of detail. We observe that
improving the training captions re-
sults in a significant performance
boost. Training with HolisticCap
beats COCO by +8.2% on RD100
R@1 and +5.1% on TrueMatch #3.
However, comparing performance
against the ground-truth Holistic-
Cap directly (from Table 2), we see
that MLE training on HolisticCap
yields -6.6% on RD100 R@1 and -1.6% on TrueMatch #3. This indicates that even though HolisticCap
improves performance, MLE training tends to generate more generic and non-discriminative descriptions.

VCB breaks CIDEr evaluation. We see a significant drop in CIDEr scores for BlendCap and HolisticCap
compared to COCO in Table 3. Upon further analysis, we believe that CIDEr rewards brevity and struggles to
effectively evaluate with reference sets containing longer descriptive captions. For example with HolisticCap
as ground-truth, Appendix C.6 shows some valid captions that unfortunately obtain scores close to 0.

Self-retrieval fine-tuning benefits from VCB. SR-L reduces MLE’s preference towards generic concepts
resulting in more discriminant captions and consistent improvements in RD100 and TrueMatch across datasets
(compare rows 1-4, 2-5, 3-6). Providing a richer initialization to SR-L through VCB enhances fine-grained
visual discrimination. Row 6 outperforms DiscriTune (row 4) with +3.9% RD100 and +5.8% TrueMatch #3.
This illustrates the importance of a good MLE initialization for SR and the effectiveness of VCB.

Self-retrieval unlocks latent semantic information when fine-tuning the LLM. Although BlendCap
does not capture any new information that is not present in one of the COCO annotations, being descriptive
is sufficient to achieve superior retrieval performance against random distractors (BlendCap improves over
COCO by +8% on RD100 R@1, Table 2). Further, MLE pretraining is able to model these data distributions
as the performance gap is maintained at +8.4% on RD100 R@1 between rows 1 and 2 in Table 3. The
model trained on COCO, due to the MLE objective, generates sparse captions that resemble the independent
annotations of COCO. Thus, even though the semantic information in the embedding spaces of both models
(trained on COCO or BlendCap) are similar, their ability to access this information is bottlenecked by the
MLE objective, leading to a large gap between COCO and BlendCap on RD100 in Table 3.

Interestingly, SR-L fine-tuning narrows this gap dramatically from +8.4% to a mere +3.8% (rows 4, 5). This
indicates that SR fine-tuning teaches the captioner to uncover semantic information within its embedding
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space, even when it was initially obscured by MLE. Furthermore, the mostly unchanged BLEU-4 and CIDEr
scores hint that the captioner remains faithful to the GT captions for both COCO (rows 1, 4) and BlendCap
(rows 2, 5). This is remarkable, as it demonstrates that SR fine-tuning unlocks latent semantic information
and steers the language model while preserving the initial data distribution.

Finding 2. Self-retrieval guides the captioner away from its language modeling priors by unlocking
latent semantic information and steering the language model to generate discriminative captions.

4.4 Trade-off plaguing SR fine-tuning: Retrieval Performance vs Faithfulness

While SR fine-tuning removes language modeling priors from captioners by making them more discriminant,
we observe that they have a tendency to become less faithful to the GT captions upon extended training. We
contrast these two tendencies of SR fine-tuning in Figure 3, comparing CIDEr and RD100 R@1 scores.
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Figure 3: RD100 R@1 continually increases
while CIDEr degrades when fine-tuning Clip-
Cap with SR-L on COCO for 100 epochs.

While SR performance continually improves (+7.9%) with ex-
tended training, a corresponding degradation in CIDEr (-15.4%)
is observed. This trade-off reveals that SR has the capacity to
elicit better retrieval from the captioning system, even at the
cost of generating lower-quality captions. We further investigate
with qualitative examples in Appendix C.8. Dessì et al. (2023)
attribute this deterioration to the model diverging from the
GT distribution during SR-L fine-tuning and argue that it is
desirable. While this is partially true (see Figure 7), our inves-
tigation also reveals that captioners trained with vanilla SR-L,
in a dash to enhance retrieval performance, build a propensity
to hallucinate (see Figure 8) resulting in poor CIDEr scores.
This tendency is only exacerbated with extended training due
to further degradation in NLG metrics. These findings reveal
an important bottleneck in SR fine-tuning:

Finding 3. Captioners suffer from a trade-off between retrieval performance and caption faithfulness,
showing a tendency to hallucinate details and deviate from ground-truth captions upon extended
fine-tuning with SR-L.

Finally, the continued improvement in RD100 R@1 over 100 epochs indicates that vanilla SR-L fine-tuning fails
to saturate SR’s capacity to instill fine-grained visual discrimination in captioning systems. This motivates us
to explore efficient SR fine-tuning strategies while mitigating their propensity to hallucinate. Since a higher
learning rate destabilizes the policy gradients, we turn to: (1) fine-tuning the visual encoder (CLIP) with SR;
and (2) adopting a curriculum over bags of hard negatives.

4.5 Experiment 4: Fine-tuning CLIP with Self-Retrieval

We present a comprehensive analysis of fine-tuning language and vision modules of the captioning system
with LoRA in Table 4. Fine-tuning CLIP (SR-V) makes the captions discriminative. For example, with
BlendCap MLE pretraining, SR-V fine-tuning results in +2.6% on RD100 R@1 and +6.6% on TrueMatch #3
(row 4, 5). However this comes at the cost of deteriorating NLG metrics (-7.7% CIDEr), suggesting that SR-V
is unable to preserve the faithfulness of generated captions. We further verify that even after extended SR-L
fine-tuning to match SR-V’s retrieval scores, SR-L has a higher CIDEr (see Appendix C.4). This suggests
that CIDEr deteriorates due to CLIP fine-tuning and not due to NLG metrics penalizing discriminative
captions (Wang et al., 2020). This is a notable bottleneck in fine-tuning CLIP with SR: while it enables
superior retrieval performance, it makes the captioner less faithful to the GT captions.

Further qualitative analysis of the captions generated by SR-L and SR-V in Figure 9, reveal that captioners
fine-tuned with SR-V struggle to bind attributes to the correct objects. For instance, while SR-V captures
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the red color of the crane, it binds it with the incorrect object (train). This is likely due to two reasons:
(1) the retrieval objective treats the caption as a bag of words and does not promote compositionality; and
(2) CLIP has been shown to struggle with attribute binding (Lewis et al., 2022; Hsieh et al., 2024).

Table 4: Ablation for fine-tuning different modules with SR: GPT-2
(SR-L), CLIP (SR-V), both (SR-LV). Row 1 is Dessì et al. (2023). Bold
indicates best, italics is second. (x) presents improvement against SR-L.

MLE Training NLG RD100 TrueMatch
Dataset C R@1 #3 #5 #7

1 COCO SR-L 108.2 83.7 53.3 42.3 38.4
2 COCO SR-V 97.2 86.1 (2.4) 59.3 (6.0) 49.2 (6.9) 45.0 (6.6)
3 COCO SR-LV 96.6 87.4 (3.7) 59.6 (6.3) 51.2 (8.9) 47.2 (8.8)

4 BlendCap SR-L 80.1 87.5 54.7 47.5 44.2
5 BlendCap SR-V 72.4 90.1 (2.6) 61.3 (6.6) 52.9 (5.4) 51.0 (6.8)
6 BlendCap SR-LV 72.7 90.7 (3.2) 61.3 (6.6) 52.3 (4.8) 50.1 (5.9)

7 HolisticCap SR-L 27.8 87.6 59.1 47.7 46.5
8 HolisticCap SR-V 25.6 90.2 (2.6) 61.9 (2.8) 52.5 (4.8) 51.5 (5.0)
9 HolisticCap SR-LV 26.5 90.7 (3.1) 62.6 (3.5) 52.7 (5.0) 51.2 (4.7)

RD100 is suboptimal for
training fine-grained caption-
ers. On TrueMatch, while SR-
V fine-tuning provides substan-
tial improvements over SR-L for
COCO and BlendCap (rows 1-2,
4-5), we observe relatively smaller
gains for HolisticCap (rows 7-8).
This indicates that the vanilla SR-
L objective of retrieving against
99 random distractors is not chal-
lenging enough to provide a good
learning signal for models pre-
trained on fine-grained Holistic-
Cap. While SR-LV does better
than SR-V on HolisticCap (rows
8-9), the gap between BlendCap
(row 6) and HolisticCap (row 9) still remains small. To address this, we devise a curriculum with hard
negatives, discussed in the next section, to increase the difficulty of SR fine-tuning objective.

Finding 4. Fine-tuning the visual module with self-retrieval instills fine-grained visual details in the
captioning system but struggles with attribute binding and increased hallucinations.

Among methods in Table 4, SR-LV demonstrates the best retrieval performance while also preserving CIDEr
slightly better than SR-V. Thus, we adopt SR-LV for subsequent experiments with a training curriculum.

4.6 Experiment 5: Self-Retrieval Fine-tuning with Bags and Curriculum

Table 5: Ablation of fine-tuning with the bag curriculum
(BagCurri) as compared against vanilla SR (SR-L). Row 1
is Dessì et al. (2023). (Green) numbers indicate absolute
improvement and (red), a degradation.

MLE Training Bag NLG RD100 TrueMatch
Dataset Curri CIDEr R@1 #3 #5 #7

1

COCO

SR-L - 108.2 83.7 53.3 42.3 38.4
2 SR-L ✓ 103.4 84.5 53.7 46.2 41.5
3 SR-V ✓ 85.8 87.4 63.1 51.9 49.3
4 SR-LV ✓ 84.2 85.8 67.2 56.3 53.6

5 SR-L - 27.8 87.6 59.1 47.7 46.5
6 Holistic- SR-L ✓ 31.3 88.5 58.4 50.0 49.5
7 Cap SR-V ✓ 25.8 90.6 64.0 54.6 54.1
8 SR-LV ✓ 29.7 91.3 65.2 57.1 57.1

The SR experiments above were trained using
99 random distractors (Dessì et al., 2023). In-
stead, in this experiment, we fine-tune with
bags of highly similar images within a train-
ing minibatch (see Appendix B.2). Retrieving
against multiple hard negatives flattens the soft-
max distribution resulting in a stronger learning
signal. We also propose a curriculum over bag
sizes (BagCurri) to more optimally leverage
the contrastive reward (see Appendix B.3). SR
fine-tuning with BagCurri instills fine-grained
visual details in the model, essential for dis-
criminating highly similar images.

SR-V versus SR-L with our bag curricu-
lum. We evaluate the impact of fine-tuning
different components of the captioning system
(CLIP and GPT-2) with BagCurri compared to vanilla SR-L in Table 5. We find that SR-V fine-tuning with
our curriculum forces CLIP to learn fine-grained visual features resulting in a substantial +5% to +11%
improvement over vanilla SR-L (rows 3 vs. 1, 7 vs. 5) on TrueMatch. Interestingly, SR-V with BagCurri
renders COCO (row 3) comparable to HolisticCap (row 7) on TrueMatch #3. However, these disproportionate
gains for COCO come at the expense of CIDEr scores, which plummet -22.4% compared to SR-L. Further
qualitative analysis of the generated captions shows that SR-V fine-tuning with BagCurri amplifies the trends
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observed in Section 4.5 – while it boosts retrieval performance, it exacerbates the inability of the captioner to
bind attributes to the correct objects and increases hallucinations (see Figure 9). In contrast, BagCurri may
be too challenging for SR-L fine-tuning, as evident by the small improvements of +0% to +4% over vanilla
SR-L (rows 2 vs. 1, 6 vs. 5) on RD100 or TrueMatch. However, similar to the findings of Section 4.3, we find
that fine-tuning SR-L with BagCurri benefits heavily from the rich initialization provided by VCB. While the
CIDEr score drops for COCO when using SR-L with BagCurri (-4.8%, row 2), for HolisticCap we observe an
improvement (+3.5%, row 6).

Best of both worlds: SR-LV with BagCurri. Above findings indicates that BagCurri has the capacity
to enhance both: (1) visual discrimination ability of the captioner with SR-V; and (2) adherence to GT
captions with SR-L when provided with a rich initialization. Motivated by this, we initialize the captioner
with HolisticCap and fine-tune both the language and visual components (SR-LV) with BagCurri (row 8),
retaining the best of both worlds. SR-LV+BagCurri further enhances SR-V’s already impressive performance
on TrueMatch (achieving +6-10% over vanilla SR-L) while also improving the CIDEr score over vanilla SR-L
by +1.9% (rows 5, 8). This is momentous, as without modifying the model’s architecture or reward function,
we outperform vanilla SR-L (Dessì et al., 2023) by an average +15% across all bag sizes on TrueMatch (row
1, 8), while circumventing the caption faithfulness trade-off plaguing current SR approaches.

Importance of the curriculum. In Appendix B.3, we investigate the role our curriculum plays in
overcoming the retrieval and caption quality trade-off compared to directly using bags as hard negatives.
Table 10 reveals that BagCurri is responsible for preserving caption faithfulness, as indicated by a decrease in
CIDEr when bags are used without a curriculum.

Finding 5. Providing a rich initialization with VCB and fine-tuning SR-LV with BagCurri instills
fine-grained visual details in the captioner while preserving its faithfulness to ground-truth captions.

4.7 Impact on Generating Diverse Caption Table 6: Number of words with frequency >= 5 on
the COCO test set for captioners trained with differ-
ent optimization strategies, modules, and datasets.

Dataset MLE Self-Retrieval +BagCurri
SR-L SR-V SR-LV SR-LV

COCO 428 689 719 762 770
BlendCap 1220 1306 1345 1366 1435
HolisticCap 1431 1535 1606 1628 1732

We evaluate how VCB and SR increase caption diver-
sity by measuring the number of words that appear ≥ 5
times on the COCO test set. In Table 6, we observe
a clear increase in the number of unique words as we
progress from COCO to BlendCap to HolisticCap, across
all optimization and training strategies. Furthermore,
within each individual dataset, there is a substantial
increase in the usage of diverse vocabulary with transi-
tions from MLE to SR-L, SR-V, and SR-LV. Notably, SR-LV with BagCurri yields significant improvements
over MLE: relative +80% on COCO, +17.6% on BlendCap, and +21% on HolisticCap. This demonstrates the
effectiveness of VCB and our curriculum in guiding the captioning system away from the language modelling
priors and improving caption diversity.

4.8 Experiment 6: Combining Self-Retrieval and CIDEr Optimization

CIDEr optimization with Reinforce is commonly used to improve captioning system’s adherence to the GT
captions (Rennie et al., 2017). As the final experiment, we present results of combining it with SR in Table 7.

CIDEr optimization (rows 3, 8) improves faithfulness to GT captions compared to MLE pretraining (rows
1, 6): CIDEr improves +10.7% on COCO and +29.1% on HolisticCap. Importantly, CIDEr optimization
on top of HolisticCap MLE pretraining provides +4.8% on TrueMatch #7 (rows 6, 8), while we see only a
smaller +2.5% with COCO captions. Even without SR fine-tuning, the larger improvement with HolisticCap
illustrates the effectiveness of VCB and importance of MLE initialization with captions containing fine-grained
visual details.

Furthermore, compared to vanilla SR-L (rows 2, 7), CIDEr opt. (rows 3, 8) fairs worse on both RD100 and
TrueMatch. This presents an opportunity to optimize both rewards simultaneously (Luo et al., 2018).
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Table 7: Impact of combining SR with CIDEr optimization.
Results are presented for various combinations of RL rewards.
C: CIDEr, SR: Self-Retrieval, and BC: SR with BagCurri. Row
1 is Mokady et al. (2021), row 2 is Dessì et al. (2023), and row
3 is Rennie et al. (2017) with ClipCap.

MLE Reward NLG RD100 TrueMatch
Dataset C SR BC CIDEr R@1 #3 #5 #7

1

COCO

- - - 107.8 76.5 50.8 36.5 33.8
2 - SR-L - 108.2 83.7 53.3 42.3 38.4
3 ✓ - - 118.5 79.1 50.7 37.3 36.3
4 - SR-LV ✓ 84.2 85.8 67.2 56.3 53.6
5 ✓ SR-LV ✓ 92.8 89.0 59.6 51.2 47.2

6

Holistic-
Cap

- - - 26.6 84.7 55.9 43.7 42.2
7 - SR-L - 27.8 87.6 59.1 47.7 46.5
8 ✓ - - 55.7 86.9 57.6 47.1 47.0
9 - SR-LV ✓ 29.7 91.3 65.2 57.1 57.1
10 ✓ SR-LV ✓ 38.0 92.6 67.7 58.7 57.9

CIDEr meets SR. Building upon the find-
ings of previous sections, we push the bound-
aries of SR by explicitly adding CIDEr to our
discriminative reward R = SR +λ· CIDEr.
We conduct an ablation over various λ values
(see Appendix C.5), and select λ = 0.5 for
our experiments.

With HolisticCap, we see that joint opti-
mization (row 10) outperforms the most dis-
criminant SR model (row 9) achieving im-
provements on all metrics: +8.3% on CIDEr,
+1.3% on RD100 R@1, and +0.8% to +2.5%
on TrueMatch. Conversely, on COCO cap-
tions (rows 4, 5), we observe that adding
CIDEr optimization adversely affects SR met-
rics on TrueMatch with -5.1% to -7.6% per-
formance drops. This aligns with previous
findings and underscores the importance of initialization during SR fine-tuning.

Recall, our best model of row 10 also achieves highest performance on TrueMatch as compared to several
MLLMs that are orders of magnitude larger and trained on more data (see Table 1).

5 Generalization Experiments Table 8: Zero-shot evaluation
on the ImageCoDe validation set
(R@1). Rows 2 and 3 are from Dessì
et al. (2023).

Dataset Method R@1
1 COCO MLE 28.8
2 COCO SR-L 30.3
3 ConCap SR-L 36.2
4 MLE 31.9
5 HolisticCap SR-L 33.0

6 SR-LV
BagCurri 37.9

In this section, we evaluate the generalization of our approach on Image-
CoDe (Krojer et al., 2022), a benchmark for text-based image retrieval
where image sets are created with 10 sequential video frames. Different
from TrueMatch, ImageCoDe focuses on fine-grainedness found across
video frames such as negation, occlusion, etc. We follow the same exper-
imental setup of Dessì et al. (2023). Table 8 shows that SR fine-tuning
of both the vision and text modules with our bag curriculum (SR-LV
BagCurri) achieves state-of-the-art results. In fact, it outperforms Dessì
et al. (2023)’s work on using SR-L after MLE pretraining on COCO or
Conceptual Captions (a 30× larger dataset).

6 Conclusion

We investigated self-retrieval (SR) as a way to comprehensively improve current captioning systems on
all three fronts: (1) data, (2) evaluation, and (3) training. (1) We proposed Visual Caption Boosting
(VCB), a model agnostic framework to instill fine-grained visual information into generic image captioning
datasets while remaining anchored in human annotations. (2) Furthermore, we also created TrueMatch, a
benchmark comprised of highly similar image bags. SR evaluation with TrueMatch enabled fine-grained
evaluation of captioning systems and unlike traditional captioning metrics encouraged diversity in generated
captions. (3) We also adopted SR fine-tuning and showed that the rich MLE initialization provided by VCB
is important. We uncovered a trade-off between caption faithfulness and retrieval performance plaguing
current SR approaches and designed a training recipe to address it. Specifically, we employed a curriculum
over the number of hard negatives to more optimally leverage the SR reward, and fine-tune both the visual
and language components of the captioning system. We demonstrated that this training recipe and VCB
circumvents the aforementioned trade-off. Our approach achieved significant performance improvements over
vanilla SR (Dessì et al., 2023) across a dataset with 99 random distractors, and set the state-of-the-art on
ImageCoDe (Krojer et al., 2022). On TrueMatch, our approach outperforms powerful MLLMs that are 1-2
orders of magnitude larger and trained on large datasets, while improving over vanilla SR by up to +15%.
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7 Limitations and Future Scope

Self-retrieval (SR) is heavily reliant on a scorer to identify and retrieve the image that best matches the
generated text. We employ CLIP as a scorer, which has been shown to struggle with capturing extremely
fine-grained and compositional visual details. However, the reliability of SR evaluation is set to improve
steadily over time. Additionally, as Visual Caption Boosting uses foundation models for generating fine-grained
descriptions, it is prone to hallucinations. However, our anchoring strategy mitigates this to a large extent.

As future work, exploring further applications of the SR fine-tuning presents a promising research avenue. As
we show, MLE initialization plays an important role and this too deserves more investigation.
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A Visual Caption Boosting

A.1 Prompting Strategy

In this section, we discuss prompting strategies used to produce BlendCap, the visual caption, and HolisticCap.
We provide the system prompt along with the in-context examples we utilize. In order to generate captions
that holistically describe the image, we use the following two step process:

(a) BlendCap. First, we prompt Mistral-7B (Jiang et al., 2023) to reduce redundancy, preserve all factual
information obtained from human annotated captions, and not introduce any new information other than
what is mentioned in the reference set. This ensures that the blended caption remains factual and anchored
to the human annotations:

System prompt : You are given a reference set of 5 image captions. Create a holistic
caption to describe the same image by incorporating relevant information from all the
reference captions. Ensure that the generated caption minimizes redundancy by excluding
overlapping information found in the reference set. Do not include additional information
and adjectives other than what is given in reference set. Stop after the first period and do
not ask any additional questions. Just complete the text. Three examples are shown below :

In context examples :
User : Reference caption 1: A plate full of food with an assortment of food on it.
Reference caption 2: There is meat and vegetables on a white and brown plate.
Reference caption 3: A plate on a table that hasfood on it.
Reference caption 4: A plate with some steak, carrots, and sliced fried potatoes.
Reference caption 5: A plate of food on a table.
Assistant : A white and brown plate on a table with an assortment of steak, carrots,
sliced fried potatoes, and vegetables.

User : Reference caption 1: A park bench on the side of a lake.
Reference caption 2: A lone bench sits atop a hill looking over the river.
Reference caption 3: A wooden bench sitting on top of a sandy beach.
Reference caption 4: A bench on a river bank in the countryside.
Reference caption 5: A wood bench is sitting in front of a river.
Assistant : A wooden bench sits atop a hill in front of a river overlooking the water and
the surrounding countryside.

User : Reference caption 1: A bathroom with a toilet sitting next to a sink.
Reference caption 2: A white sink and toilet in a room.
Reference caption 3: A bathroom with a mirror, sinks, toilet and toilet roll.
Reference caption 4: A bathroom that has a toilet sink and mirror in it.
Reference caption 5: A bathroom with a toilet next to a sink.
Assistant : A bathroom with a toilet next to a white sink, mirror and toilet roll.

(b) Visual Caption. We concurrently use InstructBLIP (Dai et al., 2024) to produce dense visual descriptions
for the given image. We find the following prompt performs the best.

System prompt : Briefly describe the content of the image.

(c) HolisticCap. We then prompt Mistral-7B to expand the blended caption with the visual description
generated by the MLLM. Notably, the LLM is prompted to preserve human annotated information when
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there is a conflict of information between BlendCap and Visual Caption. Only 3 few shot examples are shown
for brevity.

System prompt : In this task, your objective is to improve “Correct caption” by
incorporating any additional information present in “New caption”. If there are
conflicting details between the two captions regarding the objects or their attributes,
strictly use information from “Correct caption”. “New caption” can have incorrect
information sometimes but “Correct caption” will always be correct. The focus is on
transferring missing information, including adjectives and nouns, from “New caption” to
“Correct caption”. Refrain from seeking further clarification and explanations; simply
generate the caption. Three examples are shown below :

In context examples :
User : Correct caption: A man reaches up with a tennis racquet to hit an approaching ball
in a tennis court.
New noisy caption: In this image, a woman is playing tennis on a purple court. She is
wearing a white shirt and a blue short, and she is holding a tennis racket. The tennis
ball is in the air as she prepares to hit it with her racket.
Assistant : A man wearing a white shirt and blue shorts reaches up with a tennis racquet
to hit an approaching ball in a purple tennis court.

User : Correct caption: A white fire hydrant sits in front of an old couch on a sidewalk
in front of a house.
New noisy caption: In this image, there is a black fire hydrant sitting on the sidewalk
in front of a brick building. The fire hydrant is positioned next to a couch, which is
placed on the sidewalk in front of the building.
Assistant : A white fire hydrant sits in front of an old couch on a sidewalk in front of
a brick house.

User : Correct caption: A young boy poses next to a wall with writing on it, smiling and
holding bags.
New noisy caption: In this image, a young girl is sitting in front of a graffiti-covered
wall, wearing a red shirt. She is holding a box of crayons and smiling at the camera.
Assistant : A young boy wearing a red shirt poses next to a graffiti-covered wall with
writing on it. He is holding bags of crayons and smiling at the camera.

A.2 Human Study: Quantifying Hallucinations in VCB

We conduct a human study to investigate the extent of hallucinations in BlendCap and HolisticCap. We
randomly sample 60 images from MSCOCO and for each image-caption pair, a human is asked to count the
number of hallucinations present in the caption. Three types of hallucinations are considered: (i) object,
(ii) attribute, (iii) egregious statements, i.e., a glaringly incorrect statement that is unambiguously false.

BlendCap contains only 4 objects and 3 attribute hallucinations. Out of the 7 hallucinations, 5 are due
to incorrect COCO human annotations and only 2 (3.3%) are induced by the LLM. This demonstrates the
reliability of BlendCap in combining human annotations into a denser caption.

HolisticCap. contains only 9 instances of hallucinations (4 objects and 5 attributes) across 7 captions,
compared to VisualCap’s 16 instances (12 captions). Although VisualCap contained 3 egregious statements,
HolisticCap removed them all. Furthermore, only 7/60 captions in HolisticCap contain hallucinations,
reflecting a 41.6% reduction compared to VisualCap’s 12/60 captions. This demonstrates VCB’s effectiveness
in anchoring the MLLM descriptions (Visual captions) into human annotations (BlendCap) to create
HolisticCap.
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A.3 Token Statistics for Captions

We present the caption statistics for Visual Caption Boosting compared to original COCO captions in Table 9.
While Visual Captions are longer than HolisticCap, they may contain erroneous details and verbose language
modelling priors as shown in Figure 2. Both BlendCap and HolisticCap are generally more descriptive than
COCO, containing more words. Figure 4 shows the histogram of the number of tokens, tokenized using the
CLIP tokenizer, for COCO, BlendCap and HolisticCap.
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Figure 4: Histogram of number of words for COCO, BlendCap,
and HolisticCap. HolisticCap is more descriptive with 41.5 words
per caption on average, while COCO only has 10.5 words on
average.

Table 9: Statistics of different captions.
The mean and standard deviation of the
number of words and tokens (post CLIP
tokenization) are reported. Note the 4× dif-
ference between original COCO and Holis-
ticCap.

Dataset Words/Cap Toks/Cap

1 COCO 10.5 ±2.4 13.5 ±2.7
2 BlendCap 20.1 ±6.0 25.4 ±7.0
3 HolisticCap 41.5 ±13.1 50.2 ±15.4
4 Visual Caption 51.1 ±14.4 59.2 ±12.8

B Bag Creation, Curation, and Curriculum Details

B.1 Bag Creation and Curation

Algorithm 1 presents the process for creating bags of highly similar images that is used for both TrueMatch
(Section 3.1) and SR fine-tuning (Section 4.6).

We take the bags created by Algorithm 1 on the validation and test sets of COCO (10,000 images) and use
Algorithm 2 to curate bags of highly similar images for TrueMatch. The curated bags only consider the bag
with the highest intra-bag similarity for a given visual concept.

B.2 Training Bags used for Self-Retrieval

We utilize our bag creation algorithm (Algorithm 1) to create training bags. However, for each row in the
sorted cosine similarity matrix D we only consider the top 200 retrievals, i.e. D[:, :200]. Each training bag
of size s is comprised of a given query image and the top s−1 images it retrieves from D such that none of
the retrieved images have been added to any other bag before. This ensures that all the bags are unique and
each image is seen exactly once in an epoch.

Unlike TrueMatch where we select the hardest bag corresponding to specific visual concepts in the CLIP
embedding space, we relax the constraint of only sampling the sub-cluster (bag of images) with the highest
intra-cluster similarity.
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Algorithm 1 Candidate Bag Creation
1: Input:

Output bag size s.
Set of N images each with M captions: I = {(i1, c1

1, . . . , cM
1 ), . . . , (iN , c1

N , . . . , cM
N )}.

2: Output:
List of T bags B = [b1, b2, . . . , bT ] where each bag b ⊂ I.
A = [α1, α2, . . . , αT ] are the intra-bag similarities.

3: Multimodal feature extraction:
4: for each image (i, c1, . . . , cM ) do
5: Compute image embedding z = CLIP.encode_image(i).
6: Compute text embedding t = 1

M

∑M
j=1 CLIP.encode_text(cj).

7: Compute multimodal embedding m = concat(z, t), m ∈ Rd.
8: end for

9: Compute the cosine similarity matrix D ∈ RN×N based on multimodal embeddings [m1, . . . , mN ].

10: Bag Creation:
11: B ← [], A← []
12: for each image ir, r = [1, . . . , N ] do
13: Create a bag br with ir and corresponding top-scoring s−1 images from row Dr.
14: Compute intra-bag similarity between ir and s−1 images in the bag: αr = meank(cos(mr, mk)).
15: Update B ← [B, br] and A← [A, αr].
16: end for

Algorithm 2 TrueMatch: Automated Bag Curation
1: Input: List of T bags B = [b1, . . . , bT ] and corresponding intra-bag similarities A = [α1, . . . , αT ]
2: Output: A curated list of bags Q with highly similar images used in TrueMatch.

3: Benchmark Creation:
4: Sort all bags B in descending intra-bag similarity A.
5: Initialize the set of visited images V = {} and curated list of bags Q = []
6: for each bag b ∈ B do
7: if b ∩ V = ∅ then
8: Update V ← V ∪ b
9: Update Q ← [Q, b]

10: end if
11: end for
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Table 10: Self-retrieval fine-tuning of GPT-2 and CLIP (SR-LV) for ClipCap that is MLE initialized with
HolisticCap. Values indicate R@1. (Green) numbers indicate absolute improvement and (red), a degradation.

TrueMatch
Method CIDEr RD100 #3 #5 #7

1 Rand 26.5 90.2 62.6 52.7 51.2

2 Bag2 26.0 (0.5) 90.5 64.8 54.0 55.1
3 Bag3 26.0 (0.5) 90.7 64.8 55.4 55.3
4 Bag5 25.2 (1.3) 90.9 65.0 55.8 52.8
5 Bag7 25.7 (0.8) 90.8 65.1 56.7 55.3
6 Bag10 25.3 (1.2) 90.9 65.1 55.8 54.1
7 Bag15 24.9 (1.6) 91.0 66.5 59.2 56.5
8 Bag20 24.8 (1.7) 91.1 66.5 58.8 57.3

9 BagCurri 29.7 (3.2) 91.3 65.2 57.1 57.1

B.3 BagCurri: Designing a Self-Retrieval Learning Curriculum with Bags

We design a curriculum that varies the bag sizes during training, gradually increasing the bag size with each
epoch as shown in Figure 5. Since the reward is the cross entropy of matching the generated caption with the
target image Dessì et al. (2023), mining multiple hard negatives yields a flatter softmax distribution leading
to stronger learning signal. Hence, increasing the bag size introduces makes the task of SR more challenging.
However, it is important to increase bag sizes gradually to ensure that the task is not too hard, and prevent
a collapse of caption faithfulness (Section 4.6).

4 6 8 10 12 14 16 18 20
Epoch

2

4

6

8

10

12

14

16

18

20

Ba
g 

Si
ze

Bag

Figure 5: Our curriculum over bag sizes
during training.

To assess the role our curriculum plays in preventing this col-
lapse, we conduct an ablation study. Specifically, we compare
our curriculum against training with bags of a fixed size for the
entire SR fine-tuning process. Table 10 demonstrates that our
carefully designed curriculum is responsible for preserving cap-
tion faithfulness. While training with hard negatives without a
curriculum improves retrieval performance on TrueMatch (rows
2-8), it fails to maintain the CIDEr score. In contrast, BagCurri
not only yields substantial gains over training with random
distractors (row 1) but also enhances CIDEr by +3.2%. This
highlights the effectiveness of our carefully designed curricu-
lum in preventing the collapse of NLG metrics while improving
retrieval performance. Note, this is different to previous SR
approaches (Dessì et al., 2023) as presented in Section 4.4.

C Self-Retrieval Fine-tuning

C.1 Discussion on Optimization Strategies

Similar to (Pinto et al., 2023), we find both optimization strategies discussed in Section 4.1 have complementary
strengths and weaknesses for the task of image captioning.

MLE. Training the captioner on MLE results in powerful models capable of capturing complex data
distributions. The task of next-token prediction with current language models is both efficient (due to
teacher forcing) and scalable (Kaplan et al., 2020). However, it creates captioning systems that prefer generic
captions (Wang et al., 2020), reusing a small vocabulary to describe different images with fine-grained visual
differences (see Figure 1 and Section 4.3).

Reinforce. While fine-tuning with SR alleviates these issues (Section 4), it comes with its own set of
challenges. Not only are the tokens sampled sequentially but optimizing Reinforce is unstable, necessitating
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smaller learning rates. This results in an extremely slow training process. Notably, using Reinforce from
scratch is infeasbile due to the vast action space of sampling a token and reward sparsity. However, using a
pretrained MLE model provides a good initial sampling strategy and requires relatively few optimization
steps to perform well on SR. This is consistent with previous works such as Rennie et al. (2017).

In Reinforcement Learning jargon, the gradients computed with Reinforce are used directly to optimize the
policy network (captioning system) in prioritizing actions (next-token prediction) that minimize the negative
expected reward Ec∼Pθ(·|i)[−R(c, i,D)].

C.2 REINFORCE baseline

The variance of the gradient estimate in Reinforce is commonly reduced by subtracting a baseline b from
the reward R. This stabilizes training by reducing the variance of the estimated gradient. We adopt a running
mean of past rewards as our baseline similar to Dessì et al. (2023) as they find that it outperforms computing
the reward with greedy decoding as a baseline. The latter requires sampling two outputs for one training
input, one to estimate the gradient and other to compute the baseline. However, when the reward includes
CIDEr, we adopt a greedy baseline.

C.3 Overview of Hyperparameters

We provide a brief overview of hyperparameters for different optimization strategies: MLE (Table 11) and
Reinforce (Table 12). Notably, CIDEr optimization for HolisticCap is done with learning rate 10−7.

Table 11: MLE pretraining settings.

MLE Pretraining
Batch size: 40
Schedule: Linear Decay
Learning-rate: 2 · 10−5

Total steps: 30 000
Warmup steps: 1 000

Table 12: REINFORCE optimization settings.

Base params
Batch size: 100
Schedule: constant
Total steps: 23 000
Warmup steps: 0

SR reward
Learning-rate: 9 · 10−8

CIDEr reward
Learning-rate: 1 · 10−6

CIDEr + SR reward
Learning-rate: 1 · 10−7

C.4 Fine-tuning CLIP hurts Caption Faithfulness
Table 13: Extended SR-L fine-tuning
until its R@1 on RD100 becomes equal
to SR-V fine-tuning R@1 when trained
for 20 epochs.

Data MLE SR-L SR-V
COCO 107.8 104 97.2
BlendCap 80.2 77.3 72.4
HolisticCap 26.6 26.4 25.6

Table 4 shows that SR-V is substantially more discriminative com-
pared to SR-L. However unlike SR-L, SR-V fails to preserve caption
faithfulness through early stopping. To verify that the observed
deterioration isn’t due to the tendency of NLG metrics to penalize
discriminability (Wang et al., 2020), we train SR-L until it achieves
the same RD100 score as SR-V for each dataset. This ensures a
fair comparison of both methods’ abilities to preserve CIDEr, as
presented in Table 13. We clearly see that SR-L (col 2) attains a
significantly higher CIDEr score compared to SR-V (col 3) for all
caption types, demonstrating that the deterioration in NLG metrics
observed in Table 4 is directly caused by CLIP fine-tuning.
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Caption : A spacious and 
well-appointed bathroom features 
two sinks, a bathtub, and a mirror.

CIDEr : 0

383443 470005

Caption : A baby wearing pajamas 
sits on a bed while using a laptop 
computer.

CIDEr : 4

Caption : Three sheep, two of which 
are adults and one a baby, stand 
together in a grassy field.

CIDEr : 0

410428

Figure 6: Failure of CIDEr. COCOIDs in the test set where CIDEr fails to correctly evaluate captions
against HolisticCap reference set.

C.5 Scaling CIDEr during SR optimization

Table 14: Ablation over different lambda
values for HolisticCap pretraining and SR-
LV with BagCurri fine-tuning. We choose
λ=0.5 as our best model.

λ
NLG RD100 TrueMatch

CIDEr R@1 #3 #5 #7

1 0 29.7 91.3 65.2 57.1 57.1
2 0.1 29.8 92.4 64.8 54.0 55.1
3 0.3 33.3 92.0 68.2 61.2 57.1
4 0.5 38.0 92.6 67.7 58.7 57.9
5 0.7 41.4 92.7 68.1 58.3 56.8
6 1 45.4 92.5 66.5 56.2 56.2

The weighting of the rewards when jointly optimizing CIDEr
and SR (Luo et al., 2018) determines the trade-off between
faithfulness and discriminative ability of the captioning system.
We MLE pretrain the captioner with HolisticCap and fine-tune
both the LLM and CLIP components (SR-LV) with BagCurri.
Table 14 presents an ablation over different values of λ while
scaling CIDEr in the joint reward R = SR +λ· CIDEr. As
expected, increasing λ i.e. heavily weighing CIDEr leads to
improved caption faithfulness. Interestingly, using a smaller λ
however doesn’t always improve TrueMatch scores, as λ = 0.7
(row 5) outperforms λ = 0.1 (row 2). We adopt λ = 0.5 for
our experiments (Section 4.8), as it results in the best per-
forming model achieving an optimal balance between retrieval
performance and caption faithfulness.

C.6 CIDEr Struggles with Longer Descriptions

Notably, we observe that the scale of CIDEr scores for MLE pretrained models vary significantly across
COCO, BlendCap, and HolisticCap (rows 1-3, Table 3). Consistent with Santos et al. (2021), we find that
CIDEr rewards brevity, while reference sets containing longer captions have substantially lower scores. While
the inefficacy of MLE in modeling longer descriptions does contribute to lower CIDEr scores, we also find that
CIDEr fails to effectively evaluate MLE pretraining with HolisticCap, even assigning scores of 0 to correct
captions, as illustrated in Figure 6.

C.7 CHAIR: Quantifying Object Hallucinations during Extended SR-L Fine-tuning

We generate captions for all the 10,000 images of MSCOCO test and validation set and compute object level
hallucinations using CHAIR (Rohrbach et al., 2018). CHAIR compares model-generated captions with human
annotations and provides 2 scores CHAIRI and CHAIRS to quantify object and sentence level hallucinations
respectively:

CHAIRS = |{captions with hallucinated objects}|
|{all captions}| , CHAIRI = |{hallucinated objects}|

|{all objects mentioned}| . (2)
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Table 15: Evaluating object hallucinations. We use CHAIR to study the extent of object hallucinations
induced by MLE training and SR-L fine-tuning.

Dataset Method CHAIRI CHAIRS Hallucinated Objects CIDEr

COCO
MLE 11.66 8.38 1255 107.8
SR-L 9.79 7.03 1033 108.2
SR-L 100 epochs 9.63 7.33 1102 92.4

MLE training encourages the captioner to generate generic phrases for different images that may not be
aligned with the image content, resulting in increased object hallucinations.

SR-L fine-tuning may struggle with attribute binding, but it makes the generated captions more discriminant,
resulting in a significant reduction in object hallucinations.

Extended fine-tuning with SR-L for 100 epochs in addition to reducing caption faithfulness, also
increases both the absolute count and percentage of hallucinated objects.

C.8 Investigating Caption Unfaithfulness in SR Fine-tuning

To improve our understanding of the trade-off presented in Section 4.4 during SR fine-tuning, we further
investigate the deterioration of the NLG metrics. Dessì et al. (2023) attribute this deterioration to the
model diverging from the GT distribution during SR-L fine-tuning. They argue it to be desirable property
as it allows the captioner to generalize to a wider range of captioning distributions. We investigate this
claim by qualitatively analyzing image-caption pairs (COCO test set) where SR-L exhibits poor CIDEr
scores compared to MLE. We find several image-caption pairs (some are shown in Figure 7) corroborating
this claim, highlighting the inadequacies of reference-based metrics. For instance, a more discriminative
caption “A woman serving a hot dog to a man” scores lower on CIDEr than a more generic one, “A couple
of people standing in front of a food truck”. However, our analysis also reveals that models fine-tuned on
SR, in an attempt to enhance retrieval, have a propensity to hallucinate which results in poor CIDEr scores
(see Figure 8). This differs from the findings of Section 4.3, since the model is incorporating non-factual
information to the generated captions instead of semantic details. We observe this tendency under the same
experimental setting as (Dessì et al., 2023), noting a modest dip in NLG metrics due to early stopping.
However, we find this effect exacerbates with longer training durations, as illustrated by the dramatic drop in
CIDEr scores in Figure 3.
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MLE: A bathroom with a sink 
and mirror 

CIDEr: 170

SR: A gallery filled with 
portraits of men and women

CIDEr: 0

MLE: A group of people 
riding ski down a snow 

covered slope 

CIDEr: 139

SR: A group of women cross 
country skiing in a 

competition

CIDEr: 8

MLE: A couple of people that 
are standing in front of a food 

truck

CIDEr: 109

SR: A woman serving a hot 
dog to a man

CIDEr: 11

MLE: A view of an empty 
room with a window

CIDEr: 71

SR: A room with a window 
and a black and white floor

CIDEr: 12

MLE: A man standing in front 
of a counter in a restaurant

CIDEr: 56

SR: A black and white photo 
of people in a restaurant

CIDEr: 0

cocoid: 482436 cocoid: 222757 cocoid: 558137 cocoid: 472216 cocoid: 10428

Figure 7: Low CIDEr due to generalization. COCOIDs in test set, where COCO SR fine-tuned caption
scores poorly on CIDEr compared to COCO MLE trained model due to generated captions being different
from COCO’s ground truth distribution.

MLE: A pair of scissors 
sitting on top of a table

CIDEr: 13

SR: A black and white stylized 
black and white stylized stylized 

CIDEr: 0

MLE: A close up of an 
orange on a table

CIDEr:  4

SR: A pair of scissors and an 
orange on a table

CIDEr: 1

MLE: A tall giraffe standing 
next to a tree

CIDEr: 107

SR: Two giraffes standing 
next to each other in a tree

CIDEr: 24

MLE: A brown dog standing 
next to a yellow dog

CIDEr: 92

SR: Two brown dogs standing 
next to yellow frisbee

CIDEr: 14

MLE: A man on a beach 
flying a kite

CIDEr: 209

SR: A man and a woman 
windsurfing in the ocean

CIDEr: 24

cocoid: 503311 cocoid: 310757 cocoid: 186747 cocoid: 326344 cocoid: 375078

Figure 8: Unfaithfulness through hallucination. Some COCOIDs from the test set where SR fine-tuned
captioner scores poorly on CIDEr compared to COCO MLE trained model due to nonfactual information.
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SR: A group of women cross 
country skiing in a 

competition.
Cider: 0.08

mle: A group of people riding 
ski down a snow covered 

slope. 
    Cider: 1.39

SR-L: A blue fire hydrant 
sitting on the side of a street.

CIDEr: 275 

SR-V: A blue fire hydrant 
sitting on the side of a street.

CIDEr: 275

SR-V curri: A blue and blue 
blue blue and yellow blue and 
yellow blue and yellow blue 
and yellow blue…

CIDEr: 0

SR-L: A bicycle is parked 
next to a boat on a dock. 

CIDEr: 77

SR-V: Two bicycles that are 
next to each other.

CIDEr: 0

cocoid: 536589 cocoid: 72397 cocoid: 560756

cocoid: 472216

SR-V curri: A bicycle and a 
car are displayed in a display 
case.

CIDEr: 12

SR-L: A living room filled 
with furniture and a couch.

CIDEr:  83

SR-V: A living room filled 
with red chairs and orange 
walls.

CIDEr: 13

SR-V curri: Three orange 
chairs sitting next to each 
other in a room.

CIDEr: 0

cocoid: 137727

SR-L: A blue and grey passenger train is 
parked on the tracks at a train station, 
with a crane nearby.
CIDEr: 22

SR-V: A blue and orange train sits on the 
tracks at a train station, ready for 
passengers to board
CIDEr: 7

SR-V curri: Two blue and orange train 
cars are parked next to each other on the 
train tracks.

CIDEr: 0

Figure 9: SR-V fine-tuned captioner struggles with attribute binding and hallucination. Training with
BagCurri (SR-V curri) worsens this tendency.

Verified Bags in TrueMatch Bags Discarded with Manual Verification

Figure 10: Manual filtering of bags in TrueMatch. We manually remove bags that do not capture some
aspect of fine-grained visual discrimination, even if they represent the same visual concept.
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