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ABSTRACT

Prediction-powered inference is a recent methodology for the safe use of black-
box ML models to impute missing data, strengthening inference of statistical pa-
rameters. However, many applications require strong properties besides valid
inference, such as privacy, robustness or validity under continuous distribution
shifts; deriving prediction-powered methods with such guarantees is generally an
arduous process, and has to be done case by case. In this paper, we resolve this
issue by connecting prediction-powered inference with conformal prediction: by
performing imputation through a calibrated conformal set-predictor, we attain va-
lidity while achieving additional guarantees in a natural manner. We instantiate
our procedure for the inference of means, Z- and M-estimation, as well as e-
values and e-value-based procedures. Furthermore, in the case of e-values, ours is
the first general prediction-powered procedure that operates off-line. We demon-
strate these advantages by applying our method on private and time-series data.
Both tasks are nontrivial within the standard prediction-powered framework but
become natural under our method.

1 INTRODUCTION

Quality statistical inference requires a considerable amount of samples, which can be difficult to
obtain or may be missing. Prediction-powered inference (Angelopoulos et al., [2023a) is a recent
and promising approach that addresses this challenge by using a black-box ML model to predict
the missing samples from the auxiliary data, while simultaneously correcting for the bias induced
by this imputation. However, many practical applications require the resulting inferences to sat-
isfy strong guarantees beyond validity, such as privacy (for sensitive data), robustness (to protect
against outliers or distribution shifts) or validity under continuously changing scenarios. Deriving
prediction-powered methods that satisfy requirements of this sort remains challenging, with existing
work relying on case-by-case constructions.

In this paper, we resolve this by connecting prediction-powered inference with conformal prediction.
In particular, we show that a calibrated set-predictor can be used for prediction-powered inference
in a general manner, while inheriting additional properties from a conformal calibration procedure;
this allows us to directly leverage the vast literature on conformal prediction with additional guar-
antees, spanning privacy (Angelopoulos et al.l|2021; Penso et al., |2025)), robustness to strategic and
adversarial distribution shift (Csillag et al., 2024; |[Zargarbashi & Bojchevskil [2025; [Massena et al.,
2025), continuous distribution shift (Gibbs & Candes, |2021; |Zaffran et al., 2022 |Angelopoulos
et al., 2024} |Areces et al., 2025), robustness to outliers (Clarkson et al.l [2024; [Peng et al., 2025;
Feldman et al.| 2025), censored/missing data (Zaffran et al., 2023 Davidov et al., 2025) and many
more. In this way, we offer a single, general solution that overcomes the fragmented, case-specific
nature of previous works.

We develop our approach for the inference of means, Z- and M-estimation problems, as well as
e-values and e-value-based procedures. This is the first general method for prediction-powered
inference with additional guarantees, as well as the first instance of conformal prediction being used
for nonparametric statistical inference. When existing prediction-powered methods are applicable,
their performance is close to ours. We illustrate our approach in two settings beyond the scope of
previous methods, highlighting its advantages.
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Our contributions

* We propose a general framework for deriving prediction-powered methods with stronger
guarantees such as privacy, robustness and validity under continuous distribution shift.
Our method works by performing imputation through a calibrated conformal set-predictor;
these guarantees are then directly achieved by choosing an appropriate conformal calibra-
tion method, for which a substantial body of work exists. Our framework’s ability to inherit
properties from conformal prediction methods renders it immediately applicable in many
diverse settings, where previous prediction-powered methods fall short.

* We instantiate our framework for (i) inference of means; (ii) general Z- and M-estimation
problems; and (iii) general e-values and e-value-based procedures — thus matching the
breadth of existing prediction-powered methods. In each case, we prove that our proce-
dure is valid under minimal assumptions and quantify their statistical power, which we
find to be directly linked to the average size of the conformal predictive sets and their mis-
coverage rate. Furthermore, in the setting of e-values, our procedure is the first general
prediction-powered inference procedure valid without active data collection.

* Beyond comparisons with existing prediction-powered methods, we apply our approach to
two practical settings out of reach of prior work: (i) private healthcare for thyroid cancer,
and (ii) continuous risk monitoring of a deployed model. In each setting we obtain proce-
dures that can be readily applied by practitioners. In both accounts, ours is the first appli-
cable prediction-powered procedure, thus setting an important baseline for future work.

1.1 RELATED WORK

Prediction-powered inference In many applications, researchers have access to large datasets but
only small amounts of expensive ground truth ‘labels.” Though machine learning models can often
accurately predict labels for the whole dataset, they are not perfect; in particular, statistical inference
atop such predictions can suffer from significant bias. Prediction-powered inference seeks to resolve
this, by appropriately debiasing such inferences. The topic already spans a significant body of work
both methodological (e.g., (Angelopoulos et al., [2023ajb; [Fisch et al.l 2024; \Gu & Xia, 2024; J1
et al.,2025; Csillag et al., 2025; (Cortinovis & Caronl 2025)) and applied (e.g., (Boyeau et al.,2024;
Aiken et al. 2025))). Existing methods typically prove valid inference (i.e., lack of bias), with some
works also establishing guarantees under covariate or label shift. Towards additional guarantees (e.g.
privacy, robustness, etc.), the works of (Li et al., 2025} [Luo et al.| 2024; Hays & Raghavan, 2025)
establish guarantees under performativity, federation and interference, respectively, but require ad-
hoc analyses to do so.

Conformal prediction On the other side of the literature, conformal prediction (Vovk et al., 2005)
has emerged as a solid manner of quantifying uncertainty about predictions. In its most common
formulation, conformal prediction produces for each sample a predictive set that will contain the true
label with probability at least 1 — «, for a significance level a € (0, 1) chosen a priori. Conformal
prediction has also spanned a vast amount of literature on methodology (e.g., (Tibshirani et al.|
2019; |Angelopoulos et al., 2022 |Gibbs et al. 2023} |Csillag et al.| [2024; [van der Laan & Alaal
2024)), theory (e.g., (Kiyani et al.| 2025} Bian & Barber} 2022)) and applications (e.g., (Zhou et al.,
2022; |Csillag et al., 2023; (Genari & Goedert, [2025))); of particular relevance is the wide literature on
conformal prediction with additional guarantees, e.g. (Angelopoulos et al.|[2021; |Penso et al., 2025
Csillag et al.| 2024} |Zargarbashi & Bojchevskil 2025} [Massena et al., [2025}; |Gibbs & Candes), 2021}
Zaffran et al.,|2022}|Angelopoulos et al.,[2024;|Areces et al., 2025;|Clarkson et al .| [2024} Peng et al.,
20255 [Feldman et al., 20255 [Zaffran et al., |2023; [Davidov et al., 2025)).

Connecting the two Though the two tackle similar problems, connecting them is not immedi-
ate: conformal prediction guarantees that the probability of a single predictive set containing its
corresponding label is high, but statistical inference requires multiple data points, not a single one.
A back-of-the-envelope calculation would give us that, if conformal prediction ensures that a sin-
gle prediction set will contain its corresponding true value with probability 1 — «, the probability
that n independent prediction sets will contain their corresponding true values will be of about
(1 — «)™, which quickly becomes problematic as n grows. Indeed, various works have tried to
alleviate this issue for “batch” conformal prediction (Gazin et al., 2024; |Guille-Escuret & Ndiaye,
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2024; Jin & Candes|, 2022} Marandon| 2023), sometimes even with the explicit goal of statistical
inference (Guille-Escuret & Ndiaye, [2024)). However, they all reach an overarching conclusion that
one would need to adjust the conformal predictor in a manner that still scales badly as n grows. Our
work, in contrast, requires no such adjustment.

Conformal prediction for statistical inference Conformal prediction has spanned much work,
but relatively little in regards to its connections to more usual statistical inference. Of particular
note is (Guille-Escuret & Ndiaye, [2024), which leverages conformal prediction for inference of the
parameter 6 of a statistical model of the form Y = f5(.X')+¢ through a voting mechanism. However,
besides being limited to this specific statistical model and task, it requires harsh assumptions on the
nature of the noise & that make it sensitive to misspecification. Also worth highlighting is the work
of (Cabezas et al [2024), which uses ideas from conformal prediction to solve statistical inference
problems, but is not applicable to prediction-powered inference.

2 METHOD

We first present our method in the simple context of mean estimation. Then, building up on the
idea of conformal prediction-powered mean estimation we extend to progressively more complex
settings, first considering Z- and M-estimation tasks (e.g., means, quantiles and regression coeffi-
cients), and then general e-value-powered procedures.

Throughout this section, we consider that we have i.i.d. data (X;,Y;)" ; ~ P from some unknown
distribution P, where we have access to the X; but the Y; are missing. Leveraging the i.i.d. as-
sumption, we will additionally make use of (X,Y) ~ P when the indices are irrelevant, and denote
the support of these variables by X = supp(X) and Y = supp(Y’). In particular sections some
additional assumptions are necessary, and will be made accordingly.

LetC : X — 2V be a set-predictor, fit on some hold-out data; we define its miscoverage rate
Err(C) := P[Y ¢ C(X)]. It is known that when C is fit via, e.g., split conformal prediction with
target miscoverage 7 € (0, 1), we will have Err(C) = ~ (Angelopoulos & Bates| [2021; Bian &
Barber} 2022)). For full generality, we consider the conformal predictor fixed and state our results in
terms of just Err(C).

For the sake of clarity, we keep our presentation in the main paper purely to scalar estimation prob-
lems. Multivariate estimation follows analogously; see Appendix [B.2}

2.1 WARMUP: MEAN ESTIMATION

Our goal here is to infer E[¢(Y")] for some function ¢ : Y — R; for this we will need to assume
that ¢(Y") is bounded almost surely within some interval [a, b]. For convenience, let ¢(C(X)) :=
{¢(y) :y € C(X)} and M = b — a. It then follows:

Lemma 2.1. Let C : X — 2Y be a set predictor and suppose that ¢(Y') € [a, b] almost surely. Then
Efinf 6(C(X))] — MEr(C) < B[§(Y)] < Elsup o(C(X))] + M Ere(C).

Proof sketch. We will show that E[inf ¢(C(X))] — M Err(C) < E[¢(Y)] by showing that
Elinf ¢(C(X)) — ¢(Y)] < M Err(C). The proof of the upper bound is analogous, and can be
found in the appendix.

The key idea is to use the law of total expectation to condition on whether Y belongs in the predictive
set C'(X):
Efinf (C(X)) — ¢(¥)] = Elinf ¢(C(X)) — 6(Y)|Y € C(X)]P[Y € C(X))
+ Efinf o(C(X)) = o(YV)[Y ¢ C(X)P[Y ¢ C(X)];
Now, given that Y € C(X), it must hold that ¢(Y") € ¢(C(X)), and so inf ¢(C(X)) < ¢(Y);
thus E[inf ¢(C'(X)) — ¢(Y)|Y € C(X)] < 0. Additionally, note that because both ¢(C(X)) and

¢(Y") are bounded in [a, b], it holds that inf ¢(C (X)) — ¢(Y) < b — a = M almost surely, and so
Elinf ¢(C(X)) — ¢(Y)|Y ¢ C(X)] < M. Thus

Elinf ¢(C(X)) — ¢(Y)] < 0+ M Err(C) = M Err(C). O
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Remark 2.2. The assumption that the image of ¢ be bounded seems necessary. If it is not, then
for E[inf ¢(C(X)) — ¢(Y)|Y ¢ C(X)] to be well-behaved will generally require relatively strong
assumptions on the underlying predictive model and data distribution. That said, it is still possible
to infer unbounded means with our framework, just not with this method: see Appendix [B.6|for how
e-values enable this.

Note that Err(C') is controlled by the conformal calibration, and that it is independent from the size
n of the data set for inference, and thus this bound scales gracefully.

Lemma[2.T|establishes that the means can be safely bounded via imputations based on our conformal
predictive sets. This motivates the following procedure:

(i) Fit the conformal set predictor C' on a hold-out dataset with some conformal calibration method
(e.g. split conformal prediction);

(ii) Use the unlabelled data (X;)?_, to compute lower and upper one-sided (1 — «/2)-confidence

intervals [fg‘g),—&-oo) for E[inf ¢(C(X))] and (—oqﬁo(j%)] for E[sup ¢(C(X))]; ie.,

~

ng/‘g), ﬁs%)) such that

~ . [0 -~ [0
Py LEY < E[qus(C(X))]} >1-3: Pgey [E[supqs(C(X))] < 35‘5)} >1-3.

This can be readily done with off-the-shelf confidence intervals for the mean, such as CLT-
based CIs, Hoeffding CIs and e-value-based methods (e.g. (Waudby-Smith & Ramdas|[2020)).

(iii) Produce the interval

CE9) .= {Eg“‘g) — M Err(C), ﬁg%)) + MErr(C)} . (1)

This is a simple procedure that benefits from good theoretical properties. In particular, the resulting
interval is a valid (1 — «)-confidence interval for E[¢(Y)]:

Proposition 2.3. Under the conditions of Lemma forany a € (0,1), let 6&“’) be as in Equa-
tion Then C&?) is a valid (1 — a)-confidence interval for E[¢p(Y)], i.e.,

P [JE[qs(Y)] = (f*gfﬁﬂ >1-a.

It is immediate to see that if the set predictor satisfies, e.g., privacy with regards to its calibration

data, then so will the confidence interval c (M)EI Similarly, if the conformal predictor is robust to
outliers or strategic manipulations, so is the confidence interval.

We can also exactly quantify the size of 685‘7’) in terms of M, Err(C), the average predictive interval
size and the tightness of the one-sided Cls for LSE/Q;) and US%’). Let leb be the Lebesgue measure
and hull(A) the convex hull of A (i.e., in R the smallest interval containing the set A). Then:

Proposition 2.4. It holds that

leb C(E?) = E[leb hull(¢(C(X)))] + 2M Err(C)
+ (Efinf ¢(C(X))] - LEL) + (052 — Elsup 6(C(X)))).

From Proposition it can be seen that our method works best with tight set predictors. As the set
predictor approaches perfect accuracy — as is often the case in machine learning applications — the

first two terms can be taken to approach zero. The last two terms, which concern the tightness of the

one-sided confidence intervals ESE/‘? and ﬁg‘;), can be given an explicit form for specific methods

U (Ee)

o2 » but overall generally scale in order O(n=1/2).

for producing ESE/(Z) and

'Tf (e, §)-differential privacy is satisfied for the conformal calibration with relation to the calibration data,
then our procedure amounts to post-processing atop the already-private set-predictor C(-), ands so our CI
immediately satisfies (¢, ¢)-differential privacy by the standard post-processing theorems of differential privacy.
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2.2 Z-ESTIMATION AND M-ESTIMATION PROBLEMS

Going beyond means, we now consider the problem of Z-estimation, in which our estimand 6* € ©
(for some parameter space ©) is given as the solution to the estimating equation Ey [)(Y;6*)] =
0, for some function 7. Z-estimation problems are common, with prominent examples being the
inference of means (for ¢(Y;0) = Y — ), medians (for ¢/(Y;0) = 1[Y < 6] — 0.5), general
quantiles (for the g-quantile, ¥(Y;0) = 1[Y < 0] — q), regression coefficients (for v ((X,Y);6) =
X2 — XY) and more. Similar to how we have assumed bounded means in Section [2.1] we will
assume here that ¢)(Y'; 0) € [ag, by almost surely for each § € ©, and let My = by — ag. Again, for
convenience, let (C(X); 0) := {¢(y;0) : y € C(X)}.

Consider the following procedure, which is close in spirit to the vanilla PPI procedure proposed by
(Angelopoulos et al., 2023a): for each § € ©, produce a lower one-sided (1 — «/2)-confidence

interval [E((’,Z;/)/)Q, +00) for E[inf ¢(C(X); 0)], and an upper one-sided (1 — «/2)-confidence interval

(—o0,U éza%] for E[sup (C(X); #)]. Then, to estimate §*, produce the following set:
) = {0 €©: L), — MyEre(C) <0 < U, + M, Err(C)} . 2)

By Lemma[2.1] it follows that this is a valid confidence interval for 6*:

Proposition 2.5. For any o € (0,1) let C) be as in Equation Then CS% is a valid (1-a)-
confidence interval for 0%, i.e.,

P [9* € agzw] >1—a.

‘We can also bound the size of 6&”’); however, due to its more implicit nature, this is more involved
than the case of the inference of a mean in the previous section. Below we establish a result under
the assumption that the one-sided confidence intervals are K -smooth in 6 and that © is bounded.

Proposition 2.6. Consider © C R bounded by B (i.e., forall 0,0' € ©, ||0—0'|| < B). Suppose that

Zézg/)Q and (7 G(Zaw/)Z are both K -smooth in 0 (i.e., differentiable w.r.t. 0, with K -Lipschitz derivative),

Eézf/g < ﬁe(Zaw/)Q and My < M for all 8 and that %Eé%fx)/?’ %[79(%}?/2 % 0. Then

b (E[leb hull(¢(C(X); 6%))] + 2M Err(C)

min

leb C(%¥) <

+ |Efinf ¢ (C(X); 0%)] = LZ%) | + U522, — Blsup (C(X); 0%)]]

0*,«
+ KB + max{ag+, bg- } |1 — Dmin/DmaX|>7

. >z (2 >z (2
where Dy, = min {|%Lé*f@/2\, \dd—GUé*jf;)/Q\} and Doy = max{|%Lé*fQ/2\, \%Ué*ﬁ)/z\}.

This means that the size of the resulting confidence interval is mainly governed by the average
predictive interval size, M and Err(C), and the tightness of the one-sided confidence intervals, as
before, but now also takes into account how quickly ¢ passes through O at 6* (via the derivatives)
and how “well-behaved” the one-sided confidence intervals are over ©.

In the case of inference of a mean, where ¥(Y;6) = ¢(Y') — 6 with sufficiently regular methods
for obtaining the one-sided confidence intervals (e.g. CLT-based Cls or Hoeffding bounds), the
derivatives will equal one everywhere (i.e., Dy = Dpax = 1) and the one-sided confidence
intervals will be 0-smooth (i.e., K = 0), and we recover Proposition @] except for the modulus in
the terms concerning the tightness of the one-sided CIs.

A similar procedure is also applicable to M-estimation problems, in which we want to infer
6* = argming.g Ey [¢(Y'; 0)] with £ (sub)differentiable in §. Much like Z-estimation, M-estimation
problems are broadly applicable, including not only means, quantiles and regression coefficients but
also more involved estimands such as robust statistics, maximum likelihood estimates with nonlin-
ear models and more. For boundedness, we make the assumption that ¢'(Y;6) C [ag, bg] almost
surely for all # € ©, and let My = by — agy for convenience.
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Since the loss is differentiable, the minimum 6* occurs in a point where E[-$¢(Y;6%)] = 0 (if
¢ is furthermore convex in 6, then the two are equivalent). This thus reduces the M-estimation
problem to a Z-estimation one, which we can solve: for each § € ©, produce lower and up-

per (1 — a/2)-confidence intervals [Eéﬁ?w +00) and (—o0, UG(M%] for E[inf £:¢(C(X);6*)] and

Efsup <¢(C(X); 6*)], respectively, and produce the set

CMO = {9 €0 : LM, — MyErr(C) <0 < UM

bro) 0+ My Erx(O) } 3)

This is a valid (1 — «) confidence interval for 6*:

Proposition 2.7. Forany o € (0,1), let CA'éMZ) be as in Equation Then CA'éMZ) is a valid confidence
interval for 0%, i.e.,

P {9* € ég}“)} >1—«

We can also similarly bound the size of the resulting confidence interval, which now looks at the
steepness of the one-sided intervals for the derivatives, i.e., the curvature of £ around 6*; see Theo-
rem in the appendix.

2.3 INFERENCE WITH E-VALUES

Following the work of (Csillag et al., |2025), we now extend our set of inference tasks to those
powered by e-values, a modern and enticing alternative to p-values (Ramdas et al.,[2022; Ramdas &
Wang}, [2024). An e-value for a null hypothesis Hj is an nonnegative real random variable E such
that if Hy holds then E[E] < 1 (and ideally E[E] > 1 otherwise). By Markov’s inequality, it is
unlikely that the e-value achieves a high value under the null (P[E > a] < E[E]/a < 1/a), and
so a high e-value provides evidence against the null. Furthermore, e-values satisfy many desirable
properties missed by p-values while being highly versatile; we refer the interested reader to (Ramdas
et al.| 2022) and (Ramdas & Wang| 2024)) for an introduction.

Consider the problem of testing a null hypothesis Ho. Let FE,, be an e-value with a test supermartin-
gale structure, which can be written in the form E,, := [];_, e;(Y;) for a predictable sequence
(e5)52 of ‘components’ of the e-value; i.e. each e; can be arbitrarily dependent on the samples
before time ¢ (but nothing else). Analogous to the previous sections, we will also require a bound-
edness condition, in that for all 4, ¢;(Y) € [a;, b;] almost surely for some predictable sequences
(@;i)$2, and (b;)$2,, and with a; > 0 for all 4. These boundedness conditions can be enforced by

simple rescaling and clipping, albeit at a slight loss of power.

With a possibly-moving predictable sequence of conformal predictors (C;)$2, in hand, the confor-
mal prediction-powered e-value can be constructed as follows:

B (©) = T rescaley, (inf e:(Ci(X)) = (bi — a0)Exr(C)), @

i=1

where (7;)2, is a predictable sequence with O ni < (1 —a; — (b; — a;)Err(C;))~1 for all
i=1,2,... rescale,(e) =1+mn(e—1)ande; Ci(X,)) = {el( ) :y € C;i(X;)} for convenience.
The sequence (7);) is analogous to the bets usually present in e-values from the testing by betting
literature, cf. (Shafer, 2021 |Waudby-Smith & Ramdas| [2020; Ramdas et al.,|[2022); it ensures that
the e-values remain nonnegative as well as allowing for gains in power, e.g. when the 7s are chosen

Egpi—(c)

to approximately maximize the e-value’s growth rate. It follows that is a valid e-value,

inheriting the test supermartingale structure of F,,.

Proposition 2.8. Let Eﬁpi_(c) be as in Equation Then (Efpi_(c), Egpi_(c), ...) is a test super-

martingale, and ETppi_(C)

is an e-value for any stopping time T.

We can also analyze the power of our e-values. The natural way of measuring the power of an e-
value is by the means of its expected growth rate (Kelly, |1956). For conformal prediction-powered
e-values, it will be close to that of the original e-value as long as the conformal predictive sets are
sufficiently small and with a low Err.
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Figure 1: Our method is comparable to existing prediction-powered procedures. We conduct
experiments on two datasets where previous prediction-powered methods are applicable: one on the
prevalence of phishing attacks (a mean), and another on characterizing gene expression levels (a
median). In (a) we see one realization of our CIs along with baselines, while in (b) we analyze the
distribution of the interval sizes over varying data splits. In both cases our procedure outperforms
only using labelled data, while edging over prior methods for the mean estimation task.

Proposition 2.9. Ife;(-) € [a;, b;] for every i, then there exists some constant r > 0 independent of
n for which

E E log Egpi(c)} >E [711 log En] - %zn:E[leb hull(log e;(C;(X:)))]
a %ZE [hi(n;)Err(Cy)] — %ZEUI =il linf e:(Ci(Xy)) = 1],

=1

where hi(n;) = log % + n;(b; — a;), which is increasing in ;.

Proposition makes apparent a trade-off in the choice of the (1;)$°,: by choosing a lower n; we
reduce the effect of the (b; — a;)Err(C;) penalty on the e-values, but incur a slight loss in power
due to the rescaling. An optimal balance can be struck by choosing log-optimal (1;)$2,, as is usual
in the testing by betting literature.

These e-values can also be directly used for confidence intervals/sequences and general e-value-
based procedures; see Appendix [B.1]

3 EXPERIMENTS AND CASE STUDIES

To empirically assess our method, we devise a series of experiments on real-world datasets. We
first consider the estimation of means and quantiles, in which we can compare our approach to
previous methods for prediction-powered inference (Section [3.1). We then turn to more elaborate
scenarios, which our procedure naturally solves but were out of reach for previous methods: first
for prediction-powered inference with private labelled data (Section [3.2) and then for prediction-
powered anytime-valid hypothesis testing on time series sans active data collection (Section [3.3).
Experiment details can be found in Appendix|[C]

Code for all experiments can be found on [redacted URL] (present in the supplementary mate-
rial). All experiments were run on an AMD Ryzen 9 5950X CPU, with 64GB of RAM.

3.1 COMPARISON WITH PREVIOUS PREDICTION-POWERED INFERENCE METHODS

We consider two inferential tasks: estimating the prevalence of phishing websites (which is a proba-
bility, and thus a mean), and the inference of gene expression levels, as measured by their quantiles
(in particular, a median). Phishing is one of the most common types of cybercrime, and quantifying
the prevalence of phishing domains allows cybersecurity firms and ISPs to gauge the scale of the
problem and allocate resources to prevent these attacks. As for gene expression levels, these can
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Figure 2: Conformal prediction-powered inference with differential privacy. We apply our
method to analyze the recurrence of thyroid cancer atop private patient data. With a single inference-
agnostic and differentially-private calibration, we are able to do prediction-powered inference for the
probabilities of recurrence for various strata, with minimal increase in interval size compared to a
non-private calibration.

be used to better understand cis-regulation in humans, which is important to the study of complex
diseases. As is usual in the prediction-powered inference literature, we evaluate our procedures on
large labelled datasets, namely those of (Mohammad & McCluskeyl [2012)) and (Vaishnav et al.,
2022) for the phishing and gene expression level tasks, respectively.

For the phishing dataset, we allocate most of the data for training a predictive model; for the gene
expression dataset, we use the predictions from the readily available model of (Vaishnav et al.,
2022). We then split the remaining data between a large test set (where we discard the labels Y)
and a smaller calibration set (for which we will use both X and Y). On this calibration set, we
perform split conformal prediction to obtain a calibrated set-predictor, using the conformity score
(z,y) = —p(y | z) for the phishing dataset and (z,y) — |(z) — y| for the gene expression
datasetE] where p and i denote the respective predictive models.

We compare four methods. Conformal PPI (Ours): we use the conformal predictors fit on the
calibration set, and compute our conformal prediction-powered CIs on the test set as outlined in
Sectionsand PPI++ (Angelopoulos et al., 2023b): the calibration set is used in conjunction
with the test set to form an unbiased estimate of the loss of an M-estimator, with a data-dependent
‘power tuning’ parameter A. Asymptotic analysis then allows for the construction of valid CIs. FAB
(Cortinovis & Caron, 2025): FAB extends PPI/PPI++ by introducing a prior over the quality of
the predictive model. It provides tighter CIs when the observed prediction quality is likely under the
prior, while ensuring graceful degradation otherwise (for well-chosen priors, e.g., horseshoe prior).
Only labelled samples: we compute a classical CI using the calibration data, ignoring the test set.

Figure [1| shows these procedures in action. In particular we showcase instances of our confidence
intervals for the mean and median of the labels of our datasets, along with the distribution of their
interval sizes over varying data split seeds. Our approach is competitive with previous methods,
beating the intervals that use only the labelled samples. In the case of the mean, our method in fact
provides the tightest confidence intervals. For the median ours is not as tight as FAB (Cortinovis
& Caron, 2025), but surpasses PPI++ (Angelopoulos et al., [2023b). We also note that our method
achieves the smallest variance.

3.2 PREDICTION-POWERED INFERENCE WITH PRIVATE LABELLED DATA

In this section we illustrate the use of our method for analyzing the recurrence of thyroid cancer.
As with many medical applications, access to medical records is required. Due to their sensitive
nature, all labelled data must be treated in a differentially private manner; this is beyond the scope
of previous prediction-powered procedures, which do not satisfy differential privacy and thus may
leak information.

We use the dataset of (Borzooei & Tarokhianl 2023)), which contains readily accessible clinical data
(e.g. from surveys), along with an indicator of whether the patient’s cancer recurred. We split
this dataset into training, calibration and test sets. In the training set, we fit a model to predict the
recurrence of thyroid cancer. The calibration set is then used for the differentially private conformal
prediction method of (Angelopoulos et al., 2021), using the conformity score (z,y) — p(y | z).

*The pretrained model only predicts fi(z), so we cannot use a more adaptive score (such as conformalized
quantile regression).
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Figure 3: Conformal prediction-powered continuous risk monitoring. Our method can also be
naturally applied for continuous risk monitoring by simply using online conformal prediction meth-
ods for the calibration. It satisfies strong anytime-valid guarantees in a dynamic setting without
requiring active data collection. The resulting procedure rejects nulls much more quickly than sim-
ply using labelled samples, attaining high statistical power.

Finally, we use this conformal predictor to perform several inferences on the test set, estimating the
probabilities of recurrence for different strata of the population. The results can be seen in Figure[2}
we find that the differentially private calibration yields only minor increases of the interval sizes
while vastly increasing safety.

Also worth highlighting is that our procedure allows us to use a single private calibration for multiple
inferences, which can even be defined post-hoc. This is in contrast to previous prediction-powered
methods, which require access to the calibration data for every inference, potentially compromising
privacy.

3.3 PREDICTION-POWERED RISK MONITORING VIA ONLINE CONFORMAL PREDICTION

Consider the task of tracking the risk of a deployed model on-line, so that we ensure it never goes
past some determined safety level. In this setting, continuously receive inputs for our predictive
model, but only occasionally receive labels that would allow us to assess the correctness of our
predictions. This is a problem with significant temporal structure, putting it out-of-reach of most
prediction-powered methods (which can only handle static i.i.d. settings). As far as we are aware
the only applicable method is that of (Csillag et al. [2025), but it requires an active data collection
regime; ours is trivially applicable to an observational regime.

The task can be framed as an anytime-valid test for the null hypothesis that the risk is within the
safety level at all times; such a hypothesis test can then be done using, for example, the e-value
framework of (Podkopaev & Ramdas, [2021)).

For our experiment, we use the dataset of (Blackard| |1998) for forest cover type prediction. We
create two versions of the dataset: the original one, in which the null hypothesis holds (i.e., no
distribution shift), and another one in which we increasingly poison the data by selecting harder
samples with increasing probability past a change-point, rendering the null hypothesis false.

Each version of the dataset is partitioned into training, validation, and test splits. A predictive model
is fit on the training data, whose loss we then estimate on the validation set. Our desired safety
level is then taken to be this validation loss plus a small tolerance threshold. Still on the validation
set, we train an auxiliary model to infer the predictive model’s residuals. Finally, on the test set we
monitor the on-line risk: we use our occasional labelled samples for the online conformal prediction
method of (Angelopoulos et al, [2024) atop the auxiliary model, and use the resulting set predictor
for our conformal prediction-powered e-values. The (7);)$2, are chosen to approximately maximize
the growth rate (cf. Appendix [C.4).

Figure [3] shows the results of our experiment, comparing it to only using the occasional labelled
samples. When the null is false, our prediction-powered e-values reject it much more quickly and
confidently than only using the labelled data, while guaranteeing a low false positive rate.
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4 CONCLUSION

In this paper, we established a general connection between prediction-powered inference and con-
formal prediction, enabling prediction-powered methods with additional guarantees like privacy and
robustness. Our framework leverages calibrated conformal set-predictors to inherit rich properties
from the conformal literature, overcoming the case-specific limitations of previous work and open-
ing new practical applications previously out of reach. Beyond being readily applicable to diverse
practical settings, we believe our framework establishes an important baseline for future research on
prediction-powered inference with additional guarantees.
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A THEOREMS AND PROOFS

Lemma A.1 (Lemma in the main text). Let C : X — 2% be a set predictor and suppose that
oY) € [a,b] almost surely. Then

Efinf (C(X))] — M Exr(C) < E[6(Y)] < Efsup 6(C(X))] + M Exx(C).

Proof. We will show this in two parts:
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() Elinf ¢(C(X))] — M Err(C) < E[¢(Y)], by showing that E[inf ¢(C'(X)) — ¢(Y)] <
M Err(C);

(i) E¢(Y)] < Elsup(C(X))] + M Err(C), by showing that E[p(Y) — sup (C(X))] <
M Err(C).

For (i), by the law of total expectation:
Elinf o(C(X)) — ¢(Y)] = E[inf o(C(X)) = (Y)Y € C(X)|P[Y € C(X)]
+ Efinf ¢(C(X)) — o(V)|Y & C(X)P[Y & C(X)];

Now, given that Y € C(X), it must hold that (V) € ¢(C(X)), and so inf ¢(C'(X)) < ¢(YV);
thus E[inf ¢(C (X)) — ¢(Y)|Y € C(X)] < 0. Additionally, note that because both ¢(C(X)) and
¢(Y") are bounded in [a, b], 1t holds that inf ¢(C(X)) — ¢(Y) < b — a = M almost surely, and so
E[inf ¢(C(X)) — ¢(Y)|Y & C(X)] < M. Thus

Elinf ¢(C(X)) — ¢(Y)] < 0+ M Err(C) = M Err(C).

The upper bound (1)) follows analogously: by the law of total expectation,
E[¢(Y) —sup ¢(C(X))] = E[¢(Y) —sup ¢(C(X))|Y € C(X)]P[Y € C(X)]
+E[p(Y) —supp(C(X))Y ¢ C(X)|P[Y & C(X)];

Now, given that Y € C(X), it must hold that ¢(Y) € ¢(C(X)), and so ¢(Y) < sup ¢(C(X));
thus E[¢(Y) — sup ¢(C(X))|Y € C(X)] < 0. Additionally, note that because both ¢(C (X)) and
¢(Y') are bounded in [a, b], it holds that ¢(Y") — sup ¢(C(X)) < b — a = M almost surely, and so
E[6(Y) — sup (C(X))|¥ ¢ C(X)] < M. Thus

E[¢(Y) —sup ¢(C(X))] <0+ M Err(C) = M Err(C),

and we conclude. ]

Proposition A.2 (Proposition 2.3] in the main text). Under the conditions of Lemma [2.1] for any

a € (0,1), let éé]%) be as in Equation 3 from the main text. Then G&Ed’) is a valid (1 — «)-
confidence interval for E[¢(Y)), i.e.,

P [E[qS(Y)] € égj&f’)} >1-a

P[Elo(v)] ¢ CF9| = P |LE) — M Ex(C) 2 E[o(Y)] or Elp(Y)] £ U3 + M Exr(C)]

<P[LSY) - MEm(C) Z Elp(V)]] +P [Elp(Y)] £ U3 + M Err(C)]
=P[LE) 2 E[p(V)] + M Ex(C)| + P [E[6(V)] - M Exx(C) 2 T2 |

< P[50 £ Bl 6(C(X))]] + P [Eisups(C ()] 2 0]

and, since E(Q]E/q;) and Tj'(i /3) are one-sided confidence intervals, it follows that

a o«
P|LY 2 Elinf o(C(X))]] + P [Ebupo(CCO) 205D < S+ 5 =a. O
Proposition A.3 (Proposition[2.4]in the main text). It holds that

leb C®9) = E[leb hull(¢(C(X)))] 4+ 2M Err(C)
+ (Efinf ¢(C(X))] - LEL) + (02 — Elsup 6(C(X)))).

14
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Proof.

leb O(E4) — (ﬁg“ +M Err(C)) (Lf/";) M Err(C))

= ﬁgaﬁ) L(]E/q;) + 2M Err(C)

= (Elsup 6(C())) + U5 — Elsup ¢(C())])
- (E[inf $(C(X))] + L) — Efinf qS(C(X))]) +2M Err(C)
= (Efsup (C(X))] — Efinf 6(C(X))]) + 2M Err(C)
+ (059 ~ Elsup o(c(X))]) - (L5 - Elinf o(C(X))))
= E[leb hull(¢(C(X)))] + 2M Err(C)
+ (052 ~ Elsup o(C(X))]) + (Elinf o(C(x))] - L)) 0

Proposition A.4 (Propositionin the main text). Forany o € (0, 1) let agzw) be as in Equation 4
from the main text. Then Cézw is a valid (1 — «)-confidence interval for 6%, i.e.,

P [9* € égzﬂ >1—a«

Proof.

Plor ¢ CPV] =P [L), — M. Exe(C) £ 0 0r0 £ T2 /2 + My. Exr(C)]

<P {Zg%ﬁfm — M- Exx(C) £ 0] +P [0 £ OS2, + My- Err(C)} ;
Now, by definition E[¢)(Y’; 0*)] = 0, and so the above is equivalent to
P [LW) /2 — My- Err(C) £ E[(Y; 9*)}] +P [E[w(Y; 6%) £ U5, + M. Err(C)}
=P [L§) ) Z E[(Y307)] + M- Exr(C)| + P [E[6(Y;0%)] = My Exx(C) £ TS0 ]

0*,«/2
<P L1, £ Elif w(C(X0);0%)]] + F [Elsup p(C(X): 0] £ U110 )

and since the L( ¥) )2 and U, (Zw)/Q are one-sided confidence intervals, it holds that

P[ 5 2 £ Elinf (C(X);6 )]] +P[E[supw(C(X) )]gUW/Q] %

Proposition A.5 (Proposition 2.6]in the main text). Consider © C R bounded by B (i.e., for all

0,0 I < B). Suppose that L(g w/)Z and U(gzd;)z are both K-smooth in 6 (i.e., differ-

entiable w.r.t. 0, with K-Lipschitz derivative), L(Zw) U(Zw) and My < M for all 6 and that

0,a/2 — “0,a/2
d 7@Zy)  d77(ZY)
a0 L6+ ay2 a6Upx ay2 7 0. Then

b (E[leb hull(4(C(X); 0*))] + 2M Err(C)

min

leb C%¥) <
+ |Efinf ¢ (C(X); 0%)] = 2% | + U522, — Blsup (C(X); 0%)]]

+ KB + max{ag«,bp } |1 — Dmin/Dmax|>7

z z z z
where Dy = mln{|dgL( w)ﬂ\ ‘deUé*ii)ﬂ‘} and Dyyax = max{|d9L( w)ﬂ\ \ngé*ﬁ)/Q\}

0* « 0* «

15
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(%)

Proof. For convenience, let u(f) = U(Z o/2 and () =L, )2

We will do a first-order expansion around #*. Thanks to the K -smoothness assumption, it holds
that, for all § € O,

u(0) + MyErr(C) < u(f) + MErr(C) < u(6*) + MErr(C) + u'(0*)(0 — 0*) + g”ﬁ —0*))?

w(0%) + MErr(C) + /' (6*)(6 — 6%) + ?;
)
00) — MyEre(C) > £(9) — MExr(C) > £(6%) — MExr(C) + £(6*)(0 — 6*) — %HH — o4
> (6%) — MErx(C) + £(6%)(0 — %) — g.
(6)

Consider then the set

S = {9 € R : 4(0*) — MErr(C) + ¢ (6*)(6 — 6*) — ?

<0 < u(0*) + MErr(C) +u/(6)(0 — 9*)+K2B}

By Equations@and it must hold that a(lzw) C S, and thus leb CA'éZw) <lebS.

S has a much more amenable form thanks to the first-order expansion, which allows us to quantify
its measure precisely. First, note that S is a convex subset of R, and thus an interval. So all that
we need to do is to find its endpoints, which can be done by solving its constraints for their zeros
(which, since the derivatives at 8* are not nil, must be unique).

0(0%) — MErx(C) + £/(6%)(0 — 0%) — g 0
— )0 -0 = ? + MExr(C) — £(6%)
KB/2+ MErr(C) — £(0%)

— 0-0"=

0(6%)
. KBJ/2+ MEx(C) — ((6%)
— 0=0"+ ) ;
and
w(0*) + MErr(C) + v’ (6%)(0 — 0*) + ? =0
/ * * KB *
= u'(0*)(0 -0 ):—T—MErr(C)—u(G )
s f_p — —-KB/2— i\f/f;ir)(C) — u(6*)
s 90" 4 —~KB/2 — ]L{zir)(C) — u(6*)

16
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Then:
. KB/2+ MErr(C) — £(6™) . —KB/2— MErr(C) — u(6*)
b5 = (9 ! @) ) - (9 ! ) )‘

_lor 4+ KB/2+ MErr(C) —£(0%) o —KB/2 — MErr(C) — u(6*)

B (6%) u' (6%)

_ | KB/2+ ME(C) — £(0*) —KB/2— MErr(C) — u(6*)

B (6%) u'(6%)

_ (u( ) é(&*)) (KB/QJrMErr(C’) KB/2+MErr(C))‘
ORRAD (6% W (67)

< u(@*)  £(0) n KB/2+ MErr(C) KB/Z—FMErr(C)’

<@ @) ) ()

C|u(er) o e7) 1 1

-~ #| | () (<8724 218w

_ 5((991 - 5((?9)) +|5 (19*) + (19*) (KB/2 + MEm(C)).

Finally, by adding and subtracting the boundaries of the interval in expectation:

u(6*) 08 L
I (2 I VI I )
_ ‘E[supwcm; 0*)] , (")~ Elsup(C(X);67)] _ Efinf p(C(X):6%)]  6(6*) ~ Elinf y(C(X):6%)]
W (07) W (07) (67) 7(07)
11
ooy o)
_ ‘E[supwcm; 0)] _ Elmf p(C(X):6)] | u(6*) ~ Elsupp(C(X):6)] _ 0(6*) — Blint (C(X):6")
u (6% (6% u (6% (6%
1 1

76 " wen

(KB/2 + MErr(C))

+ (KB/2 + MErr(C))

+ (KB/2 + MErr(C))

E[sup p(C(X);67)] _ E[inf (C(X); 6*)]

B u'(0%) (6%)
L [w07) — Efsupy(C(X); )] _ £(0") — Efinf (C(X); 67)]
(0" o)
1 1
+ 7Y + e (KB/2 + MErr(C)).
Bisup 0(CC0:0%) _ Bfnf (C(X)50°)
- u'(6%) 2(6%)
LG ) Elsup p(C(X); )] | |Efinf (C(X); 6%)] — £(6")]
|u’(67)] |£(6)]
1 1
+ é’(ﬁ*)+u’(0*) (KB/2+ MErr(C)).

Now, since G = min{|u’(6%)], |¢/(6*)|}, it follows that:

5 <2+ 218100 < (o + ey

< %(KB /2 + MErr(C)) < é (KB + 2MErr(C))

> (KB/2 + MErr(C))

17
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and

[u(0") — Elsup(C(X);67)]| |, [Efinf(C(X); 67)] — £(6")]

|u'(6%)] [£(6)]
< () — Elsupyp(C(X); 6M)]| | [Efinf (C(X); 6%)] — £(6")|
- G G
= é(\uw*) — Efsup¢)(C(X); 07)]| + [Elinf ¢:(C(X);: 6%)] — £(67)]).-

Finally, we have to consider two cases:

() If G = min{|/(0%)], |€/(0*)|} = |u/(6*)], then

E[Supiig(Ce(*))();a*)] B E[mfi(,?;i))();e*)] é Efsup (C(X); 0] — Z’I((Z:))E[mw(c(){);e*ﬂ
~ & [Eloup $(Cx)50%)] — Elint w(C(00:0%)] + Bl (€ (0 0°)) - S Bfut w(C(X)50°)
< 5 Blsup $(CX0):6°)] Bt w(CO0:0°)] + g [Blinf p(C(X)58%)] ~ i Bfint w(CCX):0°)
— & [EBup v(CO0:6%)] ~ Elinf w(CX0:0)] + & Elimt w(CC0:)] |1 - 00
< 5 [Blsup $(CX):6°)] = Blint w(COO:0)) + |1 = i oo oo
é| lleb hull((C/(X); 6*)) |+‘ g)) max{|ag- |, [bo- |}
éE[lebhull(w(C( ) 0))] +’ -7 Z)) max{|ag- ., bo- |}
éE[lebhull( ‘ E;j{i, u *))}}i max{|ag- |, |be-|}-

Gi) If G = min{|u/(0%)], |¢'(6%)|} = |¢/(6%)], then

Efp OO0 _ B0 _ L0 gy 00 B sC0010)
— & [Elsup 0(C(X):0°)] — Bl (C(X)36)] + 1 I Bup w(C:0°)] - Elsupu(C(X)56°)]
< 5 Blsup $(C0:6°)] Bt w(CO0: 670 + |- Blsup $(CX):0°)] — Elsup (C(X);6)]
— & [EBup v(CO0:6%)] ~ Bl w(C0:0)] + & Elsupw(©(0; 67| [1 - L2
< 5 Blsup $(CX):6°)] ~ Bfint w(COO:0°) + |1 = i | max{ao- | oo
= = [Elebmllp(C(X): 6| + & ’1 - Z)) max{|ag: . [bo- [}
%E[leb hull(¢(C(X);0")] + = ‘1 — Zi)) max{|agp+|, |be+ |}
éE[leb hull(p(C(X): 6))] + ‘1 - E;Z‘Ei((z))z((‘;))i max{|ag: |, [bo:|}-
Combining everything, we get the desired bound. O
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Proposition A.6 (Propositionin the main text). Forany o € (0,1), let ééM@ be as in Equation 5

from the main text. Then C&M‘ is a valid confidence interval for 0%, i.e.,

P {9* e C*gW)} >1—a.

Proof. Since the loss is differentiable, first note that it must hold that SSE[((Y;6*)] = 0. By the
dominated convergence theorem we can exchange the expectation and derivative, and so

d « d v.om| =
SErso =B | eion]| =0

Note that now our set é&MZ) for M-estimation corresponds to a set CA'éZw) for Z-estimation, for
Y(Y;0) = %E(Y; 6*). So by applying Proposition (Proposition 2.5 in the main text), we
conclude.

Proposition A.7 (Power analysis for M-estimation). Consider © C R bounded by B (i.e., for
all 0,0 € ©, |0 — ¢'|| < B). Suppose that Mo MO are both K-smooth in 0 (i.e.,

0,02 and U,
differentiable w.r.t. 0, with K-Lipschitz derivative), Ee )2 < ff\e(l\i%, My < M for all 8 and that

0,0/2
(M)
d 7(M&) 4 77(ME)
@Le*’a/27 @UH*,Q/Q ?é 0. Then

b (E[leb hull(%E(C’(X); 6°))] + 2M Exr(C)

min

leb 6ng> <

! o (e = (Me d X
+ [Efin €(C(X);6%)] = LG | + U520, — Elsup —(C(X);6")]

+ KB+ max{ag*,bg*} |1 - Hmin/Hrﬂax|> y

d Z(Mf)

where Hpin = min{|@ gﬁ(Mé) |} and Hyoy = maX{|iE(M€)/2|, |gﬁ(w) |}.

9*,(1/2|7|d9 0*,a/2 do —o* do ™~ 6*,a/2

Proof. As in Proposition [2.7) (Proposition 2.7 in the main text), we can convert the M-estimation CI
to a Z-estimation one. This result then follows by just applying Proposition [2.6] (Proposition 2.6 in
the main text). O]

Proposition A.8 (Proposition in the main text). If (Eo, F1,...) is a test supermartin-
gale for the null H,, then so is the sequence of conformal prediction-powered e-values

(Egpif(c), Efpif(c), ...) defined in Equation 6 from the main text.

Proof. The sequence is guaranteed to be nonnegative due to the bounds on 7;, and starts at

Ey Pi=(O) — by definition. So all that remains is to show that it is a supermartingale. For any
point in time ¢, it follows:

E[E™ |5 =K [Eff’il_(c) - vescale,, (mf e:(Ci(X,)) — (bi — ai)Err(C'i)) \]-"t_l]
= Effif(c) -E [rescalem (inf ei(Ci(X;)) — (b — ai)Err(Ci)) \.7:,5,1}
= EPPO (1 4y (B [inf e:(Cy(X3)) — (bi — ai)Brr(Cy)| Fee] — 1))
Now, by Lemma[2.T] (Lemma 2.1 in the main text),
B (14 1 (Einf e;(Ci(X2)) — (bi — a;)Bre(C)| Fimy] — 1))
< BP0t (B fes (V)| Foma] - 1)
<P (1 (1-1)) = B,

where the last step follows under the null since the original e-values form a test supermartingale. [
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Proposition A.9 (Proposition 2.9]in the main text). If e;(:) € [a;, b;] for every i, then there exists
some constant v > 0 independent of n for which

1 ; 1 1 ¢
E {n log EPP } >E {n log En] - ; 1 E[leb hull(log e; (C;(X;)))]

— = Y B Er(Co)] - S E[|L — il finf e (Ci(X) — 1],

=1

where h;(n;) = log 27 + n;(b; — a;), which is increasing in ;.

Proof. LetT; := rescale,, (a;— (b;—a;) Err(C})). First, note that log is rescaley (a7 7(b B Gy
Lipschitz in [rescale,, (a; — (b; — a;) Err(C;)), rescaley, (b; — (b; — a;) Err(C’ ))], and thus:
log rescale,, (inf ei(Ci(Xy)) — (bi — ay) Err(C,»))

‘rescalem (inf ei(Ci(X;)) — (b — ay) Err(CZ-)) — inf ei(CZ-(Xi))‘

> i (O X)) —
= loginf e;(Cs(Xy) rescale,, (a; — (b; — a;) Err(C}))

and, by adding and subtracting rescale,,, (inf e;(C;(X;))) and then invoking the triangular inequal-
ity, we get

rescale,, (inf e:(Ci(X3)) — (b — a;) Exr(Cy)) — inf e; cl(xi))‘
rescale,, (a; — (b - az) Err(C;))
‘rescalem (inf ei(Ci(X;)) — (b — a;) Err(C; rescaley, (mf ei(C’i(Xi)))’

IOg inf €; (CI (Xt)) —

)
> loginf e;(Ci(X;)) — rescale,, (a; — (b; — az)>ETY( Ci))
)

’inf ei(Ci(X;)) — rescale,, (mf e (Ci(X;)
rescale,, (a; — (b; — a;) Err(C}))
n: | (inf e;(Ci(X;)) — (b; — a;) Err(C;) ) — inf e, (Ci(X;))
- gitecey - LT 0 BrlC)) -t Ci))|
inf e;(C;(X;)) — rescale,, (mf el(CZ(XZ)))‘
rescale,, (a; — (b; — a;) Err(C;))
 loginfes(Ci(X.) - |7:(b; — a;) Err(Cy)| + ’inf ei(Ci(X;)) — rescale,, (inf ei(CZ-(Xi)))‘
rescale,, (a; — (b; — a;) Err(C}))
— loginf ex(CH(X.)) — ;i (b; — a;) Exrr(C;) + |inf e;(C;(X;)) — rescale,, (inf ei(Ci(Xi))) ‘
rescale,, (a; — (b — a;) Err(C;))
G 1i(b; — a;) Exr(Cy) + |inf e:(Ci(X:)) — 1 — i (inf e:(Ci(X;)) — 1)‘
rescale,, (a; — (b; — a;) Err(C;))
(G ni(bs = ai) Bre(Cy) + | (inf e:(Ci(X0)) = 1) = s (inf e:(Ci(X) — 1))
rescale,, (a; — (b; — a;) Err(C;))
 loginfe(Cy(X,)) ~ 1i(bi — a;) Err(C;) + | (1 — ;) (inf ei(Ci(X3)) — 1)‘
rescale,, (a; — (b; — a;) Err(C;))
— loginf e;(Cy(X1)) — ni(b; — a;) Err(Cy) 4 |1 — n;| [inf €;(C;(X;)) — 1]

rescale,, (a; — (b; — a;) Err(C;))
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It thus follows:

1 .
E { log Egpl(c)}
n

=E %log H rescale,, (inf €;(Ci(X;)) — (b — ai)Err(Ci))]

i=1

1 - . ib{,*aiEI‘I‘Oi+1* i mfezC'ZXz -1
>E |~ Z [log inf e;(Ci(X3)) — ( rgscalim ()al_ _‘ b, TGZ.)EH((C;) ) |”

B n;(b; — a;)Err(C;) + |1 — n;| |inf e;(Ci(X;)) — 1|

=k _* Zlog inf ei( Z rescale, (a; — (b — a;)Err(C))) ]
(
(

Ni(b; — a; ) Err(C;) + |1 — n;| linf €;(C;(X;)) — 1]
n ZE [ rescale,, (a; — (b; — a;)Err(C;)) ]

— Z E [loginf e;(C

i=1

Now, note:

E [loginf e;(C(X;))] = E [inf log e; (C(X;))]
= E [suploge;(C(X;))] — (E[suploge;(C(X;))] — E[inf log e; (C(X;))])
= E [suploge;(C(X;))] — E [leb hull(log e;(C(X;)))] s

and, by Lemma[2.J] (Lemma 2.1 in the main text),
E [suploge;(C(X;))] > Eloge;(Y)] — E[logb; — log a;] Err(C;).

Therefore, putting it all together, we get

n

> %ZE [loginf e;(Ci(X;))] — %ZE [Ui(bi — a;)Err(C;) + |1 — n;| linf e;(C; (;(Z)) —1|

P rescale,, (a; — (b; — a;)Err(C})

\ V

— Z [loge;(Y)] — E[log b; — log a;] Err(C;) — E [leb hull(log e; (C;(X;)))])

7i(b; — a;)Err(C;) + |1 — n;| |inf e;(Ci(X;)) — 1]
ZE [ rescale,, (a; — (b; — a;)Err(C;))
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n

= % ZE loges(Y)] — % > Eflogb; —log a;] Err(C;) — % > E[lebhull(log e;(Ci(X;)))]
L =1 =1
4 ni(b; — a;)Err(C;) + |1 — | |inf e;(C;(X;)) — 1]
ZE { rescaley, (a; — (b; — a;)Err(C;)) }

1 n n
=E|-logFE,| — — 1 —1 E E [leb hull(1 X,
[ og } - ; [logb; — log a;] Err( ; ebhull(loge; (Ci(X5)))]

—

_1
1 (b; — a;)Err(C;) + |1 — n;| |inf e;(Ci(X;)) — 1|
ZE { rescale,, (a; — (b; — a;)Err(C;)) }

n

1
—E|-logE,|—-Y E
o] =53

i=1

(log b; — log a;) Err(C;) + lebhull(log e;(C;(X;)))

+

1i(bi — ai)Err(Cy) + [1 — n [inf e, (Ci (X)) — 1]
rescale,, (a; — (b; — a;)Err(C;))

1 1
-E [n log En:| - ;E[leb hull(log e;(C3(X;)))]
_1 ZE
n i=1

- E [i log En} - % > Efleb hull(log e;(C;(X;)))]

i=1

(logb; — loga;) Err(C;) +

rescaley, (a; — (b; — a;)Err(C})

0i(bi — a;)Err(C;) + |1 — 1] [inf e(C; <Xz>>—1|]
)

n

bi  ni(bi — ai)Err(Ci) + 1 — i |inf e:(C; <X,>>—1|]
) .

Err(C;) log -
] rr(Ci) log a; + rescale,, (a; — (b; — a;)Err(C;)

Now, let 7 = max{(rescale,, (a; — (b; — a;)Err(C;)))~*, 1}. Then:

E [ log E } > " Eflebhull(log e;(Ci(X;)))]
=1
RS L b milb = a)Err(Ch) + |1 — g finf e (C3(X5)) — 1]
n ;E Err(C%) log a; i rescaley, (a; — (b; — a;)Err(C}))

& [; log En} _ % Z; E[leb hull(log e;(Ci(X;)))]
1 Z E

SE {n log En} - ;imeb hull(log e5(C3 (X:))]
_1 Z E

) {n log En} _ % > E[lebhull(log e;(Ci(X;)))]

i=1

Err(C log b* + 7 (1i(bi — ai)Err(Cy) + |1 — | [inf e;(C(X;)) — 1|)]

rEr(C 1ogb—+r<m<bl ai>Err<ci>+|1—m||infei<ci<xi>>—1>]

b;
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n

_E E log En} - % > Eflebhull(log e;(C;(X;)))]

i=1
r n
752 E

b; .
i=1 ¢

n

=E H log E} — % > " Efleb hull(log e;(C;(X;)))]
= 3 E[hi(m)Exr(Cy) + |1 — i [inf e (Ci( X)) — 1]

i=1

- H log En} - % > " Eflebhull(log e;(C;(X)))]
i=1
=3 Ehi(m)Ere(C)] - — > E[|1 - il [inf e (Ci(X)) — 1]]. O

=1 i=1

B ADDITIONAL RESULTS

B.1 ALGORITHMS ATOP E-VALUES

Beyond simple hypothesis testing, e-values can also be used as components of larger inference pro-
cedures. Notable examples include e-value-based confidence intervals/sequences, multiple testing
procedures, as well as more involved examples such as change-point detection (Shin et al., [2022}
Shekhar & Ramdas| [2023)), test-time adaptation (Bar et al.,|2024) and more. Generally speaking, by
simply replacing the e-values in these predictions with our conformal prediction-powered e-values
we obtain prediction-powered versions of our procedures, while retaining validity.

Formally, we a family of e-values (E(")), cr indexed over T', and have an algorithm A((E™),cr)
that operates atop this family. This algorithm comes endowed with some notion of validity, which
should depend crucially on the validity of the underlying e-values:

Assumption B.1. If forall v € I', E(?) is a valid e-value, then the algorithm A((E™)),cr) is valid.

It then easily follows that, as long as the boundedness assumptions for the conformal prediction-
powered e-values are satisfied, simply replacing the e-values with their conformal prediction-
powered counterparts retains validity, while generally enhancing power:

Proposition B.2. Suppose that for all v € T, (Eéﬂ’), EP), ...) forms a test supermartingale. Then
A((EPPI=) cr) is valid.

Proof. By Proposition (Proposition 2.8 in the main text), for every v € T', EPPI=(7) is a test
supermartingale. Thus they are all valid e-values, making the procedure atop the conformal e-values
valid. O

We can also quantify the power of the procedure, but this generally requires us to consider the
specifics of the algorithm over the e-values.

A special case worth highlighting is that of confidence sequences. We want to infer a parameter 0* €

O, and have a family of e-values (Eﬁbe))gee. We then produce a confidence set via the following
algorithm, for some significance level «:

A(ED)geo) == {0 co:E® < l/a}. )

It then follows:
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Proposition B.3. A((Eﬁpi’("))gee) is an anytime-valid confidence sequence for 6*. Le.,
P[vt, 6* € A(EPP~0)yco)] > 1 — .

Proof. Because each EY s valid, we get that each ERPi=()
inequality:
P[vt, 0* € A((ERP~")gco)] = 1 — P[3t such that 0* & A((EFP~@)gco)]
= 1 — P[3t such that EPP'~(") > 1/q]
>1-—a. L]

is also valid. Then, using Ville’s

B.2 ESTIMATION IN HIGHER DIMENSIONS

We state here a multi-dimensional version of Lemma (Lemma 2.1 in the main text). The re-
maining results follow analogously, as long as one uses multivariate confidence intervals where
necessary.

Here, we take ¢ : )V — R<, and let {e1,...,eq} be an orthonormal basis for R4 (e.g. the cannonical
basis). Then:

Lemma B.4. Let C : X — 2Y be a set predictor and suppose that ((Y),e;) € |aj,b;] for every
j=1,...,dalmost surely; let M = Zle(bj —a;). Then

d d

E |3 e inf((C(X)), ;) | -MEr(C) < E[(Y)] < E |3 e sup(¢(C(X)), e) | +M Erx(C).
i=1 i=1

Proof. First, note that

d d
E[¢(Y)] =E Zej (0(Y),e5)| = Z eE[(¢(Y), €;)]. ®

Now, for each j = 1,...,d, by Lemma[2.T|(Lemma 2.1 in the main text),
E [inf(¢(C(X)), e;)]— (bj—a;)Erx(C) < E[($(Y), e5)] < E [sup(é(C/(X)), e;)]+(b; —a;)Exr(C);
plugging this back into Equation [8] we get the desired bounds. O

B.3 EMPIRICAL RESULTS ON THE IMPACT OF THE PREDICTIVE MODEL

For the purpose of conducting controlled experiments, we generate synthetic data from a simple
statistical model following

Y=8"X+e X ~N(0,10I5x5), € ~ N(u,0%),
for fixed coefficients 5 sampled from a NV (0, I55); for our predictive model, we use
v =4"TX,
and conformalize with the absolute residual score.

This allows us to freely tweak the values of o2 (corresponding to exogenous noise) and y (corre-
sponding to bias of the predictive model). For all results below, we consider the task of inferring the
median of Y via Z-estimation.

Figure [4] shows the interval widths of our method and baselines over varying values of o2. We
see that for relatively small amounts of exogenous noise we have results akin to those presented in
Figure E] in the main text; but, as the noise grows our method becomes less efficient, mainly due to
the unavoidable growth of the conformal predictive sets.

In Figure 5| we see the interval widths of our method and baselines over varying choices of .. Again,
for low levels bias (i.e.,  is close to zero) our findings are similar to that of Figure[I} but, as the bias
increases our method degrades.
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14 —e— Conformal PPI (Ours)

—4— FAB (Cortinovis & Caron, 2025)
—— PPI++ (Angelopoulos et al., 2023b)
12 Only labelled data

Cl width

Standard deviation of added exogenous noise

Figure 4: CI widths over varying levels of exogenous noise o2

—e— Conformal PPI (Ours)

—4— FAB (Cortinovis & Caron, 2025)

—s— PPI++ (Angelopoulos et al., 2023b)
Only labelled data

Cl width

-3 -2 -1 0 1 2 3
Predictive model bias

Figure 5: CI widths over varying levels of bias p.

B.4 CHOICE OF v

We analyze the sensitivity of confidence interval widths to the target miscoverage 7 using the data
generating process described in Appendix [B.3] As illustrated in Figure [] the impact of ~ is in-
trinsically linked to the model’s accuracy (governed here by the amount of exogenous noise, o).
For highly predictive models (low o), decreasing - leads to a steady reduction in interval width, up
until the point at which the conformal predictive sets degenerate (due to the calibration set size).
Conversely, in high-noise regimes where the model lacks predictive power, the intervals become
wide for low ~; in these cases, the trade-off shifts, and increasing v becomes advantageous. This
empirical behavior aligns with the theoretical bounds established e.g. in Proposition 2:4]

175 4

150 4

125 4

100 4

Cl width

0.0 0.1 0.2 0.3 0.4 0.5
Gamma

Figure 6: Sensitivity of CI widths to the choice of ~, across varying levels of exogenous noise o.

25



Under review as a conference paper at ICLR 2026

B.5 POWER AS A FUNCTION OF THE NUMBER SAMPLES

We provide here a result characterizing the width of our confidence intervals in terms of the number
of unlabelled and labelled samples. This requires the choice of (i) a specific conformal calibration
method; (ii) a method to produce the one-sided mean confidence intervals over the unlabelled sam-
ples. For tractability, we will also consider a specific well-specified predictive model: concretely,
we assume that

Y =f(X)+e for e~ Uniform(—d,+d), )
and take f as our predictive model. This will allow us to precisely quantify the size of the conformal
predictive sets. For the one-sided mean ClIs, we will consider Hoeffding CIs due to their closed-form
size formula.

We then have the following result:

Proposition B.5. Under the data-generating process in Equation[9] using split conformal prediction

with score s(x,y) = | f(x) — y| and target miscoverage v > 1/(1 + nca1), and using our procedure
described in Section[2.1\with ¢(z) = z, we have

A(Ee) log2/a

Elleb CE®)] = 26 + 2(M — 8)y + 2M | 2212

b)
2Mgest

where the expectation is with relation to both the calibration and test sets. Taking the optimal choice
of vy for this data generating process, we obtain

2(M - 9) Y, log2/a

Neal + 1 2ntest

Efleb C(E] = 26 4 =20 + O(1/neat) + O(1//Miest)-
Proof. By Proposition[2.4]
Efleb CE9)] = Efleb hull(¢(C(X)))] + 2M ~
+ (Efinf ¢(C(X))] — E[LSS) + (B[09)] — Elsup ¢(C(X)))).
Let us start by characterizing C'(X). Split conformal prediction with our score gives it the form
Cla) ={y e V:|f(z) —yl < ty} = [f(x) — b5, f(2) + 1],
where
t’)’ = quantﬂe(lf'y)(1+n;ll)(|f(X1) - Y1|7 AR ‘f(chal) - Yncal |)

= quantile(l_w(l_knc—;l)(|61|, ey €nca s

assuming (1 —y)(1 +n_1) < 1.

cal

Now, since € ~ Uniform(—d, +9), we have |¢|/d ~ Uniform(0, 1). Then the quantile corresponds
to the (1 — ) (nea + 1)-th order statistic, which for |e|/d has distribution Beta((1 — «)(nca +
1),¥(nca1 + 1)). So we have

_ o (1 - 'Y)(ncal + 1) o (1 - 7)(ncal + 1) _ -
Elleb hullC(z)] = E[2t,] = 2§ A=)+ D)+ (e £ 1)~ 26 F—— = 2§(1—).

For the remaining terms, it follows:

Efinf ¢(C(X))] - E[LFS)]

. ] Twes log2/a log2/a
= Efinf ¢(C(X))] - E fo(C(X;) — M =M ;
[inf ¢(C/(X))] o ; inf ¢(C(X;)) ST \/I

(2

~ log2/a
052 — Blsup o(C(x))] = My | B2
Ntest

26

similarly, we obtain
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Putting everything together, we get

. log 2
Efleb CE)] = 26(1 — ) + 2M~y + 2M | —2 [o
Tltest

log 2
— 254 2(M — o)y + 20| B H

Ntest

It must hold that M > §, so this is minimized for the lowest possible -, given by 1/(n¢a1 + 1). This
yields

Efleb C(E9] = 25 4 %Mi:r? +2M | k’fﬂ =26+ O(1/ncal) + O(1/\/ligess). O
Tltest

Tical

B.6 INFERENCE OF UNBOUNDED MEANS

In Section [2.1] we outline a simple procedure for the prediction-powered inference of the mean of
a bounded random variable. In this appendix, we’ll show how we can leverage our procedure for
e-values (Section for the prediction-powered inference of the mean of an unbounded random
variable. The key observation is that we can construct bounded e-values for the estimation of means
from unbounded data with a test supermartingale structure, as we demonstrate below.

As with most e-value-based procedures, we will derive the method for testing a null hypothesis

H, ée) : E[Y] = 6, but note that confidence intervals can be obtained by simply inverting the test (i.e.,

producing the CI {6 € R : Hée) is not rejected}). Let E,, be an e-value for H(()e). There are many
possible choices; for example, consider the Hoeffding-like e-value of (Waudby-Smith & Ramdas|
2020),

2 2
_)\ia

b Tlow (00
i=1

This is easily seen to be a valid test supermartingale for any o-sub-Gaussian distribution:

) for some predictable sequence \; € R; (10)

Proposition B.6. The random variable E,, is a test supermartingale for H, (0), for any o-sub-
Gaussian data distribution.

Proof. Assume the null Hée), i.e., 8 = E[Y]. Then Ey = 1 by construction; so we just need to show
that F,, is a supermartingale. Indeed, at any step n,

E[E, | Fno1] = E[En_1 - exp(Mn(Yn — 0) — \202/2) | Fr_i]
= Lin—1 'E[GXP()‘n(Yn - 9) - )‘102/2) | ]:n—l]§

Now, since the data is o-sub-Gaussian, it holds (by definition) that Elexp(A(Y,, — E[Y,]))] <
exp(\202/2) for any A € R, and so

En_1-Elexp(\(Yy, — 0) — \20%/2) | Fr_i]
=FE,_1-Elexp(\ (Y — 0)) | Fro1] /exp(A20?/2) < By - 1= Ep,_y. O
Sans sub-Gaussianity, one can appeal to more heavy-tailed assumptions (cf. e.g. (Waudby-Smith &

Ramdas, [2020; [Howard et al.| |2018)), or appeal to central limit theory (e.g., Waudby-Smith et al.
(2021)).

While F), is not itself bounded, we can truncate it at any B > 0 and rescale it about 1 without losing
validity. To be precise:

Proposition B.7. For any B > 0 and 0 > R > 1, the process

E, = H rescaler (min {exp ()\i(Yi —0)— 120 ) 73}) , for some predictable sequence \; € R,

i=1

with rescaleg(e) = 14+ R - (e — 1), is (i) a valid test supermartingale for H(()m) for any o-sub-
Gaussian data distribution, and (ii) such that the components of the product over © = 1,...,n are
all bounded in [1 — R,1+ R- (B —1)] C Ro.
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Proof. To show that it is a valid test supermartingale: Ey = 1 by construction. So again it suffices
to show that F,, is a supermartingale under the null. To this end, for any step n:

E[E, | Fn-1] = E[E,_1 - rescaleg(min {exp (A, —\20?/2),B}) | Fuil
= E,_1 - E[rescaleg(min {exp (A, —\20%/2),B}) | Fuil
=FEp_1- (1+ R (E[min {exp (A, (Y, — ) — A20?/2) , B} | Frma] — 1))
<En1-(1+ R (Elexp (A (Y — 0) — A20?/2) | Fea] — 1))
SEp-(1+R(1-1) =Eny,

(Yn = 6)
(Yn = 6)

where the last inequality follows as in Proposition [B.6]

Boundedness follows immediately from simple computation: min{exp(-), B} € [0, B] surely, and
plugging this into rescaleg(+) (which is increasing) gives the enunciated bounds. O

With this, we have a valid test supermartingale for the null Héa) which is bounded, and thus our
procedure in Section [2.3]can be directly applied.

C EXPERIMENT DETAILS

Remark C.1 (On solving for the CI bounds in Z- and M-estimation). For most Z-estimation prob-
lems (and M-estimation problems, once reduced to Z-estimation form) and one-sided mean Cls, the

estimated bounds L and U on the influence function 1 (y; 0) are increasing in 6. With this in mind,
the inversion of the mean estimation bounds to produce our CIs can be done via standard bracketing
and bisection procedures, guaranteeing correctness.

C.1 PHISHING URL DATASET: MEAN ESTIMATION

Dataset and split. We employ the numeric subset of the Phishing URL corpus (Mohammad &
McCluskey, [2012)), containing N = 235 795 labelled examples. The target parameter is the preva-
lence 6* = E[Y] of phishing URLSs. For every seed s € {0,...,99} we create an independent
train/calibration/test split as follows:

train = 99.5% (234 616 samples), calibration = 300, test = 879.
The training labels are used solely to fit the predictive model; test labels are discarded.
Predictive model. An XGBoost classifier (default hyper-parameters, evaluation metric

logloss) is trained on the numerical features of the training set:

model = xgb.XGBClassifier (eval_metric="logloss")
model.fit (X_tr, Y_tr)

Conformity score. Let p(x) be the model’s predicted probability that Y = 1. For (z,y) € C
(calibration set) we use the conformity score

o ﬁ(x)’ Y= 07
oley) = {1 —pz), y=1.

The miscoverage tolerance is err = 1.01/|C|. The (1 — err)-quantile of {s;}iec U {400} yields
the threshold ¢, from which we construct the prediction set C'(z) = {0} if p(z) < ¢; C(x) =
{1}if 1 — p(x) <t; C(z) = {0,1} otherwise.

Confidence-interval methods. All intervals are built at significance level & = 0.01 with a CLT-
based constructor and target range M = 1.

For each seed we record the interval width with are reported in Figure 1(b). The full implementation
is available at supplementary/experimentl/mean_estimation.py.
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C.2 GENE EXPRESSION DATASET: MEDIAN ESTIMATION

Dataset and split. In this experiments we focus on estimating the median of gene expression levels
induced by yeast promoters sequences, we have access to labelled data and a transformer model from
(Vaishnav et al.; 2022), containing N = 61 150 labelled examples. For every seed s € {0,...,99}
we create an independent calibration/test split as follows:

calibration = 10, test = 61140.

Conformity score. For (z,y) € C (calibration set) we use the conformity score

s(x,y) =y — f(2)];
where f(z) is the output of our pre-trained model.

The specified miscoverage level for conformal prediction is err = 1.01/|C|. The (1 — err)-quantile
of {s;}icc U {400} yields the threshold ¢, from which we construct the prediction set:

Clx) = (f(z) —t, f(z) +1).

Confidence-interval methods. All intervals are built at significance level o = 0.01 with a CLT-
based constructor and target range M = 1.

The full implementation is available at supplementary/experimentl/quantile_estimation.py.

C.3 SECTION 3.2 IN THE MAIN TEXT

We use the dataset from (Borzooei & Tarokhian, 2023, which has 383 observations. We split
60% of these for statistical inference with our method; the remaining 40% are split into a training
set (70%) and a testing set (30%). On the training set, we train an XGBoost model with default
hyperparameters. On the test set, we calibrate a conformal predictor using the same conformity
score we have used for classification, first with usual split conformal prediction and then with the
differentially private conformal prediction method of (Angelopoulos et al.||2021)). For the conformal
calibrations, we use a target coverage of 2.5%.

The full implementation is available at supplementary/experiment2/diff priv.py

C.4 SECTION 3.3 IN THE MAIN TEXT

Data, split and models We use the dataset on forest cover type prediction of (Blackard) [1998]).
This dataset has N = 581 012 samples. We then split 60% of the data for training and validating
our model: 75% (261 455) of that goes to training a Random Forest classifier and 25% (87 152) to
estimating a validation 0-1 loss. The remaining 40% (232 405) of the data is used for our online risk
monitoring (but only the first 100 000 of these are shown in the plot). Also on the validation set we
train a residual model to predict the probability of whether the model made a correct prediction (i.e.,
predict the conditional 0-1 loss).

We setup two data streams: one unmodified, and another increasingly poisoned to simulate a harmful
distribution shift. For this poisoning, at each point we flip a coin with probability ((¢ + 1)/5 +
0.1)%1[t > 20%)], where t € [0, 1] indicates how far along in the experiment we are. If this coin
falls heads (which can only happen after ¢ > 20%), then instead of using the real data we swap for a
randomly chosen sample from a problematic set. This problematic set of samples is determined by
those that our residual model predicts as at least 50% likely to be incorrect.

Online conformal prediction For conformal prediction, we use the same score as in the prior
classification tasks, over our residual model. For the online conformal prediction method of (An-
gelopoulos et al.| [2024) we use as hyperparameters ¢ = 0.3 with an initial step size of 1.0, targeting
a coverage of 0.1%.

E-value & approximately log-optimal choice of the 7;s Our base e-value is given by

(X0, Y3)) == 1+ A (L[f(X:) # Yi] — (ValRisk + ero))
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with )\; a predictable sequence of bets bounded in (0, 1/(ValRisk + €t,1)). When introducing the
conformal prediction-powered modification, the overall e-values becomes

[T +ms (6 (LF(X3) # Vi) = (ValRisk + ero1)) — (bi — a;)Err(Cy))) .

i=1

For the sake of simplicity, we take \; = n; at all steps. These 7;s are derived using an analogue of
the aGRAPA criterion of (Waudby-Smith & Ramdas| 2020), meaning that we solve the first order
optimality condition of the growth rate using a first-order Taylor approximation for h(t) = 1/(1+t).
The resulting 7;s are given by

f; — (ValRisk + €01) — (b; — a;)Err(C;)
51-2 + (f; — (ValRisk + €01) — (b; — ai)Err(Ci))27

ni =

where 7i and 52 are estimates of the mean and variance of the conformal imputations, respectively;
we do these via exponentially weighted moving averages with & = 0.01 in order to handle the
non-i.i.d. structure.

The full implementation is available at supplementary/experiment3/evalues.py
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