

EXTENDING PREDICTION-POWERED INFERENCE THROUGH CONFORMAL PREDICTION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Prediction-powered inference is a recent methodology for the safe use of black-box ML models to impute missing data, strengthening inference of statistical parameters. However, many applications require strong properties besides valid inference, such as privacy, robustness or validity under continuous distribution shifts; deriving prediction-powered methods with such guarantees is generally an arduous process, and has to be done case by case. In this paper, we resolve this issue by connecting prediction-powered inference with conformal prediction: by performing imputation through a calibrated conformal set-predictor, we attain validity while achieving additional guarantees in a natural manner. We instantiate our procedure for the inference of means, Z- and M-estimation, as well as e-values and e-value-based procedures. Furthermore, in the case of e-values, ours is the first general prediction-powered procedure that operates off-line. We demonstrate these advantages by applying our method on private and time-series data. Both tasks are nontrivial within the standard prediction-powered framework but become natural under our method.

1 INTRODUCTION

Quality statistical inference requires a considerable amount of samples, which can be difficult to obtain or may be missing. Prediction-powered inference (Angelopoulos et al., 2023a) is a recent and promising approach that addresses this challenge by using a black-box ML model to predict the missing samples from the auxiliary data, while simultaneously correcting for the bias induced by this imputation. However, many practical applications require the resulting inferences to satisfy strong guarantees beyond validity, such as privacy (for sensitive data), robustness (to protect against outliers or distribution shifts) or validity under continuously changing scenarios. Deriving prediction-powered methods that satisfy requirements of this sort remains challenging, with existing work relying on case-by-case constructions.

In this paper, we resolve this by connecting prediction-powered inference with conformal prediction. In particular, we show that a calibrated set-predictor can be used for prediction-powered inference in a general manner, while inheriting additional properties from a conformal calibration procedure; this allows us to directly leverage the vast literature on conformal prediction with additional guarantees, spanning privacy (Angelopoulos et al., 2021; Penso et al., 2025), robustness to strategic and adversarial distribution shift (Csillag et al., 2024; Zargarbashi & Bojchevski, 2025; Massena et al., 2025), continuous distribution shift (Gibbs & Candès, 2021; Zaffran et al., 2022; Angelopoulos et al., 2024; Areces et al., 2025), robustness to outliers (Clarkson et al., 2024; Peng et al., 2025; Feldman et al., 2025), censored/missing data (Zaffran et al., 2023; Davidov et al., 2025) and many more. In this way, we offer a single, general solution that overcomes the fragmented, case-specific nature of previous works.

We develop our approach for the inference of means, Z- and M-estimation problems, as well as e-values and e-value-based procedures. This is the first general method for prediction-powered inference with additional guarantees, as well as the first instance of conformal prediction being used for nonparametric statistical inference. When existing prediction-powered methods are applicable, their performance is close to ours. We illustrate our approach in two settings beyond the scope of previous methods, highlighting its advantages.

054
055
Our contributions

056 • We propose a general framework for deriving prediction-powered methods with stronger
057 guarantees such as privacy, robustness and validity under continuous distribution shift.
058 Our method works by performing imputation through a calibrated conformal set-predictor;
059 these guarantees are then directly achieved by choosing an appropriate conformal calibra-
060 tion method, for which a substantial body of work exists. Our framework’s ability to inherit
061 properties from conformal prediction methods renders it immediately applicable in many
062 diverse settings, where previous prediction-powered methods fall short.

063 • We instantiate our framework for (i) inference of means; (ii) general Z- and M-estimation
064 problems; and (iii) general e-values and e-value-based procedures – thus matching the
065 breadth of existing prediction-powered methods. In each case, we prove that our proce-
066 dure is valid under minimal assumptions and quantify their statistical power, which we
067 find to be directly linked to the average size of the conformal predictive sets and their mis-
068 coverage rate. Furthermore, in the setting of e-values, our procedure is the first general
069 prediction-powered inference procedure valid without active data collection.

070 • Beyond comparisons with existing prediction-powered methods, we apply our approach to
071 two practical settings out of reach of prior work: (i) private healthcare for thyroid cancer,
072 and (ii) continuous risk monitoring of a deployed model. In each setting we obtain proce-
073 dures that can be readily applied by practitioners. In both accounts, ours is the first appli-
074 cable prediction-powered procedure, thus setting an important baseline for future work.

075 1.1 RELATED WORK
076

077 **Prediction-powered inference** In many applications, researchers have access to large datasets but
078 only small amounts of expensive ground truth ‘labels.’ Though machine learning models can often
079 accurately predict labels for the whole dataset, they are not perfect; in particular, statistical inference
080 atop such predictions can suffer from significant bias. Prediction-powered inference seeks to resolve
081 this, by appropriately debiasing such inferences. The topic already spans a significant body of work
082 both methodological (e.g., (Angelopoulos et al., 2023a;b; Fisch et al., 2024; Gu & Xia, 2024; Ji
083 et al., 2025; Csillag et al., 2025; Cortinovis & Caron, 2025)) and applied (e.g., (Boyeau et al., 2024;
084 Aiken et al., 2025)). Existing methods typically prove valid inference (i.e., lack of bias), with some
085 works also establishing guarantees under covariate or label shift. Towards additional guarantees (e.g.
086 privacy, robustness, etc.), the works of (Li et al., 2025; Luo et al., 2024; Hays & Raghavan, 2025)
087 establish guarantees under performativity, federation and interference, respectively, but require ad-
088 hoc analyses to do so.

089 **Conformal prediction** On the other side of the literature, conformal prediction (Vovk et al., 2005)
090 has emerged as a solid manner of quantifying uncertainty about predictions. In its most common
091 formulation, conformal prediction produces for each sample a predictive set that will contain the true
092 label with probability at least $1 - \alpha$, for a significance level $\alpha \in (0, 1)$ chosen a priori. Conformal
093 prediction has also spanned a vast amount of literature on methodology (e.g., (Tibshirani et al.,
094 2019; Angelopoulos et al., 2022; Gibbs et al., 2023; Csillag et al., 2024; van der Laan & Alaa,
095 2024)), theory (e.g., (Kiyani et al., 2025; Bian & Barber, 2022)) and applications (e.g., (Zhou et al.,
096 2022; Csillag et al., 2023; Genari & Goedert, 2025)); of particular relevance is the wide literature on
097 conformal prediction with additional guarantees, e.g. (Angelopoulos et al., 2021; Penso et al., 2025;
098 Csillag et al., 2024; Zargarbashi & Bojchevski, 2025; Massena et al., 2025; Gibbs & Candès, 2021;
099 Zaffran et al., 2022; Angelopoulos et al., 2024; Areces et al., 2025; Clarkson et al., 2024; Peng et al.,
100 2025; Feldman et al., 2025; Zaffran et al., 2023; Davidov et al., 2025).

101 **Connecting the two** Though the two tackle similar problems, connecting them is not immedi-
102 ate: conformal prediction guarantees that the probability of a single predictive set containing its
103 corresponding label is high, but statistical inference requires multiple data points, not a single one.
104 A back-of-the-envelope calculation would give us that, if conformal prediction ensures that a sin-
105 gle prediction set will contain its corresponding true value with probability $1 - \alpha$, the probability
106 that n independent prediction sets will contain their corresponding true values will be of about
107 $(1 - \alpha)^n$, which quickly becomes problematic as n grows. Indeed, various works have tried to
alleviate this issue for “batch” conformal prediction (Gazin et al., 2024; Guille-Escuret & Ndiaye,

108 2024; Jin & Candès, 2022; Marandon, 2023), sometimes even with the explicit goal of statistical
 109 inference (Guille-Escuret & Ndiaye, 2024). However, they all reach an overarching conclusion that
 110 one would need to adjust the conformal predictor in a manner that still scales badly as n grows. Our
 111 work, in contrast, requires no such adjustment.
 112

113 **Conformal prediction for statistical inference** Conformal prediction has spanned much work,
 114 but relatively little in regards to its connections to more usual statistical inference. Of particular
 115 note is (Guille-Escuret & Ndiaye, 2024), which leverages conformal prediction for inference of the
 116 parameter θ of a statistical model of the form $Y = f_\theta(X) + \xi$ through a voting mechanism. However,
 117 besides being limited to this specific statistical model and task, it requires harsh assumptions on the
 118 nature of the noise ξ that make it sensitive to misspecification. Also worth highlighting is the work
 119 of (Cabezas et al., 2024), which uses ideas from conformal prediction to solve statistical inference
 120 problems, but is not applicable to prediction-powered inference.
 121

2 METHOD

124 We first present our method in the simple context of mean estimation. Then, building up on the
 125 idea of conformal prediction-powered mean estimation we extend to progressively more complex
 126 settings, first considering Z- and M-estimation tasks (e.g., means, quantiles and regression coeffi-
 127 cients), and then general e-value-powered procedures.

128 Throughout this section, we consider that we have i.i.d. data $(X_i, Y_i)_{i=1}^n \sim P$ from some unknown
 129 distribution P , where we have access to the X_i but the Y_i are missing. Leveraging the i.i.d. as-
 130 sumption, we will additionally make use of $(X, Y) \sim P$ when the indices are irrelevant, and denote
 131 the support of these variables by $\mathcal{X} = \text{supp}(X)$ and $\mathcal{Y} = \text{supp}(Y)$. In particular sections some
 132 additional assumptions are necessary, and will be made accordingly.
 133

Let $C : \mathcal{X} \rightarrow 2^\mathcal{Y}$ be a set-predictor, fit on some hold-out data; we define its miscoverage rate
 $\text{Err}(C) := \mathbb{P}[Y \notin C(X)]$. It is known that when C is fit via, e.g., split conformal prediction with
target miscoverage $\gamma \in (0, 1)$, we will have $\text{Err}(C) \approx \gamma$ (Angelopoulos & Bates, 2021; Bian &
Barber, 2022). For full generality, we consider the conformal predictor fixed and state our results in
terms of just $\text{Err}(C)$.
 137

For the sake of clarity, we keep our presentation in the main paper purely to scalar estimation prob-
lems. Multivariate estimation follows analogously; see Appendix B.2.
 140

2.1 WARMUP: MEAN ESTIMATION

Our goal here is to infer $\mathbb{E}[\phi(Y)]$ for some function $\phi : \mathcal{Y} \rightarrow \mathbb{R}$; for this we will need to assume
that $\phi(Y)$ is bounded almost surely within some interval $[a, b]$. For convenience, let $\phi(C(X)) :=$
 $\{\phi(y) : y \in C(X)\}$ and $M = b - a$. It then follows:

Lemma 2.1. *Let $C : \mathcal{X} \rightarrow 2^\mathcal{Y}$ be a set predictor and suppose that $\phi(Y) \in [a, b]$ almost surely. Then*

$$\mathbb{E}[\inf \phi(C(X))] - M \text{Err}(C) \leq \mathbb{E}[\phi(Y)] \leq \mathbb{E}[\sup \phi(C(X))] + M \text{Err}(C).$$

Proof sketch. We will show that $\mathbb{E}[\inf \phi(C(X))] - M \text{Err}(C) \leq \mathbb{E}[\phi(Y)]$ by showing that
 $\mathbb{E}[\inf \phi(C(X)) - \phi(Y)] \leq M \text{Err}(C)$. The proof of the upper bound is analogous, and can be
found in the appendix.
 152

The key idea is to use the law of total expectation to condition on whether Y belongs in the predictive
set $C(X)$:
 153

$$\begin{aligned} \mathbb{E}[\inf \phi(C(X)) - \phi(Y)] &= \mathbb{E}[\inf \phi(C(X)) - \phi(Y) | Y \in C(X)] \mathbb{P}[Y \in C(X)] \\ &\quad + \mathbb{E}[\inf \phi(C(X)) - \phi(Y) | Y \notin C(X)] \mathbb{P}[Y \notin C(X)]; \end{aligned}$$

Now, given that $Y \in C(X)$, it must hold that $\phi(Y) \in \phi(C(X))$, and so $\inf \phi(C(X)) \leq \phi(Y)$;
thus $\mathbb{E}[\inf \phi(C(X)) - \phi(Y) | Y \in C(X)] \leq 0$. Additionally, note that because both $\phi(C(X))$ and
 $\phi(Y)$ are bounded in $[a, b]$, it holds that $\inf \phi(C(X)) - \phi(Y) \leq b - a = M$ almost surely, and so
 $\mathbb{E}[\inf \phi(C(X)) - \phi(Y) | Y \notin C(X)] \leq M$. Thus
 161

$$\mathbb{E}[\inf \phi(C(X)) - \phi(Y)] \leq 0 + M \text{Err}(C) = M \text{Err}(C).$$

□

162 *Remark 2.2.* The assumption that the image of ϕ be bounded seems necessary. If it is not, then
 163 for $\mathbb{E}[\inf \phi(C(X)) - \phi(Y)|Y \notin C(X)]$ to be well-behaved will generally require relatively strong
 164 assumptions on the underlying predictive model and data distribution. That said, it is still possible
 165 to infer unbounded means with our framework, just not with this method: see Appendix B.6 for how
 166 e-values enable this.

167 Note that $\text{Err}(C)$ is controlled by the conformal calibration, and that it is independent from the size
 168 n of the data set for inference, and thus this bound scales gracefully.

170 Lemma 2.1 establishes that the means can be safely bounded via imputations based on our conformal
 171 predictive sets. This motivates the following procedure:

- 172 (i) Fit the conformal set predictor C on a hold-out dataset with some conformal calibration method
 173 (e.g. split conformal prediction);
- 174 (ii) Use the unlabelled data $(X_i)_{i=1}^n$ to compute lower and upper one-sided $(1 - \alpha/2)$ -confidence
 175 intervals $[\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)}, +\infty)$ for $\mathbb{E}[\inf \phi(C(X))]$ and $(-\infty, \widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)})$ for $\mathbb{E}[\sup \phi(C(X))]$; i.e.,
 176 $\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)}, \widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)}$ such that

$$177 \mathbb{P}_{\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)}} \left[\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)} \leq \mathbb{E}[\inf \phi(C(X))] \right] \geq 1 - \frac{\alpha}{2}; \quad \mathbb{P}_{\widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)}} \left[\mathbb{E}[\sup \phi(C(X))] \leq \widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)} \right] \geq 1 - \frac{\alpha}{2}.$$

181 This can be readily done with off-the-shelf confidence intervals for the mean, such as CLT-
 182 based CIs, Hoeffding CIs and e-value-based methods (e.g. (Waudby-Smith & Ramdas, 2020)).

- 183 (iii) Produce the interval

$$185 \widehat{C}_{\alpha}^{(\mathbb{E}\phi)} := \left[\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)} - M \text{Err}(C), \widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)} + M \text{Err}(C) \right]. \quad (1)$$

187 This is a simple procedure that benefits from good theoretical properties. In particular, the resulting
 188 interval is a valid $(1 - \alpha)$ -confidence interval for $\mathbb{E}[\phi(Y)]$:

189 **Proposition 2.3.** *Under the conditions of Lemma 2.1, for any $\alpha \in (0, 1)$, let $\widehat{C}_{\alpha}^{(\mathbb{E}\phi)}$ be as in Equa-
 190 tion 1. Then $\widehat{C}_{\alpha}^{(\mathbb{E}\phi)}$ is a valid $(1 - \alpha)$ -confidence interval for $\mathbb{E}[\phi(Y)]$, i.e.,*

$$193 \mathbb{P} \left[\mathbb{E}[\phi(Y)] \in \widehat{C}_{\alpha}^{(\mathbb{E}\phi)} \right] \geq 1 - \alpha.$$

195 It is immediate to see that if the set predictor satisfies, e.g., privacy with regards to its calibration
 196 data, then so will the confidence interval $\widehat{C}_{\alpha}^{(\mathbb{E}\phi)}$.¹ Similarly, if the conformal predictor is robust to
 197 outliers or strategic manipulations, so is the confidence interval.

198 We can also exactly quantify the size of $\widehat{C}_{\alpha}^{(\mathbb{E}\phi)}$ in terms of M , $\text{Err}(C)$, the average predictive interval
 199 size and the tightness of the one-sided CIs for $\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)}$ and $\widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)}$. Let leb be the Lebesgue measure
 200 and $\text{hull}(A)$ the convex hull of A (i.e., in \mathbb{R} the smallest interval containing the set A). Then:

202 **Proposition 2.4.** *It holds that*

$$204 \text{leb } \widehat{C}_{\alpha}^{(\mathbb{E}\phi)} = \mathbb{E}[\text{leb } \text{hull}(\phi(C(X)))] + 2M \text{Err}(C) \\ 205 + (\mathbb{E}[\inf \phi(C(X))] - \widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)}) + (\widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)} - \mathbb{E}[\sup \phi(C(X))]).$$

208 From Proposition 2.4 it can be seen that our method works best with tight set predictors. As the set
 209 predictor approaches perfect accuracy – as is often the case in machine learning applications – the
 210 first two terms can be taken to approach zero. The last two terms, which concern the tightness of the
 211 one-sided confidence intervals $\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)}$ and $\widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)}$, can be given an explicit form for specific methods
 212 for producing $\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)}$ and $\widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)}$, but overall generally scale in order $O(n^{-1/2})$.

214 ¹If (ϵ, δ) -differential privacy is satisfied for the conformal calibration with relation to the calibration data,
 215 then our procedure amounts to post-processing atop the already-private set-predictor $C(\cdot)$, and so our CI
 immediately satisfies (ϵ, δ) -differential privacy by the standard post-processing theorems of differential privacy.

216 2.2 Z-ESTIMATION AND M-ESTIMATION PROBLEMS
217

218 Going beyond means, we now consider the problem of Z-estimation, in which our estimand $\theta^* \in \Theta$
219 (for some parameter space Θ) is given as the solution to the estimating equation $\mathbb{E}_Y[\psi(Y; \theta^*)] =$
220 0, for some function ψ . Z-estimation problems are common, with prominent examples being the
221 inference of means (for $\psi(Y; \theta) = Y - \theta$), medians (for $\psi(Y; \theta) = \mathbb{1}[Y \leq \theta] - 0.5$), general
222 quantiles (for the q -quantile, $\psi(Y; \theta) = \mathbb{1}[Y \leq \theta] - q$), regression coefficients (for $\psi((X, Y); \theta) =$
223 $\theta X^2 - XY$) and more. Similar to how we have assumed bounded means in Section 2.1, we will
224 assume here that $\psi(Y; \theta) \in [a_\theta, b_\theta]$ almost surely for each $\theta \in \Theta$, and let $M_\theta = b_\theta - a_\theta$. Again, for
225 convenience, let $\psi(C(X); \theta) := \{\psi(y; \theta) : y \in C(X)\}$.

226 Consider the following procedure, which is close in spirit to the vanilla PPI procedure proposed by
227 (Angelopoulos et al., 2023a): for each $\theta \in \Theta$, produce a lower one-sided $(1 - \alpha/2)$ -confidence
228 interval $[\widehat{L}_{\theta, \alpha/2}^{(Z\psi)}, +\infty)$ for $\mathbb{E}[\inf \psi(C(X); \theta)]$, and an upper one-sided $(1 - \alpha/2)$ -confidence interval
229 $(-\infty, \widehat{U}_{\theta, \alpha/2}^{(Z\psi)})$ for $\mathbb{E}[\sup \psi(C(X); \theta)]$. Then, to estimate θ^* , produce the following set:
230

$$231 \widehat{C}_\alpha^{(Z\psi)} := \left\{ \theta \in \Theta : \widehat{L}_{\theta, \alpha/2}^{(Z\psi)} - M_\theta \text{Err}(C) \leq 0 \leq \widehat{U}_{\theta, \alpha/2}^{(Z\psi)} + M_\theta \text{Err}(C) \right\}. \quad (2)$$

233 By Lemma 2.1, it follows that this is a valid confidence interval for θ^* :

234 **Proposition 2.5.** *For any $\alpha \in (0, 1)$ let $\widehat{C}_\alpha^{(Z\psi)}$ be as in Equation 2. Then $\widehat{C}_\alpha^{(Z\psi)}$ is a valid $(1 - \alpha)$ -
235 confidence interval for θ^* , i.e.,*

$$236 \mathbb{P} \left[\theta^* \in \widehat{C}_\alpha^{(Z\psi)} \right] \geq 1 - \alpha.$$

238 We can also bound the size of $\widehat{C}_\alpha^{(Z\psi)}$; however, due to its more implicit nature, this is more involved
239 than the case of the inference of a mean in the previous section. Below we establish a result under
240 the assumption that the one-sided confidence intervals are K -smooth in θ and that Θ is bounded.
241

242 **Proposition 2.6.** *Consider $\Theta \subset \mathbb{R}$ bounded by B (i.e., for all $\theta, \theta' \in \Theta$, $\|\theta - \theta'\| \leq B$). Suppose that
243 $\widehat{L}_{\theta, \alpha/2}^{(Z\psi)}$ and $\widehat{U}_{\theta, \alpha/2}^{(Z\psi)}$ are both K -smooth in θ (i.e., differentiable w.r.t. θ , with K -Lipschitz derivative),
244 $\widehat{L}_{\theta, \alpha/2}^{(Z\psi)} \leq \widehat{U}_{\theta, \alpha/2}^{(Z\psi)}$ and $M_\theta \leq M$ for all θ and that $\frac{d}{d\theta} \widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)}, \frac{d}{d\theta} \widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)} \neq 0$. Then*

$$246 \text{leb } \widehat{C}_\alpha^{(Z\psi)} \leq \frac{1}{D_{\min}} \left(\mathbb{E}[\text{leb hull}(\psi(C(X); \theta^*))] + 2M \text{Err}(C) \right. \\ 247 \quad + |\mathbb{E}[\inf \psi(C(X); \theta^*)] - \widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)}| + |\widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)} - \mathbb{E}[\sup \psi(C(X); \theta^*)]| \\ 248 \quad \left. + KB + \max\{a_{\theta^*}, b_{\theta^*}\} |1 - D_{\min}/D_{\max}| \right),$$

253 where $D_{\min} = \min \left\{ \left| \frac{d}{d\theta} \widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)} \right|, \left| \frac{d}{d\theta} \widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)} \right| \right\}$ and $D_{\max} = \max \left\{ \left| \frac{d}{d\theta} \widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)} \right|, \left| \frac{d}{d\theta} \widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)} \right| \right\}$.

255 This means that the size of the resulting confidence interval is mainly governed by the average
256 predictive interval size, M and $\text{Err}(C)$, and the tightness of the one-sided confidence intervals, as
257 before, but now also takes into account how quickly ψ passes through 0 at θ^* (via the derivatives)
258 and how “well-behaved” the one-sided confidence intervals are over Θ .

260 In the case of inference of a mean, where $\psi(Y; \theta) = \phi(Y) - \theta$ with sufficiently regular methods
261 for obtaining the one-sided confidence intervals (e.g. CLT-based CIs or Hoeffding bounds), the
262 derivatives will equal one everywhere (i.e., $D_{\min} = D_{\max} = 1$) and the one-sided confidence
263 intervals will be 0-smooth (i.e., $K = 0$), and we recover Proposition 2.4 except for the modulus in
264 the terms concerning the tightness of the one-sided CIs.

265 A similar procedure is also applicable to M-estimation problems, in which we want to infer
266 $\theta^* = \arg \min_{\theta \in \Theta} \mathbb{E}_Y[\ell(Y; \theta)]$ with ℓ (sub)differentiable in θ . Much like Z-estimation, M-estimation
267 problems are broadly applicable, including not only means, quantiles and regression coefficients but
268 also more involved estimands such as robust statistics, maximum likelihood estimates with nonlin-
269 ear models and more. For boundedness, we make the assumption that $\ell'(Y; \theta) \subset [a_\theta, b_\theta]$ almost
surely for all $\theta \in \Theta$, and let $M_\theta = b_\theta - a_\theta$ for convenience.

270 Since the loss is differentiable, the minimum θ^* occurs in a point where $\mathbb{E}[\frac{d}{d\theta}\ell(Y; \theta^*)] = 0$ (if
 271 ℓ is furthermore convex in θ , then the two are equivalent). This thus reduces the M-estimation
 272 problem to a Z-estimation one, which we can solve: for each $\theta \in \Theta$, produce lower and upper
 273 $(1 - \alpha/2)$ -confidence intervals $[\widehat{L}_{\theta, \alpha/2}^{(M\ell)}, +\infty)$ and $(-\infty, \widehat{U}_{\theta, \alpha/2}^{(M\ell)})$ for $\mathbb{E}[\inf \frac{d}{d\theta}\ell(C(X); \theta^*)]$ and
 274 $\mathbb{E}[\sup \frac{d}{d\theta}\ell(C(X); \theta^*)]$, respectively, and produce the set
 275

$$276 \quad \widehat{C}_{\alpha}^{(M\ell)} := \left\{ \theta \in \Theta : \widehat{L}_{\theta, \alpha/2}^{(M\ell)} - M_{\theta} \text{Err}(C) \leq 0 \leq \widehat{U}_{\theta, \alpha/2}^{(M\ell)} + M_{\theta} \text{Err}(C) \right\}. \quad (3)$$

278 This is a valid $(1 - \alpha)$ confidence interval for θ^* :
 279

280 **Proposition 2.7.** *For any $\alpha \in (0, 1)$, let $\widehat{C}_{\alpha}^{(M\ell)}$ be as in Equation 3. Then $\widehat{C}_{\alpha}^{(M\ell)}$ is a valid confidence
 281 interval for θ^* , i.e.,*

$$282 \quad \mathbb{P} \left[\theta^* \in \widehat{C}_{\alpha}^{(M\ell)} \right] \geq 1 - \alpha.$$

284 We can also similarly bound the size of the resulting confidence interval, which now looks at the
 285 steepness of the one-sided intervals for the derivatives, i.e., the curvature of ℓ around θ^* ; see The-
 286 rem A.7 in the appendix.
 287

288 2.3 INFERENCE WITH E-VALUES 289

290 Following the work of (Csillag et al., 2025), we now extend our set of inference tasks to those
 291 powered by e-values, a modern and enticing alternative to p-values (Ramdas et al., 2022; Ramdas &
 292 Wang, 2024). An e-value for a null hypothesis H_0 is a nonnegative real random variable E such
 293 that if H_0 holds then $\mathbb{E}[E] \leq 1$ (and ideally $\mathbb{E}[E] \gg 1$ otherwise). By Markov's inequality, it is
 294 unlikely that the e-value achieves a high value under the null ($\mathbb{P}[E > a] \leq \mathbb{E}[E]/a \leq 1/a$), and
 295 so a high e-value provides evidence against the null. Furthermore, e-values satisfy many desirable
 296 properties missed by p-values while being highly versatile; we refer the interested reader to (Ramdas
 297 et al., 2022) and (Ramdas & Wang, 2024) for an introduction.

298 Consider the problem of testing a null hypothesis H_0 . Let E_n be an e-value with a test supermartingale
 299 structure, which can be written in the form $E_n := \prod_{i=1}^n e_i(Y_i)$ for a predictable sequence
 300 $(e_i)_{i=1}^{\infty}$ of ‘components’ of the e-value; i.e. each e_i can be arbitrarily dependent on the samples
 301 before time i (but nothing else). Analogous to the previous sections, we will also require a boundedness
 302 condition, in that for all i , $e_i(Y) \in [a_i, b_i]$ almost surely for some predictable sequences
 303 $(a_i)_{i=1}^{\infty}$ and $(b_i)_{i=1}^{\infty}$, and with $a_i > 0$ for all i . These boundedness conditions can be enforced by
 304 simple rescaling and clipping, albeit at a slight loss of power.

305 With a possibly-moving predictable sequence of conformal predictors $(C_i)_{i=1}^{\infty}$ in hand, the confor-
 306 mal prediction-powered e-value can be constructed as follows:

$$307 \quad E_n^{\text{ppi}-(C)} := \prod_{i=1}^n \text{rescale}_{\eta_i} \left(\inf e_i(C_i(X_i)) - (b_i - a_i) \text{Err}(C_i) \right), \quad (4)$$

310 where $(\eta_i)_{i=1}^{\infty}$ is a predictable sequence with $0 \leq \eta_i \leq (1 - a_i - (b_i - a_i) \text{Err}(C_i))^{-1}$ for all
 311 $i = 1, 2, \dots$, $\text{rescale}_{\eta}(e) = 1 + \eta(e - 1)$ and $e_i(C_i(X_i)) = \{e_i(y) : y \in C_i(X_i)\}$ for convenience.
 312 The sequence (η_i) is analogous to the bets usually present in e-values from the testing by betting
 313 literature, cf. (Shafer, 2021; Waudby-Smith & Ramdas, 2020; Ramdas et al., 2022); it ensures that
 314 the e-values remain nonnegative as well as allowing for gains in power, e.g. when the η s are chosen
 315 to approximately maximize the e-value’s growth rate. It follows that $E_n^{\text{ppi}-(C)}$ is a valid e-value,
 316 inheriting the test supermartingale structure of E_n .
 317

318 **Proposition 2.8.** *Let $E_n^{\text{ppi}-(C)}$ be as in Equation 4. Then $(E_1^{\text{ppi}-(C)}, E_2^{\text{ppi}-(C)}, \dots)$ is a test super-
 319 martingale, and $E_{\tau}^{\text{ppi}-(C)}$ is an e-value for any stopping time τ .*
 320

321 We can also analyze the power of our e-values. The natural way of measuring the power of an e-
 322 value is by the means of its expected growth rate (Kelly, 1956). For conformal prediction-powered
 323 e-values, it will be close to that of the original e-value as long as the conformal predictive sets are
 324 sufficiently small and with a low Err.

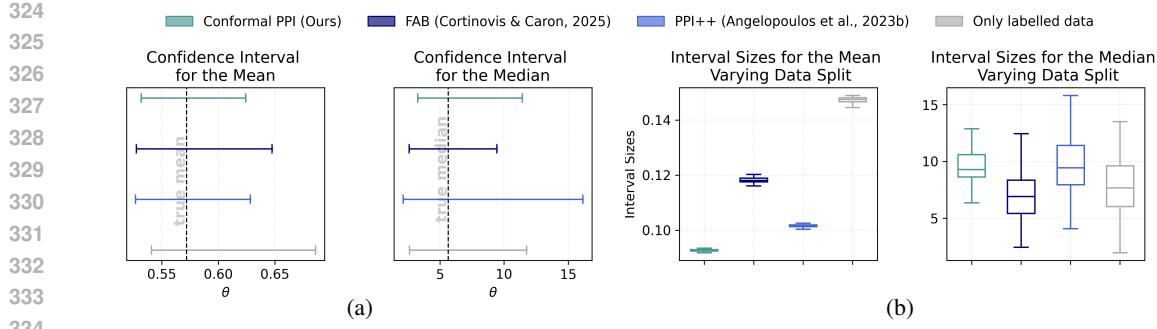


Figure 1: **Our method is comparable to existing prediction-powered procedures.** We conduct experiments on two datasets where previous prediction-powered methods are applicable: one on the prevalence of phishing attacks (a mean), and another on characterizing gene expression levels (a median). In (a) we see one realization of our CIs along with baselines, while in (b) we analyze the distribution of the interval sizes over varying data splits. In both cases our procedure outperforms only using labelled data, while edging over prior methods for the mean estimation task.

Proposition 2.9. *If $e_i(\cdot) \in [a_i, b_i]$ for every i , then there exists some constant $r > 0$ independent of n for which*

$$\begin{aligned} \mathbb{E} \left[\frac{1}{n} \log E_n^{\text{ppi-}(C)} \right] &\geq \mathbb{E} \left[\frac{1}{n} \log E_n \right] - \frac{1}{n} \sum_{i=1}^n \mathbb{E}[\text{leb hull}(\log e_i(C_i(X_i)))] \\ &\quad - \frac{r}{n} \sum_{i=1}^n \mathbb{E}[h_i(\eta_i) \text{Err}(C_i)] - \frac{r}{n} \sum_{i=1}^n \mathbb{E}[|1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|], \end{aligned}$$

where $h_i(\eta_i) = \log \frac{b_i}{a_i} + \eta_i(b_i - a_i)$, which is increasing in η_i .

Proposition 2.9 makes apparent a trade-off in the choice of the $(\eta_i)_{i=1}^\infty$: by choosing a lower η_i we reduce the effect of the $(b_i - a_i)\text{Err}(C_i)$ penalty on the e-values, but incur a slight loss in power due to the rescaling. An optimal balance can be struck by choosing log-optimal $(\eta_i)_{i=1}^\infty$, as is usual in the testing by betting literature.

These e-values can also be directly used for confidence intervals/sequences and general e-value-based procedures; see Appendix B.1.

3 EXPERIMENTS AND CASE STUDIES

To empirically assess our method, we devise a series of experiments on real-world datasets. We first consider the estimation of means and quantiles, in which we can compare our approach to previous methods for prediction-powered inference (Section 3.1). We then turn to more elaborate scenarios, which our procedure naturally solves but were out of reach for previous methods: first for prediction-powered inference with private labelled data (Section 3.2) and then for prediction-powered anytime-valid hypothesis testing on time series sans active data collection (Section 3.3). Experiment details can be found in Appendix C.

Code for all experiments can be found on [redacted URL] (present in the supplementary material). All experiments were run on an AMD Ryzen 9 5950X CPU, with 64GB of RAM.

3.1 COMPARISON WITH PREVIOUS PREDICTION-POWERED INFERENCE METHODS

We consider two inferential tasks: estimating the prevalence of phishing websites (which is a probability, and thus a mean), and the inference of gene expression levels, as measured by their quantiles (in particular, a median). Phishing is one of the most common types of cybercrime, and quantifying the prevalence of phishing domains allows cybersecurity firms and ISPs to gauge the scale of the problem and allocate resources to prevent these attacks. As for gene expression levels, these can

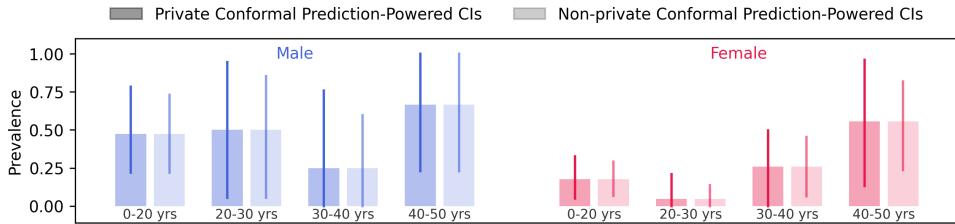


Figure 2: **Conformal prediction-powered inference with differential privacy.** We apply our method to analyze the recurrence of thyroid cancer atop private patient data. With a single inference-agnostic and differentially-private calibration, we are able to do prediction-powered inference for the probabilities of recurrence for various strata, with minimal increase in interval size compared to a non-private calibration.

be used to better understand cis-regulation in humans, which is important to the study of complex diseases. As is usual in the prediction-powered inference literature, we evaluate our procedures on large labelled datasets, namely those of (Mohammad & McCluskey, 2012) and (Vaishnav et al., 2022) for the phishing and gene expression level tasks, respectively.

For the phishing dataset, we allocate most of the data for training a predictive model; for the gene expression dataset, we use the predictions from the readily available model of (Vaishnav et al., 2022). We then split the remaining data between a large test set (where we discard the labels Y) and a smaller calibration set (for which we will use both X and Y). On this calibration set, we perform split conformal prediction to obtain a calibrated set-predictor, using the conformity score $(x, y) \mapsto -\hat{p}(y | x)$ for the phishing dataset and $(x, y) \mapsto |\hat{\mu}(x) - y|$ for the gene expression dataset,² where \hat{p} and $\hat{\mu}$ denote the respective predictive models.

We compare four methods. **Conformal PPI (Ours):** we use the conformal predictors fit on the calibration set, and compute our conformal prediction-powered CIs on the test set as outlined in Sections 2.1 and 2.2. **PPI++ (Angelopoulos et al., 2023b):** the calibration set is used in conjunction with the test set to form an unbiased estimate of the loss of an M-estimator, with a data-dependent ‘power tuning’ parameter λ . Asymptotic analysis then allows for the construction of valid CIs. **FAB (Cortinovis & Caron, 2025):** FAB extends PPI/PPI++ by introducing a prior over the quality of the predictive model. It provides tighter CIs when the observed prediction quality is likely under the prior, while ensuring graceful degradation otherwise (for well-chosen priors, e.g., horseshoe prior). **Only labelled samples:** we compute a classical CI using the calibration data, ignoring the test set.

Figure 1 shows these procedures in action. In particular we showcase instances of our confidence intervals for the mean and median of the labels of our datasets, along with the distribution of their interval sizes over varying data split seeds. Our approach is competitive with previous methods, beating the intervals that use only the labelled samples. In the case of the mean, our method in fact provides the tightest confidence intervals. For the median ours is not as tight as FAB (Cortinovis & Caron, 2025), but surpasses PPI++ (Angelopoulos et al., 2023b). We also note that our method achieves the smallest variance.

3.2 PREDICTION-POWERED INFERENCE WITH PRIVATE LABELLED DATA

In this section we illustrate the use of our method for analyzing the recurrence of thyroid cancer. As with many medical applications, access to medical records is required. Due to their sensitive nature, all labelled data must be treated in a differentially private manner; this is beyond the scope of previous prediction-powered procedures, which do not satisfy differential privacy and thus may leak information.

We use the dataset of (Borzooei & Tarokhian, 2023), which contains readily accessible clinical data (e.g. from surveys), along with an indicator of whether the patient’s cancer recurred. We split this dataset into training, calibration and test sets. In the training set, we fit a model to predict the recurrence of thyroid cancer. The calibration set is then used for the differentially private conformal prediction method of (Angelopoulos et al., 2021), using the conformity score $(x, y) \mapsto \hat{p}(y | x)$.

²The pretrained model only predicts $\hat{\mu}(x)$, so we cannot use a more adaptive score (such as conformalized quantile regression).

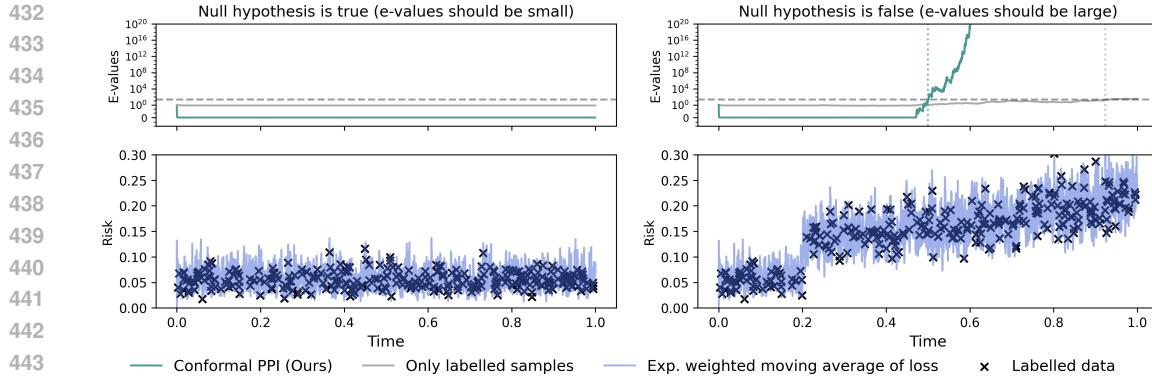


Figure 3: **Conformal prediction-powered continuous risk monitoring.** Our method can also be naturally applied for continuous risk monitoring by simply using online conformal prediction methods for the calibration. It satisfies strong anytime-valid guarantees in a dynamic setting without requiring active data collection. The resulting procedure rejects nulls much more quickly than simply using labelled samples, attaining high statistical power.

Finally, we use this conformal predictor to perform several inferences on the test set, estimating the probabilities of recurrence for different strata of the population. The results can be seen in Figure 2; we find that the differentially private calibration yields only minor increases of the interval sizes while vastly increasing safety.

Also worth highlighting is that our procedure allows us to use a single private calibration for multiple inferences, which can even be defined post-hoc. This is in contrast to previous prediction-powered methods, which require access to the calibration data for every inference, potentially compromising privacy.

3.3 PREDICTION-POWERED RISK MONITORING VIA ONLINE CONFORMAL PREDICTION

Consider the task of tracking the risk of a deployed model on-line, so that we ensure it never goes past some determined safety level. In this setting, continuously receive inputs for our predictive model, but only occasionally receive labels that would allow us to assess the correctness of our predictions. This is a problem with significant temporal structure, putting it out-of-reach of most prediction-powered methods (which can only handle static i.i.d. settings). As far as we are aware the only applicable method is that of (Csillag et al., 2025), but it requires an active data collection regime; ours is trivially applicable to an observational regime.

The task can be framed as an anytime-valid test for the null hypothesis that the risk is within the safety level at all times; such a hypothesis test can then be done using, for example, the e-value framework of (Podkopaev & Ramdas, 2021).

For our experiment, we use the dataset of (Blackard, 1998) for forest cover type prediction. We create two versions of the dataset: the original one, in which the null hypothesis holds (i.e., no distribution shift), and another one in which we increasingly poison the data by selecting harder samples with increasing probability past a change-point, rendering the null hypothesis false.

Each version of the dataset is partitioned into training, validation, and test splits. A predictive model is fit on the training data, whose loss we then estimate on the validation set. Our desired safety level is then taken to be this validation loss plus a small tolerance threshold. Still on the validation set, we train an auxiliary model to infer the predictive model’s residuals. Finally, on the test set we monitor the on-line risk: we use our occasional labelled samples for the online conformal prediction method of (Angelopoulos et al., 2024) atop the auxiliary model, and use the resulting set predictor for our conformal prediction-powered e-values. The $(\eta_i)_{i=1}^\infty$ are chosen to approximately maximize the growth rate (cf. Appendix C.4).

Figure 3 shows the results of our experiment, comparing it to only using the occasional labelled samples. When the null is false, our prediction-powered e-values reject it much more quickly and confidently than only using the labelled data, while guaranteeing a low false positive rate.

486 4 CONCLUSION
487

488 In this paper, we established a general connection between prediction-powered inference and con-
489 formal prediction, enabling prediction-powered methods with additional guarantees like privacy and
490 robustness. Our framework leverages calibrated conformal set-predictors to inherit rich properties
491 from the conformal literature, overcoming the case-specific limitations of previous work and open-
492 ing new practical applications previously out of reach. Beyond being readily applicable to diverse
493 practical settings, we believe our framework establishes an important baseline for future research on
494 prediction-powered inference with additional guarantees.

495
496 REFERENCES
497

498 Emily Aiken, Suzanne Bellue, Joshua E. Blumenstock, Dean Karlan, and Christopher Udry. Es-
499 timating impact with surveys versus digital traces: Evidence from randomized cash trans-
500 fers in togo. *Journal of Development Economics*, 175:103477, 2025. ISSN 0304-3878.
501 doi: <https://doi.org/10.1016/j.jdeveco.2025.103477>. URL <https://www.sciencedirect.com/science/article/pii/S0304387825000288>.

502 Anastasios Nikolas Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction
503 and distribution-free uncertainty quantification. *ArXiv*, abs/2107.07511, 2021. URL <https://api.semanticscholar.org/CorpusID:235899036>.

504 Anastasios Nikolas Angelopoulos, Stephen Bates, Tijana Zrnic, and Michael I. Jordan. Private
505 prediction sets. *ArXiv*, abs/2102.06202, 2021. URL <https://api.semanticscholar.org/CorpusID:231879726>.

506 Anastasios Nikolas Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Confor-
507 mal risk control. *ArXiv*, abs/2208.02814, 2022. URL <https://api.semanticscholar.org/CorpusID:251320513>.

508 Anastasios Nikolas Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I. Jordan, and Tijana
509 Zrnic. Prediction-powered inference. *Science*, 382:669 – 674, 2023a. URL <https://api.semanticscholar.org/CorpusID:256105365>.

510 Anastasios Nikolas Angelopoulos, John C. Duchi, and Tijana Zrnic. Ppi++: Efficient
511 prediction-powered inference. *ArXiv*, abs/2311.01453, 2023b. URL <https://api.semanticscholar.org/CorpusID:264935590>.

512 Anastasios Nikolas Angelopoulos, Rina Foygel Barber, and Stephen Bates. Online conformal
513 prediction with decaying step sizes. *ArXiv*, abs/2402.01139, 2024. URL <https://api.semanticscholar.org/CorpusID:267406383>.

514 Felipe Areces, Christopher Mohri, Tatsunori Hashimoto, and John Duchi. Online conformal pre-
515 diction via online optimization. In *International Conference on Machine Learning*, 2025. URL
516 <https://icml.cc/virtual/2025/poster/45619>.

517 Yarin Bar, Shalev Shaer, and Yaniv Romano. Protected test-time adaptation via online en-
518 tropy matching: A betting approach. *ArXiv*, abs/2408.07511, 2024. URL <https://api.semanticscholar.org/CorpusID:271865850>.

519 Michael Bian and Rina Foygel Barber. Training-conditional coverage for distribution-free predictive
520 inference. *Electronic Journal of Statistics*, 2022. URL <https://api.semanticscholar.org/CorpusID:248572298>.

521 Jock Blackard. Covertype. UCI Machine Learning Repository, 1998. DOI:
522 <https://doi.org/10.24432/C50K5N>.

523 Shiva Borzooei and Aidin Tarokhian. Differentiated Thyroid Cancer Recurrence. UCI Machine
524 Learning Repository, 2023. DOI: <https://doi.org/10.24432/C5632J>.

525 Pierre Boyreau, Anastasios N. Angelopoulos, Nir Yosef, Jitendra Malik, and Michael I. Jordan. Au-
526 toeval done right: Using synthetic data for model evaluation, 2024. URL <https://arxiv.org/abs/2403.07008>.

540 Luben Miguel Cruz Cabezas, Guilherme P. Soares, Thiago Ramos, Rafael Bassi Stern, and Rafael
 541 Izbicki. Distribution-free calibration of statistical confidence sets. 2024. URL <https://api.semanticscholar.org/CorpusID:274423245>.
 542

543 Jase Clarkson, Wenkai Xu, Mihai Cucuringu, and Gesine Reinert. Split conformal prediction
 544 under data contamination. *ArXiv*, abs/2407.07700, 2024. URL <https://api.semanticscholar.org/CorpusID:271088416>.
 545

546 Stefano Cortinovis and Francois Caron. Fab-ppi: Frequentist, assisted by bayes,
 547 prediction-powered inference. *ArXiv*, abs/2502.02363, 2025. URL <https://api.semanticscholar.org/CorpusID:276107406>.
 548

549 Daniel Csillag, Lucas Monteiro Paes, Thiago Ramos, João Vitor Romano, Rodrigo Loro Schuller,
 550 Roberto B. Seixas, Roberto I Oliveira, and Paulo Orenstein. Amnioml: Amniotic fluid seg-
 551 mentation and volume prediction with uncertainty quantification. In AAAI Conference on
 552 Artificial Intelligence, 2023. URL <https://api.semanticscholar.org/CorpusID:259282132>.
 553

554 Daniel Csillag, Claudio J. Struchiner, and Guilherme Tegoni Goedert. Strategic conformal pre-
 555 diction. *ArXiv*, abs/2411.01596, 2024. URL <https://api.semanticscholar.org/CorpusID:273811269>.
 556

557 Daniel Csillag, Claudio J. Struchiner, and Guilherme Tegoni Goedert. Prediction-powered e-values.
 558 2025. URL <https://api.semanticscholar.org/CorpusID:276160929>.
 559

560 Hen Davidov, Shai Feldman, Gil Shamai, Ron Kimmel, and Yaniv Romano. Conformalized
 561 survival analysis for general right-censored data. In International Conference on Learning
 562 Representations, 2025. URL <https://api.semanticscholar.org/CorpusID:278601991>.
 563

564 Shai Feldman, Stephen Bates, and Yaniv Romano. Conformal prediction with corrupted labels:
 565 Uncertain imputation and robust re-weighting. *ArXiv*, abs/2505.04733, 2025. URL <https://api.semanticscholar.org/CorpusID:278394545>.
 566

567 Adam Fisch, Joshua Maynez, R. Alex Hofer, Bhuvan Dhingra, Amir Globerson, and William W.
 568 Cohen. Stratified prediction-powered inference for hybrid language model evaluation. *ArXiv*,
 569 abs/2406.04291, 2024. URL <https://api.semanticscholar.org/CorpusID:270285671>.
 570

571 Ulysse Gazin, Ruth Heller, Etienne Roquain, and Aldo Solari. Powerful batch conformal predic-
 572 tion for classification. 2024. URL <https://api.semanticscholar.org/CorpusID:273822069>.
 573

574 Juliano Genari and Guilherme Tegoni Goedert. Mining unstructured medical texts with confor-
 575 mal active learning. 2025. URL <https://api.semanticscholar.org/CorpusID:276235740>.
 576

577 Isaac Gibbs and Emmanuel J. Candès. Adaptive conformal inference under distribution
 578 shift. *ArXiv*, abs/2106.00170, 2021. URL <https://api.semanticscholar.org/CorpusID:235266057>.
 579

580 Isaac Gibbs, John J. Cherian, and Emmanuel J. Candès. Conformal prediction with conditional
 581 guarantees. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 2023.
 582 URL <https://api.semanticscholar.org/CorpusID:258832918>.
 583

584 Yanwu Gu and Dong Xia. Local prediction-powered inference. *ArXiv*, abs/2409.18321, 2024. URL
 585 <https://api.semanticscholar.org/CorpusID:272968866>.
 586

587 Charles Guille-Escuret and Eugene Ndiaye. From conformal predictions to confidence re-
 588 gions. *ArXiv*, abs/2405.18601, 2024. URL <https://api.semanticscholar.org/CorpusID:270095317>.
 589

594 Chris Hays and Manish Raghavan. Double machine learning for causal inference under shared-
 595 state interference. *ArXiv*, abs/2504.08836, 2025. URL <https://api.semanticscholar.org/CorpusID:277780405>.
 596

597 Steven R. Howard, Aaditya Ramdas, Jon D. McAuliffe, and Jasjeet S. Sekhon. Time-uniform
 598 chernoff bounds via nonnegative supermartingales. *Probability Surveys*, 2018. URL <https://api.semanticscholar.org/CorpusID:218613937>.
 599

600 Wenlong Ji, Lihua Lei, and Tijana Zrnic. Predictions as surrogates: Revisiting surrogate outcomes
 601 in the age of ai. *ArXiv*, abs/2501.09731, 2025. URL <https://api.semanticscholar.org/CorpusID:275570732>.
 602

603 Ying Jin and Emmanuel J. Candès. Selection by prediction with conformal p-values. *J. Mach.
 604 Learn. Res.*, 24:244:1–244:41, 2022. URL <https://api.semanticscholar.org/CorpusID:252693334>.
 605

606 John L. Kelly. A new interpretation of information rate. *IRE Trans. Inf. Theory*, 2:185–189, 1956.
 607 URL <https://api.semanticscholar.org/CorpusID:16143351>.
 608

609 Shayan Kiyani, George J. Pappas, Aaron Roth, and Hamed Hassani. Decision theoretic
 610 foundations for conformal prediction: Optimal uncertainty quantification for risk-averse
 611 agents. *ArXiv*, abs/2502.02561, 2025. URL <https://api.semanticscholar.org/CorpusID:276107113>.
 612

613 Xiang Li, Yunai Li, Huiying Zhong, Lihua Lei, and Zhun Deng. Statistical inference under perfor-
 614 mativity. *ArXiv*, abs/2505.18493, 2025. URL <https://api.semanticscholar.org/CorpusID:278904845>.
 615

616 Ping Luo, Xiaoge Deng, Ziqing Wen, Tao Sun, and Dongsheng Li. Federated prediction-powered
 617 inference from decentralized data. *ArXiv*, abs/2409.01730, 2024. URL <https://api.semanticscholar.org/CorpusID:272367786>.
 618

619 Ariane Marandon. Conformal link prediction for false discovery rate control. *TEST*, 2023. URL
 620 <https://api.semanticscholar.org/CorpusID:259252560>.
 621

622 Thomas Massena, L'eo And'eol, Thibaut Boissin, Franck Mamalet, Corentin Friedrich, Math-
 623 ieu Serrurier, and S'ebastien Gerchinovitz. Efficient robust conformal prediction via
 624 lipschitz-bounded networks. *ArXiv*, abs/2506.05434, 2025. URL <https://api.semanticscholar.org/CorpusID:279244604>.
 625

626 Rami Mohammad and Lee McCluskey. Phishing Websites. UCI Machine Learning Repository,
 627 2012. DOI: <https://doi.org/10.24432/C51W2X>.
 628

629 Qian Peng, Yajie Bao, Haojie Ren, Zhaojun Wang, and Changliang Zou. Conformal prediction
 630 with cellwise outliers: A detect-then-impute approach. *ArXiv*, abs/2505.04986, 2025. URL
 631 <https://api.semanticscholar.org/CorpusID:278394221>.
 632

633 Coby Penso, Bar Mahpud, Jacob Goldberger, and Or Sheffet. Privacy-preserving conformal
 634 prediction under local differential privacy. In *International Symposium on Conformal and
 635 Probabilistic Prediction with Applications*, 2025. URL <https://api.semanticscholar.org/CorpusID:278782822>.
 636

637 Aleksandr Podkopaev and Aaditya Ramdas. Tracking the risk of a deployed model and de-
 638 tecting harmful distribution shifts. *ArXiv*, abs/2110.06177, 2021. URL <https://api.semanticscholar.org/CorpusID:238634210>.
 639

640 Aaditya Ramdas and Ruodu Wang. Hypothesis testing with e-values. 2024. URL <https://api.semanticscholar.org/CorpusID:273707651>.
 641

642 Aaditya Ramdas, Peter D. Grünwald, Vladimir Vovk, and Glenn Shafer. Game-theoretic statis-
 643 tics and safe anytime-valid inference. *ArXiv*, abs/2210.01948, 2022. URL <https://api.semanticscholar.org/CorpusID:252715629>.
 644

648 Glenn Shafer. Testing by betting: A strategy for statistical and scientific communication. *Journal*
 649 *of the Royal Statistical Society Series A: Statistics in Society*, 184(2):407–431, 05 2021. ISSN
 650 0964-1998. doi: 10.1111/rssa.12647. URL <https://doi.org/10.1111/rssa.12647>.

651 Shubhangshu Shekhar and Aaditya Ramdas. Reducing sequential change detection to sequential
 652 estimation. *ArXiv*, abs/2309.09111, 2023. URL <https://api.semanticscholar.org/CorpusID:262043770>.

653 Jaehyeok Shin, Aaditya Ramdas, and Alessandro Rinaldo. E-detectors: A nonparametric framework
 654 for sequential change detection. *The New England Journal of Statistics in Data Science*, 2022.
 655 URL <https://api.semanticscholar.org/CorpusID:258426776>.

656 Ryan J. Tibshirani, Rina Foygel Barber, Emmanuel J. Candès, and Aaditya Ramdas. Conformal
 657 prediction under covariate shift. In *Neural Information Processing Systems*, 2019. URL <https://api.semanticscholar.org/CorpusID:115140768>.

658 Eeshit Dhaval Vaishnav, Carl G. de Boer, Jennifer Molinet, Moran Yassour, Lin Fan, Xian Adiconis,
 659 Dawn-Anne Thompson, Joshua Z. Levin, Francisco A. Cubillos, and Aviv Regev. The evolution,
 660 evolvability and engineering of gene regulatory dna. *Nature*, 603:455 – 463, 2022. URL <https://api.semanticscholar.org/CorpusID:247361724>.

661 Lars van der Laan and Ahmed M. Alaa. Self-calibrating conformal prediction. In *Neural Information
 662 Processing Systems*, 2024. URL <https://api.semanticscholar.org/CorpusID:267627532>.

663 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world.
 664 2005. URL <https://api.semanticscholar.org/CorpusID:118783209>.

665 Ian Waudby-Smith and Aaditya Ramdas. Estimating means of bounded random variables by betting.
 666 *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 2020. URL <https://api.semanticscholar.org/CorpusID:240070804>.

667 Ian Waudby-Smith, David T. Arbour, Ritwik Sinha, Edward H. Kennedy, and Aaditya Ramdas.
 668 Time-uniform central limit theory and asymptotic confidence sequences. *The Annals of Statistics*,
 669 2021. URL <https://api.semanticscholar.org/CorpusID:257901246>.

670 Margaux Zaffran, Aymeric Dieuleveut, Olivier F’eron, Yannig Goude, and Julie Josse. Adaptive
 671 conformal predictions for time series. In *International Conference on Machine Learning*, 2022.
 672 URL <https://api.semanticscholar.org/CorpusID:246863519>.

673 Margaux Zaffran, Aymeric Dieuleveut, Julie Josse, and Yaniv Romano. Conformal prediction with
 674 missing values. In *International Conference on Machine Learning*, 2023. URL <https://api.semanticscholar.org/CorpusID:259075529>.

675 Soroush H. Zargarbashi and Aleksandar Bojchevski. Robust conformal prediction with a single
 676 binary certificate. *ArXiv*, abs/2503.05239, 2025. URL <https://api.semanticscholar.org/CorpusID:276885374>.

677 Yi Zhou, Lulu Liu, Haocheng Zhao, Miguel López-Benítez, Limin Yu, and Yutao Yue. Towards
 678 deep radar perception for autonomous driving: Datasets, methods, and challenges. *Sensors*, 22
 679 (11), 2022. ISSN 1424-8220. doi: 10.3390/s22114208. URL <https://www.mdpi.com/1424-8220/22/11/4208>.

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695 **A THEOREMS AND PROOFS**

696

697 **Lemma A.1** (Lemma 2.1 in the main text). *Let $C : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$ be a set predictor and suppose that*
 698 $\phi(Y) \in [a, b]$ *almost surely. Then*

699
$$\mathbb{E}[\inf \phi(C(X))] - M \text{Err}(C) \leq \mathbb{E}[\phi(Y)] \leq \mathbb{E}[\sup \phi(C(X))] + M \text{Err}(C).$$

700

701 *Proof.* We will show this in two parts:

702 (i) $\mathbb{E}[\inf \phi(C(X))] - M \text{Err}(C) \leq \mathbb{E}[\phi(Y)]$, by showing that $\mathbb{E}[\inf \phi(C(X)) - \phi(Y)] \leq$
 703 $M \text{Err}(C)$;
 704
 705 (ii) $\mathbb{E}[\phi(Y)] \leq \mathbb{E}[\sup \phi(C(X))] + M \text{Err}(C)$, by showing that $\mathbb{E}[\phi(Y) - \sup \phi(C(X))] \leq$
 706 $M \text{Err}(C)$.

707

708 For (i), by the law of total expectation:

709

$$\mathbb{E}[\inf \phi(C(X)) - \phi(Y)] = \mathbb{E}[\inf \phi(C(X)) - \phi(Y)|Y \in C(X)] \mathbb{P}[Y \in C(X)] \\ + \mathbb{E}[\inf \phi(C(X)) - \phi(Y)|Y \notin C(X)] \mathbb{P}[Y \notin C(X)];$$

712

713 Now, given that $Y \in C(X)$, it must hold that $\phi(Y) \in \phi(C(X))$, and so $\inf \phi(C(X)) \leq \phi(Y)$;
 714 thus $\mathbb{E}[\inf \phi(C(X)) - \phi(Y)|Y \in C(X)] \leq 0$. Additionally, note that because both $\phi(C(X))$ and
 715 $\phi(Y)$ are bounded in $[a, b]$, it holds that $\inf \phi(C(X)) - \phi(Y) \leq b - a = M$ almost surely, and so
 716 $\mathbb{E}[\inf \phi(C(X)) - \phi(Y)|Y \notin C(X)] \leq M$. Thus

717 $\mathbb{E}[\inf \phi(C(X)) - \phi(Y)] \leq 0 + M \text{Err}(C) = M \text{Err}(C)$.

718

719 The upper bound (ii) follows analogously: by the law of total expectation,

720

$$\mathbb{E}[\phi(Y) - \sup \phi(C(X))] = \mathbb{E}[\phi(Y) - \sup \phi(C(X))|Y \in C(X)] \mathbb{P}[Y \in C(X)] \\ + \mathbb{E}[\phi(Y) - \sup \phi(C(X))|Y \notin C(X)] \mathbb{P}[Y \notin C(X)];$$

723

724 Now, given that $Y \in C(X)$, it must hold that $\phi(Y) \in \phi(C(X))$, and so $\phi(Y) \leq \sup \phi(C(X))$;
 725 thus $\mathbb{E}[\phi(Y) - \sup \phi(C(X))|Y \in C(X)] \leq 0$. Additionally, note that because both $\phi(C(X))$ and
 726 $\phi(Y)$ are bounded in $[a, b]$, it holds that $\phi(Y) - \sup \phi(C(X)) \leq b - a = M$ almost surely, and so
 727 $\mathbb{E}[\phi(Y) - \sup \phi(C(X))|Y \notin C(X)] \leq M$. Thus

728 $\mathbb{E}[\phi(Y) - \sup \phi(C(X))] \leq 0 + M \text{Err}(C) = M \text{Err}(C)$,

729

730 and we conclude. □

731

732 **Proposition A.2** (Proposition 2.3 in the main text). *Under the conditions of Lemma 2.1, for any*
 733 $\alpha \in (0, 1)$, *let $\widehat{C}_\alpha^{(\mathbb{E}\phi)}$ be as in Equation 3 from the main text. Then $\widehat{C}_\alpha^{(\mathbb{E}\phi)}$ is a valid $(1 - \alpha)$ -*
 734 *confidence interval for $\mathbb{E}[\phi(Y)]$, i.e.,*

735 $\mathbb{P}[\mathbb{E}[\phi(Y)] \in \widehat{C}_\alpha^{(\mathbb{E}\phi)}] \geq 1 - \alpha$.

737

738 *Proof.*

739

$$\mathbb{P}[\mathbb{E}[\phi(Y)] \notin \widehat{C}_\alpha^{(\mathbb{E}\phi)}] = \mathbb{P}[\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)} - M \text{Err}(C) \not\leq \mathbb{E}[\phi(Y)] \text{ or } \mathbb{E}[\phi(Y)] \not\leq \widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)} + M \text{Err}(C)] \\ \leq \mathbb{P}[\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)} - M \text{Err}(C) \not\leq \mathbb{E}[\phi(Y)]] + \mathbb{P}[\mathbb{E}[\phi(Y)] \not\leq \widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)} + M \text{Err}(C)] \\ = \mathbb{P}[\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)} \not\leq \mathbb{E}[\phi(Y)] + M \text{Err}(C)] + \mathbb{P}[\mathbb{E}[\phi(Y)] - M \text{Err}(C) \not\leq \widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)}] \\ \leq \mathbb{P}[\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)} \not\leq \mathbb{E}[\inf \phi(C(X))]] + \mathbb{P}[\mathbb{E}[\sup \phi(C(X))] \not\leq \widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)}],$$

748 and, since $\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)}$ and $\widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)}$ are one-sided confidence intervals, it follows that

749

$$\mathbb{P}[\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)} \not\leq \mathbb{E}[\inf \phi(C(X))]] + \mathbb{P}[\mathbb{E}[\sup \phi(C(X))] \not\leq \widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)}] \leq \frac{\alpha}{2} + \frac{\alpha}{2} = \alpha.$$

750

751

752 **Proposition A.3** (Proposition 2.4 in the main text). *It holds that*

753

754

755

$$\text{leb } \widehat{C}_\alpha^{(\mathbb{E}\phi)} = \mathbb{E}[\text{leb hull}(\phi(C(X)))] + 2M \text{Err}(C) \\ + (\mathbb{E}[\inf \phi(C(X))] - \widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)}) + (\widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)} - \mathbb{E}[\sup \phi(C(X))]).$$

756 *Proof.*

$$\begin{aligned}
758 \quad \text{leb } \widehat{C}_\alpha^{(\mathbb{E}\phi)} &= \left(\widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)} + M \text{Err}(C) \right) - \left(\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)} - M \text{Err}(C) \right) \\
759 &= \widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)} - \widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)} + 2M \text{Err}(C) \\
760 &= \left(\mathbb{E}[\sup \phi(C(X))] + \widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)} - \mathbb{E}[\sup \phi(C(X))] \right) \\
761 &\quad - \left(\mathbb{E}[\inf \phi(C(X))] + \widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)} - \mathbb{E}[\inf \phi(C(X))] \right) + 2M \text{Err}(C) \\
762 &= (\mathbb{E}[\sup \phi(C(X))] - \mathbb{E}[\inf \phi(C(X))]) + 2M \text{Err}(C) \\
763 &\quad + \left(\widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)} - \mathbb{E}[\sup \phi(C(X))] \right) - \left(\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)} - \mathbb{E}[\inf \phi(C(X))] \right) \\
764 &= \mathbb{E}[\text{leb hull}(\phi(C(X)))] + 2M \text{Err}(C) \\
765 &\quad + \left(\widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)} - \mathbb{E}[\sup \phi(C(X))] \right) + \left(\mathbb{E}[\inf \phi(C(X))] - \widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)} \right). \quad \square
\end{aligned}$$

771 **Proposition A.4** (Proposition 2.5 in the main text). *For any $\alpha \in (0, 1)$ let $\widehat{C}_\alpha^{(Z\psi)}$ be as in Equation 4
772 from the main text. Then $\widehat{C}_\alpha^{(Z\psi)}$ is a valid $(1 - \alpha)$ -confidence interval for θ^* , i.e.,*

$$774 \quad \mathbb{P} \left[\theta^* \in \widehat{C}_\alpha^{(Z\psi)} \right] \geq 1 - \alpha.$$

775 *Proof.*

$$\begin{aligned}
776 \quad \mathbb{P} \left[\theta^* \notin \widehat{C}_\alpha^{(Z\psi)} \right] &= \mathbb{P} \left[\widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)} - M_{\theta^*} \text{Err}(C) \not\leq 0 \text{ or } 0 \not\leq \widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)} + M_{\theta^*} \text{Err}(C) \right] \\
777 &\leq \mathbb{P} \left[\widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)} - M_{\theta^*} \text{Err}(C) \not\leq 0 \right] + \mathbb{P} \left[0 \not\leq \widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)} + M_{\theta^*} \text{Err}(C) \right];
\end{aligned}$$

778 Now, by definition $\mathbb{E}[\psi(Y; \theta^*)] = 0$, and so the above is equivalent to

$$\begin{aligned}
779 \quad \mathbb{P} \left[\widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)} - M_{\theta^*} \text{Err}(C) \not\leq \mathbb{E}[\psi(Y; \theta^*)] \right] + \mathbb{P} \left[\mathbb{E}[\psi(Y; \theta^*)] \not\leq \widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)} + M_{\theta^*} \text{Err}(C) \right] \\
780 &= \mathbb{P} \left[\widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)} \not\leq \mathbb{E}[\psi(Y; \theta^*)] + M_{\theta^*} \text{Err}(C) \right] + \mathbb{P} \left[\mathbb{E}[\psi(Y; \theta^*)] - M_{\theta^*} \text{Err}(C) \not\leq \widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)} \right] \\
781 &\leq \mathbb{P} \left[\widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)} \not\leq \mathbb{E}[\inf \psi(C(X); \theta^*)] \right] + \mathbb{P} \left[\mathbb{E}[\sup \psi(C(X); \theta^*)] \not\leq \widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)} \right],
\end{aligned}$$

782 and since the $\widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)}$ and $\widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)}$ are one-sided confidence intervals, it holds that

$$783 \quad \mathbb{P} \left[\widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)} \not\leq \mathbb{E}[\inf \psi(C(X); \theta^*)] \right] + \mathbb{P} \left[\mathbb{E}[\sup \psi(C(X); \theta^*)] \not\leq \widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)} \right] \leq \frac{\alpha}{2} + \frac{\alpha}{2} = \alpha.$$

784 \square

785 **Proposition A.5** (Proposition 2.6 in the main text). *Consider $\Theta \subset \mathbb{R}$ bounded by B (i.e., for all
786 $\theta, \theta' \in \Theta$, $\|\theta - \theta'\| \leq B$). Suppose that $\widehat{L}_{\theta, \alpha/2}^{(Z\psi)}$ and $\widehat{U}_{\theta, \alpha/2}^{(Z\psi)}$ are both K -smooth in θ (i.e., differ-
787 entiable w.r.t. θ , with K -Lipschitz derivative), $\widehat{L}_{\theta, \alpha/2}^{(Z\psi)} \leq \widehat{U}_{\theta, \alpha/2}^{(Z\psi)}$ and $M_\theta \leq M$ for all θ and that
788 $\frac{d}{d\theta} \widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)}, \frac{d}{d\theta} \widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)} \neq 0$. Then*

$$\begin{aligned}
801 \quad \text{leb } \widehat{C}_\alpha^{(Z\psi)} &\leq \frac{1}{D_{\min}} \left(\mathbb{E}[\text{leb hull}(\psi(C(X); \theta^*))] + 2M \text{Err}(C) \right. \\
802 &\quad + \left| \mathbb{E}[\inf \psi(C(X); \theta^*)] - \widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)} \right| + \left| \widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)} - \mathbb{E}[\sup \psi(C(X); \theta^*)] \right| \\
803 &\quad + KB + \max\{a_{\theta^*}, b_{\theta^*}\} |1 - D_{\min}/D_{\max}| \left. \right),
\end{aligned}$$

804 where $D_{\min} = \min \left\{ \left| \frac{d}{d\theta} \widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)} \right|, \left| \frac{d}{d\theta} \widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)} \right| \right\}$ and $D_{\max} = \max \left\{ \left| \frac{d}{d\theta} \widehat{L}_{\theta^*, \alpha/2}^{(Z\psi)} \right|, \left| \frac{d}{d\theta} \widehat{U}_{\theta^*, \alpha/2}^{(Z\psi)} \right| \right\}$.

810 *Proof.* For convenience, let $u(\theta) = \widehat{U}_{\theta, \alpha/2}^{(Z\psi)}$ and $\ell(\theta) = \widehat{L}_{\theta, \alpha/2}^{(Z\psi)}$.
 811

812 We will do a first-order expansion around θ^* . Thanks to the K -smoothness assumption, it holds
 813 that, for all $\theta \in \Theta$,

$$\begin{aligned} 816 \quad u(\theta) + M_\theta \text{Err}(C) &\leq u(\theta) + M \text{Err}(C) \leq u(\theta^*) + M \text{Err}(C) + u'(\theta^*)(\theta - \theta^*) + \frac{K}{2} \|\theta - \theta^*\|^2 \\ 817 \\ 818 \quad &\leq u(\theta^*) + M \text{Err}(C) + u'(\theta^*)(\theta - \theta^*) + \frac{KB}{2}; \\ 819 \\ 820 \end{aligned} \tag{5}$$

$$\begin{aligned} 821 \quad \ell(\theta) - M_\theta \text{Err}(C) &\geq \ell(\theta) - M \text{Err}(C) \geq \ell(\theta^*) - M \text{Err}(C) + \ell'(\theta^*)(\theta - \theta^*) - \frac{K}{2} \|\theta - \theta^*\|^2 \\ 822 \\ 823 \quad &\geq \ell(\theta^*) - M \text{Err}(C) + \ell'(\theta^*)(\theta - \theta^*) - \frac{KB}{2}. \\ 824 \\ 825 \end{aligned} \tag{6}$$

826 Consider then the set

$$\begin{aligned} 829 \quad S := \left\{ \theta \in \mathbb{R} : \ell(\theta^*) - M \text{Err}(C) + \ell'(\theta^*)(\theta - \theta^*) - \frac{KB}{2} \right. \\ 830 \\ 831 \quad \left. \leq 0 \leq u(\theta^*) + M \text{Err}(C) + u'(\theta^*)(\theta - \theta^*) + \frac{KB}{2} \right\}. \\ 832 \\ 833 \\ 834 \end{aligned}$$

836 By Equations 6 and 5, it must hold that $\widehat{C}_\alpha^{(Z\psi)} \subset S$, and thus $\text{leb } \widehat{C}_\alpha^{(Z\psi)} \leq \text{leb } S$.
 837

838 S has a much more amenable form thanks to the first-order expansion, which allows us to quantify
 839 its measure precisely. First, note that S is a convex subset of \mathbb{R} , and thus an interval. So all that
 840 we need to do is to find its endpoints, which can be done by solving its constraints for their zeros
 841 (which, since the derivatives at θ^* are not nil, must be unique).

$$\begin{aligned} 843 \quad \ell(\theta^*) - M \text{Err}(C) + \ell'(\theta^*)(\theta - \theta^*) - \frac{KB}{2} &= 0 \\ 844 \\ 845 \quad \iff \ell'(\theta^*)(\theta - \theta^*) &= \frac{KB}{2} + M \text{Err}(C) - \ell(\theta^*) \\ 846 \\ 847 \quad \iff \theta - \theta^* &= \frac{KB/2 + M \text{Err}(C) - \ell(\theta^*)}{\ell'(\theta^*)} \\ 848 \\ 849 \quad \iff \theta = \theta^* + \frac{KB/2 + M \text{Err}(C) - \ell(\theta^*)}{\ell'(\theta^*)}; \\ 850 \\ 851 \end{aligned}$$

852 and

$$\begin{aligned} 856 \quad u(\theta^*) + M \text{Err}(C) + u'(\theta^*)(\theta - \theta^*) + \frac{KB}{2} &= 0 \\ 857 \\ 858 \quad \iff u'(\theta^*)(\theta - \theta^*) &= -\frac{KB}{2} - M \text{Err}(C) - u(\theta^*) \\ 859 \\ 860 \quad \iff \theta - \theta^* &= \frac{-KB/2 - M \text{Err}(C) - u(\theta^*)}{u'(\theta^*)} \\ 861 \\ 862 \quad \iff \theta = \theta^* + \frac{-KB/2 - M \text{Err}(C) - u(\theta^*)}{u'(\theta^*)}. \\ 863 \end{aligned}$$

864

Then:

865

$$\begin{aligned}
866 \quad \text{leb } S &= \left| \left(\theta^* + \frac{KB/2 + M\text{Err}(C) - \ell(\theta^*)}{\ell'(\theta^*)} \right) - \left(\theta^* + \frac{-KB/2 - M\text{Err}(C) - u(\theta^*)}{u'(\theta^*)} \right) \right| \\
867 \\
868 &= \left| \theta^* + \frac{KB/2 + M\text{Err}(C) - \ell(\theta^*)}{\ell'(\theta^*)} - \theta^* - \frac{-KB/2 - M\text{Err}(C) - u(\theta^*)}{u'(\theta^*)} \right| \\
869 \\
870 &= \left| \frac{KB/2 + M\text{Err}(C) - \ell(\theta^*)}{\ell'(\theta^*)} - \frac{-KB/2 - M\text{Err}(C) - u(\theta^*)}{u'(\theta^*)} \right| \\
871 \\
872 &= \left| \left(\frac{u(\theta^*)}{u'(\theta^*)} - \frac{\ell(\theta^*)}{\ell'(\theta^*)} \right) + \left(\frac{KB/2 + M\text{Err}(C)}{\ell'(\theta^*)} + \frac{KB/2 + M\text{Err}(C)}{u'(\theta^*)} \right) \right| \\
873 \\
874 &\leq \left| \frac{u(\theta^*)}{u'(\theta^*)} - \frac{\ell(\theta^*)}{\ell'(\theta^*)} \right| + \left| \frac{KB/2 + M\text{Err}(C)}{\ell'(\theta^*)} + \frac{KB/2 + M\text{Err}(C)}{u'(\theta^*)} \right| \\
875 \\
876 &= \left| \frac{u(\theta^*)}{u'(\theta^*)} - \frac{\ell(\theta^*)}{\ell'(\theta^*)} \right| + \left| \left(\frac{1}{\ell'(\theta^*)} + \frac{1}{u'(\theta^*)} \right) (KB/2 + M\text{Err}(C)) \right| \\
877 \\
878 &= \left| \frac{u(\theta^*)}{u'(\theta^*)} - \frac{\ell(\theta^*)}{\ell'(\theta^*)} \right| + \left| \frac{1}{\ell'(\theta^*)} + \frac{1}{u'(\theta^*)} \right| (KB/2 + M\text{Err}(C)). \\
879 \\
880 &= \left| \frac{u(\theta^*)}{u'(\theta^*)} - \frac{\ell(\theta^*)}{\ell'(\theta^*)} \right| + \left| \frac{1}{\ell'(\theta^*)} + \frac{1}{u'(\theta^*)} \right| (KB/2 + M\text{Err}(C)). \\
881 \\
882
\end{aligned}$$

883

Finally, by adding and subtracting the boundaries of the interval in expectation:

884

$$\begin{aligned}
885 \quad &\left| \frac{u(\theta^*)}{u'(\theta^*)} - \frac{\ell(\theta^*)}{\ell'(\theta^*)} \right| + \left| \frac{1}{\ell'(\theta^*)} + \frac{1}{u'(\theta^*)} \right| (KB/2 + M\text{Err}(C)) \\
886 \\
887 &= \left| \frac{\mathbb{E}[\sup \psi(C(X); \theta^*)]}{u'(\theta^*)} + \frac{u(\theta^*) - \mathbb{E}[\sup \psi(C(X); \theta^*)]}{u'(\theta^*)} - \frac{\mathbb{E}[\inf \psi(C(X); \theta^*)]}{\ell'(\theta^*)} - \frac{\ell(\theta^*) - \mathbb{E}[\inf \psi(C(X); \theta^*)]}{\ell'(\theta^*)} \right| \\
888 \\
889 &\quad + \left| \frac{1}{\ell'(\theta^*)} + \frac{1}{u'(\theta^*)} \right| (KB/2 + M\text{Err}(C)) \\
890 \\
891 &= \left| \frac{\mathbb{E}[\sup \psi(C(X); \theta^*)]}{u'(\theta^*)} - \frac{\mathbb{E}[\inf \psi(C(X); \theta^*)]}{\ell'(\theta^*)} + \frac{u(\theta^*) - \mathbb{E}[\sup \psi(C(X); \theta^*)]}{u'(\theta^*)} - \frac{\ell(\theta^*) - \mathbb{E}[\inf \psi(C(X); \theta^*)]}{\ell'(\theta^*)} \right| \\
892 \\
893 &\quad + \left| \frac{1}{\ell'(\theta^*)} + \frac{1}{u'(\theta^*)} \right| (KB/2 + M\text{Err}(C)) \\
894 \\
895 &= \left| \frac{\mathbb{E}[\sup \psi(C(X); \theta^*)]}{u'(\theta^*)} - \frac{\mathbb{E}[\inf \psi(C(X); \theta^*)]}{\ell'(\theta^*)} \right| \\
896 \\
897 &\quad + \left| \frac{u(\theta^*) - \mathbb{E}[\sup \psi(C(X); \theta^*)]}{u'(\theta^*)} - \frac{\ell(\theta^*) - \mathbb{E}[\inf \psi(C(X); \theta^*)]}{\ell'(\theta^*)} \right| \\
898 \\
899 &\quad + \left| \frac{1}{\ell'(\theta^*)} + \frac{1}{u'(\theta^*)} \right| (KB/2 + M\text{Err}(C)). \\
900 \\
901 &\leq \left| \frac{\mathbb{E}[\sup \psi(C(X); \theta^*)]}{u'(\theta^*)} - \frac{\mathbb{E}[\inf \psi(C(X); \theta^*)]}{\ell'(\theta^*)} \right| \\
902 \\
903 &\quad + \left| \frac{u(\theta^*) - \mathbb{E}[\sup \psi(C(X); \theta^*)]}{u'(\theta^*)} - \frac{\ell(\theta^*) - \mathbb{E}[\inf \psi(C(X); \theta^*)]}{\ell'(\theta^*)} \right| \\
904 \\
905 &\quad + \left| \frac{1}{\ell'(\theta^*)} + \frac{1}{u'(\theta^*)} \right| (KB/2 + M\text{Err}(C)). \\
906 \\
907 &\leq \left| \frac{\mathbb{E}[\sup \psi(C(X); \theta^*)]}{u'(\theta^*)} - \frac{\mathbb{E}[\inf \psi(C(X); \theta^*)]}{\ell'(\theta^*)} \right| \\
908 \\
909 &\quad + \frac{|u(\theta^*) - \mathbb{E}[\sup \psi(C(X); \theta^*)]|}{|u'(\theta^*)|} + \frac{|\mathbb{E}[\inf \psi(C(X); \theta^*)] - \ell(\theta^*)|}{|\ell'(\theta^*)|} \\
910 \\
911 &\quad + \left| \frac{1}{\ell'(\theta^*)} + \frac{1}{u'(\theta^*)} \right| (KB/2 + M\text{Err}(C)). \\
912 \\
913
\end{aligned}$$

912

Now, since $G = \min\{|u'(\theta^*)|, |\ell'(\theta^*)|\}$, it follows that:

914

$$\begin{aligned}
915 \quad &\left| \frac{1}{\ell'(\theta^*)} + \frac{1}{u'(\theta^*)} \right| (KB/2 + M\text{Err}(C)) \leq \left(\frac{1}{|\ell'(\theta^*)|} + \frac{1}{|u'(\theta^*)|} \right) (KB/2 + M\text{Err}(C)) \\
916 \\
917 &\leq \frac{2}{G} (KB/2 + M\text{Err}(C)) \leq \frac{1}{G} (KB + 2M\text{Err}(C));
\end{aligned}$$

918

and

919

$$\begin{aligned}
& \frac{|u(\theta^*) - \mathbb{E}[\sup \psi(C(X); \theta^*)]|}{|u'(\theta^*)|} + \frac{|\mathbb{E}[\inf \psi(C(X); \theta^*)] - \ell(\theta^*)|}{|\ell'(\theta^*)|} \\
& \leq \frac{|u(\theta^*) - \mathbb{E}[\sup \psi(C(X); \theta^*)]|}{G} + \frac{|\mathbb{E}[\inf \psi(C(X); \theta^*)] - \ell(\theta^*)|}{G} \\
& = \frac{1}{G} (|u(\theta^*) - \mathbb{E}[\sup \psi(C(X); \theta^*)]| + |\mathbb{E}[\inf \psi(C(X); \theta^*)] - \ell(\theta^*)|).
\end{aligned}$$

920

Finally, we have to consider two cases:

921

922

(i) If $G = \min\{|u'(\theta^*)|, |\ell'(\theta^*)|\} = |u'(\theta^*)|$, then

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

(ii) If $G = \min\{|u'(\theta^*)|, |\ell'(\theta^*)|\} = |\ell'(\theta^*)|$, then

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

(ii) If $G = \min\{|u'(\theta^*)|, |\ell'(\theta^*)|\} = |\ell'(\theta^*)|$, then

$$\begin{aligned}
& \left| \frac{\mathbb{E}[\sup \psi(C(X); \theta^*)]}{u'(\theta^*)} - \frac{\mathbb{E}[\inf \psi(C(X); \theta^*)]}{\ell'(\theta^*)} \right| = \frac{1}{G} \left| \frac{\ell'(\theta^*)}{u'(\theta^*)} \mathbb{E}[\sup \psi(C(X); \theta^*)] - \mathbb{E}[\inf \psi(C(X); \theta^*)] \right| \\
& = \frac{1}{G} \left| \mathbb{E}[\sup \psi(C(X); \theta^*)] - \mathbb{E}[\inf \psi(C(X); \theta^*)] + \frac{\ell'(\theta^*)}{u'(\theta^*)} \mathbb{E}[\sup \psi(C(X); \theta^*)] - \mathbb{E}[\sup \psi(C(X); \theta^*)] \right| \\
& \leq \frac{1}{G} |\mathbb{E}[\sup \psi(C(X); \theta^*)] - \mathbb{E}[\inf \psi(C(X); \theta^*)]| + \frac{1}{G} \left| \frac{\ell'(\theta^*)}{u'(\theta^*)} \mathbb{E}[\sup \psi(C(X); \theta^*)] - \mathbb{E}[\sup \psi(C(X); \theta^*)] \right| \\
& = \frac{1}{G} |\mathbb{E}[\sup \psi(C(X); \theta^*)] - \mathbb{E}[\inf \psi(C(X); \theta^*)]| + \frac{1}{G} |\mathbb{E}[\sup \psi(C(X); \theta^*)]| \left| 1 - \frac{\ell'(\theta^*)}{u'(\theta^*)} \right| \\
& \leq \frac{1}{G} |\mathbb{E}[\sup \psi(C(X); \theta^*)] - \mathbb{E}[\inf \psi(C(X); \theta^*)]| + \frac{1}{G} \left| 1 - \frac{u'(\theta^*)}{\ell'(\theta^*)} \right| \max\{|a_{\theta^*}|, |b_{\theta^*}|\} \\
& = \frac{1}{G} |\mathbb{E}[\text{leb hull}(\psi(C(X); \theta^*))]| + \frac{1}{G} \left| 1 - \frac{u'(\theta^*)}{\ell'(\theta^*)} \right| \max\{|a_{\theta^*}|, |b_{\theta^*}|\} \\
& = \frac{1}{G} \mathbb{E}[\text{leb hull}(\psi(C(X); \theta^*))] + \frac{1}{G} \left| 1 - \frac{u'(\theta^*)}{\ell'(\theta^*)} \right| \max\{|a_{\theta^*}|, |b_{\theta^*}|\} \\
& = \frac{1}{G} \mathbb{E}[\text{leb hull}(\psi(C(X); \theta^*))] + \frac{1}{G} \left| 1 - \frac{\min\{\ell'(\theta^*), u'(\theta^*)\}}{\max\{\ell'(\theta^*), u'(\theta^*)\}} \right| \max\{|a_{\theta^*}|, |b_{\theta^*}|\}.
\end{aligned}$$

Combining everything, we get the desired bound. \square

972 **Proposition A.6** (Proposition 2.7 in the main text). *For any $\alpha \in (0, 1)$, let $\widehat{C}_\alpha^{(M\ell)}$ be as in Equation 5
973 from the main text. Then $\widehat{C}_\alpha^{(M\ell)}$ is a valid confidence interval for θ^* , i.e.,
974*

$$975 \quad 976 \quad \mathbb{P} \left[\theta^* \in \widehat{C}_\alpha^{(M\ell)} \right] \geq 1 - \alpha.$$

977 *Proof.* Since the loss is differentiable, first note that it must hold that $\frac{d}{d\theta} \mathbb{E}[\ell(Y; \theta^*)] = 0$. By the
978 dominated convergence theorem we can exchange the expectation and derivative, and so
979

$$980 \quad 981 \quad \frac{d}{d\theta} \mathbb{E}[\ell(Y; \theta^*)] = \mathbb{E} \left[\frac{d}{d\theta} \ell(Y; \theta^*) \right] = 0.$$

983 Note that now our set $\widehat{C}_\alpha^{(M\ell)}$ for M-estimation corresponds to a set $\widehat{C}_\alpha^{(Z\psi)}$ for Z-estimation, for
984 $\psi(Y; \theta) := \frac{d}{d\theta} \ell(Y; \theta^*)$. So by applying Proposition 2.5 (Proposition 2.5 in the main text), we
985 conclude. \square

986 **Proposition A.7** (Power analysis for M-estimation). *Consider $\Theta \subset \mathbb{R}$ bounded by B (i.e., for
987 all $\theta, \theta' \in \Theta$, $\|\theta - \theta'\| \leq B$). Suppose that $\widehat{L}_{\theta, \alpha/2}^{(M\ell)}$ and $\widehat{U}_{\theta, \alpha/2}^{(M\ell)}$ are both K -smooth in θ (i.e.,
988 differentiable w.r.t. θ , with K -Lipschitz derivative), $\widehat{L}_{\theta, \alpha/2}^{(M\ell)} \leq \widehat{U}_{\theta, \alpha/2}^{(M\ell)}$, $M_\theta \leq M$ for all θ and that
989 $\frac{d}{d\theta} \widehat{L}_{\theta^*, \alpha/2}^{(M\ell)}, \frac{d}{d\theta} \widehat{U}_{\theta^*, \alpha/2}^{(M\ell)} \neq 0$. Then*

$$990 \quad 991 \quad \text{leb } \widehat{C}_\alpha^{(M\ell)} \leq \frac{1}{H_{\min}} \left(\mathbb{E}[\text{leb hull}(\frac{d}{d\theta} \ell(C(X); \theta^*))] + 2M \text{Err}(C) \right. \\ 992 \quad 993 \quad + |\mathbb{E}[\inf \frac{d}{d\theta} \ell(C(X); \theta^*)] - \widehat{L}_{\theta^*, \alpha/2}^{(M\ell)}| + |\widehat{U}_{\theta^*, \alpha/2}^{(M\ell)} - \mathbb{E}[\sup \frac{d}{d\theta} \ell(C(X); \theta^*)]| \\ 994 \quad 995 \quad \left. + KB + \max\{a_{\theta^*}, b_{\theta^*}\} |1 - H_{\min}/H_{\max}| \right),$$

1000 where $H_{\min} = \min \left\{ \left| \frac{d}{d\theta} \widehat{L}_{\theta^*, \alpha/2}^{(M\ell)} \right|, \left| \frac{d}{d\theta} \widehat{U}_{\theta^*, \alpha/2}^{(M\ell)} \right| \right\}$ and $H_{\max} = \max \left\{ \left| \frac{d}{d\theta} \widehat{L}_{\theta^*, \alpha/2}^{(M\ell)} \right|, \left| \frac{d}{d\theta} \widehat{U}_{\theta^*, \alpha/2}^{(M\ell)} \right| \right\}$.

1003 *Proof.* As in Proposition 2.7 (Proposition 2.7 in the main text), we can convert the M-estimation CI
1004 to a Z-estimation one. This result then follows by just applying Proposition 2.6 (Proposition 2.6 in
1005 the main text). \square

1006 **Proposition A.8** (Proposition 2.8 in the main text). *If (E_0, E_1, \dots) is a test supermartingale for the null H_0 , then so is the sequence of conformal prediction-powered e-values
1007 $(E_0^{\text{ppi}-(C)}, E_1^{\text{ppi}-(C)}, \dots)$ defined in Equation 6 from the main text.*

1008 *Proof.* The sequence is guaranteed to be nonnegative due to the bounds on η_i , and starts at
1009 $E_0^{\text{ppi}-(C)} = 1$ by definition. So all that remains is to show that it is a supermartingale. For any
1010 point in time i , it follows:

$$1011 \quad \mathbb{E}[E_i^{\text{ppi}-(C)} | \mathcal{F}_{i-1}] = \mathbb{E} \left[E_{i-1}^{\text{ppi}-(C)} \cdot \text{rescale}_{\eta_i} \left(\inf e_i(C_i(X_i)) - (b_i - a_i) \text{Err}(C_i) \right) | \mathcal{F}_{i-1} \right] \\ 1012 \quad = E_{i-1}^{\text{ppi}-(C)} \cdot \mathbb{E} \left[\text{rescale}_{\eta_i} \left(\inf e_i(C_i(X_i)) - (b_i - a_i) \text{Err}(C_i) \right) | \mathcal{F}_{i-1} \right] \\ 1013 \quad = E_{i-1}^{\text{ppi}-(C)} \cdot (1 + \eta_i (\mathbb{E} [\inf e_i(C_i(X_i)) - (b_i - a_i) \text{Err}(C_i) | \mathcal{F}_{i-1}] - 1)).$$

1014 Now, by Lemma 2.1 (Lemma 2.1 in the main text),
1015

$$1016 \quad E_{i-1}^{\text{ppi}-(C)} \cdot (1 + \eta_i (\mathbb{E} [\inf e_i(C_i(X_i)) - (b_i - a_i) \text{Err}(C_i) | \mathcal{F}_{i-1}] - 1)) \\ 1017 \quad \leq E_{i-1}^{\text{ppi}-(C)} \cdot (1 + \eta_i (\mathbb{E} [e_i(Y_i) | \mathcal{F}_{i-1}] - 1)) \\ 1018 \quad \leq E_{i-1}^{\text{ppi}-(C)} \cdot (1 + \eta_i (1 - 1)) = E_{i-1}^{\text{ppi}-(C)},$$

1019 where the last step follows under the null since the original e-values form a test supermartingale. \square

1026 **Proposition A.9** (Proposition 2.9 in the main text). *If $e_i(\cdot) \in [a_i, b_i]$ for every i , then there exists*
 1027 *some constant $r > 0$ independent of n for which*

$$\begin{aligned} 1029 \quad \mathbb{E} \left[\frac{1}{n} \log E_n^{\text{ppi-}(C)} \right] &\geq \mathbb{E} \left[\frac{1}{n} \log E_n \right] - \frac{1}{n} \sum_{i=1}^n \mathbb{E}[\text{leb hull}(\log e_i(C_i(X_i)))] \\ 1030 \quad &\quad - \frac{r}{n} \sum_{i=1}^n \mathbb{E}[h_i(\eta_i) \text{Err}(C_i)] - \frac{r}{n} \sum_{i=1}^n \mathbb{E}[|1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|], \\ 1031 \quad &\quad \dots \\ 1032 \quad &\quad \dots \\ 1033 \quad &\quad \dots \\ 1034 \quad &\quad \dots \end{aligned}$$

1035 where $h_i(\eta_i) = \log \frac{b_i}{a_i} + \eta_i(b_i - a_i)$, which is increasing in η_i .

1037 *Proof.* Let $\tau_i := \text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))$. First, note that \log is $\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))$ -
 1038 Lipschitz in $[\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i)), \text{rescale}_{\eta_i}(b_i - (b_i - a_i) \text{Err}(C_i))]$, and thus:

$$\begin{aligned} 1040 \quad &\log \text{rescale}_{\eta_i}(\inf e_i(C_i(X_i)) - (b_i - a_i) \text{Err}(C_i)) \\ 1041 \quad &\geq \log \inf e_i(C_i(X_i)) - \frac{|\text{rescale}_{\eta_i}(\inf e_i(C_i(X_i)) - (b_i - a_i) \text{Err}(C_i)) - \inf e_i(C_i(X_i))|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \\ 1042 \quad &\quad \dots \\ 1043 \quad &\quad \dots \\ 1044 \quad &\quad \dots \end{aligned}$$

1045 and, by adding and subtracting $\text{rescale}_{\eta_i}(\inf e_i(C_i(X_i)))$ and then invoking the triangular inequality,
 1046 we get

$$\begin{aligned} 1048 \quad &\log \inf e_i(C_i(X_i)) - \frac{|\text{rescale}_{\eta_i}(\inf e_i(C_i(X_i)) - (b_i - a_i) \text{Err}(C_i)) - \inf e_i(C_i(X_i))|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \\ 1049 \quad &\geq \log \inf e_i(C_i(X_i)) - \frac{|\text{rescale}_{\eta_i}(\inf e_i(C_i(X_i)) - (b_i - a_i) \text{Err}(C_i)) - \text{rescale}_{\eta_i}(\inf e_i(C_i(X_i)))|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \\ 1050 \quad &\quad \dots \\ 1051 \quad &\quad \dots \\ 1052 \quad &\quad \dots \\ 1053 \quad &\quad \dots \\ 1054 \quad &\quad \dots \\ 1055 \quad &\quad \dots \\ 1056 \quad &\quad \dots \\ 1057 \quad &\quad \dots \\ 1058 \quad &= \log \inf e_i(C_i(X_i)) - \frac{|\eta_i((\inf e_i(C_i(X_i)) - (b_i - a_i) \text{Err}(C_i)) - \inf e_i(C_i(X_i)))|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \\ 1059 \quad &\quad \dots \\ 1060 \quad &\quad \dots \\ 1061 \quad &\quad \dots \\ 1062 \quad &\quad \dots \\ 1063 \quad &\quad \dots \\ 1064 \quad &= \log \inf e_i(C_i(X_i)) - \frac{|\eta_i(b_i - a_i) \text{Err}(C_i)| + |\inf e_i(C_i(X_i)) - \text{rescale}_{\eta_i}(\inf e_i(C_i(X_i)))|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \\ 1065 \quad &\quad \dots \\ 1066 \quad &\quad \dots \\ 1067 \quad &= \log \inf e_i(C_i(X_i)) - \frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |\inf e_i(C_i(X_i)) - \text{rescale}_{\eta_i}(\inf e_i(C_i(X_i)))|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \\ 1068 \quad &\quad \dots \\ 1069 \quad &\quad \dots \\ 1070 \quad &= \log \inf e_i(C_i(X_i)) - \frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |\inf e_i(C_i(X_i)) - 1 - \eta_i(\inf e_i(C_i(X_i)) - 1)|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \\ 1071 \quad &\quad \dots \\ 1072 \quad &\quad \dots \\ 1073 \quad &= \log \inf e_i(C_i(X_i)) - \frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |(\inf e_i(C_i(X_i)) - 1) - \eta_i(\inf e_i(C_i(X_i)) - 1)|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \\ 1074 \quad &\quad \dots \\ 1075 \quad &\quad \dots \\ 1076 \quad &= \log \inf e_i(C_i(X_i)) - \frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |(1 - \eta_i)(\inf e_i(C_i(X_i)) - 1)|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \\ 1077 \quad &\quad \dots \\ 1078 \quad &\quad \dots \\ 1079 \quad &= \log \inf e_i(C_i(X_i)) - \frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))}. \end{aligned}$$

1080

It thus follows:

1081

1082

1083

1084

1085

$$\begin{aligned}
& \mathbb{E} \left[\frac{1}{n} \log E_n^{\text{ppi}-(C)} \right] \\
&= \mathbb{E} \left[\frac{1}{n} \log \prod_{i=1}^n \text{rescale}_{\eta_i} (\inf e_i(C_i(X_i)) - (b_i - a_i) \text{Err}(C_i)) \right] \\
&\geq \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^n \left[\log \inf e_i(C_i(X_i)) - \frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \right] \right] \\
&= \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^n \log \inf e_i(C_i(X_i)) - \frac{1}{n} \sum_{i=1}^n \frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \right] \\
&= \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\log \inf e_i(C_i(X_i))] - \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \right]
\end{aligned}$$

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101 Now, note:

1102

1103

1104

1105

$$\begin{aligned}
\mathbb{E} [\log \inf e_i(C(X_i))] &= \mathbb{E} [\inf \log e_i(C(X_i))] \\
&= \mathbb{E} [\sup \log e_i(C(X_i))] - (\mathbb{E} [\sup \log e_i(C(X_i))] - \mathbb{E} [\inf \log e_i(C(X_i))]) \\
&= \mathbb{E} [\sup \log e_i(C(X_i))] - \mathbb{E} [\text{leb hull}(\log e_i(C(X_i)))] ,
\end{aligned}$$

1106

1107

1108

1109

1110

1111

1112 and, by Lemma 2.1 (Lemma 2.1 in the main text),

1113

1114

1115

1116

$$\mathbb{E} [\sup \log e_i(C(X_i))] \geq \mathbb{E} [\log e_i(Y)] - \mathbb{E} [\log b_i - \log a_i] \text{Err}(C_i).$$

1117

1118

1119

1120

Therefore, putting it all together, we get

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

$$\begin{aligned}
& \mathbb{E} \left[\frac{1}{n} \log E_n^{\text{ppi}-(C)} \right] \\
&\geq \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\log \inf e_i(C_i(X_i))] - \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \right] \\
&\geq \frac{1}{n} \sum_{i=1}^n (\mathbb{E} [\log e_i(Y)] - \mathbb{E} [\log b_i - \log a_i] \text{Err}(C_i) - \mathbb{E} [\text{leb hull}(\log e_i(C_i(X_i)))] \\
&\quad - \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \right]
\end{aligned}$$

$$\begin{aligned}
1134 &= \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\log e_i(Y)] - \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\log b_i - \log a_i] \text{Err}(C_i) - \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\text{leb hull}(\log e_i(C_i(X_i)))] \\
1135 &\quad - \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \right] \\
1136 &= \mathbb{E} \left[\frac{1}{n} \log E_n \right] - \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\log b_i - \log a_i] \text{Err}(C_i) - \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\text{leb hull}(\log e_i(C_i(X_i)))] \\
1137 &\quad - \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \right] \\
1138 &= \mathbb{E} \left[\frac{1}{n} \log E_n \right] - \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[(\log b_i - \log a_i) \text{Err}(C_i) + \text{leb hull}(\log e_i(C_i(X_i))) \right. \\
1139 &\quad \left. + \frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \right] \\
1140 &= \mathbb{E} \left[\frac{1}{n} \log E_n \right] - \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\text{leb hull}(\log e_i(C_i(X_i)))] \\
1141 &\quad - \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[(\log b_i - \log a_i) \text{Err}(C_i) + \frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \right] \\
1142 &= \mathbb{E} \left[\frac{1}{n} \log E_n \right] - \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\text{Err}(C_i) \log \frac{b_i}{a_i} + \frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \right] \\
1143 &= \mathbb{E} \left[\frac{1}{n} \log E_n \right] - \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\text{leb hull}(\log e_i(C_i(X_i)))] \\
1144 &\quad - \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\text{Err}(C_i) \log \frac{b_i}{a_i} + \frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \right].
\end{aligned}$$

1162 Now, let $r = \max\{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))^{-1}, 1\}$. Then:

$$\begin{aligned}
1163 &\mathbb{E} \left[\frac{1}{n} \log E_n \right] - \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\text{leb hull}(\log e_i(C_i(X_i)))] \\
1164 &\quad - \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\text{Err}(C_i) \log \frac{b_i}{a_i} + \frac{\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|}{\text{rescale}_{\eta_i}(a_i - (b_i - a_i) \text{Err}(C_i))} \right] \\
1165 &= \mathbb{E} \left[\frac{1}{n} \log E_n \right] - \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\text{leb hull}(\log e_i(C_i(X_i)))] \\
1166 &\quad - \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\text{Err}(C_i) \log \frac{b_i}{a_i} + r (\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|) \right] \\
1167 &\geq \mathbb{E} \left[\frac{1}{n} \log E_n \right] - \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\text{leb hull}(\log e_i(C_i(X_i)))] \\
1168 &\quad - \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[r \text{Err}(C_i) \log \frac{b_i}{a_i} + r (\eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|) \right] \\
1169 &= \mathbb{E} \left[\frac{1}{n} \log E_n \right] - \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\text{leb hull}(\log e_i(C_i(X_i)))] \\
1170 &\quad - \frac{r}{n} \sum_{i=1}^n \mathbb{E} \left[\text{Err}(C_i) \log \frac{b_i}{a_i} + \eta_i(b_i - a_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1| \right]
\end{aligned}$$

$$\begin{aligned}
&= \mathbb{E} \left[\frac{1}{n} \log E_n \right] - \frac{1}{n} \sum_{i=1}^n \mathbb{E}[\text{leb hull}(\log e_i(C_i(X_i)))] \\
&\quad - \frac{r}{n} \sum_{i=1}^n \mathbb{E} \left[\left(\log \frac{b_i}{a_i} + \eta_i(b_i - a_i) \right) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1| \right] \\
&= \mathbb{E} \left[\frac{1}{n} \log E_n \right] - \frac{1}{n} \sum_{i=1}^n \mathbb{E}[\text{leb hull}(\log e_i(C_i(X_i)))] \\
&\quad - \frac{r}{n} \sum_{i=1}^n \mathbb{E} [h_i(\eta_i) \text{Err}(C_i) + |1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|] \\
&= \mathbb{E} \left[\frac{1}{n} \log E_n \right] - \frac{1}{n} \sum_{i=1}^n \mathbb{E}[\text{leb hull}(\log e_i(C_i(X_i)))] \\
&\quad - \frac{r}{n} \sum_{i=1}^n \mathbb{E} [h_i(\eta_i) \text{Err}(C_i)] - \frac{r}{n} \sum_{i=1}^n \mathbb{E} [|1 - \eta_i| |\inf e_i(C_i(X_i)) - 1|]. \quad \square
\end{aligned}$$

B ADDITIONAL RESULTS

B.1 ALGORITHMS ATOP E-VALUES

Beyond simple hypothesis testing, e-values can also be used as components of larger inference procedures. Notable examples include e-value-based confidence intervals/sequences, multiple testing procedures, as well as more involved examples such as change-point detection (Shin et al., 2022; Shekhar & Ramdas, 2023), test-time adaptation (Bar et al., 2024) and more. Generally speaking, by simply replacing the e-values in these predictions with our conformal prediction-powered e-values we obtain prediction-powered versions of our procedures, while retaining validity.

Formally, we a family of e-values $(E^{(\gamma)})_{\gamma \in \Gamma}$ indexed over Γ , and have an algorithm $\mathcal{A}((E^{(\gamma)})_{\gamma \in \Gamma})$ that operates atop this family. This algorithm comes endowed with some notion of validity, which should depend crucially on the validity of the underlying e-values:

Assumption B.1. If for all $\gamma \in \Gamma$, $E^{(\gamma)}$ is a valid e-value, then the algorithm $\mathcal{A}((E^{(\gamma)})_{\gamma \in \Gamma})$ is valid.

It then easily follows that, as long as the boundedness assumptions for the conformal prediction-powered e-values are satisfied, simply replacing the e-values with their conformal prediction-powered counterparts retains validity, while generally enhancing power:

Proposition B.2. Suppose that for all $\gamma \in \Gamma$, $(E_0^{(\gamma)}, E_1^{(\gamma)}, \dots)$ forms a test supermartingale. Then $\mathcal{A}((E^{\text{ppi-}(\gamma)})_{\gamma \in \Gamma})$ is valid.

Proof. By Proposition 2.8 (Proposition 2.8 in the main text), for every $\gamma \in \Gamma$, $E^{\text{ppi-}(\gamma)}$ is a test supermartingale. Thus they are all valid e-values, making the procedure atop the conformal e-values valid. \square

We can also quantify the power of the procedure, but this generally requires us to consider the specifics of the algorithm over the e-values.

A special case worth highlighting is that of confidence sequences. We want to infer a parameter $\theta^* \in \Theta$, and have a family of e-values $(E_n^{(\theta)})_{\theta \in \Theta}$. We then produce a confidence set via the following algorithm, for some significance level α :

$$\mathcal{A}((E_n^{(\theta)})_{\theta \in \Theta}) := \left\{ \theta \in \Theta : E_n^{(\theta)} \leq 1/\alpha \right\}. \quad (7)$$

It then follows:

1242 **Proposition B.3.** $\mathcal{A}((E_n^{\text{ppi}-(\theta)})_{\theta \in \Theta})$ is an anytime-valid confidence sequence for θ^* . I.e.,

$$1244 \quad \mathbb{P}[\forall t, \theta^* \in \mathcal{A}((E_n^{\text{ppi}-(\theta)})_{\theta \in \Theta})] \geq 1 - \alpha.$$

1246 *Proof.* Because each $E_n^{(\theta)}$ is valid, we get that each $E_n^{\text{ppi}-(\theta)}$ is also valid. Then, using Ville's
1247 inequality:

$$1248 \quad \mathbb{P}[\forall t, \theta^* \in \mathcal{A}((E_n^{\text{ppi}-(\theta)})_{\theta \in \Theta})] = 1 - \mathbb{P}[\exists t \text{ such that } \theta^* \notin \mathcal{A}((E_n^{\text{ppi}-(\theta)})_{\theta \in \Theta})] \\ 1249 \quad = 1 - \mathbb{P}[\exists t \text{ such that } E_n^{\text{ppi}-(\theta^*)} > 1/\alpha] \\ 1250 \quad \geq 1 - \alpha. \quad \square$$

1253 B.2 ESTIMATION IN HIGHER DIMENSIONS

1255 We state here a multi-dimensional version of Lemma 2.1 (Lemma 2.1 in the main text). The re-
1256 maining results follow analogously, as long as one uses multivariate confidence intervals where
1257 necessary.

1258 Here, we take $\phi : \mathcal{Y} \rightarrow \mathbb{R}^d$, and let $\{e_1, \dots, e_d\}$ be an orthonormal basis for \mathbb{R}^d (e.g. the canonical
1259 basis). Then:

1260 **Lemma B.4.** Let $C : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$ be a set predictor and suppose that $\langle \phi(Y), e_j \rangle \in [a_j, b_j]$ for every
1261 $j = 1, \dots, d$ almost surely; let $M = \sum_{i=1}^d (b_j - a_j)$. Then

$$1263 \quad \mathbb{E} \left[\sum_{i=1}^d e_j \inf \langle \phi(C(X)), e_j \rangle \right] - M \text{Err}(C) \leq \mathbb{E}[\phi(Y)] \leq \mathbb{E} \left[\sum_{i=1}^d e_j \sup \langle \phi(C(X)), e_j \rangle \right] + M \text{Err}(C).$$

1266 *Proof.* First, note that

$$1268 \quad \mathbb{E}[\phi(Y)] = \mathbb{E} \left[\sum_{j=1}^d e_j \langle \phi(Y), e_j \rangle \right] = \sum_{j=1}^d e_j \mathbb{E}[\langle \phi(Y), e_j \rangle]. \quad (8)$$

1271 Now, for each $j = 1, \dots, d$, by Lemma 2.1 (Lemma 2.1 in the main text),

1273 $\mathbb{E}[\inf \langle \phi(C(X)), e_j \rangle] - (b_j - a_j) \text{Err}(C) \leq \mathbb{E}[\langle \phi(Y), e_j \rangle] \leq \mathbb{E}[\sup \langle \phi(C(X)), e_j \rangle] + (b_j - a_j) \text{Err}(C);$
1274 plugging this back into Equation 8, we get the desired bounds. \square

1276 B.3 EMPIRICAL RESULTS ON THE IMPACT OF THE PREDICTIVE MODEL

1278 For the purpose of conducting controlled experiments, we generate synthetic data from a simple
1279 statistical model following

$$1280 \quad Y = \beta^T X + \epsilon, \quad X \sim \mathcal{N}(0, 10I_{5 \times 5}), \quad \epsilon \sim \mathcal{N}(\mu, \sigma^2),$$

1282 for fixed coefficients β sampled from a $\mathcal{N}(0, I_{5 \times 5})$; for our predictive model, we use

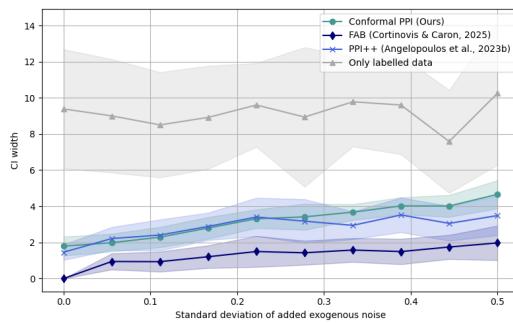
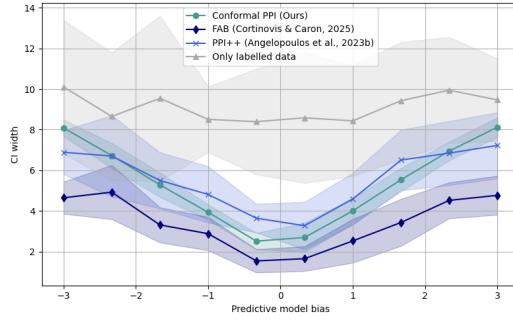
$$1283 \quad \hat{Y} = \beta^T X,$$

1285 and conformalize with the absolute residual score.

1286 This allows us to freely tweak the values of σ^2 (corresponding to exogenous noise) and μ (corre-
1287 sponding to bias of the predictive model). For all results below, we consider the task of inferring the
1288 median of Y via Z-estimation.

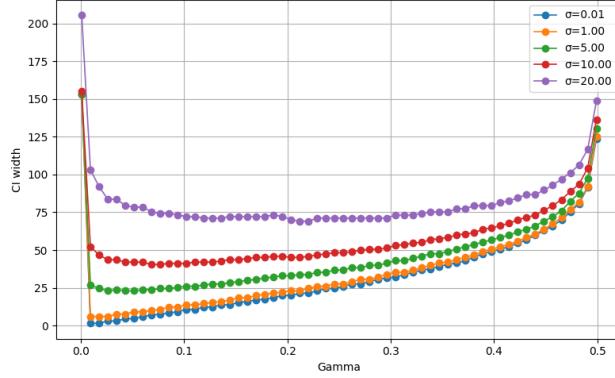
1289 Figure 4 shows the interval widths of our method and baselines over varying values of σ^2 . We
1290 see that for relatively small amounts of exogenous noise we have results akin to those presented in
1291 Figure 1 in the main text; but, as the noise grows our method becomes less efficient, mainly due to
1292 the unavoidable growth of the conformal predictive sets.

1294 In Figure 5 we see the interval widths of our method and baselines over varying choices of μ . Again,
1295 for low levels bias (i.e., μ is close to zero) our findings are similar to that of Figure 1; but, as the bias
1296 increases our method degrades.

Figure 4: CI widths over varying levels of exogenous noise σ^2 .Figure 5: CI widths over varying levels of bias μ .

B.4 CHOICE OF γ

We analyze the sensitivity of confidence interval widths to the target miscoverage γ using the data generating process described in Appendix B.3. As illustrated in Figure 6, the impact of γ is intrinsically linked to the model’s accuracy (governed here by the amount of exogenous noise, σ). For highly predictive models (low σ), decreasing γ leads to a steady reduction in interval width, up until the point at which the conformal predictive sets degenerate (due to the calibration set size). Conversely, in high-noise regimes where the model lacks predictive power, the intervals become wide for low γ ; in these cases, the trade-off shifts, and increasing γ becomes advantageous. This empirical behavior aligns with the theoretical bounds established e.g. in Proposition 2.4.

Figure 6: Sensitivity of CI widths to the choice of γ , across varying levels of exogenous noise σ .

1350
1351

B.5 POWER AS A FUNCTION OF THE NUMBER SAMPLES

1352
1353
1354
1355
1356

We provide here a result characterizing the width of our confidence intervals in terms of the number of unlabelled and labelled samples. This requires the choice of (i) a specific conformal calibration method; (ii) a method to produce the one-sided mean confidence intervals over the unlabelled samples. For tractability, we will also consider a specific well-specified predictive model: concretely, we assume that

1357

1358

$$Y = f(X) + \epsilon, \quad \text{for } \epsilon \sim \text{Uniform}(-\delta, +\delta), \quad (9)$$

1359
1360
1361

and take f as our predictive model. This will allow us to precisely quantify the size of the conformal predictive sets. For the one-sided mean CIs, we will consider Hoeffding CIs due to their closed-form size formula.

1362

1363

We then have the following result:

1364
1365
1366

Proposition B.5. *Under the data-generating process in Equation 9, using split conformal prediction with score $s(x, y) = |f(x) - y|$ and target miscoverage $\gamma \geq 1/(1 + n_{\text{cal}})$, and using our procedure described in Section 2.1 with $\phi(z) = z$, we have*

1367
1368
1369

$$\mathbb{E}[\text{leb } \widehat{C}_{\alpha}^{(\mathbb{E}\phi)}] = 2\delta + 2(M - \delta)\gamma + 2M \sqrt{\frac{\log 2/\alpha}{2n_{\text{test}}}},$$

1370
1371

where the expectation is with relation to both the calibration and test sets. Taking the optimal choice of γ for this data generating process, we obtain

1372
1373
1374

$$\mathbb{E}[\text{leb } \widehat{C}_{\alpha}^{(\mathbb{E}\phi)}] = 2\delta + \frac{2(M - \delta)}{n_{\text{cal}} + 1} + 2M \sqrt{\frac{\log 2/\alpha}{2n_{\text{test}}}} = 2\delta + O(1/n_{\text{cal}}) + O(1/\sqrt{n_{\text{test}}}).$$

1375
1376

Proof. By Proposition 2.4,

1377
1378
1379

$$\begin{aligned} \mathbb{E}[\text{leb } \widehat{C}_{\alpha}^{(\mathbb{E}\phi)}] &= \mathbb{E}[\text{leb hull}(\phi(C(X)))] + 2M\gamma \\ &\quad + (\mathbb{E}[\inf \phi(C(X))] - \mathbb{E}[\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)}]) + (\mathbb{E}[\widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)}] - \mathbb{E}[\sup \phi(C(X))]). \end{aligned}$$

1380
1381
1382

Let us start by characterizing $C(X)$. Split conformal prediction with our score gives it the form

1383
1384
1385
1386

$$C(x) = \{y \in \mathcal{Y} : |f(x) - y| \leq t_{\gamma}\} = [f(x) - t_{\gamma}, f(x) + t_{\gamma}],$$

where

$$\begin{aligned} t_{\gamma} &= \text{quantile}_{(1-\gamma)(1+n_{\text{cal}}^{-1})}(|f(X_1) - Y_1|, \dots, |f(X_{n_{\text{cal}}}) - Y_{n_{\text{cal}}}|) \\ &= \text{quantile}_{(1-\gamma)(1+n_{\text{cal}}^{-1})}(|\epsilon_1|, \dots, |\epsilon_{n_{\text{cal}}}|), \end{aligned}$$

1387
1388
1389
1390
1391

assuming $(1 - \gamma)(1 + n_{\text{cal}}^{-1}) \leq 1$.

Now, since $\epsilon \sim \text{Uniform}(-\delta, +\delta)$, we have $|\epsilon|/\delta \sim \text{Uniform}(0, 1)$. Then the quantile corresponds to the $(1 - \gamma)(n_{\text{cal}} + 1)$ -th order statistic, which for $|\epsilon|/\delta$ has distribution $\text{Beta}((1 - \gamma)(n_{\text{cal}} + 1), \gamma(n_{\text{cal}} + 1))$. So we have

1392
1393

$$\mathbb{E}[\text{leb hull} C(x)] = \mathbb{E}[2t_{\gamma}] = 2\delta \frac{(1 - \gamma)(n_{\text{cal}} + 1)}{(1 - \gamma)(n_{\text{cal}} + 1) + \gamma(n_{\text{cal}} + 1)} = 2\delta \frac{(1 - \gamma)(n_{\text{cal}} + 1)}{n_{\text{cal}} + 1} = 2\delta(1 - \gamma).$$

1394

For the remaining terms, it follows:

1395
1396

$$\begin{aligned} \mathbb{E}[\inf \phi(C(X))] - \mathbb{E}[\widehat{L}_{\alpha/2}^{(\mathbb{E}\phi)}] \\ = \mathbb{E}[\inf \phi(C(X))] - \mathbb{E}\left[\frac{1}{n_{\text{test}}} \sum_{i=1}^{n_{\text{test}}} \inf \phi(C(X_i)) - M \sqrt{\frac{\log 2/\alpha}{2n_{\text{test}}}}\right] = M \sqrt{\frac{\log 2/\alpha}{2n_{\text{test}}}}; \end{aligned}$$

1400
1401

similarly, we obtain

1402
1403

$$\widehat{U}_{\alpha/2}^{(\mathbb{E}\phi)} - \mathbb{E}[\sup \phi(C(X))] = M \sqrt{\frac{\log 2/\alpha}{2n_{\text{test}}}}.$$

1404 Putting everything together, we get
 1405

$$\begin{aligned}\mathbb{E}[\text{leb } \widehat{C}_\alpha^{(\mathbb{E}\phi)}] &= 2\delta(1 - \gamma) + 2M\gamma + 2M\sqrt{\frac{\log 2/\alpha}{2n_{\text{test}}}} \\ &= 2\delta + 2(M - \delta)\gamma + 2M\sqrt{\frac{\log 2/\alpha}{2n_{\text{test}}}}.\end{aligned}$$

1411 It must hold that $M \geq \delta$, so this is minimized for the lowest possible γ , given by $1/(n_{\text{cal}} + 1)$. This
 1412 yields
 1413

$$\mathbb{E}[\text{leb } \widehat{C}_\alpha^{(\mathbb{E}\phi)}] = 2\delta + \frac{2(M - \delta)}{n_{\text{cal}} + 1} + 2M\sqrt{\frac{\log 2/\alpha}{2n_{\text{test}}}} = 2\delta + O(1/n_{\text{cal}}) + O(1/\sqrt{n_{\text{test}}}). \quad \square$$

1417 B.6 INFERENCE OF UNBOUNDED MEANS

1419 In Section 2.1 we outline a simple procedure for the prediction-powered inference of the mean of
 1420 a bounded random variable. In this appendix, we'll show how we can leverage our procedure for
 1421 e-values (Section 2.3) for the prediction-powered inference of the mean of an unbounded random
 1422 variable. The key observation is that we can construct bounded e-values for the estimation of means
 1423 from unbounded data with a test supermartingale structure, as we demonstrate below.

1424 As with most e-value-based procedures, we will derive the method for testing a null hypothesis
 1425 $H_0^{(\theta)} : \mathbb{E}[Y] = \theta$, but note that confidence intervals can be obtained by simply inverting the test (i.e.,
 1426 producing the CI $\{\theta \in \mathbb{R} : H_0^{(\theta)} \text{ is not rejected}\}$). Let E_n be an e-value for $H_0^{(\theta)}$. There are many
 1427 possible choices; for example, consider the Hoeffding-like e-value of (Waudby-Smith & Ramdas,
 1428 2020),

$$E_n := \prod_{i=1}^n \exp\left(\lambda_i(Y_i - \theta) - \frac{\lambda_i^2 \sigma^2}{2}\right) \quad \text{for some predictable sequence } \lambda_i \in \mathbb{R}; \quad (10)$$

1432 This is easily seen to be a valid test supermartingale for any σ -sub-Gaussian distribution:

1433 **Proposition B.6.** *The random variable E_n is a test supermartingale for $H_0^{(\theta)}$, for any σ -sub-
 1434 Gaussian data distribution.*

1436 *Proof.* Assume the null $H_0^{(\theta)}$, i.e., $\theta = \mathbb{E}[Y]$. Then $E_0 = 1$ by construction; so we just need to show
 1437 that E_n is a supermartingale. Indeed, at any step n ,

$$\begin{aligned}\mathbb{E}[E_n \mid \mathcal{F}_{n-1}] &= \mathbb{E}[E_{n-1} \cdot \exp(\lambda_n(Y_n - \theta) - \lambda_n^2 \sigma^2/2) \mid \mathcal{F}_{n-1}] \\ &= E_{n-1} \cdot \mathbb{E}[\exp(\lambda_n(Y_n - \theta) - \lambda_n^2 \sigma^2/2) \mid \mathcal{F}_{n-1}];\end{aligned}$$

1441 Now, since the data is σ -sub-Gaussian, it holds (by definition) that $\mathbb{E}[\exp(\lambda(Y_n - \mathbb{E}[Y_n]))] \leq$
 1442 $\exp(\lambda^2 \sigma^2/2)$ for any $\lambda \in \mathbb{R}$, and so

$$\begin{aligned}E_{n-1} \cdot \mathbb{E}[\exp(\lambda_n(Y_n - \theta) - \lambda_n^2 \sigma^2/2) \mid \mathcal{F}_{n-1}] \\ = E_{n-1} \cdot \mathbb{E}[\exp(\lambda_n(Y_n - \theta)) \mid \mathcal{F}_{n-1}] / \exp(\lambda_n^2 \sigma^2/2) \leq E_{n-1} \cdot 1 = E_{n-1}. \quad \square\end{aligned}$$

1446 Sans sub-Gaussianity, one can appeal to more heavy-tailed assumptions (cf. e.g. (Waudby-Smith &
 1447 Ramdas, 2020; Howard et al., 2018)), or appeal to central limit theory (e.g., Waudby-Smith et al.
 1448 (2021)).

1449 While E_n is not itself bounded, we can truncate it at any $B > 0$ and rescale it about 1 without losing
 1450 validity. To be precise:

1451 **Proposition B.7.** *For any $B > 0$ and $0 > R > 1$, the process*

$$E_n := \prod_{i=1}^n \text{rescale}_R\left(\min\left\{\exp\left(\lambda_i(Y_i - \theta) - \frac{\lambda_i^2 \sigma^2}{2}\right), B\right\}\right), \quad \text{for some predictable sequence } \lambda_i \in \mathbb{R},$$

1456 with $\text{rescale}_R(e) = 1 + R \cdot (e - 1)$, is (i) a valid test supermartingale for $H_0^{(m)}$ for any σ -sub-
 1457 Gaussian data distribution, and (ii) such that the components of the product over $i = 1, \dots, n$ are
 all bounded in $[1 - R, 1 + R \cdot (B - 1)] \subset \mathbb{R}_{>0}$.

1458 *Proof.* To show that it is a valid test supermartingale: $E_0 = 1$ by construction. So again it suffices
 1459 to show that E_n is a supermartingale under the null. To this end, for any step n :

$$\begin{aligned} 1461 \mathbb{E}[E_n | \mathcal{F}_{n-1}] &= \mathbb{E}[E_{n-1} \cdot \text{rescale}_R(\min \{\exp(\lambda_n(Y_n - \theta) - \lambda_n^2 \sigma^2/2), B\}) | \mathcal{F}_{n-1}] \\ 1462 &= E_{n-1} \cdot \mathbb{E}[\text{rescale}_R(\min \{\exp(\lambda_n(Y_n - \theta) - \lambda_n^2 \sigma^2/2), B\}) | \mathcal{F}_{n-1}] \\ 1463 &= E_{n-1} \cdot (1 + R(\mathbb{E}[\min \{\exp(\lambda_n(Y_n - \theta) - \lambda_n^2 \sigma^2/2), B\} | \mathcal{F}_{n-1}] - 1)) \\ 1464 &\leq E_{n-1} \cdot (1 + R(\mathbb{E}[\exp(\lambda_n(Y_n - \theta) - \lambda_n^2 \sigma^2/2) | \mathcal{F}_{n-1}] - 1)) \\ 1465 &\leq E_{n-1} \cdot (1 + R(1 - 1)) = E_{n-1}, \\ 1466 \end{aligned}$$

1467 where the last inequality follows as in Proposition B.6.

1468 Boundedness follows immediately from simple computation: $\min\{\exp(\cdot), B\} \in [0, B]$ surely, and
 1469 plugging this into $\text{rescale}_R(\cdot)$ (which is increasing) gives the enunciated bounds. \square

1470 With this, we have a valid test supermartingale for the null $H_0^{(\theta)}$ which is bounded, and thus our
 1471 procedure in Section 2.3 can be directly applied.

1472 C EXPERIMENT DETAILS

1473 *Remark C.1* (On solving for the CI bounds in Z- and M-estimation). For most Z-estimation
 1474 problems (and M-estimation problems, once reduced to Z-estimation form) and one-sided mean CIs, the
 1475 estimated bounds \hat{L} and \hat{U} on the influence function $\psi(y; \theta)$ are increasing in θ . With this in mind,
 1476 the inversion of the mean estimation bounds to produce our CIs can be done via standard bracketing
 1477 and bisection procedures, guaranteeing correctness.

1478 C.1 PHISHING URL DATASET: MEAN ESTIMATION

1479 **Dataset and split.** We employ the numeric subset of the [Phishing URL](#) corpus (Mohammad &
 1480 McCluskey, 2012), containing $N = 235\,795$ labelled examples. The target parameter is the prevalence
 1481 $\theta^* = \mathbb{E}[Y]$ of phishing URLs. For every seed $s \in \{0, \dots, 99\}$ we create an independent
 1482 **train/calibration/test** split as follows:

$$1483 \text{train} = 99.5\% \text{ (234\,616 samples)}, \quad \text{calibration} = 300, \quad \text{test} = 879.$$

1484 The training labels are used solely to fit the predictive model; test labels are discarded.

1485 **Predictive model.** An XGBoost classifier (default hyper-parameters, evaluation metric
 1486 `logloss`) is trained on the numerical features of the training set:

1487

```
model = xgb.XGBClassifier(eval_metric="logloss")
model.fit(X_tr, Y_tr)
```

1488 **Conformity score.** Let $\hat{p}(x)$ be the model's predicted probability that $Y = 1$. For $(x, y) \in \mathcal{C}$
 1489 (calibration set) we use the conformity score

$$1490 s(x, y) = \begin{cases} \hat{p}(x), & y = 0, \\ 1 - \hat{p}(x), & y = 1. \end{cases}$$

1491 The miscoverage tolerance is $\text{err} = 1.01/|\mathcal{C}|$. The $(1 - \text{err})$ -quantile of $\{s_i\}_{i \in \mathcal{C}} \cup \{+\infty\}$ yields
 1492 the threshold t , from which we construct the prediction set $C(x) = \{0\}$ if $\hat{p}(x) \leq t$; $C(x) =$
 1493 $\{1\}$ if $1 - \hat{p}(x) \leq t$; $C(x) = \{0, 1\}$ otherwise.

1494 **Confidence-interval methods.** All intervals are built at significance level $\alpha = 0.01$ with a CLT-
 1495 based constructor and target range $M = 1$.

1496 For each seed we record the interval width with are reported in Figure 1(b). The full implementation
 1497 is available at [supplementary/experiment1/mean_estimation.py](#).

1512
1513

C.2 GENE EXPRESSION DATASET: MEDIAN ESTIMATION

1514
1515
1516
1517

Dataset and split. In this experiments we focus on estimating the median of gene expression levels induced by yeast promoters sequences, we have access to labelled data and a transformer model from (Vaishnav et al., 2022), containing $N = 61\,150$ labelled examples. For every seed $s \in \{0, \dots, 99\}$ we create an independent **calibration/test** split as follows:

1518
1519

$$\text{calibration} = 10, \quad \text{test} = 61140.$$

1520
1521

Conformity score. For $(x, y) \in \mathcal{C}$ (calibration set) we use the conformity score

1522

$$s(x, y) = |y - f(x)|,$$

1523
1524

where $f(x)$ is the output of our pre-trained model.

1525
1526

The specified miscoverage level for conformal prediction is $\text{err} = 1.01/|\mathcal{C}|$. The $(1 - \text{err})$ -quantile of $\{s_i\}_{i \in \mathcal{C}} \cup \{+\infty\}$ yields the threshold t , from which we construct the prediction set:

1527
1528

$$C(x) = (f(x) - t, f(x) + t).$$

1529
1530

Confidence-interval methods. All intervals are built at significance level $\alpha = 0.01$ with a CLT-based constructor and target range $M = 1$.

1531
1532

The full implementation is available at `supplementary/experiment1/quantile_estimation.py`.

1533
1534

C.3 SECTION 3.2 IN THE MAIN TEXT

1535
1536
1537
1538
1539
1540
1541

We use the dataset from (Borzooei & Tarokhian, 2023), which has 383 observations. We split 60% of these for statistical inference with our method; the remaining 40% are split into a training set (70%) and a testing set (30%). On the training set, we train an XGBoost model with default hyperparameters. On the test set, we calibrate a conformal predictor using the same conformity score we have used for classification, first with usual split conformal prediction and then with the differentially private conformal prediction method of (Angelopoulos et al., 2021). For the conformal calibrations, we use a target coverage of 2.5%.

1542
1543

The full implementation is available at `supplementary/experiment2/diff_priv.py`

1544
1545

C.4 SECTION 3.3 IN THE MAIN TEXT

1546
1547
1548
1549
1550
1551
1552

Data, split and models We use the dataset on forest cover type prediction of (Blackard, 1998). This dataset has $N = 581\,012$ samples. We then split 60% of the data for training and validating our model: 75% (261 455) of that goes to training a Random Forest classifier and 25% (87 152) to estimating a validation 0-1 loss. The remaining 40% (232 405) of the data is used for our online risk monitoring (but only the first 100 000 of these are shown in the plot). Also on the validation set we train a residual model to predict the probability of whether the model made a correct prediction (i.e., predict the conditional 0-1 loss).

1553
1554
1555
1556
1557
1558

We setup two data streams: one unmodified, and another increasingly poisoned to simulate a harmful distribution shift. For this poisoning, at each point we flip a coin with probability $((t + 1)/5 + 0.1)^2 \mathbb{1}[t \geq 20\%]$, where $t \in [0, 1]$ indicates how far along in the experiment we are. If this coin falls heads (which can only happen after $t \geq 20\%$), then instead of using the real data we swap for a randomly chosen sample from a problematic set. This problematic set of samples is determined by those that our residual model predicts as at least 50% likely to be incorrect.

1559
1560
1561
1562
1563

Online conformal prediction For conformal prediction, we use the same score as in the prior classification tasks, over our residual model. For the online conformal prediction method of (Angelopoulos et al., 2024) we use as hyperparameters $\epsilon = 0.3$ with an initial step size of 1.0, targeting a coverage of 0.1%.

1564
1565

E-value & approximately log-optimal choice of the η_i s Our base e-value is given by

$$e_i((X_i, Y_i)) := 1 + \lambda_i (\mathbb{1}[f(X_i) \neq Y_i] - (\text{ValRisk} + \epsilon_{\text{tol}})),$$

1566 with λ_i a predictable sequence of bets bounded in $(0, 1/(\text{ValRisk} + \epsilon_{\text{tol}}))$. When introducing the
 1567 conformal prediction-powered modification, the overall e-values becomes
 1568

$$1569 \prod_{i=1}^n (1 + \eta_i (\lambda_i (\mathbb{1}[f(X_i) \neq Y_i] - (\text{ValRisk} + \epsilon_{\text{tol}})) - (b_i - a_i) \text{Err}(C_i))) .$$

1572 For the sake of simplicity, we take $\lambda_i = \eta_i$ at all steps. These η_i s are derived using an analogue of
 1573 the aGRAPA criterion of (Waudby-Smith & Ramdas, 2020), meaning that we solve the first order
 1574 optimality condition of the growth rate using a first-order Taylor approximation for $h(t) = 1/(1+t)$.
 1575 The resulting η_i s are given by

$$1576 \eta_i = \frac{\hat{\mu}_i - (\text{ValRisk} + \epsilon_{\text{tol}}) - (b_i - a_i) \text{Err}(C_i)}{\hat{\sigma}_i^2 + (\hat{\mu}_i - (\text{ValRisk} + \epsilon_{\text{tol}}) - (b_i - a_i) \text{Err}(C_i))^2},$$

1579 where $\hat{\mu}$ and $\hat{\sigma}^2$ are estimates of the mean and variance of the conformal imputations, respectively;
 1580 we do these via exponentially weighted moving averages with $\alpha = 0.01$ in order to handle the
 1581 non-i.i.d. structure.

1582 The full implementation is available at `supplementary/experiment3/evals.py`

1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619