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Abstract

Efficient encoding and representation of large 3D molecular structures with
high fidelity is critical for biomolecular design applications. Despite this,
many representation learning approaches restrict themselves to modeling
smaller systems or use coarse-grained approximations of the systems, for
example modeling proteins at the resolution of amino acid residues rather
than at the level of individual atoms. To address this, we develop quan-
tized auto-encoders that learn atom-level tokenizations of complete pro-
teins, RNA and small molecule structures with reconstruction accuracies
well below 1 Angstrom. We demonstrate that a simple Mamba state space
model architecture is efficient compared to an SE(3)-invariant IPA architec-
ture, reaches competitive accuracies and can scale to systems with almost
100,000 atoms. The learned structure tokens of bio2token may serve as the
input for all-atom generative models in the future. Our implementation is
available at https://github.com/flagshippioneering/bio2token.

1 Introduction

Background. Biomolecular structures can be represented as 3D point clouds, where each
point corresponds to a chemical entity such as an atom, functional group, or molecular
subunit. Generative modeling of these structures, especially for large biomolecules, often
employs coarse-grained representations to manage complexity. Methods like denoising
diffusion probabilistic models (DDPMs) and language models generate structures at
varying levels of detail, from atoms to residues. While DDPMs have been applied to
atomistic conformers (Hoogeboom et al., 2022) and protein-ligand design (Schneuing
et al., 2022), scaling them to large proteins remains computationally challenging. Models
like RFDiffusion-All-atom address this by diffusing only the protein backbone and recon-
structing side chains separately (Krishna et al., 2024; Dauparas et al., 2022). Similarly,
language models like ESM-3 (Hayes et al., 2024) rely on residue-level representations but
still struggle with large proteins and complexes.

Achieving atomic-resolution modeling for large molecules requires reasoning over long-range
interactions in sequence space, a challenge for traditional architectures like transformers and
graph models. To address this, we leverage Mamba (Gu & Dao, 2023), a structured state-
space model designed for long-context modeling, replacing transformer modules in structure
tokenizers to enable efficient all-atom representations. Mamba has demonstrated scalability
to tasks involving thousands to millions of tokens on standard GPU hardware.

3D structure tokenization for generative modeling. Turning 3D structures into
discrete 1D sequences for generative language modeling, discrete diffusion or other
downstream task has become a popular approach to biomolecular modeling. FoldSeek
introduced the ”3Di” structural interaction alphabet to convert three-dimensional pro-
tein backbone structures into one-dimensional sequences, facilitating faster structural
alignment (van Kempen et al., 2022). Neural network-based quantized auto-encoders
(QAEs) (Van Den Oord et al., 2017) have since been employed to learn 3D structure
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tokenizers. ESM-3 utilizes a transformer-based QAE that encodes residue-level backbones
and decodes to all-atom structures, with training limited to proteins with fewer than 512
residues and using a 600M parameters transformer model. FoldToken (Gao et al., 2024)
and InstaDeep (Gaujac et al., 2024) also use QAEs with transformer and graph neural
network architectures, respectively, focusing on residue-level tokenization but limited to
backbone reconstruction. Alphafold-3 (AF-3) (Abramson et al., 2024) generates all-atom
structures using a token-guided diffusion network. For small molecules, approaches include
one-hot encoding of coordinate digit strings (Flam-Shepherd & Aspuru-Guzik, 2023; Zholus
et al., 2024) and SE(3)-invariant QAEs like Geo2Seq (Li et al., 2024) and MolStructTok
(Anonymous, 2024). Prior work predominantly relies on QAEs with various architectures
and features, incorporating symmetries through structural features or invariant point
attention. In contrast, our method uses neither engineered SE(3)-invariant features nor
does it employ invariant network architectures.

In this work we present a simple, lightweight, and compute efficient Mamba-based structure
tokenizer that converts 3D point clouds into 1D discrete tokens. We train small molecule-
only, protein-only, and RNA-only vocabularies mol2token, protein2token and rna2token.
We also train a unified tokenizer bio2token that encodes any of those biomolecules, ranging
from tens to tens of thousands of atoms, that would be challenging for transformer-based
methods to scale too.

1.1 Background: Transformers, State space models, and Mamba

Transformer. Transformers (Vaswani, 2017) use the attention mechanism to capture
long-range dependencies in sequences. The attention mechanism has the update rule:

y = M(x)x, (1)

where x is the input sequence, y is the latent representation, and M(x) =
softmax

(
Q(x)K(x)T

)
is the attention matrix. This matrix multiplication formula-

tion makes attention ideal for GPU processing. However, since M(x) is generally dense
and full-rank, transformers suffer from O(N2) compute and memory costs with respect to
sequence length N .

Mamba. Recent alternatives such as deep structured state space models (SSM) (Gu
et al., 2021; Gu & Dao, 2023; Dao & Gu, 2024) have gained traction in the field of
sequence modeling thanks to their ability to overcome the quadratic bottleneck and scale
to extremely long context lengths. The basic linear time-invariant (LTI) SSM is a linear
recurrent neural network (RNN) with the update rule:

ht = Aht−1 +Bxt, yt = Cht, (2)

where x and y are the input and output sequences, respectively, h is the RNN state, and
A,B,C are learnable parameters. The recent Mamba SSM generalizes LTI SSMs to have
input-dependent parameters B(x), C(x), allowing the model to selectively attend between
token positions, much like a transformer. In fact, the SSM update can be written as an
attention-like update y = M(x)x, where M(x) = contraction(A,B(x), C(x)). Imposing
scalar-times-diagonal structure on A makes M(x) semi-separable (a form of low-rank),
enabling efficient matrix multiplication via a parallel scan.

2 Methods

Our structure tokenizer model is a QAE, as shown in Fig. 1. We represent entire biomolec-
ular systems as 3D atomic point clouds, encode atom positions into latent vectors, quantize
said vectors into tokens, and finally decode tokens back into the 3D point cloud.

Tokenizing 3D point clouds via quantization. Quantization networks learn a discrete
representation, or vocabulary, of the training data. Prior works such as ESM-3 use
vector quantization (VQ) (Gray, 1984). VQ suffers from codebook collapse and requires
auxiliary loss functions during training. Instead, we use Finite-Scalar Quantization (FSQ),
which does not require regularization terms and produces a more efficient coverage of the
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Figure 1: [A] Biomolecular system of many thousands of atoms [B] The tokenizer transforms
point clouds into tokens and then back to point clouds. [C] Implementation details of the
bidirectional Mamba layer. Following prior works, we use the flip operation to handle
bidirectionality.

codebook (Mentzer et al., 2023) via a simple rounding scheme. FSQ projects the input into
a hypercube of integer length L and dimensions D (where D < 8 usually), then rounds
to the nearest integer set {0, 1, ..., L}. The final code/token is the product of all integer
coordinates in the hypercube.

Loss function The ground truth and the decoded point clouds X and X̃ are aligned via
Umeyama-Kabsch algorithm (Lawrence et al., 2019). The loss is then the sum of the SVD-
aligned RMSE and the inter-atomic distance loss, which encourages isometry between the
ground truth and reconstructed structures:

L(X, X̃) =

√√√√ 1

n

n∑
i=1

∥xi − x̃i∥2 +

√√√√√ 1

n

∑
r

1

dr

∑
i∈Rr

∑
j∈Rr
j ̸=i

(∥xi − xj∥ − ∥x̃i − x̃j∥)2

Here, Rr is the set of atom indices in residue r, and dr is the number of pairs in r. In the
case of small molecules, this is calculated over the entire molecule.

3 Experimental Details

Datasets: An overview of all training and test data is provided in the Appendix table
2. We use the ∇2DFT dataset for small molecules; CATH 4.2, CASP14 and CASP15 for
proteins; and RNA3DB for RNA structures. We also test bio2token at inference time on
multi-chain complexes and protein-RNA complexes. Note that neither such complexes were
included in the training. See Appendix A.1 for more details about the datasets.

Architecture: Figure 1B and C gives an overview of each layer composition and full
architecture. Each layer of our encoder and decoder is a bidirectional implementation of the
original Mamba block1. We ran various hyperparameter studies on a protein2token training
with the CATH 4.2 protein dataset. We tested the effects of varying encoder and decoder
layers on the model performances in terms of RMSE and found that, given limited compute,
4 encoder layers and 6 decoder layers to work best as a trade-off between model size and
batch size. We use a codebook size of 4096, which is in line with other published structure
tokenizers. Additional details on the effect of the number of encoder layers, compressibility
of tokens, and other architectural ablations are provided in Appendix A.3.

1The Mamba block contains two branches; the selective SSM branch with a linear projection,
followed by a one-dimensional convolutional layer and a nonlinear activation; and the skip connec-
tion branch that is a linear projection followed by a non-linear activation. This is directly imported
from the implementation of (Gu & Dao, 2023)
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Figure 2: Ground truth molecules in green and reconstructions in blue. Ground truth
molecules are transparent in the ball-and-stick panels. Visuals prepared with Mol* (Sehnal
et al., 2021) (A), (B), and (C) are reconstructions of a small molecule by mol2token, RNA-
protein complex by bio2token, and multi-chain RNA complex by bio2token, respectively.
(D) neighborhood of residue on loop of 3WBM found near center of coordinate space (E)
close up of RNA helix of 3WBM (F) Example of errors found near edge of coordinate space.

4 Results

Table 1 summarizes the results of bio2token on all test sets. A more detailed version
with separate analysis on back-bones and side-chains as well as the numeric results for
the domain-specific tokenizers mol2token, protein2token, and rna2token, and their out-of-
domain performance are provided in the Appendix tables 6, 7 and 8. Fig. 3 visualizes
all reconstruction RMSEs on all biomolecular test sets with in-domain, out-of-domain and
all-domain (bio2token) tokenizers.

Best Model Test-set RMSE ± std (95% CI) [Å] Validity Test

Mol2Token on
small molecules

test-conformers
test-structure
test-scaffolds

0.2±0.04 (0.01)
0.2± 0.04 (0.01)
0.2± 0.04 (0.01)

41.7%

Bio2token on
proteins

CATH4.2 test
CASP14
CASP15

0.56±0.06 (0.01)
0.58±0.10 (0.02)
0.59± 0.11 (0.02)

TMprot: 0.98±0.01
TMprot: 0.99±0.01
TMprot: 0.98±0.02

Bio2token on RNA RNA3DB-test 0.66± 0.21 (0.01) TMRNA-score: 0.96 ± 0.12

ESM-3 Tokenizer on
proteins

CASP14
CASP15

1.3 ± 0.2
1.7 ±0.4

–

InstaDeep on proteins PDB sub-set back-bone: 1.89 TMprot: 0.94

Table 1: Summary of the best tokenizer models: Atom-wise RMSE between the ground
truth structure point cloud and the reconstructed point cloud from the tokens. Validity
tests are described in Appendix A.5.

Small molecules: mol2token reconstructs small molecule conformers of unseen molecules
and unseen scaffold families with an average RMSE of 0.2Å versus 0.36Å for the combined
model bio2token. Fig. 2A shows a valid reconstructed conformer. from the test set on top
of the ground truth conformer. We found that 41.7% of all reconstructed molecules with
mol2token passed all of our validity metrics.

Proteins: bio2token outperforms protein2token on CASP14 and CASP15 test hold-outs
with RMSE values around 0.58Å and 0.59Å versus 0.61Å and 0.8Å . This is significantly
lower than ESM-3’s decoder reconstruction on CASP14 (1.3Å ) and 15 (1.7Å ) that infers
all-atom structure from the residue-level only encodings. InstaDeep’s back-bone tokenizer
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Figure 3: reconstruction results on all test data. Numeric values are provided in Appendix
tables 6 - 8. The combined tokenizer Bio2Token achieves competitive reconstruction against
domain-specific tokenizers for small molecules, proteins (CATH4.2, CASP14/15), and RNAs,
achieving RMSEs of 0.25-0.35 Å, 0.56-0.59 Å, and 0.6Å, respectively.

compares with a back-bone RMSE of 1.89Å to bio2token’s back-bone RMSEs of 0.52-0.55Å
across the different protein test sets. Generally the TMprot for Bio2Token are all above 0.99,
indicating that structural homology in terms of tertiary structure is highly preserved.

RNAs: bio2token reconstructs the RNA3DB test dataset with the lowest RMSE average
of 0.66Å on all atoms, compared to 0.73Å for rna2token. The largest RNA chain in the
RNA3DB test data is 8toc.R with 4,269 nucleic acids and around 90,441 atoms. Rna2token
achieves RMSE of 1.53Å on this structure, compared to Bio2token with 1.82Å.

Complexes: Here, we tested to what degree we can encode and reconstruct RNA-protein
and multi-chain complexes with the QAE, despite having never trained on them. We achieve
around 0.77 − 0.82Å for protein-RNA and multi-chain RNA complexes, which range from
3,000-15,000 atoms.

Computational efficiency: Mamba versus Invariant Point Attention (IPA) We
compare our Mamba QAE with IPA, which is the most popular choice for structural model-
ing due to its SE(3) invariance. Accuracies and run times are listed in Appendix A.3 table
5. We generally find that training protein2token with an IPA-decoder is roughly 3 times
slower than the Mamba QAE under similar hyperparameter configurations.

Insights to what Bio2Token learns: For details concerning what Bio2Token learns,
including its error distribution across different points and rotational variance, we refer the
reader to Appendix A.7.

5 Discussion and Limitations

We explored Mamba’s potential for encoding high-resolution biomolecular structures,
demonstrating that a simple Mamba-based architecture enables scaling to large biomolecules
without SE(3) invariance. Our tokenizer learns encodings across macromolecular classes at
atomic resolution, achieving reconstruction accuracies of 0.5–0.6Å, from a 4096-token vo-
cabulary. Moreover, Bio2Token scales much more favorably compared to IPA. The compa-
rable small amount of data (127,000 macromolecules in total) used in our trainings signals
that all-atom encoding might substantially enhance training efficiency, compared to more
coarse-grained encoding that lack atomistic detail, and leverages more information from the
structures. Atomistic detail is important for many biomolecular design applications – the
precise positioning of individual atoms within a protein or RNA molecule can significantly
impact its function and interactions with other molecules.

However, low RMSE alone does not ensure chemically valid reconstructions—minor coordi-
nate deviations can result in steric clashes or incorrect bonding. As shown in Fig. 2F, our
model sometimes misrepresents covalent connectivity. Future improvements could involve
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larger datasets, physics-based post-processing such as those used in Abramson et al., or
explicit structural constraints. Nonetheless, Mamba-based architectures offer a compelling
alternative to transformers for atomic-resolution biomolecular modeling. Our quantized
QAE formulation enables compatibility with language models.
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A Appendix

A.1 Datasets

Small molecules: Small molecules, typically organic molecules below a 500 Dalton weight,
are not static. At standard temperatures and pressures they take on various 3D structural
conformations, each having a specific conformational energy. We used the ∇2DFT dataset
(Khrabrov et al., 2024) of 1.9M small molecules with a total of 16M simulated structural
conformations as a source of data. This dataset provides train and test splits for multiple
levels of generalizability: a test-conformer split of unseen conformations of molecules, a
test-structure split of unseen molecules and all their conformations, and a test-scaffold split
of unseen scaffold classes of molecules and their conformations. The minimum number of
heavy atoms in this dataset is 8 and the maximum is 27.

Proteins: We prototype and run various hyperparameter studies on the CATH 4.2 dataset
of 18k protein structures from the PDB, with train-test splits on the CATH topology classi-
fications as defined by Ingraham et al. (2019). This dataset comprises proteins of 40 to 500
amino acids in length, for a minimum and a maximum of 282 and 4,173 heavy atoms. We also
tested on the CASP14 and CASP15 datasets, to compare to the values reported by ESM-3.
CASP14 and 15 structures were published after CATH4.2 and are thus not contained in 4.2.
CASP14 and 15 contain proteins up to 2,265 residues in length with the biggest structure
having 18,042 heavy atoms. To train the large bio2token model we leverage the Alphafold
database (AFDB). We use a random sub-set of 100k clusters from FoldSeek’s sequence-
structure clusters (Barrio-Hernandez et al., 2023), and collect one structure per cluster.

RNA: We train on RNA3DB, which splits the RNA structures in the PDB into sequence-
based and structural homology classes (Szikszai et al., 2024). The structures span a range
of 2 to 4,450 nucleic acids in lengths with 42 to 95,518 heavy atoms. For training efficiency,
we limit the training dataset to structures with maximum 10, 000 sequence length, but run
inference on all lengths of the test set.

Generalisation to complexes: We test bio2token at inference time on multi-chain com-
plexes and protein-RNA complexes. Note that neither multi-chain nor mixed complexes
were included in the training.

Dataset Dataset size and splits Structure size Used in

∇2DFT

train: 8.9M conformers (0.5M molecules)
test-conformer: 1.5M conformers
(1.5M molecules)
test-structure: 1.2M conformers
(176k molecules)
test-scaffold: 1.1M conformers
(177 molecules)

atoms min: 8
atoms max: 27

Mol2Token,
Bio2Token

CATH4.2

CASP14

CASP15

train: 17k structures
test + val: 1.6k structures
test: 88 structures

test: 155 structures

res/atoms min: 40/282
res/atoms max: 500/4.2k
res/atoms min: 49/401
res/atoms max: 2.2k/18k
res/atoms min: 46/341
res/atoms max: 10k/7.9k

Protein2Token,
Bio2Token

RNA3DB train: 10k structures
test: 1.4k structures

res/atoms min: 2/42
res/atoms max: 4.5k/96k

RNA2Token,
Bio2Token

AFDB
sample

train: 100k structures res/atoms min: 21/174
res/atoms max: 2.7k/22k

Bio2Token

Table 2: Summary of training and test datasets, including minimum and maximum number
of residues and atoms.

A.2 Hyperparameters and training

We train four models, all with the same number of 4 encoder and 6 decoder layers, and
a codebook size of 4096 for a total of 1.2M parameters (see section below for architecture
study details). We use the Adam optimizer (Kingma, 2014), with polynomial learning rate
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scheduler and a starting learning rate of 3e−4. Depending on the model, we use 1 or 8
NVIDIA A10 GPUs (24GB / 184GB GPU RAM). We train three biomolecule specific mod-
els, mol2token, protein2token, and rna2token, respectivily trained on the ∇2DFT dataset,
CATH4.2 dataset, and RNA3DB, and an harmonized bio2token model, trained on all three
dataset and a subset of the AFDB dataset. Additionally, we use random rotation for data
augmentation. Model specific parameters are:
mol2token: batch size=16, max seq length=64, 216k steps (44 hours), single GPU.
protein2token: batch size=16, max seq length=4160, 195k steps (68 hours), single GPU.
rna2token: effective batch size=32, max seq length=10000, 149k steps (38 hours),8 GPUs.
bio2token: effective batch size=32, max seq length= 10000, 257k steps (73 hours),8 GPUs.

A.3 Architecture studies

Effect of number of encoder blocks The encoder mixes the atom coordinates and the
degree of mixing, or ”spread” across atom positions is determined by the number of encoder
Mamba blocks and hidden state size. To quantify the spread of local information we define
the mixing radius as the number of positions that change their token id when the atom
at position i is deleted. Here, we fix the hidden state size of 128 and train QAEs with
increasing numbers of encoder blocks nenc = [2, 4, 5, 6] and find the mixing radius to be
almost linear with a best fit for a second order polynomial, see Figure 4. This relationship
is similar to what is expected from a convolution. For example 2 blocks result in a mixing
of ±2.7 positions to the left and right; and 6 blocks mix ±5.3 positions.

Figure 4: Average mixing radius of per-atom position information with increasing number
of Mamba blocks in the encoder.

Codebook size We train protein2token on the CATH4.2 dataset, with a fixed model
size. We vary codebook sizes by increasing quantization dimensions D ∈ [4, 5, 6, 7, 8] with a
fixed level of L = 4, for total codebook sizes of [256, 1024, 4096, 16348, 65536]. We find the
accuracy versus codebook size relationship to approximately follow a power law, see Fig. 5.
Ultimately, the choice of codebook size will be a trade-off between accuracy and downstream
modeling. A tokenizer with increasing vocabulary will make downstream LLM generation
harder. For the final training of bio2token we chose 4096 as our codebook size, which is in
line with other published structure tokenizers, and allows for a fair comparison.

Effect of various design choices on RMSE We conduct an ablation study to evalu-
ate the impact of additive architectural and training modifications on the performance of
the Mamba QAE. All models are trained with identical quantization hyperparameters. We
start with a baseline model consisting of 2 encoder and 4 decoder layers, and sequentially
add data augmentation through random rotation, bi-directionality, deeper encoder and de-
coder, and finally the inter-atomic distance loss. The results are presented in Table A.3.
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Figure 5: Protein2token (CATH dataset) reconstruction accuracy as a function of codebook
size.

Modifying the original encoder/decoder layer to incorporate bi-directionality and increasing
the number of layers resulted in a significant improvement, yielding a 22% reduction in
reconstruction RMSE. Further enhancing the training strategy with random rotation aug-
mentation and integrating an inter-atomic distance loss, we observe a total RMSE reduction
of 28% compared to the baseline.

Model + sequential modification RMSE (CI ±95%) Improvement (↓)

Mamba small [2 encoder / 4 decoder layers] 0.72 ± 0.01 -

+ Data augmentation [Rotation] 0.70 ± 0.01 -1.91%

+ Bi-directionality 0.61 ± 0.01 -12.89%

+ Deeper [4 encoder / 6 decoder layers] 0.55 ± 0.01 -11.13%

+ Inter-atomic distance loss 0.52 ± 0.01 -4.53%

Table 3: Ablation study of final model and training choices. Ablation is run on protein2token
training with the CATH 4.2 dataset.

Compressibility of tokens To test the compressibility of the token sequences we train
the tokenizer with an additional 1D convolutional layer before and after the quantizer net-
work (pooling after the encoder and up-sampling before the decoder). We compress with
k ∈ [1, 2, 4], to shorten the all-atom sequence of length N to N/k. RMSE increases by a
factor of 1.7 and 2.6 for the compression factors of 2 and 4 respectively. This is similar
to previously reported compressibilities for residue-level structure tokenizers (Gaujac et al.,
2024)

Table 4 below shows the the relationship between test set reconstruction RMSD and com-
pressibility factor with a codebook size of 4096. We also tested if increasing the SSM’s
hidden dimension could increase compressibility, which we found to not be the case.
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Compression D model hidden size RMSE [Å] factor of RMSE increase

1 128 0.86 —

2 128 1.49 1.7

4 128 2.22 2.6

1 1280 0.84 —

2 1280 1.45 1.7

4 1280 2.15 2.6

Table 4: Effect of compression on RMSE. Increasing the hidden dimension does not help
noticeably to recover accuracy.

A.4 Model efficiency comparisons

Computational efficiency and performance: Mamba versus IPA We train a pro-
tein2token tokenizer with a 2-layer transformer encoder and an IPA decoder with 4 re-
cyclings. Due to GPU memory constraints, training is limited to protein structures of a
maximum length of 2192 atoms, at a batch size of 1. We train an equivalent Mamba-based
protein2token with 2 encoder Mamba-blocks and 4 decoder Mamba-blocks, with a batch
size of 1 and the maximum batch size before GPU memory is exhausted, which is 32. We
find that the IPA-based QAE requires 1 sec/step, compared to 0.3sec/step for an equivalent
Mamba-based QAE. In terms of achieved validation accuracy IPA-based architecture is sig-
nificantly worse than the Mamba-based QAE with an RMSE of 2.18 versus 0.81. Likely this
is due to the ”small” number of IPA-block recycles, often 8 (instead of 4) are cited in the
literature. But this becomes prohibitive for sequences lengths of 2192. To compare at the
full capacity of the GPU hardware, we find that training for 24 hours with the Mamba-based
QAE with a maximum batch size of 32 has superior accuracy with 0.62Å.

Architecture Time [sec/step] Validation accuracy
after 24h run time [Å]

Validation accuracy
after 70k steps [Å]

Transformer encoder, IPA
decoder, batch size = 1

1.0 2.18 2.18

Mamba, batch size = 1 0.3 0.81 0.91

Mamba, batch size = 32 0.7 0.62 0.65

Table 5: Effect of compression on accuracy RMSD. Increasing the hidden state size does
not recover accuracy.

Codebook efficiency: learned versus spatial tesselation We explore how well the
trained QAEs perform relative to idealized voxel partitions and learned voronoi tesselations.
For a desired tesselation resolution a (the side length of a voxel), and a total cubic volume
of side length A (the maximum spatial extent of biomolecular structures) results in a total
number of voxels Nv = (A/a)3. To calculate the average reconstruction accuracy of a point
(atom) in a voxel, we calculate the average rmsdv to the voxel centre:

rmsdv =
8

a3

∫ a/2

0

∫ a/2

0

∫ a/2

0

√
x2 + y2 + z2dxdydz

With Monte-Carlo integration (not shown) this is approximately 0.48 × a. To tesselate a
biomolecular structure of cubic volume with a side length A and a desired average accuracy
rmsdv, a total voxel count of

Nv =

(
0.48×A

rmsdv

)3

Figure 6 plots the number of total Voronoi voxels needed to encode the 3D space of three
exemplar cubes of side length a = [10, 60, 80]Å , representative for small molecules, proteins
and RNA respectively . We center structures at zero, sample rotations and use k-means
clustering to find 4096 cluster centers that are used as the centroids of Voronoi tessela-
tions. Upon comparing these approaches we see that for the tested codebook size, the
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QAE approach achieves lower rmsdv , suggesting that it learns beyond the atom coordinate
aaddress.

Figure 6: Comparing the reconstruction error between learned tokenizers, trained with 4096
codebook size, a naive tesselation of increasing number of voxels and a k-means Voronoi
tesselation approach.
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A.5 Validity tests

Small molecule validity: We convert the heavy atom point clouds into molecules by in-
ferring covalent bonds using atom type and inter-atomic distances with OpenBabel (O’Boyle
et al., 2011). We first evaluate whether the recovered molecular system is equivalent to the
encoded structure and then evaluate bond lengths, angles, and torsion angles using the
methods described by Buttenschoen et al. (2024). We use RDKit to compute the energy
of the conformer and compare to the average energy of 25 RDKit generated conformers
(Landrum, 2013). We compute these statistics for test set ground-truth conformers and the
reconstruction to evaluate any change. A reconstruction is said to pass all tests if it passes
the tests from PoseBusters as well as produces the same molecular graph as the input.

Proteins and RNA validity: We report the template modeling score (TM-Score) be-
tween ground truth and reconstructed point clouds. It captures local and global structural
alignment and is designed to be size independent. The protein TM-score TMprot is calcu-
lated on the Cα of the amino acid back-bone (Zhang & Skolnick, 2004). The RNA TM-score
TMRNA is calculated on the C3’ of the nucleic acid back-bone (Gong et al., 2019). TM=0
means no structural similarity at all; TM=1.0 means structurally identical.

13
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A.6 Tokenizer results

Model Test-set RMSE ± std (95% CI) [Å] Validity Test

Bio2Token on
small molecules

test-conformers
test-structure
test-scaffolds

0.36±0.07 (0)
0.37± 0.07 (0)
0.36± 0.07 (0)

< 1%

Bio2Token on
proteins

CATH4.2 test

CASP14

CASP15

bb: 0.52± 0.07 (0.01)
sc: 0.59± 0.06 (0.01)
all: 0.56±0.06 (0.01)
bb: 0.54±0.10 (0.02)
sc: 0.62±0.09 (0.02)
all: 0.58±0.10 (0.02)
bb:0.55±0.12 (0.02)
sc:0.63± 0.12 (0.02)
all: 0.59± 0.11 (0.02)

TMprot: 0.98±0.01

TMprot: 0.99±0.01

TMprot: 0.98±0.02

Bio2Token on
RNA RNA3DB-test

bb: 0.66± 0.21 (0.01)
sc: 0.65 ± 0.22 (0.01)
all: 0.66± 0.21 (0.01)

TMRNA-score: 0.88 ±
0.12

ESM-3 tokenizer on
proteins

CASP14

CASP15

back-bone:0.61 ± 0.1
all: 1.3 ± 0.2
back-bone: 1.0 ± 0.3
all: 1.7 ±0.4

InstaDeep tokenizer
on proteins

self-defined test set
from the PDB

back-bone: 1.89
side-chains not modeled

TMprot: 0.94

Table 6: Bio2token results: Atom-wise RMSE between the ground truth structure point
cloud and the reconstructed point cloud from the tokens. ”bb” and ”sc” are the respec-
tive RMSEs over the back-bone and side-chain atoms in the case of proteins and RNAs.
Bio2token is unable to preserve chemical validity of small molecules and mol2token should
be used for these structures. For proteins and RNA we provide the TM-scores as a measure
of tertiary structural similarity.
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A.6.1 In-domain tokenizing

In-domain
tokenizing

Test-set rmse ± std, (95% CI) [Å] Validity Test

mol2token on
small molecules

test-conformers
test-structure
test-scaffolds

0.20± 0.04(0.01)
0.20± 0.04 (0.01)
0.20± 0.04 (0.01)

41.7% passed all
chemical validity
metrics

protein2token on
proteins

CATH4.2 test

CASP14

CASP15

bb: 0.49±0.12 (0.01)
sc:0.56±0.11 (0.01)
all: 0.53±0.12 (0.01)
bb: 0.57±0.21 (0.04)
sc: 0.65±0.21 (0.04)
all: 0.61±0.21(0.04)
bb:0.76±1.21 (0.19)
sc:0.85±1.25 (0.20)
all: 0.80±1.23 (0.19)

TMprot: 0.99±0.01

TMprot: 0.99±0.01

TMprot: 0.99±0.03

RNA2token on
RNAs

RNA3DB-test bb: 0.73±0.34 (0.02)
sc: 0.72 ±0.40 (0.02)
all: 0.73±0.39 (0.02)

TMRNA-score: 0.86 ±
0.13

ESM-3 Tokenizer on
proteins

CASP14

CASP15

back-bone:0.61 ± 0.1
all: 1.3 ± 0.2
back-bone: 1.3 ± 0.3
all: 1.7 ±0.4

InstaDeep self-defined test set
from the PDB

back-bone: 1.89
side-chains not modeled

TMprot: 0.94

Table 7: In-domain tokenizing: The reconstruction error is the atom-wise rmse between
the ground truth structure point cloud and the reconstructed point cloud from the tokens.
”bb” and ”sc” are the respective rmses over the back-bone and side-chain atoms in the case
of proteins and RNAs. Validity tests for small molecules are the chemical validity metrics
as described in the main text and for proteins and RNA we provide the TM-scores as a
measure of tertiary structural similarity
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A.6.2 Out-of-domain tokenizing

Out-of-domain
tokenizing

Test-set rmse ± std (95% CI) [Å] Validity Test

mol2token on
proteins

CATH4.2 test
CASP14
CASP15

all: 16.40± 4.07 (0.24)
all: 21.37± 10.44 (2.18)
all: 23.23± 13.95 (2.20)

TMprot: 0.13±0.04
TMprot: 0.13±0.05
TMprot: 0.13±0.06

mol2token on
RNA

RNA3DB-test all: 25.88±12.22 (0.65) TMRNA: 0.02 ±0.01

protein2token on
RNAs

RNA3DB-test all: 1.16±0.79 (0.04) TMRNA: 0.81 ±0.16

RNA2token on
proteins

CATH4.2 test
CASP14
CASP15

all: 1.09±0.07 (0.01)
all: 1.27±0.36 (0.08)
all: 1.30±0.39 (0.06)

TMprot: 0.96±0.03
TMprot: 0.96±0.04
TMprot: 0.96±0.04

Table 8: Applying tokenizers on out-of-domain molecules. Only all-atom rmses are shown
here for simplicity. mol2token to proteins and RNAs: The rmse values show the insufficiency
of learning larger biomolecular structures just from small molecules. protein2token on RNAs:
The rmse if higher than the rna2token reconstruction error (reported in the main text), but is
in close proximity. rna2token on proteins: the rmse is slightly worse than the protein2token
errors reported in the main text on CATH4.2 and CASP14, but better on CASP15.
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A.7 Insights into bio2token

A.7.1 RMSE per atom as a function of distance to centre

Figure 7 shows scatter plots for a sample of 10k points across all structure point clouds with
their absolute distance to the centre and their RMSE. RMSE increases once the point’s
distance to centre increases past the common size range of the training structures. This can
also be seen in Fig. 2F, where reconstructions deviate at the periphery of the coordinate
space for a structure of about 16,000 atoms).

Figure 7: Reconstruction RMSE per point as a function of its distance to the centre. Each
subplot is a random sample of 10.000 points across all point clouds of the respective dataset.

A.7.2 Rotational variance of tokens

Bio2Token does not exploit rotational invariance in it’s architecture. The Bio2Token tokens
are varying periodically with respect to rotations. To visualise the effect we show the
individual amino acid GLN and its back-bone and side-chain atoms under a set of full 2π
rotations around the z- and the x-axis. Fig. 8 shows how the atom token ids shift with
respect to changes in orientation. Moreover, reconstruction errors are not biased towards
any orientation, as seen in Fig. 9.
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180° 
180°

A) B)

C) D)

Figure 8: Token circularity with rotations. A and B visualise a π rotation of the protein
around the z- and x-axis. The zoom into the GLN amino acid shows how the individual
atoms are changing orientations with respect to the centre. The respective token ids of each
atom on the highlighted GLNare plotted in C) and D) as a function of rotation angle. The
green and red dotted lines correspond to the tokens at the positions in A) and B).

Figure 9: The reconstruction error of an exemplar protein under a full set of 2π rotations
around all major axes. The reconstruction error shows no orientation bias.

A.8 Code Availability

Code and model weights are available for all trained tokenizers. Inference scripts are pro-
vided for pdb formated files at https://anonymous.4open.science/r/bio2token-72F2
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