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Abstract

Recently, neural natural language models001
have attained state-of-the-art performance on002
a wide variety of tasks, but the high perfor-003
mance can result from superficial, surface-004
level cues (Bender and Koller, 2020; Niven005
and Kao, 2020). These surface cues, as the006
“shortcuts” inherent in the datasets, do not con-007
tribute to the task-specific information (TSI) of008
the classification tasks. While it is essential009
to look at the model performance, it is also010
important to understand the datasets. In this011
paper, we consider this question: Apart from012
the information introduced by the shortcut fea-013
tures, how much task-specific information is014
required to classify a dataset? We formulate015
this quantity in an information-theoretic frame-016
work. While this quantity is hard to com-017
pute, we approximate it with a fast and sta-018
ble method. TSI quantifies the amount of lin-019
guistic knowledge modulo a set of predefined020
shortcuts – that contributes to classifying a021
sample from each dataset. This framework al-022
lows us to compare across datasets, saying that,023
apart from a set of “shortcut features”, classi-024
fying the Multi-NLI task involves around 0.4025
nats more TSI than the Quora Question Pair.026

1 Introduction027

Neural natural language processing (NLP) models028

have attained state-of-the-art classification tasks,029

including natural language inference, sentiment030

analysis, and textual similarity (Devlin et al., 2019;031

Yang et al., 2019). What drives this performance?032

A popular argument is: neural models learn certain033

linguistic skills for these tasks, and their represen-034

tations encode linguistic knowledge (Lakretz et al.,035

2019; Hewitt and Manning, 2019; Chen et al., 2019;036

Tenney et al., 2019; Jiang and de Marneffe, 2019;037

Zhu et al., 2020; Ettinger, 2020). How can neural038

models encode this linguistic knowledge? Alain039

and Bengio (2017) suggested that, by attending040

to datasets, neural NLP models gradually learn to041

Figure 1: Classifiers can rely on “shortcut features” to
reach the correct predictions, but this strategy is not
generalizable, since the classifiers do not learn the real
linguistic knowledge. Shortcut features, including the
occurrence of punctuations (e.g., “?”) and stopwords
(e.g., can, the, to, you), are prevalent in datasets, but
should not be part of the linguistic knowledge required
to classify. We propose a method to quantify how much
task-specific, shortcut-irrelevant information remains
in the datasets.

preserve useful, task-specific information while dis- 042

carding the rest. In this way, the task-specific infor- 043

mation is “distilled” in the neural network models. 044

There are many text-based classification tasks (e.g., 045

Williams et al. (2018)), each of which requires 046

some amount of linguistic information to classify 047

that the neural networks distill along the way. 048

The inquiry into the information regime of mod- 049

els leads to an appealing goal in explainable AI (Do- 050

ran et al., 2018): to infer the amount of task- 051

specific, linguistic knowledge required for a given 052

task in information-theoretic terms. With this uni- 053

fied metric, we will be able to compare across 054

text-based classification tasks. Typically, classi- 055

fication accuracy and loss are used for comparison. 056

However, recent research showed that a low cross- 057

entropy loss might result from the information that 058

is correlative but not causative to the prediction 059

tasks. This is the “shortcut learning” problem, 060

and it happens in a wide variety of classification 061
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tasks (McCoy et al., 2019; Geirhos et al., 2020;062

Niven and Kao, 2020; Misra et al., 2020; Stali and063

Iacobacci, 2020) – even in human cognition, where064

study participants figure out more accessible ways065

to solve testing tasks (Geirhos et al., 2020).066

Figure 1 presents two examples of shortcuts,067

where we could make predictions based on short-068

cuts that are irrelevant to the linguistic knowledge069

of the tasks. Therefore, shortcuts constitute a070

gap between how much is learned and how much071

should be learned to classify the task. Following072

the motivations of recent causal analysis papers073

(e.g., Elazar et al. (2021); Pryzant et al. (2021)),074

we want to factor out the impact of the shortcuts075

while still quantifying the amount of information a076

neural network model needs to learn for a task.077

This paper presents a framework to separate the078

surface-level shortcuts from the deeper information.079

We quantify the “task-specific information” (TSI)080

that is not part of the spurious correlations. TSI is081

hard to compute numerically, but we use a method082

based on a Bayesian formulation to approximate083

this quantity (§3). The computation only requires084

computing cross-entropy losses on a pair of clas-085

sification tasks. We discuss the proper choice of086

configurations to compute the TSI (Secs. 5.1,5.2).087

Our method is stable across dataset sizes (§ 5.3),088

and is easier to compute than existing entropy esti-089

mators (§ 5.4).090

Overall, the TSI framework quantifies the091

“linguistic knowledge” required to perform text-092

based classifications and further allows principled093

comparisons of the degrees of linguistic knowl-094

edge across a wide range of classification tasks.095

For example, the classification task in MNLI096

dataset (Williams et al., 2018) requires about 0.25097

nats more TSI than the sentiment detection task098

with IMDB movie reviews (Maas et al., 2011), and099

around 0.4 nats more than the textual similarity100

detection task with the QQP dataset (Wang et al.,101

2019) (§ 5.5), given a fixed set of shortcuts.102

2 Related Work103

Our work is related to prior work in identifying104

and isolating spurious artifacts (“shortcuts”) in text-105

based prediction tasks, probing language embed-106

dings for various linguistic phenomena, and ana-107

lyzing dataset statistics.108

Shortcut learning Deep neural networks can109

overtly rely on superficial heuristics, which allows110

them to perform well on standard benchmarks but111

prohibits generalization to real-world scenarios. 112

Geirhos et al. (2020) called this problem “shortcut 113

learning” and referred to these heuristics as “short- 114

cuts". On text-based classification datasets, short- 115

cuts appear in the form of spurious statistical cues. 116

These include the warrants for argument reason- 117

ing (Niven and Kao, 2020), syntax heuristics and 118

lexical overlaps in natural language inference (Mc- 119

Coy et al., 2019), and relevant words (“semantic 120

priming”) (Misra et al., 2020). These spurious 121

surface cues do not contribute to task-specific in- 122

formation. 123

By carefully constructing test sets that do not 124

have these statistical cues and spurious associa- 125

tions, such shortcuts can be diagnosed (Glockner 126

et al., 2018; Gardner et al., 2020). Kaushik et al. 127

(2020) counterfactually augmented text snippets in 128

several sentiment-classification datasets via crowd- 129

sourcing by applying minimal changes to the origi- 130

nal text to flip the prediction label. Rosenman et al. 131

(2020) used challenge sets to reveal the “learning 132

by heuristics” problem in the relation extraction 133

task. In contrast to our work, none of these prior 134

works formulate the issue of shortcut learning using 135

information theory. Another strategy to factor out 136

known dataset biases is debiasing algorithms, such 137

as the residual fitting algorithm (He et al., 2019). 138

Probing The probing literature inspires our ap- 139

proach to analyzing the information in neural lan- 140

guage models. According to Alain and Bengio 141

(2017), the task of probing asks, “is there any 142

information about factor in this part of the 143

model?” Following this line, many subsequent pa- 144

pers queried the amount of knowledge from various 145

parts of neural models. These included syntax- 146

related (Lakretz et al., 2019; Hewitt and Manning, 147

2019), semantic-related (Tenney et al., 2019), and 148

discourse-related information (Chen et al., 2019; 149

Koto et al., 2021). Towards developing reliable 150

probing methods, several papers proposed control 151

mechanisms (Pimentel et al., 2020; Zhu and Rudz- 152

icz, 2020). With a collection of imperfect classi- 153

fiers, we can combine to adjust for potential con- 154

founds. Our analyses are motivated by this idea, but 155

we study the classification instead of the probing 156

regime. 157

Understanding the datasets In machine learn- 158

ing and NLP literature, several works studied the 159

“difficulty” of datasets (Blache and Rauzy, 2011; 160

Gupta et al., 2014; Collins et al., 2018; Jain et al., 161
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2020), but they did not consider factoring out the162

impacts of shortcuts. D’Amour et al. (2020) framed163

the shortcut learning issue as an underspecification164

problem: There is not enough information in train-165

ing set to distinguish between spurious artifacts166

and the inductive biases (or rather, the linguistic167

knowledge). Recently, researchers have analyzed168

the behavior of models on individual samples dur-169

ing training to diagnose datasets (Tu et al., 2020;170

Kumar et al., 2019). Han et al. (2020) used in-171

fluence functions to identify influential training172

samples and characterize the artifacts in datasets.173

Swayamdipta et al. (2020) computed metrics of174

training dynamics of a model, i.e., the prediction175

confidence and variability, to map a “cartography”176

of the data samples. Warstadt et al. (2020) intro-177

duced a dataset to study linguistic feature learn-178

ing versus generalization in the RoBERTa base179

model and considered a probing setup with a con-180

trol task to investigate the inductive biases of a181

pretrained model at the fine-tuning time. Lovering182

et al. (2021) found that the extent that a feature183

influences a model’s decisions is affected by the184

probing extractability and its co-occurrence rate185

with the label. These works have a common in-186

tuition: we should study the datasets to study the187

spurious correlation (shortcuts). We follow this188

line of research and quantify the information of189

shortcuts in the datasets.190

Mutual information Our work is related to in-191

formation theory formulations about machine learn-192

ing. Steinke and Zakynthinou (2020) proposed a193

formulation of conditional mutual information that194

can be used to reason about the generalization prop-195

erties of machine learning models. Empirically,196

our proposed method (using the difference of a197

pair of cross-entropy losses) echoes what Xu et al.198

(2020) defined as the “predictive V-information”.199

We derive TSI from a different perspective from200

the V-information. We elaborate in §3. A con-201

current work, O’Connor and Andreas (2021), uses202

V-information to study the effects of each context203

feature independently. In contrast, we consider the204

features in an aggregate manner.205

3 Learning Task-Specific Information206

This section presents our framework to quantify the207

task-specific information.208

Figure 2: An illustration of the relationships between
the text data X , containing a shortcut part Xs, and an
unmeasurable task-specific part Xt, as well as the task
label Y . The solid arrow indicates a causal relation-
ship, while the dashed arrow indicates a spurious corre-
lation. We want to factor out the observable Xs from
this graph.

3.1 Removing the shortcuts 209

Consider a dataset of data points {(xi, yi)}Nn=1, 210

where xi ∈ Rm is the feature vector, and yi is 211

the label. Let the random variable X represent all 212

possible input features, and the random variable Y 213

represent the task labels. 214

In our framework, the input random variable X 215

constitutes of the shortcut part, denoted by a ran- 216

dom variable Xs, and the task-specific part, an un- 217

measurable Xt. In other words, X = f(Xs, Xt), 218

where Xs ⊥⊥ Xt, and f(·) can be any composition 219

function. Their dependency relationships can be 220

described by Figure 2. This allows us to write the 221

distributions as: 222

p(Y |X) = p(Y |Xt)p(Y |Xs)
p(Xt)p(Xs)

p(X)p(Y )︸ ︷︷ ︸
prior

(1)

223

When Xs ⊥⊥ Xt, p(X) = p(Xt)p(Xs), so the 224

prior term degenerates into 1
p(Y ) . 225

I(Y ;Xt) = E log
p(Y,Xt)

p(Xt)p(Y )
= E log

p(Y |Xt)

p(Y )

= E log
1

p(Y |Xs)
− E log

1

p(Y |X)

= H(Y |Xs)−H(Y |X)

(2)

226

where the expectations are taken over the distri- 227

bution implicitly defined by the data {xi, yi}Ni=1. 228

The equation in the second last line is acquired by 229

substituting in Eq. 1. 230
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3.2 Interpreting the model performance231

Empirically, a model learning this task (e.g., a232

BERT (Devlin et al., 2019) with a fully connected233

layer on top) approximates the true, unknown distri-234

bution p(Y |X). Let q(Y |X) describe the learned235

model, then by definition:236

H(Y |X) = NLLY |X − KL(p ‖ q) (3)237

where p and q are the short-hand notations of238

p(Y |X) and q(Y |X) respectively, and239

NLLY |X = Ep(X) log
1

q(Y |X)
(4)240

is the cross-entropy loss. In this paper, we will use241

NLL to refer to the cross-entropy loss, for clarity.242

A well-trained model would have high perfor-243

mance: a high accuracy, a low KL(p ‖ q) diver-244

gence, and a low cross-entropy loss. However, as245

mentioned before, this could result from the model246

“taking shortcuts”, predicting the task labels Y from247

the shortcuts Xs.248

3.3 Computing TSI needs a control task249

Here we consider a control task to specify the fea-250

tures that might benefit the classification but do not251

contribute to the linguistic knowledge required for252

the models to perform the task correctly. Figure 1253

describes some shortcuts. We include the details in254

the Experiment below.255

We refer to the classifier trained only on the256

shortcuts as the control model. When trained, the257

control model approximates the unknown distri-258

bution p(Y |Xs) with an empirical distribution,259

q(Y |Xs).260

Definition 1: The task-specific information (TSI)261

in the classification task (described by X,Y ) with262

respect to the shortcut Xs is quantified by:263

I(Y ;Xt) = NLLY |Xs
− NLLY |X︸ ︷︷ ︸

Known

+

KL(pY |X ‖ qY |X)− KL(pY |Xs
‖ qY |Xs

)︸ ︷︷ ︸
Unknown

(5)264

Similarly, NLLY |Xs
is the cross-entropy loss of265

the control task. They can be measured empirically,266

so we mark them as “known”.267

3.4 On the scales of the intractable KLs268

In Eq. 5, the two “known” terms constitute of the269

predictive V-information (Xu et al., 2020) from270

Figure 3: The histograms of |NLL −H(Y | X)|, i.e.,
the estimated scales of KL(p ‖ q), with the sum and
and option respectively.

Xt to Y . Additionally, I(Y ;Xt) contains two in- 271

tractable KL terms. As a sanity check, we use a 272

collection of synthetic datasets to estimate their 273

scales. Following are the distributions to generate 274

these toy datasets {X,Y }: 275

Xj ∼ Bernoulli(px), where j ∈ {1, 2, ..,m} 276

X = [X1, X2, ..., Xm] 277

Y = g(X1, ..., Xm) + ε, where ε ∼ Bernoulli(py) 278

wherem specifies the number of input features, and 279

g(X1, ..., Xm) is a deterministic function. This 280

construction allows an exact computation of the 281

conditional entropy H(Y | X). On the other hand, 282

we compute the cross-entropy NLLY | X by train- 283

ing a default scikit-learn MLPClassifier q(Y | X) 284

on the train portion of {X,Y }. Then, the differ- 285

ence between the dev loss and the conditional en- 286

tropy is the KL values resulting from the imperfect 287

classifier. 288

We generate toy datasets with different values of 289

m (2 ≤ m ≤ 10), px and py (between 0.1 and 0.9). 290

For g(·), we use two options: 291

• sum: g(X) =
∑

j Xj 292

• and: g(X) = X1 ∧X2 ∧ ... ∧Xm 293

Figure 3 show the histograms of the two options, 294

respectively. In 99.5% (1184 of 1190) configu- 295

rations, the dev losses are within 0.04 nats away 296

from H(Y | X). In other words, the scales of 297

the KL(p ‖ q) are estimated to be one magnitude 298

smaller than those of I(Y ;Xt). In the subsequent 299

analysis, we empirically ignore the intractable KL 300

terms. 301

3.5 Understanding TSI 302

Before moving to the computation, let us first 303

briefly discuss some properties of TSI. 304

Lower bound. TSI ≥ 0, where equality is 305

reached when the information from the shortcuts 306
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(e.g., the presence of specific tokens) is sufficient307

for classification, so the model does not have to308

learn any task-specific knowledge to perform per-309

fectly.310

Upper bound. TSI ≤ H(Y ), where the equal-311

ity is reached when H(Y |Xt) = 0, i.e., the task312

label Y is a deterministic function of the task-313

specific variable Xt. Further, for a task with m314

distinct labels, Jensen-Shannon inequality gives315

us H(Y ) ≤ log m nats1. When m = 2 and 3,316

the TSI would be correspondingly upper-bounded317

by log2 ≈ 0.693 and log3 ≈ 1.097, respectively.318

When the number of classes m increases, the upper319

bound of TSI increases, resembling what Gupta320

et al. (2014) mentioned about how a larger number321

of classes contribute to the increased cross-entropy.322

An on-average metric. TSI is averaged across323

the dataset samples, allowing comparison across324

datasets with different sizes. We can compare the325

TSI scores of a dataset with 50,000 samples (e.g.,326

IMDB (Maas et al., 2011)) to that of a dataset with327

400,000 samples (e.g., Quora Question Pairs) to328

directly compare their “linguistic informativeness”.329

We discuss further about the dataset sizes in §5.3.330

Quantity but not form. TSI quantifies the amount331

rather than describes the actual type of information332

required to classify a task. The former computes an333

aggregate metric, while the latter requires a deep334

understanding of the task knowledge. This paper335

considers the former.336

4 Experiments337

4.1 Datasets338

We run experiments on several popular benchmark-339

ing datasets (in English) that test various linguistic340

abilities, including sentiment and attitude detection341

(Yelp and IMDB), entailment recognition (MNLI),342

and semantic similarity understanding (QQP). The343

dataset details are in Appendix A.344

4.2 Control task features345

The features for the control task need to be scalars.346

In the experiments, we use the following features347

to illustrate the application of our framework.348

The occurrences of punctuations We count the349

punctuation in each input text sample and normal-350

ize by the number of tokens in the sentence. If a351

1Throughout this paper, we use nats (instead of bits) as the
unit for measuring the information-theoretic terms.

sample constitutes a pair of sentences, we concate- 352

nate the two sentences. Following is an example. 353

You have access to the facts . The facts are
accessible to you .

354

There are N = 2 occurrences of punctuations 355

in the (concatenated) sentence with length L = 14, 356

so the “occurrence of punctuation” feature is 2
14 . 357

The occurrence of stopwords We count the 358

stopwords (modulo the negation words including 359

“no”, “nor”, “don’t” and “weren’t”) and normalize 360

by the token length of the example. We concatenate 361

the two sentences for the samples consisting of a 362

pair of sentences similar to the punctuation feature. 363

Following is an example. 364

You have access to the facts . The facts are
accessible to you .

365

There are N = 8 occurrences of stopwords in 366

this sentence with length L = 14, so the “occur- 367

rence of stopword” feature is 8
14 . Note that some 368

stopwords do have semantic roles. For example, 369

I, you and they can specify the person(s) in the 370

situations. Additionally, one could argue that the 371

choice of stopwords between, e.g., I and me could 372

indicate the role of the speaker, and so on. There- 373

fore one could argue that the occurrence of stop- 374

words can be a non-shortcut, dependent on the ac- 375

tual task. However, one can also argue for the 376

opposite, since the information provided by these 377

semantic roles seem irrelevant to various classifi- 378

cation tasks – for example, both “I like this movie” 379

and “You like this movie” would indicate a positive 380

movie review. This collection serves as an exam- 381

ple that the TSI framework allows considering a 382

collection of semantically nontrivial words. 383

The overlapping of paired sentences For each 384

pair of sentence (s1, s2), we use the number of 385

overlapped tokens (relative to each of the two sen- 386

tence lengths) to describe the extent of lexical over- 387

lapping. Following is an example. 388

• What can make Physics easy to learn ?
• How can you make Physics easy to

learn ?
389

The two “lexical overlap” features for this sen- 390

tence pair are overlap_1=8
9 , overlap_2= 8

10 . 391
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Figure 4: A scatter plot of the accuracy against dev loss
of models trained on full datasets.

Figure 5: Estimates of TSI with different choices of
shortcut features and the best models. Note that the O
(lexical overlapping) heuristics only apply for MNLI
and QQP, while the P (punctuation) and S (stopwords)
heuristics apply to all four tasks. For each task, as
more features are excluded, we can see the estimate
decreases. Unless specifically mentioned, we consider
TSIP+S for all tasks henceforth.

4.3 Classification models392

For training q(Y |X) models, we use BERT (De-393

vlin et al., 2019), RoBERTa (Liu et al., 2019), and394

ALBERT (Lan et al., 2020), all on the base con-395

figuration (12 layers), with a fully connected head.396

Such transformer-based configurations are the state-397

of-the-art on classification tasks. We adopt the398

configurations of (Devlin et al., 2019): we concate-399

nate the input sentences (for MNLI and QQP) and400

take the [CLS] token representations to pass in401

the fully connected head. The training hyperpa-402

rameters follow the configurations recommended403

in the literature (Devlin et al., 2019; Liu et al.,404

2019; Lan et al., 2020; Wolf et al., 2019). For405

training q(Y |Xs) models, we use MLPClassifier406

from scikit-learn (Pedregosa et al., 2011). We list407

the details in Appendix B.408

5 Discussions 409

5.1 Estimating TSI with an suboptimal model 410

Each {X,Xs, Y } configuration uniquely deter- 411

mines the I(Y ;Xt) value. Ideally, the models 412

that perfectly fit the dataset distributions p(Y |X) 413

and p(Y | Xs) can precisely estimate I(Y ; Xt). 414

Among all empirical models, the highest perform- 415

ing models approximate I(Y ;Xt) the most closely, 416

since they lead to KL values (of Eq. 5) that are the 417

smallest. Therefore, we report the results from fine- 418

tuning the best of BERT, RoBERTa, and ALBERT, 419

and we recommend using the best possible model. 420

Empirically, the model at hand might have an 421

accuracy of several points lower than the top model 422

at the GLUE leaderboard. How far do the entropy 423

values of the imperfect models differ from those of 424

the SOTA models (which usually only the accura- 425

cies are available)? Figure 4 plots the correlations 426

between the cross-entropy losses and the accuracies 427

of the non-degenerative finetuned q(Y |X) models. 428

Interestingly, except for IMDB, the results show 429

linear trends, with the slopes and intercepts vary- 430

ing from task to task. The slopes of the trendlines 431

could be used to interpolate the validation losses of 432

the suboptimal models. 433

5.2 TSI and the choice of shortcuts 434

To enable cross-task comparisons, our framework 435

considers TSI with respect to the fixed set of short- 436

cuts. For example, apart from lexical overlap, how 437

much linguistic information is there in classifying 438

tasks? The choice of shortcut features affects the 439

cross-entropy losses, hence the TSI. 440

Figure 5 reports the TSI estimations with various 441

choices of shortcut features (additional results are 442

in the Appendix). As we add features to the Xs 443

set, NLLY |Xs
decreases, leading to a correspond- 444

ing decrease in TSI. The lexical overlap feature 445

exacerbates this decrease to Xs for MNLI. This 446

follows our intuition since the syntactic heuristics 447

such as lexical overlap have been identified as fal- 448

lible heuristics for MNLI in prior work (McCoy 449

et al., 2019), and though lexemes are shortcut fea- 450

tures, they do encode semantics. 451

On the completeness of shortcuts. We do not 452

aim at the unrealistic goal of exhausting all pos- 453

sible shortcuts. Instead, we present a framework 454

where the contribution of the shortcuts, once iden- 455

tified, can be factored out. The TSI framework can 456

generalize to additional shortcuts. 457

Generalization of features. We identified some 458
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Figure 6: The I(Y ;Xt) estimation when we subsample different sizes of datasets.

features as “shortcut features”. Dependent on the459

goal of analysis, one can apply other features (e.g.,460

the length of sentences). In addition, automatic461

identification of shortcut features Xs method (e.g.,462

approaches similar to those of Wang and Culotta463

(2020)) may be used as well.464

5.3 How stable is TSI to dataset size?465

To evaluate the effects of dataset size, we reduce the466

training sets with stratified sampling while assess-467

ing on the same validation set. As shown in Figure468

6, the robustness of TSI estimations regarding the469

subset size differs across datasets. For MNLI, the470

estimation started to fluctuate starting from 25% of471

the original size. However, the estimates for IMDB,472

Quora, and Yelp remain relatively stable until we473

reduce the train set sizes to as few as ∼ 5%.474

For both the Y |X and Y |Xs classification, the475

minimum reachable cross-entropy losses increases476

as we reduce the dataset sizes. A possible reason477

is that downsampling changes the data distribu-478

tion and leads to mismatches between the train and479

the validation distributions. Similar effects are de-480

scribed in e.g., Gardner et al. (2020). Note that as481

we reduce the dataset sizes, H(Y |X) rises faster482

than H(Y |Xs), indicating that the deeper, task-483

specific knowledge requires more data to capture484

than those shortcut knowledge, echoing the finding485

of Warstadt et al. (2020).486

5.4 What about alternative estimators?487

Previous works have proposed several mutual in-488

formation estimators based on setting up optimiza-489

tion goals, e.g., BA (Barber and Agakov, 2004),490

DV (Donsker and Varadhan, 1975), NWJ (Nguyen491

et al., 2010), MINE (Belghazi et al., 2018), CPC 492

(Oord et al., 2018), and SMILE (Song and Ermon, 493

2020). We defer to Poole et al. (2019) and Guo et al. 494

(2021) for summaries. Unfortunately, these varia- 495

tional methods do not directly apply to our prob- 496

lem setting. They involve modeling either the joint 497

distribution p(X,Y ) or the generative distribution 498

p(X|Y ). However, we consider the classification 499

tasks where the state-of-the-art methods finetune 500

the pretrained deep networks to model the condi- 501

tional distributions of classification tasks p(Y |X). 502

It is possible to model the generative distribution 503

on text classification datasets, but we consider that 504

out of the scope of this paper. A recent paper, 505

McAllester and Stratos (2020), argues in favor of 506

using (and minimizing) the difference of entropies 507

to estimate the terms related to mutual informa- 508

tion because, unlike DV, NWJ, MINE, and CPC, 509

this setting is not restricted to various statistical 510

limitations. 511

How about directly estimating the entropy values 512

H(Y |X) and H(Y |Xs) from data? It turns out 513

that the computational effort required by this ap- 514

proach can easily grow prohibitive. Estimating the 515

conditional entropy from the dataset {xi, yi}i=1..N 516

involves finding the density, which is usually im- 517

plemented by finding the nearest neighbors. This 518

could require O(N logN) computational time with 519

O(N) memory2 – where the memory requirements 520

would grow prohibitively – or O(N2) computa- 521

tional time with O(1) memory3 – where the com- 522

putational time would grow prohibitively. In com- 523

2Store all data points using a heap-like data structure,
which allows query in O(logN) time for each data point.

3Traverse the dataset to find nearest neighbors.
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Dataset AccY |X TSIP+S TSIP+S+O

MNLI 0.85 0.68 0.64

IMDB 0.92 0.43 –

Yelp 0.97 0.41 –

QQP 0.89 0.31 0.23

Table 1: Our best estimates of TSI with P+S and
P+S+O shortcut features respectively, and the dev ac-
curacies of the corresponding Y |X classifications.

parison, training two models with stochastic gra-524

dient descent requires only O(N) training time525

and O(1) memory. In other words, our method526

is more realistic under real-world computational527

constraints.528

We run Monte Carlo simulations on a fraction529

of data using an off-the-shelf entropy estimator,530

NPEET (Kraskov et al., 2004). The sizes of the531

fractions are decided to be stable following the anal-532

ysis of §5.3, i.e., 103 for IMDB and Yelp, 104 for533

Quora, and 105 for MNLI. We sample the subsets in534

a stratified manner with ten different random seeds.535

The conditional entropies H(Y |X) and H(Y |Xs)536

from Monte Carlo simulations differ significantly537

from those cross-entropy losses. Moreover, these538

simulations sometimes report negative I(Y |Xt)539

values, indicating the prohibitive levels of the er-540

rors. We include the details in the Supplementary541

Data.542

5.5 TSI required to classify each dataset543

Table 1 contains our best estimations for TSI across544

datasets. The TSIP+S of IMDB and Yelp are545

similar. Moreover, both TSIP+S and TSIP+S+O546

of MNLI are about 0.4 nats larger than those of547

QQP. Considering that the highest dev accuracy on548

MNLI and QQP are similar, the contrast in TSI549

provides an alternative perspective in comparing550

across tasks. When classifying the QQP dataset,551

neural models rely more on the artifacts, including552

punctuations and stopwords, than classifying the553

MNLI dataset.554

Our method does not directly apply to HANS555

(McCoy et al., 2019) yet, since existing high-556

performing models mostly use HANS as a test set557

(e.g., He et al. (2019)). Instead of directly approxi-558

mating the TSI of HANS, one can compute that of,559

e.g., HANS + MNLI.560

5.6 Broader impacts 561

While there is a general momentum to develop bet- 562

ter models on miscellaneous classification tasks, 563

we call for more systematic comparisons across 564

different datasets and propose developing datasets 565

with higher “signal-to-noise ratios”, as measured 566

by, e.g., TSI. We also encourage the NLP commu- 567

nity to think about several closely related problems: 568

Identifying shortcut features. While the release 569

of a new NLP dataset is often paired with strong 570

baselines for the proposed task, we also encourage 571

future researchers to identify potential shortcuts or 572

spurious associations, which could occur either due 573

to the data collection procedure or due to the nature 574

of the task itself (e.g., as reported by Romanov 575

and Shivade (2018) for natural language inference 576

tasks). 577

Leaderboard practices. Currently, the leader- 578

board practices reward high classification perfor- 579

mances. We recommend that NLP researchers 580

build leaderboards that additionally incentivize the 581

minimal use of shortcuts. A potential way to do this 582

would be constructing multiple test sets (Glockner 583

et al., 2018), testing for different parameters of con- 584

cern – such as data efficiency, fairness, etc., – as 585

identified by Ethayarajh and Jurafsky (2020). 586

Metrics for cross-task comparison. Consider 587

reporting the performance on a unified scale of 588

“task-specific informativeness", rather than relying 589

on average model performance metrics (Collins 590

et al., 2018). Designing metrics with grounds in 591

linguistic knowledge is an interesting direction of 592

future work. 593

6 Conclusion 594

We propose a framework to quantify the task- 595

specific information (TSI) for classifying text- 596

based datasets. Given a fixed collection of shortcut 597

features, TSI quantifies the linguistic knowledge 598

attributable to the classification target that is inde- 599

pendent of the shortcut features. The quantification 600

method is computable under limited resources and 601

is relatively robust to the dataset sizes. Further, this 602

framework allows comparison across classification 603

tasks under a standardized setting. For example, 604

apart from the effects of punctuations and the non- 605

negation stopwords, MNLI involves around 2.2 606

times TSI as the Quora Question Pairs, in terms of 607

nats per sample. 608
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A Dataset details894

• MNLI (Williams et al., 2018) contains 392.7k895

English sentence pairs as train set. MNLI eval-896

uates whether a model can detect entailment897

relationships between those pairs. They pro-898

vided two dev sets: the “matched” and the899

“mismatched” portion. We take the “matched”900

portion (with 9.8k sentence pairs) as the dev901

set, since they are derived from the same902

sources as the sentences in the training set.903

• IMDB (Maas et al., 2011) is a large-scale904

dataset used to test a model’s ability to de-905

tect sentiment from text. There are 50,000906

movie reviews in English from IMDB in this907

dataset, with the training and dev sets contain-908

ing 25,000 each.909

• Yelp Reviews Polarity (Zhang et al., 2015)910

contains 560k and 38k (in training and dev911

portion respectively) customer reviews in En-912

glish from Yelp. These are collected to decide913

the polarity of opinions.914

• Quora Question Pairs4 contains 404k English915

question pairs on Quora, created to test the916

abilities of the models to understand the se-917

mantics from text, and determine whether the918

question pairs are synonymous. We randomly919

divide the train-dev-test data with 80-10-10920

portions (with numpy random permutation,921

seed 0).922

B Hyperparameters923

Following list the search space of our hyperparam-924

eters for modeling Y |X .925

• Optimizer: We use Adam optimizer (Kingma926

and Ba, 2014) to train the model parameters,927

and use the initial learning rate of lr∈{2e-5,928

1e-5}.929

• Train epochs: For full datasets, we run 3930

epochs. For training subsets with N ∈931

{105, 104, 103} samples, we run either 3 or932

10 epochs. For training the small N = 100933

sample subsets, we run {3, 10, 100} epochs.934

• Batch size: We run with batch sizes of B ∈935

{2, 4, 8, 16} for each classification setting.936

We find that in general, larger per-device batch937

sizes (e.g., 8 and 16) are better than smaller938

batches (e.g., 2 and 4), but a batch size of 16939

or 32 could lead to out-of-memory issues on940

machines with 64GB memory.941

4https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs

Following the training procedure, our best devel- 942

opment accuracies are comparable to the results 943

reported on, e.g., the GLUE Benchmark leader- 944

board. While previous work added additional steps 945

(e.g., learning rate warmup) to boost accuracy, our 946

aim is not to beat the SOTA, but to establish a prin- 947

cipled method that allows cross-task comparison. 948

We include the hyperparameter configurations of 949

all runs in the Supplementary Data. 950

For modelling Y |Xs, we use the scikit-learn 951

(Pedregosa et al., 2011) MLPClassifier with hidden 952

sizes from {10, 30, 100, 300, 10-10, 30-30, 100- 953

100} where, e.g., 10-10 indicates two hidden layers 954

with 10 units each. We rely on the default training 955

procedures, search for the optimal hidden sizes 956

based on the validation losses, and report the dev 957

loss NLL(Y |Xs) scores. 958
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