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Abstract

Discovering fine-grained categories from
coarsely labeled data is a practical and chal-
lenging task, which can bridge the gap be-
tween the demand for fine-grained analysis
and the high annotation cost. Previous works
mainly focus on instance-level discrimination
to learn low-level features, but ignore seman-
tic similarities between data, which may pre-
vent these models learning compact cluster
representations. In this paper, we propose
Denoised Neighborhood Aggregation (DNA),
a self-supervised framework that encodes se-
mantic structures of data into the embedding
space. Specifically, we retrieve k-nearest neigh-
bors of a query as its positive keys to capture
semantic similarities between data and then
aggregate information from the neighbors to
learn compact cluster representations, which
can make fine-grained categories more sepa-
ratable. However, the retrieved neighbors can
be noisy and contain many false-positive keys,
which can degrade the quality of learned em-
beddings. To cope with this challenge, we pro-
pose three principles to filter out these false
neighbors for better representation learning.
Furthermore, we theoretically justify that the
learning objective of our framework is equiv-
alent to a clustering loss, which can capture
semantic similarities between data to form
compact fine-grained clusters. Extensive ex-
periments on three benchmark datasets show
that our method can retrieve more accurate
neighbors (21.31% accuracy improvement) and
outperform state-of-the-art models by a large
margin (average 9.96% improvement on three
metrics). Our code and data are available at
https://github.com/Lackel/DNA.

1 Introduction

Many AI fields have progressed into fine-grained
analysis, e.g., Computer Vision (Wei et al., 2021;
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Figure 1: Left: An example of coarse- and fine-grained
intent detection for recommendation. Right: Label
hierarchy with coarse- and fine-grained categories.

Nauta et al., 2021) and Natural Language Process-
ing (Suresh and Ong, 2021; Vaid et al., 2022; Mu-
nikar et al., 2019; Almeida et al., 2021), since it
can provide much more information than coarse-
grained analysis. For example, detecting more
fine-grained user intents can help to provide more
accurate recommendation and better services for
customers (Figure 1 Left). However, labelling
fine-grained categories can be time-consuming
and labour-intensive since it requires more expert
knowledge. To get out of this dilemma, a novel
task called Fine-grained Category Discovery under
Coarse-grained supervision (FCDC) was recently
proposed by An et al. (2022a). Taking Figure
1 Right as an example, FCDC aims at discover-
ing fine-grained categories (e.g., Desktop and Ten-
nis) using only coarse-grained (e.g., Computer and
Sports) labeled data which are easier and cheaper
to annotate.

To solve the FCDC task, previous methods
mainly focus on instance-level discrimination to
learn low-level features through contrastive learn-
ing (An et al., 2022a; Bukchin et al., 2021). De-
spite the improved performance, these instance-
based methods fail to encode cluster-level semantic
structures of data. This is because these methods
simply treat each instance as a single class and
push away other instances, regardless of their se-
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mantic similarities (Li et al., 2020), which can hin-
der the formation of compact fine-grained clusters.
Here we define ‘compact’ as samples with the same
fine-grained categories are compactly clustered into
the center of category and away from other sam-
ples from different fine-grained categories, which
means smaller intra-class distance and larger inter-
class distance. Since samples located around deci-
sion boundaries are easily misclassified into wrong
categories, distributing samples near the category
center compactly can avoid overlapping decision
boundaries and make these categories more distin-
guishable. So learning compact cluster representa-
tions is important for the FCDC task to learn more
separable fine-grained categories.

To encode semantic structures of data to learn
more compact cluster representations, we propose
a novel model named Denoised Neighborhood Ag-
gregation (DNA). DNA can capture semantic simi-
larities between data by retrieving k-nearest neigh-
bors of a query and aggregating information from
them. However, the retrieved neighbors can be
noisy and contain many false-positive keys (i.e.,
keys with different fine-grained categories from
the query), which can reduce the quality of repre-
sentation learning. This situation is more severe
in the FCDC setting since pretraining on coarse-
grained labels can easily include wrong neighbors
for those samples with the same coarse-grained la-
bels but different fine-grained ones. To solve this
problem, we propose three principles (named La-
bel Constraint, Reciprocal Constraint, and Rank
Statistic Constraint) to filter out these false neigh-
bors. These constraints consider bidirectional se-
mantic structures and statistical features of data to
help to retrieve more accurate neighbors. Further-
more, we interpret our framework from a general-
ized Expectation-Maximization (EM) perspective.
At the E-step, we retrieve reliable neighbors from
a dynamic queue under the proposed constraints,
then at the M-step, we perform neighborhood ag-
gregation to encode semantic structures of data to
learn more compact representations. Last but not
least, we theoretically prove that the learning objec-
tive of our model is equivalent to a clustering loss,
which can help to learn compact cluster representa-
tions to facilitate fine-grained category discovery.

Our main contributions can be summarized as
follows:

• Perspective: we propose to model semantic
structures of data to learn more compact clus-

ter representations, which are essential for the
FCDC task.

• Framework: we propose Denoised Neighbor-
hood Aggregation, a self-supervised frame-
work that captures semantic similarities be-
tween data and aggregates information from
neighbors. We further propose three princi-
ples to filter out false neighbors for better rep-
resentation learning.

• Theory: we interpret our framework from a
generalized EM perspective and theoretically
prove that the learning objective of our frame-
work is equivalent to a clustering loss. So
our model can alternately retrieve more accu-
rate neighbors and learn more compact cluster
representations.

• Experiments: Extensive experiments on three
benchmark datasets show that our model es-
tablishes state-of-the-art performance on the
FCDC task (average 9.96% improvement) and
retrieves more accurate neighbors (21.31% ac-
curacy improvement), which validates our the-
oretical analysis.

2 Related Work

2.1 Novel Category Discovery

Novel Category Discovery aims at discovering
novel categories from unlabeled data to expand ex-
isting class taxonomy (Scheirer et al., 2014; Zhang
et al., 2021a; Vaze et al., 2022; Yu et al., 2022;
Badirli et al., 2023; An et al., 2023). To discover
novel categories without any annotation, previous
models usually adopted self-supervised methods.
For example, Han et al. (2020) utilized ranking
statistics as pseudo-labels to train their model with
binary cross-entropy loss. An et al. (2022b) pro-
posed to decouple known and novel categories from
unlabeled data and performed representation learn-
ing with prototypical network. However, these
methods only focus on the scenario where known
and novel categories are of the same granularity. To
discover fine-grained categories, a novel task called
Fine-grained Category Discovery under Coarse-
grained supervision (FCDC) was proposed by An
et al. (2022a). They also proposed a weighted self-
contrastive strategy to acquire fine-grained knowl-
edge. And Mekala et al. (2021) proposed to per-
form fine-grained text classification with the help



of fine-grained label names and coarse-grained la-
beled data. In Computer Vision, Bukchin et al.
(2021) proposed angular contrastive learning to
perform few-shot fine-grained image classification
with only coarse-grained supervision. However,
these methods only focus on instance-level discrim-
ination, which may prevent them from learning
compact cluster representations for fine-grained
category discovery.

2.2 Contrastive Learning

Contrastive Learning (CL) performs representation
learning by pulling similar samples closer and push-
ing dissimilar samples far away (Chen et al., 2020).
And how to build high-quality positive keys for the
given queries is a challenging task for CL. Most
previous methods took two different transforma-
tions of the same input as query and positive key,
respectively (Dosovitskiy et al., 2014; Chen et al.,
2020; He et al., 2020). Li et al. (2020) proposed to
utilize prototypes learned by clustering as their pos-
itive keys. Furthermore, An et al. (2022a) proposed
to use shallow features extracted by BERT as pos-
itive keys. Recently, Neighbourhood Contrastive
Learning (NCL) was proposed by treating the near-
est neighbors of queries as positive keys (Dwibedi
et al., 2021a), which can avoid complex data aug-
mentations. Zhong et al. (2021) further utilized
k-nearest neighbors to mine hard negative keys for
CL. And Zhang et al. (2022a) randomly selected
one positive key from k-nearest neighbors for repre-
sentation learning. Even though NCL has achieved
better results on many tasks, previous methods ig-
nored the fact that the retrieved neighbors can be
noisy (i.e., neighbors and the query come from
different categories) due to lack of supervision,
and these false-positive keys can be harmful for
representation learning since they provide wrong
supervision signals.

3 Method

3.1 Problem Formulation

Given a set of coarse-grained categories Ycoarse =
{C1, C2, ..., CM} and a coarsely labeled training set
Dtrain = {(xi, ci) | ci ∈ Ycoarse}Ni=1, the FCDC
task aims at learning a feature encoder Fθ that
maps samples into a compact D-dimension embed-
ding space to further separate them into different
fine-grained categories Yfine = {F1,F2, ...,FK},
even though without any prior fine-grained knowl-
edge, where Yfine are sub-classes of Ycoarse.

Model performance will be measured on another
testing set Dtest = {(xi, yi) | yi ∈ Yfine}Li=1

through clustering (e.g., K-Means) based on the
embeddings extracted by Fθ. It should be noted
that we only use the number of fine-grained cate-
gories K when testing so that we can make a fair
comparison with different methods, following the
settings in previous work (An et al., 2022a).

3.2 Proposed Approach

To achieve the learning objective of FCDC, we pro-
pose Denoised Neighborhood Aggregation (DNA),
an iterative framework to bootstrap model perfor-
mance on retrieving reliable neighbors and learn-
ing compact embeddings. As shown in Fig. 2,
our model mainly contains three steps. Firstly, we
maintain a dynamic queue to retrieve neighbors for
queries based on their semantic similarities (Sec.
3.2.1). Secondly, we propose three principles to
filter out false-positive neighbors for better repre-
sentation learning (Sec. 3.2.2). Thirdly, we per-
form neighborhood aggregation to learn compact
embeddings for fine-grained clusters (Sec. 3.2.3).
Last but not least, we interpret our framework
from the generalized EM algorithm perspective
and theoretically prove that our learning objective
is equivalent to a clustering loss, which can help
to learn more compact fine-grained cluster embed-
dings (Sec. 3.2.4).

3.2.1 Neighborhood Retrieval
We maintain a dynamic queueM to store sample
features for subsequent training. The features in the
queue are extracted by a momentum encoder Fθm
and are progressively updated at each iteration. To
keep consistency of features used for neighborhood
retrieval and representation learning, we update
Fθm in a moving-average manner (He et al., 2020):

θmt+1 = αθmt + (1− α)θt+1 (1)

where α ∈ [0, 1) is a momentum coefficient, θm

and θ are parameters of Fθm and Fθ, respectively.
Fθ is a query encoder for representation learning
and is updated by back-propagation.

In order to learn compact representations, we
retrieve neighbors of each query from the queue
M. Specifically, we first pretrain Fθ and Fθm with
cross-entropy loss on coarse-grained labels to ini-
tialize models. Then given a query embedding
qi = Fθ(xi), we search its k-nearest neighbors Ni
from the queue M by measuring their semantic
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Figure 2: The overall architecture of our DNA framework.

similarities:

Ni = {hj | hj ∈ argtopk
hl∈M

(sim(qi, hl))} (2)

where sim() is a similarity function and here we

use cosine similarity sim(qi, hj) =
qTi hj
‖qi‖·‖hj‖ .

3.2.2 Neighborhood Refining
After neighborhood retrieval, previous methods
(Dwibedi et al., 2021a; Zhang et al., 2022a) sim-
ply used these neighbors as positive keys for con-
trastive learning. However, they ignored the fact
that the retrieved neighbors contain many false-
positive keys (i.e., keys with different fine-grained
categories from the query), which can significantly
degrade their model performance. This is because
we lack of fine-grained supervision and samples
with different fine-grained categories can be clus-
tered together after pretraining. To mitigate this
problem, we propose three principles to filter out
these false-positive neighbors, which consider bidi-
rectional semantic structures and statistical features
of samples (illustrated in Fig. 2).
Label Constraint aims at filtering neighbors with
different coarse-grained labels from the query,
since samples with the same fine-grained labels
must also have the same coarse-grained ones. The
refined neighbor set for query qi is:

Ai = {hj | (hj ∈ Ni) ∧ (ci = cj)} (3)

where ci and cj are coarse-grained labels for the
query qi and its neighbor hj .
Reciprocal Constraint requires that the neighbor-
hood relationships should be bidirectional (Qin

et al., 2011) (i.e., the query should also be its neigh-
bors’ neighbor). This constraint is intuitive since
samples in a compact cluster should be neighbors
to each other. Traditional k-NN simply retrieved
k neighbors for each sample, which can introduce
many false neighbors, especially for data with long-
tailed distribution. As the example of reciprocal
constraint in Fig. 2, the blue sample should only
have two neighbors, but 3-NN introduces a false
neighbor (the green sample) for it. The reciprocal
constraint can filter out this false neighbor since the
blue sample is not a neighbor of the green one. So
the reciprocal constraint can capture bidirectional
semantic structures between samples and provide
different number of neighbors for different samples.
And the refined neighbor set for query qi is:

Ri = {hj | (hj ∈ Ai) ∧ (qi ∈ Aj)} (4)

Rank Statistic Constraint requires the rank statis-
tics between neighbors to be the same. Specifically,
we rank the values of feature embeddings by magni-
tude and extract the index of top-m values to form
a rank set. Then we filter out neighbors who have
different rank set from the query. The rank statis-
tic constraint is effective for two reasons. Firstly,
rank statistic is more robust than cosine similarity,
especially for high-dimensional data (Friedman,
1994; Han et al., 2020). Secondly, samples with
the same coarse-grained labels but different fine-
grained ones can have high cosine similarities after
pretraining, which can lead to false-positive neigh-
bors. However, we think the pretrained embeddings
also contain information about fine-grained cate-
gories which are interrupted by other noisy informa-
tion. So if we only focus on the main components



of these embeddings, we can filter out the noisy
information and discover the hidden fine-grained
information. The refined neighbor set for query qi
is:

Si = {hj | (hj ∈ Ri) ∧ (topm(hj) = topm(qi))}
(5)

where topm(qi) maps the d-dimensional embed-
ding qi into a m-dimensional set (m = 2 in Fig. 2)
which contains index of top-m values of qi.

3.2.3 Denoised Neighborhood Aggregation

After mining reliable neighbors, we perform De-
noised Neighborhood Aggregation (DNA) to pull
queries and their neighbors closer by extending the
traditional contrastive loss (Oord et al., 2018) to
the form with multiple positive keys:

LDNA = − 1

|D|
∑
qi∈D

1

|Si|
∑

hj∈Si

log
exp(qTi hj/τ)∑

hk∈M
exp(qTi hk/τ)

= − 1

|D|
∑
qi∈D

1

|Si|
∑

hj∈Si

(qTi hj/τ)

︸ ︷︷ ︸
(Alignment)

+
1

|D|
∑
qi∈D

log
∑

hk∈M

exp(qTi hk/τ)︸ ︷︷ ︸
(Uniformity)

(6)

where qi is the L2 normalized query embedding
and hj is the L2 normalized key embedding from
the queueM. Then we train the model with the
loss LDNA and the cross-entropy loss LCE with
the coarse-grained labels to learn compact cluster
embeddings for FCDC.

3.2.4 Theoretical Analysis

Analysis for LDNA. The loss LDNA can be di-
vided into two parts (Wang and Isola, 2020): Align-
ment to pull queries and their neighbors closer, and
Uniformity to make samples uniformly distributed
in hyper-sphere. Then we will prove that the Align-
ment term in LDNA is equivalent to a clustering
loss that makes the query converge to the center of
its neighbors, which can help to learn more com-
pact cluster representations for fine-grained cate-

gory discovery.

(Align.) = − 1

τ |D|
∑
qi∈D

qTi ( 1

|Si|
∑

hj∈Si

hj)


= − 1

τ |D|
∑
qi∈D

qTi µi

=
1

2τ |D|
∑
qi∈D

{
(qi − µi)

2 − ‖qi‖2 − ‖µi‖2
}

=
1

2τ |D|
∑
qi∈D

(qi − µi)
2 + c

c
=
∑
qi∈D

(qi − µi)
2

(7)

where the symbol c
= indicates equal up to a

multiplicative and/or an additive constant. µi =
1
|Si|

∑
hj∈Si

hj is the center of query’s neighbors.

‖qi‖2 = 1 because of normalization, and ‖µi‖2
is a constant since the neighbor embedding hj is
from the queue without gradient.
Interpreting DNA from the generalized EM per-
spective. If we consider the centers of the neigh-
bors as hidden variables, we can interpret the DNA
framework from the generalized EM perspective.

At the E-step, we fix model parameters θ to find
the hidden variables by retrieving and refining the
neighbor set Si:

{µi|θ, qi,M}Ni=1 =
1

|Si|
∑
hj∈Si

hj (8)

At the M-step, we fix the hidden variables
{µi}Ni=1 to optimize model parameters θ:

argmin
θ

∑
qi∈D

(qi − µi)2 (9)

Since more accurate neighbors can boost repre-
sentation learning and better representation learn-
ing can help to retrieve more accurate neighbors,
our framework can iteratively bootstrap model per-
formance on representation learning and neighbor-
hood retrieval. In addition to the intuitive expla-
nation, we also verify the intuition through experi-
ments (Sec. 5.4).

4 Experiments

4.1 Experimental Settings
4.1.1 Datasets
We conduct experiments on three benchmark
datasets. CLINC (Larson et al., 2019) is an intent



Dataset |C| |F | # Train # Test
CLINC 10 150 18,000 1,000
WOS 7 33 8,362 2,420
HWU64 18 64 8,954 1,031

Table 1: Statistics of benchmark datasets. #: number of
samples. |C|: number of coarse-grained categories. |F |:
number of fine-grained categories.

detection dataset from multiple domains. WOS
(Kowsari et al., 2017) is a paper classification
dataset. HWU64 (Liu et al., 2021) is an assis-
tant query classification dataset. Statistics of the
datasets are shown in Table 1.

4.1.2 SOTA Methods for Comparison
We compare our model with following methods.
Baselines: BERT (Devlin et al., 2018) without fine-
tuning and BERT under coarse-grained supervi-
sion. Self-training Methods: DeepCluster (Caron
et al., 2018) and DeepAligned (Zhang et al., 2021b).
Contrastive based Methods: SimCSE (Gao et al.,
2021), Ancor (Bukchin et al., 2021), Delete (Wu
et al., 2020), Nearest-Neighbor Contrastive Learn-
ing (NNCL) (Dwibedi et al., 2021b), Contrastive
Learning with Nearest Neighbors (CLNN) (Zhang
et al., 2022b) and Weighted Self-Contrastive Learn-
ing (WSCL) (An et al., 2022a). We also investigate
some variants by adding cross-entropy loss (+CE).

4.2 Evaluation Metrics
To evaluate the quality of the discovered fine-
grained clusters, we use two broadly used evalua-
tion metrics: Adjusted Rand Index (ARI) (Hubert
and Arabie, 1985) and Normalized Mutual Infor-
mation (NMI) (Lancichinetti et al., 2009):

ARI =
RI − E(RI)

max(RI)− E(RI)
(10)

NMI =
2 ∗ I(ŷ; y)

H(ŷ) +H(y)
(11)

where RI is the rand index and E(RI) is the ex-
pectation of RI . ŷ is the prediction from clustering
and y is the ground truth. I(ŷ; y) is the mutual
information between ŷ and y, H(ŷ) and H(y) rep-
resent the entropy of ŷ and y, respectively.

To evaluate the classification performance of
models, we use the metric clustering accuracy
(ACC):

ACC =

∑N
i=1 I{P(ŷi) = yi}

N
(12)

where ŷi is the prediction from clustering and yi
is the ground-truth label, N is the number of sam-
ples, P(·) is the permutation map function from
Hungarian algorithm (Kuhn, 1955).

4.2.1 Implementation Details

We use the pre-trained BERT-base model (Devlin
et al., 2018) as our backbone with the learning rate
5e−5. We use the AdamW optimizer with 0.01
weight decay and 1.0 gradient clipping. For hyper-
parameters, the batch size for pretraining, training
and testing is set to 64. Epochs for pretraining and
training are set to 100 and 20, respectively. The
temperature τ is set to 0.07. The number of neigh-
bors k is set to {120, 120, 250} for the dataset
CLINC, HWU64 and WOS, respectively. The di-
mension for Rank Statistic Constraint is set to 5.
The momentum factor α is set to 0.99. For com-
pared methods, we use the same BERT model as
ours to extract features and adopt hyper-parameters
in their original papers for a fair comparison.

4.3 Result Analysis

Comparison results of different methods are shown
in Table 2. From the results, we can get following
observations. (1) Our model outperforms the com-
pared methods across all evaluation metrics and
datasets, which clearly shows the effectiveness of
our model. we attribute the better performance of
our model to the following reasons. Firstly, our
model can model semantic structures of data to
learn more compact cluster representations by ag-
gregating information from neighbors. Secondly,
our model can retrieve reliable neighbors to boost
the quality of representation learning with three
filtering principles. Thirdly, the previous two steps
can boost performance of each other in an EM man-
ner, which can progressively bootstrap the entire
model performance. (2) Baselines and self-training
methods perform badly on the FCDC task since
they rely on abundant fine-grained labeled data to
train their models, which are not available under
the FCDC setting. (3) Contrastive-based methods
perform better than baselines above since they can
acquire fine-grained knowledge even without fine-
grained supervision. However, these methods sim-
ply treat each instance as a single class but ignore
semantic similarities between different instances,
which may prevent them from learning compact
representations for subsequent clustering.



Methods
CLINC WOS HWU64

ACC ARI NMI ACC ARI NMI ACC ARI NMI

BERT 34.37 17.61 64.75 31.97 18.36 45.15 33.52 17.04 56.90
BERT + CE 43.85 32.37 78.58 38.29 36.94 64.72 37.89 33.68 74.63

DeepCluster 26.40 12.51 61.26 29.17 18.05 43.34 29.74 13.98 53.27
DeepAligned 29.16 14.15 62.78 28.47 15.94 43.52 29.14 12.89 52.99
DeepCluster + CE 30.28 13.56 62.38 38.76 35.21 60.30 41.73 27.81 66.81
DeepAligned + CE 42.09 28.09 72.78 39.42 33.67 61.60 42.19 28.15 66.50

NNCL 17.42 13.93 67.56 29.64 28.51 61.37 32.98 30.02 73.24
CLNN 19.96 14.76 68.30 29.48 28.42 60.99 37.21 34.66 75.27
SimCSE 40.22 23.57 69.02 25.87 13.03 38.53 24.48 8.42 46.94
Ancor + CE 44.44 31.50 74.67 39.34 26.14 54.35 32.90 30.71 74.73
Ancor 45.60 33.11 75.23 41.20 37.00 65.42 37.34 34.75 74.99
Delete 47.11 31.28 73.39 24.50 11.68 35.47 21.30 6.52 44.13
Delete + CE 47.87 33.79 76.25 41.53 33.78 61.01 35.13 31.84 74.88
SimCSE + CE 52.53 37.03 77.39 41.28 34.47 61.62 34.04 31.81 74.86
WSCL 74.02 62.98 88.37 65.27 51.78 72.46 59.52 49.34 79.31

Ours 87.66 81.82 94.69 74.57 63.30 76.86 70.81 59.66 83.31
Improvement +13.64 +18.84 +6.32 +9.30 +11.52 +4.40 +11.29 +10.32 +4.00

Table 2: Model performance (%) on the FCDC task. Average results over 3 runs are reported. Some results are cited
from An et al. (2022a).

5 Discussion

5.1 Ablation Study

We investigate the effectiveness of different com-
ponents of our model in Table 3. From the table
we can draw following conclusions. (1) Traditional
Nearest-Neighbor Contrastive Learning (NNCL)
performs badly on the FCDC task, which is be-
cause NNCL ignores semantic similarities between
samples and fails to retrieve reliable neighbors. (2)
Adding multiple neighbors as positive keys (Eq. 6)
significantly improves model performance since it
can help to learn compact cluster representations
for fine-grained categories (Sec. 3.2.4). (3) Adding
coarse-grained supervision with cross entropy loss
can also boost model performance since it can con-
tribute to representation learning. (4) Adding dif-
ferent filtering principles (Label, Reciprocal and
Rank) can also improve model performance since
they are responsible to retrieve reliable neighbors
for better representation learning.

5.2 Accuracy of Selected Neighbors

To investigate the effect of three filtering princi-
ples on the accuracy of the retrieved neighbors,
we report the accuracy (i.e., the query and neigh-

Model ACC ARI NMI

NNCL 32.98 30.02 73.24
+ Multi. Neighbors 64.89 52.88 81.14
+ Coarse Labels 68.19 55.95 81.90
+ Label 68.67 57.08 81.99
+ Reciprocal 69.42 58.16 82.99
+ Rank (Ours) 70.81 59.66 83.31

Table 3: Results (%) of different model variants on the
HWU64 dataset. ’+’ means that we add the component
to the previous model.

bors have the same fine-grained labels) of the re-
trieved neighbors in Table 4. Specifically, (1) re-
trieving neighbors without any filtering (k-NN) can
yield only 50% retrieval accuracy, which can signif-
icantly affect subsequent learning since those false
neighbors provide wrong supervision signal for rep-
resentation learning. (2) Adding the coarse-grained
label constraint (Label) can improve the retrieval
accuracy slightly since k-NN has also learned the
coarse-grained knowledge through pretraining. (3)
Adding the reciprocal constraint (Reciprocal) can
make huge improvement in retrieval accuracy since
this constraint can capture bidirectional relation-
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(c) Model performance during training.

Figure 3: Analysis of the quality of representation learning and neighborhood retrieval.

Model WOS HWU64 CLINC

k-NN 49.39 49.65 48.08
+Label 50.43 50.60 48.24
+Reciprocal 67.57 65.00 66.78
+Rank 77.34 66.44 67.28

Improvement +27.95 +16.79 +19.20

Table 4: Accuracy (%) of the retrieved neighbors.

ships between queries and the retrieved neighbors.
(4) Adding the rank statistic constraint (Rank) can
also improve the retrieval accuracy. After pretrain-
ing, samples with the same coarse-grained labels
but different fine-grained ones can be aggregated
together, leading to retrieving false neighbors. The
rank statistic constraint can alleviate this problem
by ignoring noisy components in feature embed-
dings and only considering important ones that con-
tain fine-grained information, where the important
components are selected by ranking statistics.

5.3 Quantity and Quality Trade-off

While the filtering principles can increase the qual-
ity of neighbors by filtering out noisy ones, they
can also reduce the number of retrieved neighbors.
To investigate the trade-off between quantity and
quality, we plot the curve of accuracy of selected
neighbors (Fig. 3(a)) and the number of selected
neighbors (Fig. 3(b)) on the CLINC dataset. From
the figure we can see that our model can retrieve
more and more neighbors with increasing accuracy
during training, which means that our model can
reach a trade-off between quantity and quality. We
attribute this advantage to our learning paradigm
where representation learning and neighborhood re-
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Figure 4: Influence of the number of neighbors k.

trieval are performed alternately to bootstrap both
of their performance.

5.4 EM Validation
To validate the intuitive EM explanation about our
framework (Sec. 3.2.4), we further visualize the
curve of model performance during training on the
CLINC dataset in Fig. 3(c). From the figure we
can see that our model gets better and better per-
formance during training, which indicates that the
quality of representation learning is gradually im-
proved. Combined with the improved quality and
quantity of the selected neighbors in Fig. 3(a) and
3(b), we can draw the conclusion that our frame-
work can bootstrap model performance on repre-
sentation learning and neighborhood retrieval itera-
tively through the generalized EM perspective.

5.5 Influence of Number of Neighbors
We investigate the influence of the number of neigh-
bors k on model performance on the CLINC dataset
in Fig. 4. From the figure we can see that too large
or too small k can lead to poor model performance.
we can also see that our model gets the best per-
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Figure 5: Influence of the number of rank dimensions.

formance when k is approximately equal to the
number of samples in each fine-grained category
(e.g., 120 for the CLINC dataset). This is in line
with our analysis in Sec. 3.2.4, since samples will
gather into the center of fine-grained clusters in the
ideal situation.

5.6 Influence of Number of Rank Dimensions

We investigate the influence of the number of rank
dimensions m on the CLINC dataset in Fig. 5.
From the figure we can see that our model is in-
sensitive to changes in m, since we only use the
rank statistic constraint to select reliable neighbors
for the first epoch of training. This is because rank
statistic constraint is a strong constraint, which is
most effective when the model performance is poor.
And during training, our model can select more
accurate neighbors, so we want to retrieve more
neighbors to improve model’s generalization abil-
ity. Furthermore, since sorting is a time-consuming
process, performing rank statistic constraint only at
the beginning of training can save much time and
balance effectiveness and efficiency.

5.7 Visualization

We visualize the learned embeddings of WSCL (An
et al., 2022a) and our model through t-SNE on the
HWU64 dataset in Fig. 6. From the figure we can
see that our model can separate different coarse-
grained categories effectively. In the meanwhile,
our model can maintain separability within each
coarse-grained categories to facilitate the subse-
quent fine-grained category discovery. In summary,
our model can better control both inter-class and
intra-class distance between samples to facilitate
the FCDC task than previous instance-level con-
trastive learning methods.

(a) WSCL (b) DNA

Figure 6: The t-SNE visualization of embeddings.

6 Conclusion

In this paper, we propose Denoised Neighbor-
hood Aggregation (DNA), a self-supervised learn-
ing framework that iteratively performs represen-
tation learning and neighborhood retrieval for fine-
grained category discovery. We further propose
three principles to filter out false-positive neigh-
bors for better representation learning. Then we
interpret our model from a generalized EM per-
spective and theoretically justify that the learning
objective of our model is equivalent to a clustering
loss, which can encode semantic structures of data
to form compact clusters. Extensive experiments
on three benchmark datasets show that our model
can retrieve more accurate neighbors and outper-
form state-of-the-art models by a large margin.

Limitations

Even though the proposed Denoised Neighborhood
Aggregation (DNA) framework achieves superior
performance on the FCDC task, it still faces the
following limitations. Firstly, DNA requires addi-
tional memory to store a queue for neighborhood re-
trieval and representation learning. Secondly, even
though the three filtering principles can help to
select more accurate neighbors, they require addi-
tional time to post-process the retrieved neighbors
than traditional k-NN methods.
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