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Abstract. We present a non-convex variational approach to non-binary5 5

discrete tomography which combines non-local projection constraints6 6

with a continuous convex relaxation of the multilabeling problem. Min-7 7

imizing this non-convex energy is is achieved by a fixed point iteration8 8

which amounts to solving a sequence of convex problems, with guaran-9 9

teed convergence to a critical point. A competitive numerical evaluation10 10

using standard test-datasets demonstrates a significantly improved re-11 11

construction quality for noisy measurements from a small number of12 12

projections.13 13

1 Introduction14 14

Computed tomography [14] deals after spatial discretization in an algebraic set-15 15

up with the reconstruction of 2D- or 3D-images u ∈ RN from a small number of16 16

noisy measurements b = Au + ν ∈ Rm. The latter correspond to line integrals17 17

that sum up all absorptions over each ray transmitted through the object. A18 18

given projection matrix A ∈ Rm×N encodes this imaging geometry. Applications19 19

range from medical imaging [3] to natural sciences and industrial applications,20 20

like non-destructive material testing [7]. Many situations require to keep the21 21

number of measurements as low as possible, which leads to a small number of22 22

projections and hence to a severely ill–posed reconstruction problem.23 23

To cope with such problems, a common assumption in the field of discrete to-24 24

mography [8] concerns knowledge of a finite range of u ∈ LN , L := {c1, ..., cK} ⊂25 25

[0, 1], that is, u represents a piecewise constant function. Our main concern in26 26

this paper is to effectively exploit the additional prior knowledge in terms of L,27 27

besides the projection constraints, in order to solve the discrete reconstruction28 28

problem29 29

Au = b s.t. ui ∈ L, ∀ i = 1, . . . , N, (1)

which generally is a NP-hard problem.30 30

Related work on discrete tomography considers either binary or non-binary31 31

(multivalued) problems. The latter ones are considerably more involved.32 32

Regarding binary discrete tomography, Weber et al. [28, 20] proposed to com-33 33

bine a quadratic program with a non-convex penalty which gradually enforces34 34

binary constraints. More recently, Kappes et al. [9] showed how a binary discrete35 35

graphical model and a sequence of s-t graph-cuts can be used to take into account36 36

the affine projection constraints and to recover high-quality reconstructions.37 37
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Regarding non-binary discrete tomography, an extension of the latter ap-38 38

proach is not straightforward due to the nonlocal projection constraints. We-39 39

ber [27, Chapter 6] proposed a non-convex term for non-binary discrete tomog-40 40

raphy that we derive in a natural way in the present work. However, Weber’s41 41

approach differs with respect to the data term for the projection constraints,42 42

regularization and optimization, and additionally requires parameter tuning.43 43

Because u is assumed to be piecewise constant, an obvious approach is to44 44

consider sparsity promoting priors. The authors of [22] proposed a dynamic pro-45 45

gramming approach for minimizing the `0-norm of the gradient. The set L of46 46

feasble intensities is not exploited, however. In the convex setting, the integrality47 47

constraints are dropped and priors like the `1-norm or the total variation (TV)48 48

are used [21, 6, 5], with a postprocessing step to round the continuous solution49 49

to a piecewise constant one. This approach connects discrete tomography and50 50

the fast evolving field of compressive sensing with corresponding recovery guar-51 51

antees [5]. Again, however, the prior information of the range of the image to52 52

be reconstructed is not involved in the optimization process. We focus next on53 53

methods that make use of the set L during the reconstruction process.54 54

Tuysuzoglu et al. [24] casted the non-binary discrete reconstruction problem55 55

into a series of submodular binary problems within an α-expansion approach56 56

by linearizing the `2-fidelity term around an iteratively updated working point.57 57

This local approximation discards a lot of information, and a significantly larger58 58

number of projections is required to get reasonable reconstructions. Maeda et59 59

al. [12] suggested a probabilistic formulation which couples a continuous recon-60 60

struction with the Potts model. Alternating optimization is applied to maximize61 61

the a posteriori probability locally. However, there is no convergence that these62 62

alternating continuous and discrete block coordinate steps converge.63 63

Ramlau et al. [10] investigated the theoretical regularization properties of64 64

the piecewise constant Mumford-Shah functional [13] applied to linear ill-posed65 65

problems. In earlier work [19], they considered discrete tomography reconstruc-66 66

tion using this framework. The difficult geometric optimization of the partition67 67

is carried out by a level-set approach and additionally the intensities L were68 68

estimated in an alternating fashion. By contrast, our approach is based on a69 69

convex relaxation of the perimeter regularization and the set L is assumed to70 70

known beforehand.71 71

Varga et al. [25] suggested a heuristic algorithm which is adaptively comb-72 72

ing an energy formulation with a non-convex polynomial in order to steer the73 73

reconstruction towards the feasible values. Batenburg et al. [2] proposed the Dis-74 74

crete Algebraic Reconstruction Technique (DART) algorithm which starts with a75 75

continuous reconstruction by a basic algebraic reconstruction method, followed76 76

by thresholding to ensure a piecewise constant function. These steps interleaved77 77

with smoothing are iteratively repeated to refine the locations where u jumps.78 78

This heuristic approach yields good reconstructions in practice but cannot be79 79

characterized by an objective function that is optimized.80 80

We regard [2, 25] as state-of-the-art approaches for the experimental compar-81 81

ison.82 82
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Contributions. We present a novel variational approach to the discrete83 83

tomography reconstruction problem in the general non-binary case. Contrary84 84

to existing work, we utilize both the non-local projection constraints and the85 85

feasible set of intensities L in connection with an established convex relaxation86 86

of the multilabeling approach with a Potts prior. We show how the resulting87 87

non-convex overall energy can be optimized efficiently by a fixed-point iteration88 88

which requires to solve a convex problems at each step. In this way, the derivation89 89

of our non-convex data and its local updates arise naturally. We also propose90 90

a suitable rounding procedure as post-processing step, because the integrality91 91

constraints are relaxed. A comprehensive numerical evaluation demonstrates the92 92

superior reconstruction performance of our approach compared to related work.93 93

2 Reconstruction by Constrained Multilabeling94 94

In this section, we first reformulate the discrete reconstruction problem (1) as95 95

a constraint combinatorial multilabeling problem. Then we derive a tractable96 96

variational approximation and suggest a proper rounding procedure.97 97

2.1 Constrained Multilabeling Problem98 98

We assume that there are less measurements than pixels m� N and hence that99 99

the discrete reconstruction problem (1) is ill-posed and requires regularization.100 100

A common choice is the Potts model [18], R(u) = ‖∇u‖0 := |{i | (∇u)i 6= 0}|101 101

for sparse gradient regularization which favours piecewise constant images. In102 102

presence of noisy measurements b, we use the more general constraints b(ε) ≤103 103

Au ≤ b(ε) instead of Au = b, where ε is an upper bound of the noise level. As a104 104

result, the discrete reconstruction problem can be rewritten as105 105

E(u) = λ · ‖∇u‖0 s.t. b(ε) ≤ Au ≤ b(ε) ∧ ui ∈ L ∀ i = 1...N. (2)

We refer to problem (2) as a constrained multilabeling problem with Potts regu-106 106

larization but point out that, from the viewpoint of graphical models, the system107 107

of affine inequalities induces (very) high-order potentials. This high-order inter-108 108

action induced by the non-local constraints results in a non-standard labeling109 109

problem which becomes intractable for discrete approaches and larger problem110 110

sizes. We adopt, therefore, the strategy of solving a sequence of convex relax-111 111

ations in order to minimize a non-convex energy, which properly approximates112 112

the original problem.113 113

2.2 Approximate Variational Problem114 114

Our starting point is the established convex relaxation of the multilabeling prob-115 115

lem [29, 11, 17]. Minimization (3) below over relaxed indicator vectors zi assigns116 116

to each given image pixel u0i a label of the set L = {c1, . . . , cK}. The discretized117 117



4 GCPR 2016 Submission #***. CONFIDENTIAL REVIEW COPY.

total variation penalty, weighted by λ, and the simplex constraints G constitute118 118

a basic convex relaxation of the integrality constraints with respect to z.119 119

E(z, u0) =

N∑
i=1

K∑
k=1

zik
(
u0i − ck

)2
+ λ

K∑
k=1

‖∇zk‖1

s.t. z ∈ G :=

{
z ∈ [0, 1]N×K :

K∑
k=1

zik = 1, ∀ i = 1, . . . , N

}
.

(3)

Regarding the notation, we denote by zk, k ∈ {1, . . . ,K} the column vectors of120 120

z and by zik = (zk)i the entries of the matrix z.121 121

Next, we add the projection constraints b ≤ Au ≤ b to the relaxed energy (3)122 122

by transforming the indicator variables z back to their corresponding intensities123 123

with the linear operatorW : G→ RN , z 7→
∑K

l=1 clzl which preserves convexity124 124

of the resulting energy125 125

E(z, u0) =

N∑
i=1

K∑
k=1

zik
(
u0i − ck

)2
+ λ

K∑
k=1

‖∇zk‖1

+ δRm
+

(AWz − b) + δRm
−

(AWz − b) + δG(z).

(4)

Note that the constraints b ≤ AWz ≤ b and z ∈ G are implemented by indicator126 126

functions δRm
+

and δRm
−

.127 127

In tomography, no image u0 is given, however. Therefore, we cannot drop128 128

the unary data term in Eq. (4), however, since the constraints are feasible for129 129

all convex combinations of prototypes ck. In other words, the constraints only130 130

constrain the value a pixel but do not indicate how the indicator variables should131 131

realize this value (similar to estimating a vector given only its magnitude).132 132

A straightforward approach would be to start with some initial guess u0, e.g.133 133

computed using some another reconstruction method, followed by iteratively134 134

applying this approach above. This gives the fixed point iteration135 135

zn+1 = arg min
z

E(z,Wzn). (5)

At every iteration a convex problem has to solved whose solution updates the136 136

unary data term. This raises the question whether the iteration convergences137 137

and which overall energy is actually optimized?138 138

To address these questions, we first eliminate u0 in a principled way. Noting139 139

that the term of E(z, u0) in Eq. (4) depending from u0 is differentiable with140 140

respect to u0, we invoke Fermat’s (first order) optimality condition u∗ = Wz141 141

which says that the optimal u∗ must be equal to the weighted average of the142 142

labels ck. Substituting this optimality condition back into the energy (4) results143 143

in the final version of the proposed energy which only depends on z,144 144

E(z) =

N∑
i=1

K∑
k=1

zik ((Wz)i − ck)
2

+ λ

K∑
k=1

‖∇zk‖1

+ δRm
+

(AWz − b) + δRm
−

(AWz − b) + δG(z).

(6)
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This energy, Eq. (6), is non-convex because of the products in the first term145 145

which is measuring the discreteness of z. We call this term phase data term and146 146

denote it by

D(z) :=

N∑
i=1

K∑
k=1

zik ((Wz)i − ck)2. (7)

Fig. 1. Visualization of the phase data term term
D(z) for N = 1 over the probability simplex
G, the vertices correspond to the values L =
{0.0, 0.4, 1.0}. Note that the minimum is attained
at the vertices of the simplex which correspond to
unit vectors.

147 147

Figure 1 shows a plot of D(z), Eq. (7). Weber [27, Chapter 6] proposed148 148

this term for discrete tomography which arises here in a natural way, whereas149 149

his overall approach differs with respect to the data term for the projection150 150

constraints, regularization and optimization. We show in the Appendix A, as151 151

Lemma 2, that D(z), Eq. (7), is concave over the domain G.152 152

3 Optimization153 153

In this section, we reformulate the objective function (6) as DC program and154 154

work out a corresponding optimization algorithm.155 155

3.1 DC Programming156 156

A large subclass of non-convex optimization problems are DC functions (differ-157 157

ence of convex functions) which can be solved by DC Programming [15], this158 158

generalizes subgradient optimization of convex functions to local optimization159 159

of DC functions. Accordingly, basic concepts of convex optimization like duality160 160

and KKT conditions were extended to DC functions [23]. The basic form of a161 161

DC Program is given by162 162

z∗ = arg min
z

g(z)− h(z), (8)

where g(z) and h(x) are proper, lower semicontinuous, convex functions. There163 163

exists a simplified version of the DC algorithm [16] for minimizing (8) which164 164

guarantees convergence to a critical point by starting with z0 ∈ dom(g) and165 165

then alternatingly applying the updates166 166

vn ∈ ∂h(zn) and zn+1 ∈ ∂g∗(vn) (9)

until a termination criterion is reached, where g∗ denotes the Legendre-Fenchel167 167

conjugate of g. To apply the DC algorithm to our non-convex energy E(z), Eq.168 168
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(6), we rewrite E(z) = g(z)− h(z) as a DC function where h(z) = −D(z) since169 169

the phase data term (7) is concave (see Appendix A: Lemma 2) and g(z) is170 170

denoting the remaining convex terms from Eq. (6).171 171

In order to make explicit the step zn+1 ∈ ∂g∗(vn), we apply the subgradient172 172

inversion rule of convex analysis to obtain173 173

zn+1 ∈ ∂g∗(vn) ⇔ vn ∈ ∂g(zn+1) ⇔ 0 ∈ ∂g(zn+1)− vn (10)

which is equivalent to the convex optimization problem174 174

zn+1 = arg min
z

g(z)− 〈vn, z〉. (11)

Because h is differentiable, the other step of (9) reads175 175

vn ∈ ∂h(zn) ⇔ vn = −∇D(zn), (12)

where the gradient of D at z for pixel i and label ck is given by (see Appendix176 176

A: Lemma 1)177 177

(∇D(z))ik =
∂D(z)

∂zik
= ((Wz)i − ck)2, i = 1, . . . , N, k = 1, . . . ,K. (13)

Combining equations (12) and (13) and inserting into equation (11) yields178 178

zn+1 = arg min
z

E(z,Wzn) = arg min
z

g(z) +

N∑
i=1

K∑
k=1

zik ((Wzn)i − ck)
2
. (14)

We notice that the DC algorithm, summarized as Algorithm 1 below, agrees179 179

with the iteration (5), and hence proves its convergence. We apply the primal

Algorithm 1: DC Fixed Point Algorithm

1. Initialization: choose any z0 ∈ Rn×k

2. Generate a sequence (zn)n∈N by solving the convex problems

zn+1 = arg min
z

E(z,Wzn) (15)

until a termination criterion is met.

180 180

dual (PD) algorithm proposed by [4] to solve each convex subproblem (15).181 181

3.2 Rounding Step182 182

Recall that the data term D(z) of (6) only steers the solution to the finite set183 183

of feasible values L. As a consequence, for vanishing regularization parameter184 184
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(weight) λ, the minimizer z will correspond to indicator vectors zi that assign185 185

a unique label to each pixel i. For larger values of λ which are more common186 186

in practice, however, the minimizing vectors zi will not be integral in general.187 187

Therefore, a post-processing step for rounding the solution is required.188 188

Given the minimizer z∗ of (6), we propose to select a label for each pixel i189 189

as post-processing step by solving the local problems190 190

û∗i = arg min
c∈L

|(Wz∗)i − c|, i = 1, . . . , N. (16)

Note that this method differs from the common rounding procedure of multi-191 191

labeling approaches which select the label ck if zik = max{zi1, . . . , ziK}.192 192

4 Numerical Experiments193 193

Set-up. In this section, we compare our approach to state-of-the-art approaches194 194

for non-binary discrete tomography in limited angles scenarios. Specifically, we195 195

considered the Discrete Algebraic Reconstruction Technique (DART ) [2] and196 196

the energy minimization method from Varga et al. [25] (Varga). As multivalued

Phantom 1 Phantom 2 Phantom 3 Phantom 4 Phantom 5

Fig. 2. The 5 different phantoms used for the numerical evaluation.

197 197

test-datasets we adapted the binary phantoms from Weber et al. [26] to more198 198

labels, shown as phantom 1,2 and 3 by Figure 2. Phantom 4 in Figure 2 was199 199

taken from [2] and phantom 5 is the well-known Shepp-Logan phantom. We200 200

created noisy scenarios by applying Poisson noise to the measurements b with a201 201

signal-to-noise ratio of SNR = 20 db. The geometrical setup was created by the202 202

ASTRA-toolbox [1], where we used parallel projections along equidistant angles203 203

between 0 and 180 degrees. Each entry aij of the matrix A corresponds to the204 204

length of the line segment of the i-th projection ray passing through the j-th205 205

pixel in the image domain. The width of the sensor-array was set 1.5 times the206 206

image size, so that every pixel intersects with a least a single projection ray.207 207

Implementation details. Each subproblem of Algorithm 1 was approxi-208 208

mately solved using the primal dual (PD) algorithm [4] limited to 1000 iterations209 209

or till the primal dual gap dropps below 0.1. The outer iteration was terminated210 210

if change of the energy between two iterations, normalized by the number of211 211

pixels, was smaller than 10−5 in the noiseless case and 10−4 in the noisy case.212 212

Additionally, we limited the number of outer iterations to 20. For DART we213 213
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Proposed
noiseless

Proposed
noise case

DART[2]
noiseless

DART[2]
noise case

Varga[25]
noiseless

Varga[25]
noise case

2

3

7

10

Fig. 3. Visual results of experiment phantom 1.

used the publicly available implementation included in the ASTRA-toolbox [1]214 214

and for the method of Varga [25] we used our own implementation in MATLAB215 215

because no public code was available. We tried to use the default parameters216 216

of the competing approaches as proposed by their authors. However, since the217 217

test-datasets differ in size, we slightly adjusted the parameters in order to get218 218

best results for every algorithm and problem instance.219 219

Performance measure. For the evaluation we measured the relative pixel220 220

error, that is the relative number of erroneously reconstructed pixels as compared221 221

to the groundtruth.222 222

Results. Figure 4 shows all results of the numerical evaluation. For each223 223

test-datasets (phantoms 1 - 5), the left plot displays the relative pixel error224 224

for increasing numbers of projection angles. On the right, the corresponding225 225

runtime is shown as log-scaled plot. For each algorithm two curves are drawn:226 226

filled makers correspond to the noiseless case and non-filled markers correspond227 227

to the noisy case. The results show that the proposed approach returns a perfect228 228

reconstruction with the least number of projection angles in the noiseless case229 229

among all approaches. In the scenarios, the proposed algorithm is performing230 230

better, too. In the noiseless case phantom 1 can be almost perfectly reconstructed231 231

from only 3 projection angles and fully from 4 by the proposed approach whereas232 232

DART needs 7 projection to get an almost perfect reconstruction and the method233 233

of Varga needs at least 7 projections to get a reasonable reconstruction. These234 234

visual differences can be seen in Figure 3. Thhis ranking of the performance of235 235

the approaches is similar for phantoms 2,3 and 5, except for the phantom 5 in236 236
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(a) Phantom 1
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(b) Phantom 2
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(c) Phantom 3
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(d) Phantom 4
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(e) Phantom 5

Proposed with noise | DART with noise | Varga with noise

Fig. 4. Numerical evaluation of the approaches for the different test-datasets and in-
creasing (but small) numbers of projections, in the noiseless case (filled markers) and
in the noisy case (non-filled markers), with noise level SNR = 20 db. The relative
pixel error is shown. The proposed approach gives perfect reconstructions with the
least number of projection angles in the noiseless case and also returns high-quality
reconstructions in the presence of noise, compared to the other approaches.
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Proposed
noiseless

Proposed
noise case

DART[2]
noiseless
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noise case

Varga[25]
noiseless

Varga[25]
noise case
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Fig. 5. Visual results of experiment phantom 4.

the noiseless case where the approach of Varga performs better than DART.237 237

Figure 5 shows the results for phantom 4, where our approach is able to fully238 238

reconstruct from merely 7 projections in the noiseless case and returns a good239 239

piecewise-constant result in the noisy case. Due to a lack of space, we refer to240 240

Appendix B of the supplementary material for the visualization of the results241 241

for all test-datasets.242 242

Regarding the runtime (right plots from figure 4), DART is the fastest ap-243 243

proach, Varga is in between DART, and the proposed approach is clearly consum-244 244

ing more runtime to return more accurate solutions. Obviously, if computational245 245

performance is important, the proposed approach could be easily parallelized246 246

and implemented e.g. in CUDA to run on modern graphics cards.247 247

5 Conclusion and Future Work248 248

We presented a novel non-convex variational approach for solving the discrete249 249

tomography reconstruction in the general non-binary case. The approach com-250 250

bines a convex relaxation of the multilabeling problem with Potts prior and the251 251

non-local tomographic projection constraints. The feasible set of labels is taken252 252

into account by a non-convex data term which naturally emerges when the func-253 253

tion to be reconstructed is represented as convex combination of these values.254 254

A DC algorithm reliable minimizes the overall objective function and provably255 255

converges. The reconstruction performance turned out to be superior to the state256 256

of the art.257 257

In future work, we plan to improve the running time and focus on the theo-258 258

retical aspects of this approach. The proposed data term (7), in particular, fits259 259

nicely into spatially continuous variational formulations and thus may indicate260 260

ways for further improvement.261 261
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14. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction.303 303

SIAM (2001)304 304

15. Pham Dinh, T., El Bernoussi, S.: Algorithms for Solving a Class of Nonconvex Opti-305 305

mization Problems. Methods of Subgradients. In: Hiriart-Urruty, J.B. (ed.) Fermat306 306

Days 85: Mathematics for Optimization, North-Holland Mathematics Studies, vol.307 307

129, pp. 249 – 271. North-Holland (1986)308 308

16. Pham Dinh, T., Hoai An, L.: Convex Analysis Approach to D.C. Programming:309 309

Theory, Algorithms and Applications. Acta Math. Vietnamica 22(1), 289–355310 310

(1997)311 311



12 GCPR 2016 Submission #***. CONFIDENTIAL REVIEW COPY.

17. Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach312 312

for computing minimal partitions. In: Computer Vision and Pattern Recognition,313 313

2009. CVPR 2009. IEEE Conference on. pp. 810–817 (June 2009)314 314

18. Potts, R.B.: Some generalized order-disorder transformations. Mathematical Pro-315 315

ceedings of the Cambridge Philosophical Society 48, 106–109 (1 1952)316 316

19. Ramlau, R., Ring, W.: A mumford–shah level-set approach for the inversion and317 317

segmentation of x-ray tomography data. Journal of Computational Physics 221(2),318 318

539–557 (2007)319 319
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6 Appendix A351 351

Lemma 1. Let D(z) defined as352 352

D(z) :=

N∑
i=1

K∑
k=1

zik ((Wz)i − ck)
2
. (17)

Then the component
(
∇D(z)

)
jl

of the gradient of D at z with respect to z for353 353

pixel j = {1, ..., N} and label cl ∈ L = {c1, ..., cK} is given by354 354

(∇D(z))jl =
∂D(z)

∂zjl
= ((Wz)j − cl)2. (18)

Proof. Using Wz =
∑K

k=1 ckzk, we compute

∂D(z)

∂zjl
= ((Wz)j − cl)2 + 2

N∑
i=1

K∑
k=1

zik((Wz)i − ck)
∂

∂zjl

(∑
m

zimcm − ck
)
(19)

= ((Wz)j − cl)2 + 2cl

K∑
k=1

zjk ((Wz)j − ck) (20)

= ((Wz)j − cl)2 + 2cl

(
(Wz)j

K∑
k=1

zjk −
K∑

k=1

zjkck

)
(21)

= ((Wz)j − cl)2 + 2cl ((Wz)j · 1− (Wz)j) (22)

= ((Wz)j − cl)2 (23)

�355 355

Lemma 2. The phase data term D(z) is concave with respect to z over the
domain G.

D(z) :=
N∑
i=1

K∑
k=1

zik ((Wz)i − ck)
2
. (24)

G :=

{
z ∈ [0, 1]N×K :

K∑
k=1

zik = 1, ∀ i = 1, . . . , N

}
. (25)

Proof. The domain G is a convex set by definition. Consider the function356 356

H : G×G→ R+, (x, y) 7→
N∑
i=1

K∑
k=1

yik ((Wx)i − ck)
2

(26)

then the components
(
∇xH(x, y)

)
jl
,
(
∇yH(x, y)

)
jl

of the gradient of H at (x, y)

with respect to x and y for pixel j = {1, ..., N} and label l = {1, ...,K} are given
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by

(∇xH(x, y))jl =
∂H(x, y)

∂xjl
= 2cl(W (x− y))j (27)

(∇yH(x, y))jl =
∂H(x, y)

∂yjl
= ((Wx)j − cl)2. (28)

Using357 357

D(z) = H(x, y) ◦ (z, z) = H(z, z) (29)

and applying the chain rule, we get

(∇D(z))jl =
(
(∇xH(z, z))jl, (∇yH(z, z))jl

)(1
1

)
= ((Wz)j − cl)2, (30)

D(z) = 〈∇D(z), z〉, (31)

H(x, y) = 〈∇D(x), y〉. (32)

Now, for any x, y ∈ G, we obtain the inequality

D(x) + 〈∇D(x), y − x〉 = D(x) + 〈∇D(x), y〉 − 〈∇D(x), x〉 (33)

= D(x) + 〈∇D(x), y〉 −D(x) (34)

= 〈∇D(x), y〉 (35)

= H(x, y) (36)

≥ inf
x∈G

H(x, y) = H(y, y) = D(y), (37)

where the infimum of H(x, y) with respect to x ∈ G follows from the necessary
condition:

(∇xH(x, y))jl = 2cl(W (x− y))j = 0, ∀j, ∀l, (38)

=⇒ (Wx)j = (Wy)j , (39)

=⇒ x = y. (40)

Since the function H(·, y) is invariant under pixelwise weighted averaging, and358 358

because H(·, y) is a sum of positive parabolas, the condition x = y is sufficient359 359

for attaining the infimum.360 360

As a result, we have shown the first-order condition for concavity of the phase361 361

data term D(z)362 362

D(x) + 〈∇D(x), y − x〉 ≥ D(y), ∀x, y ∈ G. (41)

�363 363
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7 Appendix B364 364
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Fig. 6. Visual results of experiment phantom 1.
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Fig. 7. Visual results of experiment phantom 2.
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Fig. 8. Visual results of experiment phantom 3.
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Fig. 9. Visual results of experiment phantom 4.
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Fig. 10. Visual results of experiment phantom 5.


