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Abstract: We present DexUMI - a data collection and policy learning framework1

that uses the human hand as the natural interface to transfer dexterous manip-2

ulation skills to various robot hands. DexUMI includes hardware and software3

adaptations to minimize the embodiment gap between the human hand and var-4

ious robot hands. The hardware adaptation bridges the kinematics gap using a5

wearable hand exoskeleton. It allows direct haptic feedback in manipulation data6

collection and adapts human motion to feasible robot hand motion. The soft-7

ware adaptation bridges the visual gap by replacing the human hand in video data8

with high-fidelity robot hand inpainting. We demonstrate DexUMI’s capabilities9

through comprehensive real-world experiments on two different dexterous robot10

hand hardware platforms, achieving an average task success rate of 86%.11
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Figure 1: DexUMI transfer dexterous human manipulation skills to various robot hand by using wearable
exoskeletons and a data processing framework. We demonstrate DexUMI’s capability and effectiveness on
both underactuated (e.g., Inspire) and fully-actuated (e.g., XHand) robot hand for a wide variety of manipulation
tasks.

1 Introduction14

Human hands are incredibly dexterous in a wide range of tasks. Dexterous robot hands are designed15

with the hope of replicating this capability. However, it remains a significant challenge to transfer16

skills from human hands to robotic counterparts due to their substantial embodiment gap. This17

gap manifests in various forms, such as differences in kinematic structures, contact surface shape,18

available tactile information, and visual appearance.19
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Figure 2: Exoskeleton Design. The optimized exoskeleton design shares the same joint-to-fingertip position
mapping as the target robot hand while maintaining the wearability. The exoskeletons utilizes the encoder to
precisely capture the joint action and 150° DFoV camera to record the information-rich visual observation. An
iPhone is rigidly mounted to track the wrist pose through the ARKit.

Teleoperation has become a popular manipulation interface for dexterous hands. However, teleoper-20

ation can be difficult due to the spatial observation mismatch and the lack of direct haptic feedback.21

These problems do not exist when human hand can perform the manipulation task directly. In other22

words, human hand itself is a better manipulation interface. In this paper, we ask the following ques-23

tion:How can we minimize the embodiment gap, so that we can use the human hand as the universal24

manipulation interface for diverse robot hands?25

To answer this question, we propose DexUMI, a framework with hardware and software adaptation26

components that is designed to minimize the action and observation gaps. The hardware adapta-27

tion takes the form of a wearable hand exoskeleton. A user can directly collect manipulation data28

while wearing it. The exoskeleton is designed for each target robot hand through a hardware op-29

timization framework that refines exoskeleton parameters (e.g., link lengths) to closely match the30

robot finger trajectories while maintaining wearability for the human hand. Our software adapta-31

tion takes the form of a data processing pipeline that bridges the visual observation gap between32

human demonstration and robot deployment.33

With both hardware and software adaptation layers, DexUMI allows us to collect data on various34

tasks with minimal kinematic and visual gaps then transfer skills to robots. Comprehensive real-35

world experiments demonstrate DexUMI’s capability on two different dexterous hand types: a 6-36

DoF Inspire hand [1] and a 12-DoF XHand [2]. Our approach achieves 3.2 times greater data37

collection efficiency compared to teleoperation and an average success rate of 86% across four tasks38

, including long-horizon and complex tasks requiring multi-finger contacts.39

2 Hardware Adaptation to Bridge the Embodiment Gap40

2.1 Exoskeleton Mechanism Design41

Modern robot hands often closely mimic human hands anatomically, meaning that a hand exoskele-42

ton would compete for space with the human hand wearing it. Our exoskeleton design has two goals43

to achieve:44

1. Shared joint-action mapping: The exoskeleton and the target robot hand must share the same45

joint-to-fingertip position mapping, including their limits, so the action can transfer.46

2. Wearability: The exoskeleton must allow sufficient natural movements of the user’s hand.47

While the first goal can be mathematically defined, the wearability goal is hard to write down con-48

cretely. Our solution is to parameterize the exoskeleton design and formulate the wearability require-49

ments as constraints on the design parameters, then find a solution that accommodates wearability50

while preserving kinematic relationships by solving an optimization.51

E.1 Design initialization: We initialize the design with parameterized robot hand models based on52

URDF files (See Fig. 3). When such detailed designs are unavailable (e.g., the Inspire-Hand’s finger53
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mechanisms), we substitute them with equivalent general linkage designs with the same DoFs (e.g.,54

a four-bar linkage) and allow optimization to find parameters that best match the observed kinematic55

behavior. Please see Appendix for details.56
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Figure 3: Mechanism Optimization. To avoid thumb
collision between human hand and exoskeleton, the
hardware optimization step allows us to move the ex-
oskeleton thumb backward while still preserving the
original fingertip and joint mapping in SE(3) space.

E.2 Bi-level optimization objective: Our57

optimization objective maximizes the fol-58

lowing similarity: maxp S(W tip
exo(p),W tip

robot),59

where W tip
exo and W tip

robot represent the finger-60

tip workspaces (set of all possible fingertip61

pose in SE(3)) for the exoskeleton and robot62

hand, respectively. p = {j1, ..., jn, l1, ..., lm}63

is the exoskeleton design parameters including64

joint positions ji ∈ R3 in the wrist coordi-65

nate (i.e., flange) and linkage lengths lj . The66

function S(·, ·) represents a similarity metric67

between the two workspaces, which quantifies68

how closely the exoskeleton’s fingertip pose distribution matches that of the robot hand.69

E.3 Constraints: We apply bound constraints ji ∈ Ci and lmin
j ≤ lj ≤ lmax

j , which are empirically70

selected to ensure that the exoskeleton can be comfortably worn.71

2.2 Sensor Integration72

Sensors on the exoskeleton need to satisfy the following design objectives: 1. Capture sufficient73

information: the sensors need to capture ALL the information necessary for policy learning, which74

includes: robot action such as joint angle (S.1) and wrist motion (S.2), as well as observations in75

both vision (S.3) and tactile (S.4). 2. Minimize embodiment gap: the sensory information should76

have minimal distribution shift between human demonstration and robot deployment.77

S.1 Joint capture & mapping. To precisely capture joint actions, our exoskeleton integrates joint78

encoders at every actuated joint – using resistive position encoders for both the XHand and Inspire-79

hand. We choose the Alps encoder [3] for its size and precision. S.2 Wrist pose tracking. We use80

iPhone ARKit to capture the 6DoF wrist pose, as smartphones represent the most accessible devices81

capable of providing precise spatial tracking. S.3 Visual observation. We mounted a 150° diagonal82

field of view (DFoV) wide-angle camera OAK-1 [4] under the wrist for both the exoskeleton and83

the target robot dexterous hand. S.4 Tactile sensing. We install tactile sensors on the exoskeleton to84

capture and translate these tactile interactions. To ensure consistent sensor readings, we install the85

same type of tactile sensors on the exoskeleton as those used on the target robot hand.86

3 Software Adaptation to Bridge the Visual Gap87

Exoskeleton at time t
Joint Value 𝜃

    f(ahand|𝜃) 

Dexterous Dataset at time t

Inpainting

S
A

M
2

Hand Action Replay

Dexterous Hand Segment

Joint Masking

Occlusion Mask 

Segment w. Occlusion 

Exoskeleton Segment Inpainted Visual Obs

Interaction Free Dexterous Hand Image

Visual Obs w.o. Exoskeleton

S
A

M
2

SA
M

2

Inpainting

Raw Data

Processed 
Data

foreground

SA
M

2

Can we change to an example where the foreground 
object is not black? I want to show the foreground 
object occluding the finger

Removed 
foreground 
occlusions

Removed 
foreground 
occlusions

Foreground

Discard
occluded

pixels

Background 

Figure 4: Bridging the Visual Gap. To convert the
visual observation into policy training data.

Fig. 4 shows the visual gap between human88

demonstration (a) and robot deployment (h).89

The adaptation takes four steps: V.1 Segment90

human hand and exoskeleton. Firstly, we seg-91

ment (Fig. 4b) the human hand and exoskele-92

ton on observation videos using SAM2 [5]. V.293

Inpaint environment background. With seg-94

mentation, we remove the human hand and the95

exoskeleton pixels from the image data. Then96

we use ProPainter [6], a flow-based inpainting method, to fully refill (Fig. 4c) the missing areas [7–97

9]. V.3 Record corresponding robot hand video. Next, to render robot hand properly into the video,98

we replay the recorded joint action on the robot hand and record another video with only the robot99

hand (Fig. 4d). This step does not involve the robot arm. We then used SAM2 again to extract the100

robot hand pixels (Fig. 4e) and discard the background. V.4 Compose robot demonstrations. The101

last step is to merge the inpainted-background-only video with robot-hand-only video. It is crucial102

to maintain occlusion relationships: the robot hand does not always appear on top. We developed an103

occlusion-aware compositing approach leveraging: (1) our consistent under-wrist camera setup and104
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Method Inspire Hand XHand

Action Tactile Visual Cube Carton Tea Tea Kitchen
tool leaf tool leaf knob pan salt

Rel Yes Inpaint 1.00 0.85 1.00 0.85 1.00 0.85 0.95 0.95 0.75
Abs Yes Inpaint 0.10 0.35 0.80 0.00 1.00 0.25 0.50 0.45 0.00
Rel No Inpaint 0.95 0.90 1.00 0.90 0.95 0.80 0.95 0.95 0.15
Abs No Inpaint 0.90 0.85 0.90 0.60 1.00 0.75 0.60 0.60 0.0
Rel No Mask 0.60 0.10 0.90 0.50 / / / / /
Rel No Raw 0.20 0.05 0.85 0.05 / / / / /

Table 1: Evaluation Results. We report stage-wise accumulated success rate. The experiments compare
different combinations of finger action representation (Absolute vs Relative), tactile feedback (Yes vs No), and
visual rendering approaches (Inpaint vs Mask/Raw).

(2) the kinematic and shape similarity between the exoskeleton and robot hand. We compute a vis-105

ible mask (Fig. 4f) by intersecting the exoskeleton mask and robot hand mask. Rather than naively106

overwriting pixels, we selectively replace pixels in the inpainted observation with robot hand pixels107

only if those pixels are present in the visible mask.108
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Figure 5: Comparisons. a) The policy outputs relative
hand actions yield more precise action and demonstrate
better multi-finger coordination. b) Even with noisy
tactile sensor reading, the tactile significantly improve
tasks which is visually challenging.

DexUMI framework enables efficient dexter-110

ous policy learning: As shown in Tab. 1, the111

DexUMI system achieves high success rates112

across all four tasks on two robot hands. The113

system handles precise manipulation, long-114

horizon tasks, and coordinated multi-finger115

contact, while effectively generalizing across116

diverse manipulation scenarios.117

Relative finger trajectories are more robust118

to noise and hardware imperfections: Tab. 1119

shows relative finger trajectory consistently120

achieves better success across all tasks. Fig. 5 shows more insights: relative trajectory can make121

critical contact events more reliable.122

36

51

11

Figure 6: Efficiency: Collection throughput
(CT) within 15-minute.

Tactile feedback improves performance on tasks with123

clean force profiles:We focused on the XHand as its tac-124

tile sensors provide cleaner readings. We observed that125

tactile feedback significantly improved performance on126

picking up salt. This task highlights the effect of tactile127

because 1) The tactile sensors give a clear, large reading128

when the fingers touch the bowl of salt. 2) There is little129

useful visual information close to grasping as the camera130

view is mostly blocked by the bowl.131

DexUMI framework enables efficient dexterous hand132

data collection: We compared data collection efficiency133

across three ways: DexUMI, bare human hand, and teleoperation on the tea-picking-with-tool task.134

As illustrated in Fig. 6, while DexUMI remains slower than direct human hand manipulation, it135

achieves 3.2 times greater efficiency than traditional teleoperation methods.136

5 Conclusion137

We present DexUMI, a scalable and efficient data collection and policy learning framework that uses138

the human hand as an interface to transfer human hand motion to precise robot hand actions while139

providing natural haptic feedback. Our work establishes a new approach to collecting real-world140

dexterous hand data efficiently and at scale beyond traditional teleoperation.141
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6 Limitation and Future Work142

We would like to discuss DexUMI’s limitations from three different aspects: hardware adaptation,143

software adaptation, and existing robot hand hardware.144

Hardware Adaptation:145

• Per robot hand exoskeleton design: Although DexUMI demonstrates generalizability across146

underactuated and fully-actuated hands, our optimization framework still requires hardware-147

specific tuning, especially for wearability. One future work direction is fully automated opti-148

mization formulation given robot hand model and some description of the human hand. Further,149

our hardware optimization framework can potentially leverage generative models [10] to increase150

efficiency and accuracy when design space grows.151

• Fingertips Matching: Our current formulation focuses only on matching the fingertip workspace152

between the designed exoskeleton and target robot hand. It would be interesting for future work153

to also model remaining potential contact geometries such as the palm.154

• Wearability: The hardware optimization pipeline makes the exoskeleton wearable and allows155

humans to operate it relatively easily for extended periods. However, wearability could be further156

improved by integrating soft materials, such as TPU for parts that contact the human hand.157

Additionally, constrained by both the design of the target hand and 3D printing material strength,158

users might still experience limitations in fully stretching certain fingers.159

• Reliability of Tactile Sensors: Throughout our experiments, we found that reliable tactile sensors160

are key to maintaining consistent tactile observation between the exoskeleton and corresponding161

robot hand, thereby reducing the embodiment gap. In our implementation, the resistive tactile162

sensors added to the Inspire hand and its exoskeleton proved sensitive to their attachment way163

on fingers. Meanwhile, the electromagnetic tactile sensors on the XHand and its exoskeleton164

showed a tendency to drift after exposure to high pressure. Since the human hand generates165

more force than the robot hand, tactile sensor readings frequently drift when humans operate the166

exoskeleton. Future work can also incorporate other types of tactile sensors, such as vision-based167

tactile sensors [11–13] and capacitive F/T sensors [14].168

• Material Limitations: Our experiments demonstrate that DexUMI is able to capture fine-grained169

fingertip actions such as closing tweezers. However, we sometimes found that encoders cannot170

precisely capture human motion due to 3D printing material strength limitations; occasionally,171

the human hand slightly distorts the exoskeleton linkage when manipulating objects. In such172

cases, encoders are unable to capture this distortion.173

Software Adaptation:174

• Robot Hand Image: Currently, we still require real-world robot hardware to obtain robot hand175

images. However, this requirement could be eliminated by implementing an image generation176

model that receives motor values as input and produces corresponding hand pose images as177

output.178

• Inpainting Quality: Throughout our experiments, we found that the current software adaptation179

pipeline can already yield high-fidelity robot hand images. Nevertheless, we observed that il-180

lumination effects on the robot hand cannot be fully reproduced, and some areas in the image181

appear blurred due to limitations in the inpainting process.182

• Camera Location: DexUMI currently requires the camera to be rigidly attached to the robot183

hand/exoskeleton and does not support a moving camera. However, it would be feasible to184

collect a dataset and train an image generation model that receives the relative pose between the185

camera and hand, along with hand pose information, to generate the corresponding hand pose186

image from any given camera position.187

Existing Robot Hand Hardware:188

• Precision: Throughout our experiments, we found that both the Inspire Hand and XHand lack189

sufficient precision due to backlash and friction. For example, the fingertip location of the Inspire190

Hand differs when moving from 1000 to 500 motor units compared to moving from 0 to 500191
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motor units. Although the desired motor value is the same in both cases, the final fingertip192

position varies. We observed this phenomenon in both robot hands. Consequently, when fitting193

regression models between encoder and hand motor values, we can typically ensure precision in194

only “one direction”—either when closing the hand or opening it. This inevitably causes minor195

discrepancies in the inpainting and action mapping processes. Further, we found that the XHand196

mapping between motor command and fingertip location slightly differs across time shifts or197

after each reboot.198

• Size Discrepancy: The size difference between the robot hand and the human hand may cause199

wearability issues. For example, if the robot hand is twice as large as the human hand, it becomes200

difficult for both the human hand and the exoskeleton to reach the joint configurations required201

by the robot hand.202

• Co-design: Many of these wearability issues arise from design constraints in existing commer-203

cial hardware. An interesting direction would be to explore a reverse design paradigm: first204

designing an exoskeleton that is comfortable and fully operable for humans, and then using that205

exoskeleton as the foundation for designing the robot hand.206
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Appendix263

A Additional Experiment Results264

A.1 Inpainting Results265

We show the processed visual observation by the software adaptation layer in policy training data in266

Fig. 7. Our software adaptation bridges the visual gap by replacing the human hand and exoskeleton267

in visual observations recorded by the wrist camera with high-fidelity robot hand inpainting. Though268

the overall inpainting quality is good, we found there are still some deficiencies in the output caused269

by:270

• Imperfect Segmentation from SAM2: In most cases, SAM2 can segment the human hand and271

exoskeleton effectively. However, we notice SAM2 sometimes misses some small areas on the272

exoskeleton.273

• Quality of inpainting method: We use flow-based inpainting to replace the human and ex-274

oskeleton pixels with background pixels. Though the overall quality is high, some areas remain275

blurry. We add Gaussian blur augmentation to the images during policy training to make the276

policy less sensitive to this blurriness.277

• Robot hand hardware limitations: Throughout our experiments, we found that both the Inspire278

Hand and XHand lack sufficient precision due to backlash and friction. For example, the finger-279

tip location of the Inspire Hand differs when moving from 1000 to 500 motor units compared to280

moving from 0 to 500 motor units. Consequently, when fitting regression models between en-281

coder and hand motor values, we can typically ensure precision in only ”one direction”—either282

when closing the hand or opening it. This inevitably causes minor discrepancies in the inpainting283

and action mapping processes.284

• Inconsistent illumination: Similar to prior work [9], we found that illumination on the robot285

hand might be inconsistent with what the robot experiences during deployment. Therefore, we286

add image augmentation including color jitter and random grayscale during policy training to287

make the learned policy less sensitive to lighting conditions.288

• 3D-printed exoskeleton deformation: The human hand is powerful and can sometimes cause289

the 3D-printed exoskeleton to deform during operation. In such cases, the encoder value fails290

to reflect this deformation. Consequently, the robot finger location might not align with the291

exoskeleton’s actual finger position.292

A.2 Relative and Absolute Action Distribution293

We visualize both relative and absolute action distribution of thumb swing joints in the Kitchen294

task. The relative action distribution is a simple unimodal while the absolute action distribution is295

multi-modal.

Relative Finger Trajectory Absolute Finger Trajectory 

296
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Figure 7: Inpainting Results. The visual observations in the original collected dataset contain exoskeletons
and human hands. The software adaptation layer replaces these pixels with corresponding robot hand images
while preserving the natural occlusion relationships during hand-object interactions. Please see project website
https://dex-umi.github.io for details.

B Evaluation Details297

B.1 Initial State Selection298

For each task, we manually select a set of initial states for the environment. Objects are placed as299

diversely as possible within the environment. This set of initial states is shared across all methods.300

We achieve consistency by placing an additional side camera to record images of all selected initial301

states. When starting a new evaluation episode, we visualize an image overlay between the recorded302

pre-selected initial state and the current initial state. We carefully adjust the current setup until it303

matches the pre-selected initial state with near pixel-perfect alignment.304
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Note that due to differences in wrist camera placement relative to the robot flange between the305

XHand and Inspire Hand, some initial states viable for the Inspire Hand cannot be completed by the306

XHand. For example, if the tea cup is positioned more than 45◦ to the left of the tea pot (image307

space), the XHand’s wrist camera cannot capture the tea cup after grasping the tea due to its camera308

positioning (the XHand thumb has a larger range of motion, requiring us to rotate the wrist camera309

more toward the thumb direction to obtain clearer visual observations). Consequently, the XHand310

and Inspire Hand do not strictly share the same set of initial states for the Tea Picking Using Tool311

task. Nevertheless, we ensure their initial states remain within similar distributions and maintain as312

much diversity as possible.313

For the kitchen task, the large workspace presents challenges for a fixed-base single UR5 to cover314

diverse initial states, particularly regarding the seasoning bowl location, as the stove and knob posi-315

tions are fixed. Despite these constraints, we maximize the diversity of bowl placement within the316

kinematically feasible workspace.317

B.2 Success Criteria318

Cube Picking: The robot must pick up the red cube and place it into the yellow cup. If the cup falls319

over after the cube is already placed in it, we still count the episode as successful.320

Egg Carton: We define task success as when the lid is lifted up with its box at an angle greater than321

30◦ and the egg box remains stable on the shelf.322

Tea Picking Using Tool: This task consists of two sub-tasks. We define tool picking success as the323

robot’s ability to steadily hold the tweezers and move them to the tea pot. We define leaf picking324

success as the robot’s ability to use tweezers to 1) grasp at least one tea leaf from the pot and 2)325

transfer at least half of the grasped tea leaf into the cup. Subsequent sub-tasks automatically count326

as failures if the previous sub-task fails, even if the robot can successfully complete the later sub-327

tasks.328

Kitchen Manipulation: This task consists of three sub-tasks. We define knob closing success as the329

robot hand rotating the knob by at least 60◦ from its initial position. We define pan moving success330

as the robot moving the pan from the stove to the counter without dropping it during transfer. We331

define the salt task success as the robot 1) grasping some seasoning from the bowl and 2) sprinkling332

it inside the pan. Subsequent sub-tasks automatically count as failures if the previous sub-task fails,333

even if the robot can successfully complete the later sub-tasks.334

B.3 Policy Execution335

The learned policy predicts 16 steps of future actions, but the robot only executes the first 8 steps336

and discards the rest. The policy executes at 10 Hz, while the UR5 executes commands at 125 Hz.337

The Inspire Hand executes at 10 Hz, and the XHand executes at 60 Hz. The 10 Hz policy commands338

are linearly interpolated to match the desired hardware execution frequency.339

The action output by the policy contains two components: relative UR5 end-effector action and hand340

action. The relative end-effector action from the learned policy is converted to absolute by adding341

the relative action to the current UR5 absolute position in the UR5 base frame. For hand actions, if342

the action type is absolute, the desired motor value is sent directly to the robot hand for execution. If343

the hand action type is relative, we first read the current hand motor position, add the relative hand344

action to it, and then send the result for execution.345

For the XHand, we found that creating a virtual current hand motor position improves performance346

compared to reading the current position directly from hardware. Unlike the Inspire Hand motor,347

which is self-locking, the XHand finger position slightly drifts after encountering external forces348

(such as the restoring force of tweezers). The 10 Hz policy isn’t reactive enough to adjust for this349

real-time drifting. Consider the following scenario: the robot hand attempts to close the tweezers350

to grasp tea leaves. The current motor value obtained by calling the hardware API might already351

be outdated due to the restoring force of the tweezers (causing fingers to spread wider) when robot352
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execution begins. To address this issue, we initialize a virtual current hand motor position by reading353

the actual motor position at the beginning of the evaluation. Once the evaluation begins, we update354

this virtual hand motor position by adding the executed relative hand actions. With this virtual hand355

motor position approach, finger actions become less impacted by physical drifting, resulting in more356

precise and reliable grasping operations.357

C Exoskeleton Design Details358

C.1 Inspire Hand359

Underactuated hands like the Inspire Hand typically incorporate closed-loop kinematics, such as360

four-bar linkages, which cannot be directly represented in URDF. As a result, we cannot initialize361

the exoskeleton design for the Inspire Hand directly from its URDF model. Instead, our approach362

is to capture the finger kinematic behavior—specifically, the fingertip poses—and use equivalent363

general linkage designs with the same degrees of freedom (DoFs) as an initial template for the364

finger mechanisms. This allows the optimization process to identify parameters that best match the365

observed kinematics.366

To achieve this, we employed a motion capture system (see Fig. 8) to record the fingertip poses in367

SE(3) space. We 3D-printed marker mounting components for each finger and flange and installed368

them on the Inspire Hand. For the index, middle, ring, and pinky fingers, each of which has a single369

DoF, we uniformly sampled 16 motor command values from the lower limit (0) to the upper limit370

(1000), sent the commands to the fingers, and recorded the corresponding fingertip poses.371

For the thumb, which has 2 DoFs—swing and bend—we first fixed the swing value and then uni-372

formly sampled the bend motor values. For example, as shown in Fig. 8d, we set the swing motor373

to 400 and recorded the fingertip poses by varying the bend motor command. We repeated this374

procedure for swing values of 0, 200, 400, 600, 800, and 1000.375

Pinky RingMiddle
Index

Swing = 0

Swing = 1000

Swing = 400 Flange

(a) Index/Middle/Ring/Pinky 
Markers

(b) Thumb Markers (c) Flange Markers

(d) Recorded Mocap Trajectories

Figure 8: Inspire Mocap: We use motion capture sys-
tem to record fingertips trajectories in the flange coor-
dinate. We attached marker on fingers and flange to
capture the fingertip pose in flange coordinate.

After obtaining the fingertip poses in the flange376

coordinate system, we applied the same bi-level377

optimization formulation defined in Equation 1378

in main paper to determine design parameters379

for each finger. For all five fingers, we em-380

ployed four-bar linkages as the linkage designs.381

For each sampled design parameter, We simu-382

late the fingertip poses using PlaCo [15]. For383

thumb, we minimized the overall loss across384

all swing motor values, since the thumb’s struc-385

tural configuration should remain consistent re-386

gardless of the swing motor value.387

From the optimized design parameters to the388

physical implementation, we apply three addi-389

tional steps to ensure that the exoskeleton mask390

consistently covers the real Inspire Hand. First,391

we extend the length of the last link of each fin-392

ger in the exoskeleton design by 3 mm beyond393

the optimized value. This guarantees that the394

exoskeleton mask always fully covers the last link of the actual Inspire Hand. Second, we increase395

the width of the thumb’s four-bar linkage to eliminate any hollow regions in the camera’s field of396

view, thereby maintaining the visual integrity of a continuous exoskeleton mask. Third, we conser-397

vatively tighten the joint limits by 5◦ at each joint to ensure the mask continues to cover the real398

Inspire Hand even when structural deformation occurs due to the limited strength of the 3D-printed399

PLA-CF material.400
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C.2 XHand401

Since the URDF file of the XHand is well-organized, with each joint origin defined at the location of402

its corresponding rotary joint, we can directly extract link lengths from the URDF structure. In cases403

where the exact values are not specified, we can perform reverse modeling using the STL meshes404

from URDF file to recover geometric features near each joint and manually measure link lengths in405

CAD software.406

Joint limits are also specified in the URDF file and are implemented in the exoskeleton design by407

physically constraining the link motion to prevent rotation beyond the specified range. Similar to the408

Inspire Hand exoskeleton design, we adopt a conservative strategy when applying these limits setting409

slightly tighter bounds on each joints. For example, if the actual joint rotation range is −110◦ to 20◦,410

the corresponding exoskeleton limit is set to −105◦ to 15◦. This precaution accounts for possible411

deformation of the 3D-printed exoskeleton links under human-applied torque, which can introduce412

unintended joint deflection. Without this buffer, the exoskeleton might deform beyond the physical413

limits of the XHand, leading to an embodiment gap.414

When converting the link lengths to the actual exoskeleton design, two primary constraints must be415

considered. The first is wearability. To ensure that the human operator can comfortably wear the416

exoskeleton, the structure must be hollowed out as much as possible, allowing the finger to pass417

through unobstructed. The second constraint is material strength. Through empirical testing, we418

determined that the optimal minimum structural width for 3D-printed PLA-CF material is 4 mm.419

Therefore, any part expected to experience significant stress is reinforced to be at least 4 mm thick420

in the final design.421

D Sensor Details422

D.1 Joint Encoder423

Figure 9: Joint Encoder Circuit: The ro-
tary sensor acts as a variable resistor with
three output pins. As it rotates with the joint,
the voltage on the ADC line changes approx-
imately linearly.

Our exoskeleton uses Alps RDC506018A rotary sensors424

as encoders at every joints. These are resistive sensors425

whose resistance varies approximately linearly with ab-426

solute angular position.427

As shown in Fig. 9, when the joint rotates, the voltage on428

the ADC line changes proportionally. This analog voltage429

signal is then sampled by an Analog-to-Digital Converter430

(ADC) on a microcontroller unit (MCU). Then the joint431

angle αjoint can be estimated as:432

αjoint =
VADC

3.3V
× 360◦

However, this simple voltage divider circuit has a sig-433

nificant failure mode: if the power supply (3.3 V in our434

case) is unstable due to temperature drift in semiconduc-435

tor components or ripple from DC-DC converters and LDOs, the joint angle reading will drift ac-436

cordingly. To mitigate this issue, we simultaneously measure the supply voltage through another437

ADC channel. Instead of dividing by a fixed 3.3 V, we normalize the sensor voltage using the mea-438

sured supply voltage when computing the joint angle:439

αjoint =
VADC

Vsupply
× 360◦

This voltage normalization runs in real time on the MCU. After computing the joint angles, the MCU440

packs all joint values into a single data packet with a fixed 2-byte header and a checksum tail. The441

header simplifies decoding by allowing the receiver to locate a known keyword in variable-length442

data streams, while the checksum ensures packet integrity. The final data packet is transmitted to443

the host computer via a Universal Asynchronous Receiver-Transmitter (UART) interface.444
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D.2 Tactile445

Figure 10: Voltage Divider Circuit: This
simple voltage divider circuit converts the
resistance change of the FSR sensor into an
analog voltage on the ADC line.

For commercial dexterous hands without built-in tactile446

sensors (e.g., the Inspire Hand in our evaluation), we use447

a simple and low-cost Force-Sensitive Resistor (FSR) as448

the tactile sensor. When no force is applied, the FSR ex-449

hibits a resistance of several megaohms, while under sig-450

nificant force, the resistance drops to the kiloohms range.451

As shown in Fig. 10, the FSR is incorporated into a sim-452

ple voltage divider circuit to produce an analog voltage453

signal. The divider resistor R1 is selected to be compara-454

ble to the minimum resistance of the FSR. Since the FSR455

resistance is approximately inversely proportional to the456

applied force, we can express the force using a constant457

scale factor k as:458

F = k

(
Vsupply

VADC
− 1

)
In our experimental setup, the same FSR sensor is mounted on both the dexterous hand and the459

exoskeleton. For simplicity, we directly use the VADC reading as a proxy for tactile input.460

For hands equipped with onboard tactile sensors (e.g., the XHand), we install the same type of461

sensor as used in the hand. In our setup, this sensor is a magnet-based tactile array capable of462

measuring three-dimensional forces across 120 points on its surface. The force data is output via463

an SPI communication interface using a proprietary protocol. By configuring this interface on our464

embedded system, the force array can be successfully transmitted to the host machine.465

E Data Collection and Policy Training details466

E.1 Data Collection467

We collected 310 trajectories for Cube Picking task policy training, 175 trajectories for Egg Carton468

Opening task policy training, and 400 trajectories for Tea Picking Using Tools policy training (for469

both Inspire Hand and XHand). For the kitchen task, we collected 370 trajectories covering all four470

sub-tasks, plus an additional 100 trajectories focused solely on knob closing.471

For the Inspire Hand, all data types—including wrist position from ARKit, policy visual obser-472

vations from the wrist-mounted camera, joint angles from encoders, and tactile feedback—were473

recorded at 45 FPS. For the XHand, we recorded at 30 FPS, as the tactile sensor readings became474

unstable at higher recording frequencies. For each data type, we recorded the receive timestamp475

treceive when the data arrived at the recording buffer.476

We wear green gloves when collecting data with exoskeleton as we use green PLA-CF to 3D-printed477

the exoskeleton. We found consistent color helps SAM2 to yield better segmentation results.478

E.2 Training Data Latency Management479

There is an inherent latency between the time when sensors capture data and when that data actually480

arrives in the recording buffer. To ensure our imitation learning policy receives properly aligned481

observations (visual observations, tactile sensor readings) and actions (joint encoder readings), we482

calculate the actual data capture time using tcapture = treceive − lsensor, where lsensor refers to the483

latency from capture to receive for a particular sensor. We measure the iPhone and OAK camera484

latency by reading a rolling QR code displayed on a computer monitor showing the current computer485

system time, as proposed in UMI [16]. The camera and iPhone latency is calculated as lcamera =486

treceive − tdisplay − ldisplay, where ldisplay represents the monitor refresh rate.487

The encoder latency is adjusted by examining the overlay image between the recorded exoskeleton488

image and the corresponding robot hand image from action replay. If the encoder latency is set489
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too high, the robot hand fingers will execute future actions and lead in the overlay image. If the490

encoder latency is set too low, the robot hand fingers will lag behind the exoskeleton fingers in491

the overlay image. We tune the encoder latency until the exoskeleton fingers and robot fingers are492

perfectly aligned. Once all data timestamps are adjusted, we linearly interpolate the joint angles493

and tactile readings to obtain data points properly aligned with the camera timestamps. Finally, We494

downsample the data by a factor of 3 to reduce the policy training time.495

E.3 Policy Training496

We process the visual observations with pretrained DINO-V2 [17, 18]. Before passing the visual497

observations into DINO-V2, we augment it with random crop, color jitter, random grayscale and498

Gaussian Blur. We concatenate the CLS token from DINO-V2 with tactile sensor readings as input499

to the diffusion policy [19, 20]. The policy predicts 16 steps of robot actions, which contain both500

6-DoF robot end-effector relative actions and hand actions (6-DoF for Inspire Hand and 12-DoF for501

XHand). We train the models for 400 epochs across all tasks for both types of hands. The pretrain502

DINO-V2 is not frozen and updated during the policy training.503
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