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Abstract

The application of an ordinary clustering algorithm may result in a clustering output where
the number of points per cluster (cluster size) varies widely. In settings where the centers
correspond to facilities that provide a service this can be highly undesirable since the cluster
size is essentially the service load for a facility. While prior work has considered imposing
either a lower bound on the cluster sizes or an upper bound, imposing both bounds si-
multaneously has seen limited work especially for the k-median objective despite its strong
practical motivation. In this paper we solve the equitable load (EL) clustering problem
where we minimize the k-median objective subject to the cluster sizes not exceeding an
upper bound or falling below a lower bound. We solve this problem using a modular ap-
proach. Specifically, given a clustering solution that satisfies the lower bound constraints and
another that satisfies the upper bound constraints, we introduce a combination algorithm
which essentially combines both solutions to produce one that satisfies both constraints
simultaneously at the expense of a bounded degradation in the k-median objective and a
slight violation to the upper bound. Our combination algorithms runs in O(k3 + n) time
where n is the number of points and is actually faster than standard k-median algorithms
that satisfy either the lower or upper bound constraints. Interestingly, our results can be
generalized to various other clustering objectives including the k-means objective.

1 Introduction

Decision making using algorithms powered with machine learning has become ubiquitous. Routinely, al-
gorithms are used in consequential applications such as loan approval Sheikh et al. (2020); Kadam et al.
(2021), recidivism prediction Travaini et al. (2022); Kovalchuk et al. (2023), and kidney exchange Ashlagi &
Roth (2021); McElfresh et al. (2020). This has naturally brought greater attention to the broader impact
of these deployed algorithms and their vulnerability to noise and adversarial attacks as well as their societal
consequences in terms of fairness and privacy. These additional considerations imply that there is a real
need to solve non-standard variants of many problems to overcome these possible harmful consequences.

Variants of the standard clustering problem that take such considerations into account have received signifi-
cant attention from the research community; this is unsurprising since clustering is a fundamental problem in
unsupervised learning and a classical problem in operations research. Examples of such works include Jones
et al. (2021); Gupta et al. (2010); Kaplan & Stemmer (2018) who show algorithms for solving the k-median
and k-means problems that preserve the privacy of individuals using differential privacy. Further, Chhabra
et al. (2020); Cinà et al. (2022) study the performance of clustering algorithms when the dataset is affected by
adversarial corruptions. Moreover, fairness considerations in clustering have received even greater attention
comparatively Chierichetti et al. (2017); Bercea et al. (2019); Bera et al. (2019); Kleindessner et al. (2019);
Ahmadi et al. (2022); Chen et al. (2019); Li et al. (2021); Chakrabarti et al. (2022) (further, see Awasthi
et al. (2022) and the references therein for more). The fair clustering literature has introduced a number of
well-motivated fairness notions. In fact, at least seven different fairness notions have been introduced so far
in clustering.

Despite the significant attention that has resulted in many variants of the classical clustering problem, we
identify a simple notion that has not received much attention from the community even though it is well-
motivated and has clear societal consequences. Specifically, from the operations research point of view the
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selected centers in a clustering could represent facilities such as schools with the cluster associated with each
center (school) being the students assigned to that school. Naturally, a school requires a minimum number of
students to maintain a good teaching quality1 at the same time the number of students should not exceed a
certain threshold as the school’s resources might be over-consumed leading to a degradation in the teaching
quality. One can also find a similar motivation if the schools were instead service centers providing services
to clients instead of students. Each service center would want a minimum number of clients to bring in
revenue at the same time the number of clients should not exceed a threshold as that would lead to issues
such as higher waiting time and lower service quality. At a more precise level, this notion which we call
equitable service load (EL) simply states the the size of each cluster (number of points in the cluster) should
be both lower and upper bounded by some pre-set values simultaneously. In fact, this EL notion can also
be motivated in machine learning applications such as market segmentation. Specifically, since points in the
same cluster would receive the same ads, we might want to have a level of equity between the different ads
(centers) so that none receive too little revenue or dominate the market.

Though clustering under EL constraints has not received much attention, this notion is not entirely new.
Specifically, the literature has considered variants of the standard clustering problem where lower and upper
bounds on the cluster sizes have to be satisfied simultaneously Friggstad et al. (2016); Gupta et al. (2021);
Ding et al. (2017); Rösner & Schmidt (2018). However, the k-median variant of this problem (with lower
and upper bounds) remains unsolved. Only heuristics have been introduced for the stringent case where the
lower and upper bounds coincide (i.e., set to the same exact value). See de Maeyer et al. (2023) and citations
within. Forcing the upper and lower bounds to be exactly equal is highly not practical since in most settings
a small difference would be tolerated even if an exact equality was desired.

In this paper, we solve the k-median problem under EL constraints. Unlike the prior work we follow a
modular approach. Specifically, using a solution where the cluster sizes are all lower bounded and another
where the cluster sizes are upper bounded we introduce a post-processing algorithm that combines the two
to give a new solution that satisfies the EL constraints. Our combination algorithm runs in O(k3 + n)
time where n is the number of points and as such does not present a heavy computational burden. In fact,
in comparison to existing algorithms for the k-median problem subject to either a lower or upper bound
constraint on the cluster size, our combination algorithm does not present the computational bottleneck in
the algorithmic pipeline. Interestingly, although our main target is the k-median problem we show how we
can use our combination algorithm to solve other clustering variants under the EL constraints including
k-means clustering.

Organization of the Paper. In Section 2, we give our notation along with the formal statement of the
EL problem and some background on relevant prior work. In Section 3, we state our main theoretical
results. In Section 4, we give an overview of additional related work to our problem. In Section 5, we give
a high level discussion of our main algorithmic techniques. In Section 6, we present our algorithm for EL
Clustering for the k-median objective along with detailed technical proofs that establish the guarantees of
the algorithm. This is followed by a conclusion and a discussion of future work in Section 7. In addition, in
the supplementary material, we discuss improvements in some theoretical guarantees when the gap between
the lower and upper bounds is sufficiently large. We also present the algorithmic modifications required for
other variants of the problem in the supplementary material.

2 Notation, Problem Statement, and Background

In our problem, we are given a set of locations P in a metric space with metric c : P × P → R≥0, a subset
C ⊆ P of n many points to be clustered. Further, we are given a set of (potential) centers2 F ⊆ P and a
positive integer k. Following the standard terminology in clustering and facility location, we will also refer
to the given n points C as clients and to the centers F as facilities. As in standard k-median clustering, our
objective is to find a set of facilities F ′ ⊆ F of at most k facilities (i.e., |F ′| ≤ k, note that this is called the

1It is well-known and documented that interaction between students can improve the educational and social outcomes Soller
(2001); Hurst et al. (2013) but this would not be possible with a very small student body.

2Note that it is common in the classical k-median clustering to select the centers from the same set of points to be clustered,
this can be captured in our formulation by simply setting setting F = C.
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cardinality constraint) and an assignment function σ : C → F ′ which assigns clients to the selected facilities
so as to minimize the sum of distances between the clients and their assigned facilities. More formally, we
want to obtain a solution S = (F ′, σ) that minimizes the objective function Cost(S) =

∑
j∈C c(j, σ(j)).

Furthermore, in EL Clustering we are additionally given two parameters L and U where L is a lower bound
on the cluster size and U is the upper bound. It follows that in a valid EL Clustering, the size of any cluster
is constrained to lie in the range [L, U ]. More precisely, denoting the set of points assigned to a center i ∈ F ′

by σ−1(i), it follows that L ≤ |σ−1(i)| ≤ U . From the above description, the formal and concise definition
of the EL Clustering problem is as follows:

EL Clustering
Input: Instance I = (P, c, C,F , k, U, L)
Optimization: min

F ′,σ

∑
j∈C c(j, σ(j)) subject to

• subset F ′ ⊆ F of size at most k,

• assignment σ : C → F ′ such that for each facility i ∈ F ′, L ≤ |σ−1(i)| ≤ U

We next define two k-median problems satisfying partial EL constraints (dropping one of the two, lower
or upper bound constraints) whose solutions will be combined to obtain a solution for EL Clustering. In
Upper Bounded k-median (UkM), we drop the lower bounds (which is equivalent to setting L = 0)
whereas in Lower Bounded k-median (LkM), we drop the upper bounds (by setting U = n). Both
of these problems have been extensively studied in the theoretical computer science literature. Though
interesting, upper bound constraints are notoriously hard to handle in problems like k-median. For example,
finding a constant factor approximation for UkM is one of the famous and long pending open questions
in the literature of approximation algorithms. On the other hand, there are heuristics that do not provide
any approximation ratio guarantees (i.e., a bound on the cost of the solution as compared to the cost of
the optimal solution). On the positive side, there are a number of papers that solve the problem by giving
bi-criteria approximations that have an approximation ratio for the clustering objective but also violate
either the upper bounds or the cardinality constraint by a small multiplicative factor Byrka et al.; 2016);
Charikar et al.; Demirci & Li (2016); Korupolu et al. (2000); Li (2014; 2015; 2016). For the LkM problem,
both constant factor approximations and heuristics have been obtained Arutyunova & Schmidt (2021); Guo
et al. (2020); Han et al. (2020b;a).

3 Our Results

In this paper, we consider EL Clustering. We present a modular technique that combines the solutions
of a lower bounded clustering and an upper bounded clustering to obtain a solution that satisfies the EL
constraints with a slight violation3 in the upper bounds. The formal statement of our theorem is as follows:

Theorem 3.1. Given a solution SU for Upper Bounded k-median (UkM) with an upper bound violation
of factor β and a solution SL for Lower Bounded k-median (LkM). If the clustering costs of the solutions
are Cost(SU ) and Cost(SL), respectively. Then a solution of cost at most (7Cost(SU ) + 2Cost(SL)) can be
obtained for EL Clustering at a violation of the upper bound by a factor of (β + 1) and in a run-time of
O(k3 + n).

Note that the theorem above establishes bounds on the clustering cost and the violation in the upper bound
constraints using any two given solutions even if these solutions result from heuristics. It follows that if
we obtain these solutions using approximation algorithms for Upper Bounded k-median and Lower
Bounded k-median, then we can establish approximation ratio guarantees for our EL solution as shown in
the corollary below:

3A solution is said to violate the upper bounds by a factor of β (where β ≥ 1) when the number of clients assigned to any
opened facility could exceed U but not βU .
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Corollary 3.2. Given an αU approximation for Upper Bounded k-median with β violation in the upper
bounds and an αL approximation for Lower Bounded k-median, a 7αU + 2αL approximation can be
obtained for EL Clustering with a (β + 1) violation in upper bounds in O(k3 + n) time.

By applying the 16-factor approximation algorithm with a 3-factor violation in the upper bounds Charikar
et al. for UkM and the 387-approximation algorithm for LkM Han et al. (2020a), we obtain an 886-factor
approximation for EL Clustering with a 4-factor violation in the upper bounds. Alternatively, by using the
O(1/ϵ2) approximation algorithm for UkM Byrka et al. (2016), which assigns at most ⌈(1 + ϵ)U⌉ clients to
each opened facility, we achieve an O(1/ϵ2) approximation, where at most ⌈(2 + ϵ)U⌉ clients are assigned
to each opened facility, with ϵ > 0 being a small constant. Note that ⌈(2 + ϵ)U⌉ is closer to 2U whereas
(⌈2+ϵ⌉)U = 3U for small ϵ. For example for U = 500, ϵ = 1

501 , ⌈(2+ϵ)U⌉ = 1001 whereas (⌈2+ϵ⌉)U = 1500.
Hence our violation is close to 2 for small ϵ. It is important to note that the relatively large constants in our
approximation guarantees arise primarily from the inherent constants of the underlying algorithms for UkM
and LkM. Moreover, our combination approach works independently of the specific technique used in these
algorithms. For instance, by applying the Fixed Parameter Tractable (FPT) approximation algorithms4

for UkM and LkM by Goyal et al. Goyal et al. (2020), the approximation factor for EL clustering can
be reduced to (27 + ϵ) with a 2-factor violation in upper bounds, while maintaining an FPT runtime in
k. Thus, any future improvements in the performance of the underlying algorithms would directly enhance
the approximation guarantees for EL clustering. Furthermore, the computational overhead incurred by our
algorithm in combining the solutions is only O(k3 +n) whereas all algorithms5 for UkM Byrka et al.; 2016);
Charikar et al.; Demirci & Li (2016); Li (2014; 2015; 2016) and LkM Arutyunova & Schmidt (2021); Guo
et al. (2020); Han et al. (2020b;a) require solving a linear programming problem and hence takes at least
ω(n4) time Vaidya (1989); Jiang et al. (2020); Cohen et al. (2021); van den Brand (2020).

Interestingly, our modular technique can be extended to other clustering variants, such as, k-Means, k-
Center, Facility Location and, Knapsack median in the presence of EL constraints. Although we
are able to extend the result to the k-Means problem, the constants associated with the cost of generating a
k-means clustering with equitable load are relatively high in our paper. Improving these constants remains
an interesting open question for future work. We mainly focus on k-median in the paper, modifications in
the algorithm for other problems can be found in the supplementary material (Appendix B).

Furthermore, in the supplementary material (Appendix A), we show an improvement in the upper bound
violation for a particular scenario when the gap between the lower and the upper bounds is not too small,
specifically when 2L ≤ U . Note that this is a reasonable scenario that is likely to occur in real applications.
For this special case, we reduce the violation in the upper bounds to (β + ϵ) at the expense of an increase of
a factor of O(1/ϵ) in the cost for a constant ϵ > 0.

4 Additional Related Work

As mentioned earlier, EL Clustering has not received much attention from the community. Heuristics are
known for the problem when the lower and upper bounds coincide Höppner & Klawonn (2008); Dinler &
Tural (2016); de Maeyer et al. (2023); Lin et al. (2019); Ganganath et al. (2014); Chakraborty & Das (2019);
Tang et al. (2019). However, forcing the upper and lower bounds to be exactly equal is highly impractical
since in most settings only lower and upper bounds are desired. Lei et al. Lei et al. (2013) provide heuristics
for k-means clustering with EL constraints. Approximation algorithms have been obtained for clustering
objectives other than the k-median and k-means. For example, Friggstad et al. Friggstad et al. (2016) gave an
approximation algorithm for Facility location6 with EL constraints violating both the bounds by a constant
factor with a trade-off in them whereas Gupta et al. Gupta et al. (2021) gave an approximation algorithm
violating the upper bounds by a factor of 5/2. For k-center with EL constraints, Ding et al. Ding et al. (2017)
and, Rösner and Schmidt Rösner & Schmidt (2018) independently gave constant factor approximations. To

4An algorithm is FPT if its runtime is upper bounded by O(f(k) · nc) where c is a constant but f(k) can be exponential in
k, see Cygan et al. (2015) for more details.

5Except Korupolu et al. (2000) that uses local search but opens (5 + ϵ)k facilities instead of k.
6In the facility location problem, instead of a hard bound k on the number of facilities, every facility has a facility opening

cost and the goal now is to minimize the total cost of opening a subset of facilities and serving the clients from these opened
facilities.
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the best of our knowledge, the k-median problem with EL constraints has not been studied before in the
literature.

Some prior works in fair clustering bare some resemblance to our work. For example, in settings where
the points in the dataset belong to different demographic groups, the works of Chierichetti et al. (2017);
Bercea et al. (2019); Bera et al. (2019); Esmaeili et al. (2020); Ahmadian et al. (2019) have considered a
fairness notion where each cluster is constrained to have close to population level proportions of each group.
While this notion is similar to ours, there is considerable difference since the bounds are not imposed on the
cluster sizes as we do but rather the proportions of the groups in each cluster. Further, another notion in
fair clustering imposes lower and upper bounds not on the proportions of the demographic groups in each
cluster but on the number of centers selected from each demographic group Kleindessner et al. (2019); Jones
et al. (2020); Hotegni et al. (2023). i.e., in a dataset that consists of 50% from a “blue” group and 50%
from a “red” group,7 then if we cluster with k = 10 then it maybe desired to have at least 3 centers selected
from each group and at most 7 centers from one group, thereby ensuring both a measure of diversity and
restricted dominance in the selected centers. However, it is clear that this notion is also different from the
EL notion. Interestingly, Dickerson et al. (2024) present a modular approach to combine both demographic
fairness notions mentioned above simultaneously. Although the above mentioned demographic notions are
clearly different from imposing lower and upper bounds on the cluster sizes, the objective of Dickerson et al.
(2024) of combining two notions simultaneously is clearly similar to our objective. Further, their modular
approach of post-processing existing solutions is also similar to our approach although at a high level our
constraints and techniques are very different.

5 High Level Idea of Our Algorithm

Starting with an instance of EL Clustering, we create two instances; IL of LkM by dropping the upper
bounds and IU of UkM by dropping the lower bounds. With SL, SU representing the solutions to IL

and IU respectively, we try to open facilities in SU closing some of them that violate the lower bound and
transferring their clients to nearby facilities in SU that will be opened, if there exists one. In case such a
facility does not exist in SU , a nearby facility in SL is opened. This is achieved as follows: for a facility i in
SL, let Si be the star consisting of i and the facilities i′ in SU such that i is the nearest facility in SL to i′; i
is called the star-center and all other facilities are called the ‘facilities at the spokeq of the star. The facilities
at the spoke of the star are considered in decreasing order of distances from the star-center. A facility is
opened if it has sufficient clients to satisfy its lower bound, else, it is closed and its clients are transferred to
the next facility in the order along with the clients it may have received from the facilities occurring before
in the order.

Let yl be the last facility in the sequence. If sufficient clients to satisfy the lower bound at yl are collected,
we open yl and we are done. Else, we open i; if yl ̸= i, yl is closed.

The challenge here is to maintain the lower bound at i as the clients that were assigned to i in SL could
have been assigned to facilities of SU opened earlier in our solution. For example, in Figure 1 (b), suppose
star Si′ is processed before star Si, clients j and j′ assigned to i in SL satisfying its lower bound will already
be assigned to facilities at the spokes of star Si′ . To address this problem, we construct a directed graph
on stars to capture the dependency of i on other stars (whose facilities at the spoke share clients in SU

with the clients of i in SL). If the resulting graph is a directed acyclic graph (DAG), the topological order
of the stars gives us the order in which the stars must be processed to avoid the concern. Processing the
stars in topological order in the graph makes sure that the clients assigned to i in SL solution have not been
assigned to any facility opened in our solution due to any other star processed earlier. However, if the graph
is not a DAG, we convert it into an almost-DAG 8 by reassigning clients in SL at a small loss in cost. The
reassignment preserves the number of clients served by a facility in the new solution. This is a crucial step in
the approach. Processing the stars in topological order in almost-DAG works after handling the self loops.

7We denote the demographic groups with colors as done in fair clustering papers. Concretely, these colors could denote
attributes such as age, gender, or race.

8Directed Acyclic Graph with possible self-loops
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(a) (b)

Figure 1: (a) Graph G1: IL is an instance of LkM and IU that of UkM. (b) Let L = 4. Black and grey
edges show the assignment of clients in SL and SU , respectively. Star Si′ is processed before star Si. Clients
j, j′ assigned to i in SL have already been assigned to facilities in η−1(i′) and hence are not available while
processing Si.

We next handle the self-loops. Note that the decision to open i is taken only after the facilities at the spoke
of the star Si have been processed. It is possible that the clients assigned to i in the new SL solution are
assigned to facilities opened in SU in Si. Thus, if i is opened at the end of processing the star, we may
not have sufficient unassigned clients to satisfy the lower bound at i. The natural solution that comes to
one’s mind is to reserve L clients served by i in (new) SL before processing the star. However, reserving
clients in this raw form does not work when we decide not to open i. Thus, we decide to reserve clients at
i intelligently in a manner so that no client is reserved in case i is not to be opened. This turns out to be
tricky as we do not know in the beginning (before processing the star) whether i will be opened or not. This
is handled as follows: recall that i is opened only if yl is closed (for ease of disposition assume yl ̸= i); let
Nyl

be the set of clients served by yl in SU that have not been assigned earlier in our solution. We reserve
max{0, L− |Nyl

|} clients at i so that if i is opened, we have these many unassigned clients at i which along
with the |Nyl

| clients of yl satisfy the lower bound at i and, in case i is not opened, this count is 0.

6 Our Algorithm for EL Clustering

Let I = (P, c, C,F , k, U, L) be an instance of EL Clustering. We first create an instance IL of LkM from
I by dropping the upper bounds and then an instance IU of UkM by dropping the lower bounds from I.
Let SL = (FL, σL) and SU = (FU , σU ) be solutions to IL and IU , respectively. Let β denote the violation
in upper bounds, if any, in SU . In the next section, we combine solutions SL and SU to obtain a solution
SI = (FI , σI) to I with (β + 1) factor violation in upper bounds.

6.1 Combining solutions SL and SU to obtain SI

To obtain a solution SI = (FI , σI) to I, we will open some facilities in FL ∪ FU . We construct a directed
graph G1 on the set of facilities in FL ∪ FU . For a facility i ∈ FU , let η(i) denote the facility in FL nearest
to i (assuming that the distances are distinct). Add an edge (i, η(i)) in the graph. Note that a facility i may
be open in both SL and SU , in that case i ∈ η−1(i). In order to avoid self loops, when i = η(i), we denote
the occurrence of i in FU by ic so that η(ic) = i. Thus, we obtain a forest of trees where-in each tree is a
star. Formally, we define a star Si to be a collection of nodes in {i} ∪ η−1(i) with i ∈ FL as the star-center
and η−1(i) ⊆ FU . See Figure 1-(a).

We process the stars to decide the set of facilities to open in FL∪FU . Consider a star Si centered at facility i.
Clearly, the total assignments on i in SL satisfy the lower bound but may violate the upper bound arbitrarily.
On the other hand, the total assignments on a facility i′ ∈ η−1(i) in SU satisfy the upper bound (within β
factor) but may violate the lower bound arbitrarily. We close some facilities in η−1(i) by transferring their
clients (in SU ) to other facilities in η−1(i) if possible (or to i, if required) and open those at which the lower
bound is satisfied. We may also have to open i in the process. We make sure that upper bound is violated
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within the claimed bounds and the total number of facilities opened in Si is at most |η−1(i)|. The cardinality
constraint is, hence, satisfied.

Suppose we consider the facilities in η−1(i) in the order of decreasing distance from i. Let the order be
y1, y2, ..., yl. We wish to collect the clients assigned to them, by SU , in a bag looking for a facility t at which
we would have collected at least L clients so that we can open t, empty the bag by assigning all the clients
in the bag to t and start the process again with the next facility in the order. The problem occurs when at
the last facility (yl), in the order, the bag has less than L clients. In this case, we would like to assign these
clients to the star-center i making use of the fact that i was assigned at least L clients in SL. The problem
here is that the clients assigned to i in SL might have been assigned to the facilities in η−1(i′) for some star
Si′ processed earlier or to the facilities in η−1(i) itself. Figure 1-(b) explains the situation. Thus, we need
to process the stars in a carefully chosen sequence so as to avoid this kind of dependency amongst them.
That is, the stars should be processed in such a way that if, at any point of time, we are processing a star
Si, then the clients assigned to i in SL are not assigned to facilities in η−1(i′) in SU for a star Si′ processed
earlier. For this, we construct a weighted directed (dependency) graph G2 (possibly with directed cycles) on
stars and convert it into a directed acyclic graph (DAG) (except possibly for self-loops), before processing
the stars. A topological ordering in the graph, then gives us the order in which the stars must be processed.
We will denote the graph by G2(σL, σU ) to show that it is a function of the assignments in SL and SU .

The graph G2(σL, σU ) has the stars { Si : |η−1(i)| > 0} as the vertices. Let X (i1, i2) = {j ∈ C : σU (j) = i′ ∈
η−1(i2) and σL(j) = i1} i.e., X (i1, i2) is the set of clients that are served by i1 in SL and by some facility
at the spoke of the star centered at i2 in SU . We include the directed edge (Si1 ,Si2) from star Si1 to Si2 if
|X (i1, i2)| > 0. Let w(Si1 ,Si2) = |X (i1, i2)| denote the weight on the edge (Si1 ,Si2). Refer to Algorithm 1
and Figure 2-(a) − (c) for the construction of graph G2. Initially, X (i1, i2) = ∅ and w(Si1 ,Si2) = 0 for all
pairs of stars Si1 and Si2 (i1 may be same as i2). If the resulting graph has no directed cycle except possibly
the self-loops, we are done. The graph G2 is an almost-DAG. A directed graph is called an almost-DAG, if
the only cycles in it are self loops. However, if there are non-trivial directed cycles in the graph, we redefine
the assignments in SL to obtain another solution ŜL = (FL, σ̂L) to break the cycles. The dependency graph
for (σ̂L, σU ) will then be an almost-DAG.

Algorithm 1: Constructing Graph G2(σL, σU )
Input : Stars Si : i ∈ FL

Output: Weighted Directed Graph G2(σL, σU ) = (V, E)
1 V ← {Si : |η−1(i)| > 0 }, E ← ∅
2 for j ∈ C do
3 i′ ← σU (j), i1 ← σL(j), i2 ← η(i′)
4 X (i1, i2)← X (i1, i2) ∪ {j}
5 w(Si1 ,Si2)← w(Si1 ,Si2) + 1
6 for each pair of stars Si1 , Si2 do
7 if w(Si1 ,Si2) > 0 then
8 E ← E ∪ (Si1 ,Si2)

Breaking the cycles: For graph G2(σL, σU ), let SC =< Si1 ,Si2 , . . . ,Siq
> be a non-trivial directed cycle

with q > 1. Without loss of generality, let (Si1 ,Si2) be the minimum weight edge in the cycle. We reassign
any κ = w(Si1 ,Si2) clients in X (ir, i(r mod q)+1) from ir to i(r mod q)+1, increment the weight of the edge
w(Si(r mod q)+1,Si(r mod q)+1) by κ and, reduce the weight of the edge w(Sir

,Si(r mod q)+1) by κ for r = 1 . . . q.
Note that this adds new self-loops in the graph; however, no new non-trivial edge is added. Also, observe
that |σ̂−1

L (i)| = |σ−1
L (i)| and hence |σ̂−1

L (i)| ≥ L is maintained for all i ∈ FL after the reassignments. The
weight of the edge (Si1 ,Si2) becomes zero and we remove it, thereby breaking the cycle. See Algorithm 2 and
Figure 2-(d)− (e). Note that a client j gets reassigned at most once in all the cycles as during re-assignment,
it moves its contribution from a non-trivial edge to a self-loop and not to any other non-trivial edge. Next,
we bound the cost of solution ŜL in the Lemma 6.1.

Lemma 6.1. The cost, Cost(ŜL), of solution ŜL is bounded by Cost(SL) + 2Cost(SU ).
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Figure 2: (a) Stars Si1 , Si2 and Si3 ; (b) X (i1, i2) = {j1}, X (i2, i3) = {j2, j3, j4}, X (i3, i1) = {j5, j6}; (c) Its
directed cycle G2(σL, σU ); (d) Breaking a cycle: assign j1 to i2, j4 to i3 and j5 to i1, that is, σ̂L(j1) = i2,
σ̂L(j4) = i3 and, σ̂L(j5) = i1; (e) The sub-graph G2(σ̂L, σU ) after breaking the cycle.

Algorithm 2: Breaking Cycles: Constructing an almost-DAG G2(σ̂L, σU )
Input : Graph G2(σL, σU )
Output: G2(σ̂L, σU )

1 σ̂L(j)← σL(j) ∀j ∈ C
2 while ∃ a directed cycle < Si1 ,Si2 , . . . ,Siq

> (q > 1) in G2 do
3 κ← w(Si1 ,Si2) // assume (Si1 ,Si2) as the minimum weight edge in the cycle
4 for r = 1 to q do
5 count← 0, s← (r mod q) + 1
6 for j ∈ X (ir, is) do
7 if count < κ then
8 σ̂L(j)← is

9 count + +
10 X (ir, is)← X (ir, is) \ {j}
11 X (is, is)← X (is, is) ∪ {j}
12 w(Sis

,Sis
)← w(Sis

,Sis
) + κ

13 w(Sir ,Sis)← w(Sir ,Sis)− κ
14 if w(Sir ,Sis) = 0 then
15 E ← E \ (Sir ,Sis) // Remove edge (Sir ,Sis) from G2
16 E ← E ∪ (Sis

,Sis
) // Add edge (Sis

,Sis
) in G2

Proof. Let j ∈ C. The cost paid by j in solution ŜL is (see Figure 3-(a).): c(j, σ̂L(j)) ≤ c(j, σU (j)) +
c(σU (j), σ̂L(j)) ≤ c(j, σU (j)) + c(σU (j), σL(j)) ≤ c(j, σU (j)) + (c(σU (j), j) + c(j, σL(j))) = c(j, σL(j)) +
2c(j, σU (j)), where the second inequality holds since η(σU (j)) = σ̂L(j)). Summing over all j ∈ C, we get
the desired claim.

Graph G2(σ̂L, σU ) has the following properties:

1. G2(σ̂L, σU ) is an almost-DAG.

2. |σ̂−1
L (i)| ≥ L ∀ i ∈ FL.

Now that we have an almost-DAG on the stars, we process the stars in the sequence < Si1 ,Si2 , . . .Sit
>

defined by a topological ordering of the vertices in G2(σ̂L, σU ) (ignoring the self-loops). While processing the
stars, we maintain partition of our clients into two sets, Cs and Cu of settled and unsettled clients respectively.

8
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Figure 3: (a) c(j, σ̂L(j)) ≤ c(j, σL(j))+2c(j, σU (j)); (b) Cost bound of Type-I assignments; (c) Cost bound
of Type-II assignments.

We say that a client is settled if it has been assigned to an open facility in SI and unsettled otherwise. Initially
Cs = ∅ and Cu = C. As we process the stars, more and more clients get settled.

Algorithm 3: Process(Si)
Input : Si, i ∈ FL

1 reserved(i)← ∅, Bag ← ∅
2 for i′ ∈ η−1(i) do
3 Ni′ ← Cu ∩ σ−1

U (i′)
4 Arrange the facilities in η−1(i) in the sequence < y1, . . . yl > such that

c(yl′ , i) ≥ c(yl′+1, i) ∀ l′ = 1 . . . l − 1
5 if |Nyl

| < L then
6 reserved(i)← set of any L− |Nyl

| clients from σ̂−1
L (i) \Nyl

7 for i′ ∈ η−1(i) do
8 Ni′ ← Ni′ \ reserved(i)
9 for l′ = 1 to l − 1 do

10 Bag ← Bag ∪Nyl′

11 if |Bag| ≥ L then
12 Open facility yl′

13 for j ∈ Bag do
14 Assign j to yl′ , Cs ← Cs ∪ {j}, Cu ← Cu \ {j}
15 Bag ← ∅
16 t← i
17 if |Bag ∪Nyl

∪ reserved(i)| > (β + 1)U then
18 t← yl

19 Open t
20 for j ∈ Bag ∪Nyl

∪ reserved(i) do
21 Assign j to t, Cs ← Cs ∪ {j}, Cu ← Cu \ {j}

Consider star Si. Algorithm 3 gives the processing of Si in detail. For i′ ∈ η−1(i), let Ni′ be the set of
unsettled clients, assigned to i′ in SU . Consider the facilities in η−1(i) in decreasing order of distance from
i, i.e., y1, y2, ..., yl. We make sure that at most one of yl and i is opened. To meet the lower bound at i
when i is opened (and yl is closed if yl ̸= i), we reserve max{0, L− |Nyl

|} clients from σ̂−1
L (i) \Nyl

at i (line
6). Observe that the topological ordering of the stars ensures that |σ̂−1

L (i)| = |Cu ∩ σ̂−1
L (i)| ≥ L and hence

|σ̂−1
L (i) \Nyl

| ≥ L−|Nyl
|. We delete the reserved clients from Ni′ , i′ ∈ η−1(i) (lines 7− 8) before processing

the facilities in η−1(i). In lines 9− 15, as we process the facilities in η−1(i), we collect the unsettled clients
assigned to the facilities in η−1(i) by SU in a bag looking for a facility t at which we have collected at least L
clients. We open t and empty the bag by assigning all the clients in the bag to t (called Type-I assignment)
and start the process again with the next facility in the order.

9
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To make sure that we do not open more than |η−1(i)| facilities in Si, we open only one of i and yl for the
remaining (Bag ∪Nyl

∪ reserved(i)) clients. This also ensures that we do not open i more than once. We
prefer to open i and give all the remaining clients to i because (as we will show later) the cost of assigning
clients from Bag∪Nyl

to i is bounded whereas we do not know how to bound the cost of assigning clients in
reserved(i) to yl. However, in case, it leads to more than acceptable violation in the capacity at i, we open
yl and assign the remaining (Bag ∪Nyl

∪ reserved(i)) clients to it. We show that reserved(i) is empty in
the latter case. Algorithm 4 summarizes our combination algorithm for constructing SI from SU and SL.

Algorithm 4: Constructing SI

Input : < SL = FL, σL >, < SU = FU , σU >
Output: SI

1 Construct graph G1 =< FL ∪ FU , E > where E = {(i′, η(i′)) : i′ ∈ FU}.
2 Construct graph G2(σL, σU ).
3 Construct an almost-DAG G2(σ̂L, σU ) from G2(σL, σU ) using Algorithm 2.
4 Obtain a topological ordering < Si1 ,Si2 . . .Sit > of stars in the almost-DAG G2(σ̂L, σU ).
5 for r = 1 to t do
6 Process Sir

using Algorithm 3

6.2 Analysis

Recall that the assignments done in lines 9 − 15 are Type-I assignments. Let the assignment of clients to
facility i when t = i in lines 20− 21 be called as Type-II assignments and those to facility yl when t = yl be
called as Type-III assignments. To prove our main theorem, we need to show that in the obtained solution
SI , the lower bounds are respected, the upper bounds are violated by a factor of at most (β + 1), the cost
of the solution is bounded and the running time is O(k2 + n). We first prove that the lower bounds are
respected at the opened facilities in Lemma 6.2.
Lemma 6.2. Number of clients assigned to an open facility i in F is at least L.

Proof. We will bound the lower bounds for all three type of assignments separately.

1. Observe that the facilities opened by Algorithm 3 in line 12 (Type-I assignment) satisfy the lower
bounds by design of the algorithm.

2. In Type-II assignments, the star-center i satisfies the lower bound (if opened at line 19) as |Bag ∪
Nyl
∪ reserved(i)| ≥ L where the inequality follows because |reserved(i)| = max{0, L− |Nyl

|}.

3. In Type-III assignments, facility yl (if opened at line 19) also satisfies the lower bound as |Bag ∪
Nyl
∪ reserved(i)| > (β + 1)U ≥ 2L because U ≥ L and β ≥ 1.

We next, show that the upper bounds are violated by a factor of at most (β + 1) at the opened facilities in
Lemma 6.3.
Lemma 6.3. Number of clients assigned to an open facility i in F is no more than (β + 1)U .

Proof. We will bound the violations in the upper bounds for three type of assignments separately.

1. Consider the facilities in η−1(i). These facilities receive clients only in Type-I assignments (lines
13−14). Note that for l′ = 2, ..., l−1, we have |Bag| < L just before line 10 and hence |Bag| < L+βU
(just after line 10) ≤ (1 + β)U because L ≤ U . For l′ = 1, |Bag| = 0 just before line 10 and hence
|Bag| ≤ βU (just after line 10).

2. For Type-II assignments, the bound holds trivially because the star-center i receives clients only
when |Bag|+ |Nyl

|+ |reserved(i)| ≤ (β + 1)U .

10
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3. The maximum number of clients received by facility yl in Type-III assignments is, |Bag| + |Nyl
| +

|reserved(i)| = |Bag|+ |Nyl
|+ max{0, L− |Nyl

|} = |Bag|+ max{L, |Nyl
|} ≤ L + βU ≤ (β + 1)U .

The next lemma (Lemma 6.4) bounds the cost of our solution (SI) in terms of cost of solution SU and SL.
Lemma 6.4. The cost of solution SI is bounded by 7Cost(SU ) + 2Cost(SL).

Proof. Consider a star Si.

1. Type-I assignments: Let j ∈ C be assigned to a facility i2 ∈ η−1(i) in our solution and to i1 ∈ η−1(i)
in SU i.e., i1 = σU (j) and i2 = σI(j). The cost paid by j is (see Figure 3-(b)):

c(i2, j) ≤ c(i1, j) + c(i1, i) + c(i, i2)
≤ c(i1, j) + 2c(i1, i)
≤ c(i1, j) + 2c(i1, σ̂L(j)) (as η(i1) = i)
= 3c(i1, j) + 2c(j, σ̂L(j)) (by triangle inequality)
≤ 2c(j, σL(j)) + 7c(j, σU (j)) (by Lemma 6.1).

2. Type-II assignments: Let j ∈ reserved(i) be assigned to i. Also, let j ∈ Ni′ : i′ ∈ η−1(i) be such
that i′ = σU (j). Then, the cost (see Figure 3-(c)) is:

c(i, j) = c(σU (j), j) + c(σU (j), i)
= c(σU (j), j) + c(σU (j), η(σU (j)))
= c(σU (j), j) + c(σU (j), σ̂L(j))
≤ c(σU (j), j) + c(σU (j), j) + c(j, σ̂L(j))
= 2c(j, σU (j)) + c(j, σ̂L(j))
≤ 4c(j, σU (j)) + c(j, σL(j))

where the second and third equality follow because σ̂L(j) = i = η(σU (j)) and the last inequality
follows by Lemma 6.1.

3. Type-III assignments: Note that |Bag ∪ Nyl
∪ reserved(i)| > (β + 1)U ⇒ |reserved(i)| = 0, for

otherwise |Nyl
∪ reserved(i)| = L and thus |Bag ∪Nyl

∪ reserved(i)| < L + L ≤ 2U because L ≤ U .
Hence, the cost of assigning |Bag ∪Nyl

| clients to yl is bounded in the same manner as the cost of
Type-I assignments.

By summing the cost over all the assignments of Type-I, Type-II and Type-III, we get, Cost(SI) ≤
7Cost(SU ) + 2Cost(SL)

We finally show bounds on the running time of our algorithm in the following lemma.
Lemma 6.5. Running time of our combination algorithm (Algorithm 4) is O(k3 + n).

Proof. Constructing G1 takes O(k2) time and the graph G2 can be constructed in time O(n + k2): for each
client j, one can determine the edge (i1, i2) to which j contributes in constant time. G2 can be converted
into almost-DAG in O(k3 + n) time using DFS and Algorithm 2: computing minimum weight edges takes at
most O(k3) time over the entire algorithm and every client is re-assigned at most once. The time taken by
Algorithm 3 when executed on all stars is no more than O(n + k log k); note that in this case also, a client
is re-assigned at most once; k log k comes from sorting in step 4. Thus, having obtained solutions to LkM
and UkM, combining the two solutions take O(k3 + n) time.
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Since any solution to I is feasible for IL and IU , we have Cost(SL) ≤ Cost(SI) and Cost(SU ) ≤ Cost(SI).
Therefore, the proof of Theorem 3.1 follows from Lemmas 6.2, 6.3, 6.4 and, 6.5. Furthermore, we have
Cost(OL) ≤ Cost(O) and Cost(OU ) ≤ Cost(O), where O, OL and OU denote optimal solution to I, IL and
IU , respectively. Therefore, the proof of Corollary 3.2 follows from Theorem 3.1 and by using approximation
algorithms such as Byrka et al. Byrka et al. (2016) for UkM to obtain SU and Han et al. Han et al. (2020a)
for LkM to obtain SL.

7 Conclusion and Future Work

In this paper, we presented a modular approach for solving the EL Clustering problem by combining a
solution of the k-median problem where the cluster sizes are lower bounded with another where the cluster
sizes are upper bounded. Our solution introduces a bounded degradation over the costs of the given solutions.
Further, given a solution to the upper bounded instance where the upper bounds are violated by β our
solution only incurs a bounded additional violation leading to at most a β + 1 violation. An advantage of
our method is that it gains from any improvements in the upper bounded and lower bounded solutions.
Specifically, solutions for the upper and lower bounded instances with better approximation ratios enable
us to obtain solutions with a better approximation ratio for EL. A similar note follows for solutions with
smaller β violations in the upper bound. Interestingly, we note that Lemma 6.2 and Lemma 6.3 and hence
our results hold for a more general scenario where the lower and upper bounds are not necessarily the same
across the facilities, the only restriction is that maxi∈F Li ≤ mini∈F Ui. Furthermore, we discussed how our
algorithm can be applied to other clustering variants including k-means clustering. Moreover, for the special
case when the gap between the lower and upper bounds is large enough (specifically, 2Li ≤ Ui,∀i ∈ F) the
violation in the upper bound can be reduced to β + ϵ for a given ϵ > 0.

One direction for future work would be to get rid of the plus 1 violation in the upper bounds. Another
interesting direction is to extend the results general lower and upper bounds. We acknowledge that the
constants associated with the cost of generating a k-means clustering with equitable load are rather high in
our paper. Improving these constants is another useful direction for future work.
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A Reducing violation in upper bounds when 2L ≤ U

Algorithm 5: Process(Si)
Input : Si : i ∈ FL

1 reserved(i)← ∅, Bag ← ∅
2 for i′ ∈ η−1(i) do
3 Ni′ ← Cu ∩ σ−1

U (i′)
4 Arrange the facilities in η−1(i) in the sequence < y1, . . . yl > such that

c(yl′ , i) ≥ c(yl′+1, i) ∀ l′ = 1 . . . l − 1
5 if |Nyl

| < L then
6 reserved(i)← set of any L− |Nyl

| clients from σ̂−1
L (i) \Nyl

7 for i′ ∈ η−1(i) do
8 Ni′ ← Ni′ \ reserved(i)
9 Prev ← null, Prevcount = 0

10 for l′ = 1 to l − 1 do
11 Bag ← Bag ∪Nyl′

12 if |Bag| ≥ L then
13 Open facility yl′

14 Count← 0
15 for j ∈ Bag do
16 if Count ≤ βU then
17 Assign j to yl′ , Cs ← Cs ∪ {j}, Cu ← Cu \ {j}, Bag ← Bag \ {j}, Count + +
18 else
19 Prev ← yl′ // Prev denotes the last unopened facility in η−1(i)
20 Prevcount = |Bag|
21 if |Bag ∪Nyl

∪ reserved(i)| ≤ (β + ϵ)U then
22 Open i
23 for j ∈ Bag ∪Nyl

∪ reserved(i) do
24 Assign j to i, Cs ← Cs ∪ {j}, Cu ← Cu \ {j}
25 return
26 if |Bag ∪Nyl

∪ reserved(i)| ≤ (β + ϵ)U then
27 Open yl

28 for j ∈ Bag ∪Nyl
∪ reserved(i) do

29 Assign j to yl, Cs ← Cs ∪ {j}, Cu ← Cu \ {j}
30 return
31 Open Prev and yl // |reserved(i)| = 0 when |Bag ∪Nyl

∪ reserved(i)| > (β + ϵ)U(/U)
32 Count← 0
33 Bag ← Bag ∪Nyl

∪ reserved(i)
34 for j ∈ Bag do
35 if Count ≤ L then
36 Assign j to Prev, Cs ← Cs ∪ {j}, Cu ← Cu \ {j}, Bag ← Bag \ {j}, Count + +
37 else
38 Assign all remaining clients in Bag to yl and Break

In this section, assuming 2L ≤ U , we modify Algorithm 3 to obtain Algorithm 5 that reduces the violation
in upper bounds from (β + 1) to (β + ϵ) for a given ϵ > 0. In particular, we present the following results:

Theorem A.1. For 2L ≤ U , given a solution SU for Upper Bounded k-median (UkM) violating the upper
bound by a factor of β and a solution SL for Lower Bounded k-median (LkM). If the clustering costs of
the solutions are Cost(SU ) and Cost(SL), respectively. Then, a solution of cost at most (O( 1

ϵ )(7Cost(SU ) +
2Cost(SL))) can be obtained for EL Clustering that violates the upper bound by a factor of (β + ϵ) for a fixed
ϵ > 0.
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We do the following modifications to Algorithm 3: (i) on arriving at a facility, say t, at which |Bag| ≥ L,
we open t and instead of emptying the bag, we assign only βU clients to t. Remaining clients are carried
forward to the next facility in the order; (ii) we keep account of the last facility (in Prev), if any, that is not
opened, and the number of clients in the bag at that instant (in Prevcount) i.e., Prev is the facility yl′ for
which |Bag| < L immediately after line 14 (hence at line 23) and Prevcount = |Bag| at that time. We open
Prev at the end, if required. This is done as follows: if |Bag ∪ reserved(i) ∪Nyl

| ≤ (β + ϵ)U , we are done
(we open i(/yl) and assign all clients to it). Else, we open both Prev and yl (at line 42) (note that Prev ̸= yl

must exist in this case) and, distribute the clients in Bag ∪ reserved(i) ∪ Nyl
among Prev and yl, so that

they receive at least L clients. We will show that the service costs and the violation in upper bounds are
bounded in this case.

Let the assignment of clients to facility Prev in line 47 be called as Type-IV assignments. The assignments
in line 20, line 31 and lines 38 & 49 are Type-I, Type-II and Type-III assignments respectively. Before we
proceed to prove our claims, note that we open at most one of yl and i: if i is opened at line 29, we return
at line 33 and thus yl is never opened in this case. As before, this ensures that i is not opened more than
once.

Clearly, lower bound is satisfied by Type-I and Type-IV assignments done in line 20 and 47 for the facilities
opened in lines 16 and 42 respectively. Also, since |Bag ∪ Nyl

∪ reserved(i)| ≥ L, lower bound is satisfied
by Type-II assignments done in line 31 for the facility i opened in line 29. For Type-III assignments done at
line 38, |Bag ∪Nyl

∪ reserved(i)| > (β + ϵ)U ≥ (β + ϵ)L. Clearly, the upper bound is violated by a factor
of at most (β + ϵ) at the facilities opened in lines 16, 29, 36 and Prev in line 42. For the assignments done
in line 49, we look at the status at line 42: |reserved(i)| = 0, for otherwise |Nyl

∪ reserved(i)| = L, hence
|Bag ∪ reserved(i) ∪ Nyl

| < L + L ≤ U . Thus, |Bag ∪ Nyl
∪ reserved(i)| = |Bag ∪ Nyl

| < L + βU . Also,
|Bag ∪Nyl

∪ reserved(i)| > (β + ϵ)U > 2L. Thus, L < |Bag ∪Nyl
∪ reserved(i)| − L < βU i.e., at line 49,

L < |Bag| < βU .

Costs of Type-I, Type-II and Type-III assignments are bounded in the same manner as in Section 6. To
bound the service cost of Type-IV assignments (line 47), observe that |Bag∪reserved(i)∪Nyl

|> (β + ϵ)U ⇒
|Bag| > ϵU as |reserved(i)| = 0 and |Nyl

| ≤ βU ; hence, Prevcount ≥ |Bag|(at line 25) > ϵU > ϵL. Note
that Prev and Prevcount do not change after exiting the for-loop at line 27. Thus, Prevcount > ϵL after line
42 also and the cost of assigning at most L clients from Nyl

to Prev is bounded by (1/ϵ) times the cost of
assigning ϵL clients from ∪i′ occurs before P rev in the orderNi′ ∪ NP rev to yl. Hence, the total cost of Type-IV
assignments is bounded by (1/ϵ) total cost of Type-III assignments.

B Modifications for Other related Problems

B.1 k-Means with Equitable Load

The k-means problem with EL constraints is same as the k-median problem with EL constraints except
that the goal now is to minimize the sum of the squared distances instead of minimizing the sum of distances
from the assigned facilities. Further, the facilities to be selected in the k-means problem possibly belong to
an infinite space. Note that, in the k-means problem,

1. the distances are squared which may not satisfy triangle inequality but they satisfy α-relaxed triangle
inequality, that is, c(x, y) ≤ αc(x, z) + αc(z, y) for α = 2 and,

2. we can assume the set of facilities to be in a finite space by losing 2α factor in the distances for
α = 2.

We create an instance IL of Lower Bounded k-Means and IU of Upper Bounded k-Means instead
of LkM and UkM. Solution SI is obtained by using the combination algorithm on SU and SL. Note
that, the violation in upper bounds remains the same, that is, for β violation in upper bounds in SU , we
get (β + 1) violation in upper bounds in SI . We next bound the cost of the obtained solution SI . With
relaxed triangle inequality, Lemma 6.1 can be modified to bound the cost, Cost(ŜL), of solution ŜL by
4Cost(SL) + 6Cost(SU ).
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Lemma B.1. The cost of solution SI is bounded by 352Cost(SU ) + 192Cost(SL).

Proof. We will modify the proof Lemma 6.4 to accommodate relaxed triangle equality. Due to space con-
straints, We will give details of Type-I assignments which have the dominating cost. Cost of Type-II can
be bounded by 30c(j, σU (j)) + 16c(j, σL(j)) in a similar manner. Cost of Type-III assignments is same as
Type-I assignments.

Type-I assignments: Consider a star Si. Let j ∈ C be assigned to a facility i2 ∈ η−1(i) and to i1 ∈ η−1(i)
in SU i.e., i1 = σU (j) and i2 = σI(j). The cost paid by j is: c(i2, j) ≤ α · c(i2, i) + α · c(i, j) ≤
α · c(i2, i) + α2 · (c(i, i1) + c(ii, j)) ≤ α2 · c(i1, j) + (α + α2)c(i1, i) ≤ α2 · c(i1, j) + (α + α2)c(i1, σ̂L(j)) ≤
α2 · c(i1, j) + (α2 + α3) · (c(i1, j) + c(j, σ̂L(j))) = (2α2 + α3) · c(i1, j) + (α2 + α3) · c(j, σ̂L(j)) =
16c(i1, j) + 12c(j, σ̂L(j)) ≤ 88c(j, σU (j)) + 48c(j, σL(j)), where the first, second, fourth inequality follow
by relaxed triangle inequality, third inequality follows as η(i1) = i, the last equality follows by setting value
of α to 2 and the last inequality follows by bound on Cost(ŜL).

We incur an additional multiplicative factor of 2α due to the assumption that the points lie in a finite space.
Multiplying by 4 for α = 2, we get, Cost(SI) ≤ 352Cost(SU ) + 192Cost(SL).

B.2 k-Center with Equitable Load

The k-Center problem with EL constraints is the same as the k-median with EL constraints except that
the goal now is to minimize the maximum distance of a client from the assigned facility instead of minimizing
the total distance. We create instance IL and IU of Lower Bounded k-Center and Upper Bounded
k-Center respectively instead of LkM and UkM. Same bounds are obtained on the cost by taking the
maximum of the cost of all the types of assignments. Bounds on violation in upper bounds remains the
same.

B.3 k-Facility Location with Equitable Load

The k-Facility location with EL constraints is a generalization of the k-median with EL constraints
where for every facility i ∈ F , we also have a facility opening cost fi. The objective now is to identify
F ′ ⊆ F of size at most k and an assignment σ of clients to F ′ so as to minimize the sum of the distances
of the clients from their assigned facilities plus the facility opening costs of the selected facilities. We create
instance IL of Lower Bounded k-Facility Location by dropping the upper bounds and cardinality
constraint. An instance IU of Upper Bounded k-Facility Location is created by dropping the lower
bounds. We then follow the same procedure as described for k-median in Section 6.1 to combine the solutions
of the two instances. Cost of assignment is bounded in the same manner. There is no loss in factor due to
facility opening costs as we only open facilities in (FL ∪ FU ). The violation in the upper bounds remains
the same.

B.4 Knapsack-Median with Equitable Load

Knapsack median with EL constraints is another generalization of k-median with EL constraints where
every facility i has weight fi and instead of k, and we have a budget B on the total weight. Therefore,
the objective is to identify F ′ ⊆ F and an assignment σ of clients to F ′ so as to minimize the sum of the
distances of the clients from the assigned facility subject to the constraint

∑
i∈F ′ fi ≤ B.

We first create an instance IU of Upper Bounded Knapsack Median by dropping the lower bounds and
instance IL of Lower Bounded Knapsack Median from I by dropping the upper bounds, reducing the
set of facilities to FU and setting budget to the budget of SU (note that this can be different from given
budget B if there is violation in budget in SU , otherwise it is B only). It can be shown that Cost(OL) ≤
(2 + Cost(SU ))Cost(O): if a client j is assigned in the optimal solution O to I, to a facility i not in FU ,
we assign it to a facility i′, nearest to i, in FU . The cost c(j, i′) ≤ c(j, i) + c(i, i′) ≤ c(j, i) + c(i, i′′) ≤
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c(j, i) + c(j, i) + c(j, i′′) = 2c(j, i) + c(j, i′′) where i′′ ∈ FU : σU (j) = i′′ and the second inequality holds
because i′ is nearest to i and not i′′.

We next use the same procedure as in Section 6.1 to combine solutions SL and SU of instances IL and IU

respectively. Note that since FL ⊆ FU , for i ∈ FL, yl = i in the star Si. This is important to make sure
that the total facility opening cost in our solution is no more than that of SU in case we open i.
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