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Abstract

The Holy Qur’an, the scripture of Muslims, is recited through slightly different
transmission traditions (riwayat) encoding different recitation rules. In this paper,
we study riwaya identification: determining the Qur’anic transmission style directly
from audio. In order to do so, we curate over 700 hours of recitations and segment
recordings into 12 s windows to build a dataset. Building on pretrained speech
encoders (e.g., wav2vec2.0, Whisper), we extract frame-level embeddings and
train a classifier to predict the riwaya. Our embedding-based models achieve an
82% prediction accuracy in distinguishing Warsh from Hafs. We hope that this
work leads to scalable, audio-native tools supporting different recitation styles
using modern pretrained encoders.

1 Introduction

The task of Spoken Language Identification (SLI) is often studied as a building block that enables
large-scale speech-capable intelligent systems to serve a diverse set of users. A more delicate task is
Spoken Dialect Identification (SDI), where the goal is to identify which dialect of the language is
being spoken given an audio clip. This slight change introduces an additional layer of complexity,
particularly in low-resource languages or dialects Lonergan et al. [2023].

Beyond general speech applications, the tools of SLI and SDI can be applied to specialized domains
where subtle differences in vocabulary or pronunciation occur. One such domain is Qur’anic recitation,
where different riwayat1 represent authentic transmission chains, and where great emphasis is placed
on correct pronunciation. Identifying these automatically from audio would open the door to richer
digital archives and more inclusive recitation tools.

Table 1: Examples of differences between Hafs and Warsh, the two most prominent riwayat.

Verse Hafs Text Warsh Text Note

Al-Fātih. a 1:4 Mālik Malik Vowel length; Owner vs King.
Al-Baqarah 2:1252 wa-ttakhidhu wa-ttakhadhu Morphology: imperative vs past.
Al-Mu’minūn 23:1 al-mu’minūn al-muminūn Pronunciation (hamza).

While recent years have witnessed various efforts in digitizing Qur’anic resources, ranging from
font libraries to verse-by-verse segmented audio, the vast majority of such resources are devoted
exclusively to the riwaya of Hafs ‘an ‘Asim. A riwaya, or transmission, is an authentic method
of reciting the Qur’an that is transmitted from the Prophet PBUH. Different riwayat have slightly
different recitation rules (ah. kām). The task of detecting a riwaya from audio would be beneficial in
labeling audio clips to expand Qur’anic digital libraries, serving Muslims who recite in other riwayat.
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Similarly, riwaya detection would enable expanding AI-powered Qur’anic tools to other riwayat. Re-
cently, models have been trained to transcribe, segment [Abdelfattah et al., 2025], correct [Alagrami
and Eljazzar, 2020], and even match Qur’anic recitation to text [Tall et al., 2023]. A prominent exam-
ple is tarteel.ai, an AI-powered memorization app, which uses Automatic Speech Recognition
(ASR) models to transcribe and correct live Qur’anic recitation. As it currently stands, both Qur’anic
audio models and datasets are usually in Hafs, a limitation which we attempt to tackle in this paper.

Contributions The contributions of this paper can be summarized as follows: we (1) introduce
Riwaya-ID, formally defining the task and framework for identifying the riwaya; (2) curate a weakly
labeled corpus of Qur’anic recitations; and (3) establish baselines for this task. We expect to release
the data in the upcoming preprint version.

1.1 Related Works

The approach of learning semantically meaningful embeddings underlies many recent artificial
intelligence (AI) systems, across various modalities. Pretrained models capture rich representations
that can be finetuned for downstream tasks. For example, word2vec [Mikolov et al., 2013] encodes
word meaning from context, while wav2vec [Schneider et al., 2019] learns audio representations by
relating short units (≈ 25 ms) to surrounding context. Its successor, wav2vec 2.0 [Baevski et al.,
2020], replaces convolutional context networks with Transformers, combining local patterns with
global dependencies. OpenAI’s Whisper [Radford et al., 2022], by contrast, converts raw audio into
log-Mel spectrograms, which are closely related to Mel-Frequency Cepstral Coefficients (MFCCs),
and processes them with a Transformer encoder–decoder.

Earlier SLI methods relied on MFCCs, pitch, and similar cues [O’Shaughnessy, 2025]. Neural
approaches extended this: convolutional networks learned features from Mel-spectrograms [Singh
et al., 2021], while time-delayed networks modeled temporal dynamics in the audio [Kepecs and
Beigi, 2022]. Similar techniques have been applied to dialect classification, especially in low-resource
settings [Lonergan et al., 2023, Das et al., 2023, Fischbach et al., 2025].

For Qur’anic recitation, generic Arabic ASR is insufficient due to the unique ah. kām (rules) governing
length, stress, and intonation, which differ from both Modern Standard Arabic and colloquial dialects.
Research has addressed these challenges through pronunciation benchmarking [Kheir et al., 2025],
phoneme-level transcription difficulties [Zaatiti et al., 2025], and rule-specific ASR systems [Alagrami
and Eljazzar, 2020]. Previous works have also tackled riwaya detection using MFCC and Hidden
Markov Models Yousfi and Zeki [2016], Das et al. [2023], often focusing on the madd (elongation).
We highlight a subset of Qur’an-specific ASR models below.

Table 2: Recent Qur’anic speech models and their base architectures, from Hugging Face.

Model Base Model Year
IbrahimSalah/Wav2vecLarge-quran-syllables facebook/wav2vec2-large 2024
tarteel-ai/whisper-base-ar-quran openai/whisper-base 2022
tarteel-ai/whisper-tiny-ar-quran openai/whisper-tiny 2022

2 Methods

Let X denote the input feature space, representing the space of recitation (audio clips). Let Y =
{1, · · · , R} denote the output label space of riwayat. Our architecture uses pretrained speech models
to obtain meaningful audio embeddings. Formally, an embedding model fθ : X → Rd maps each
input audio segment x ∈ X into a latent embedding space. In our case, fθ is instantiated using
pretrained models such as wav2vec2.0 or Whisper and their variants which were pretrained on
Qur’anic audio, as described in Table 2. The obtained embedding is contextualized at the frame-level.

To adapt the pretrained backbone to riwaya identification, we append a lightweight, feed-forward
classification head gϕ : Rd → RR with one hidden layers.
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Table 3: The embedding-based classifier results are reported as mean ± std, over 3 random seeds.
Base, generic models are noted with †, while the other models are finetuned on Arabic or Qur’anic
audio. The base models are trained on the same hyperparameters as the corresponding Qur’an models.

Author Base Model Test Acc. Logit Mean Agg. Max Agg. Prob. Mean Agg. Maj. Agg.

tarteel-ai whisper-base 80.79 ± 0.26 83.69 ± 0.63 85.37 ± 0.69 83.21 ± 0.69 82.53 ± 0.83
IbrahimSalah wav2vec2-large 79.87 ± 0.16 78.67± 0.27 79.98± 0.76 79.50± 0.54 79.42± 0.39
jonatasgrosman wav2vec2-large-xlsr-53 78.14 ± 0.14 79.79± 0.65 80.04± 0.38 79.57± 0.63 79.14± 0.77

openai† whisper-base 81.45 ± 0.23 82.60 ± 0.59 82.74 ± 0.92 82.00 ± 0.41 81.89 ± 0.71
facebook† wav2vec2-large 54.74 ± 3.79 56.48 ± 5.63 57.31 ± 4.60 56.52 ± 5.65 56.45 ± 5.43

2.1 Training

We train our model by minimizing the cross-entropy loss between predicted distributions and assigned
labels. During training, the backbone is initially frozen to allow the classification head to learn a
meaningful representation, before unfreezing the layers progressively. Using the AdamW optimizer
[Loshchilov and Hutter, 2017], we specify different learning rates for the backbone and the classifi-
cation head. Moreover, we employ Layer-wide Learning Rate Decay (LLRD) Bao et al. [2021] to
decrease the learning rate for earlier transformer layers. For more details on our data collection and
experiment details, see Appendix A and B, resp.

For the purposes of model training, we mostly restrict the task to binary classification between
Hafs ’an ’Asim and Warsh ’an Nafi’. This choice is motivated by several factors: (1) computational
constraints make it impractical to train on all available riwayat, (2) these two classes are the most
reliable in terms of label quality, and are also by far the most common riwayat, and (3) the performance
of our methodology on multiclass classification (6 riwayat) was subpar.

We draw data from our corpus so that classes are represented equally in training and test. We also
ensure segments derived from one audio recording don’t leak across training and non-training splits.

3 Results

We evaluate riwaya identification on the test split, reporting the classification accuracy. For em-
bedding models, we perform an extensive hyperparameter sweep (optimizer, learning rate, weight
decay, dropout, classifier depth, and pooling) and report the test accuracy corresponding to the best
validation accuracy. We also report the accuracy obtained by aggregating across the entire audio
clip, experimenting with three aggregation strategies: averaging the logits (Logit Mean), consider the
most confident logit across the window (Max), averaging the softmax probabilities (Prob. Mean), and
majority voting (Maj. Ag). See Appendix D for an explanation of the aggregation strategies.

Baselines. As baselines, we explore the use of embedding models which have not been specifically
fine-tuned for Qur’anic audio. Frame-level representations are aggregated via mean pooling. We also
evaluate against jonatasgrosman’s wav2vec2-large-xlsr-53 model which has been fine-tuned
on general Arabic (and not Qur’anic) audio.

The given set of Whisper models outperforms the wav2vec-large. Interestingly, the Whisper
base model outperforms the tarteel-ai model in classifying the riwaya from 12 seconds of audio.
However, the wav2vec2 models which are further trained on Arabic or Qur’anic data perform
significantly better than the base wav2vec2 model. This changes when we allow our model to
aggregate over the entire recording: tarteel-ai/whisper-base-quran outperforms the base
model by a significant margin.

In general, aggregating improves model performance as it allows our model to depend less on a
particular window and more on the training data (which includes the Surah being recited). One can
probabilistically justify this, e.g. via Chernoff or Hoeffding bounds. Among the various aggregation
strategies, we observe that maximum logit aggregation strategy works best: using the model’s most
confident guess at any point during the entire recording, usually a subset of the surah, or chapter.
Across all aggregation strategies, tarteel-ai models achieve the highest accuracy.
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Another observation we make is that our model is more likely to predict Hafs for Warsh clips than
predict Warsh for Hafs. A possible cause for this is that the models we use were actually finetuned on
Hafs. See Figure 1 for confusion matrices from our experiments.

Figure 1: Confusion matrix for tarteel-ai/whisper-base-quran-ar (left),
IbrahimSalah/Wav2vecLarge_quran_syllables_recognition (middle), and
jonatasgrosman/wav2vec2-large-xlsr-53-arabic (right) on binary classification.

We also experiment with the tarteel-ai/whisper-base model trained on an incomplete list of
six riwayat: Hafs ’an ’Asim, Warsh ’an Nafi’, Qalun ’an Nafi, Al-Bazzi ’an Ibn Kathir, Qunbul
’an Ibn Kathir, Ibn Jummaz ’an Abu Ja’far. This model obtains a lower test accuracy of 62.50%:
demonstrating that our approach needs refining. The confusion matrix can be found in Appendix C.

4 Conclusion

Qur’anic recitation is central to Islamic practice, and its diverse riwayat reflect a rich tradition of
transmission. Our work provides a proof-of-concept approach identifying these recitations from
audio, with the aim of enabling more inclusive digital resources and tools. By leveraging pretrained
speech models such as wav2vec2.0 and Whisper, we showed that even a simple classification head
can distinguish between major riwayat with promising accuracy.

4.1 Limitations

Data. As noted earlier, our dataset is a major limitation. Labels are assigned via keyword searches,
which introduces noise whose magnitude we cannot currently estimate. Additionally, some educa-
tional clips mix multiple riwayat, further complicating supervision. Our experiment focused primarily
on binary classification, which is an extremely limited case.

Turuq We restricted our attention to identifying major riwayat (e.g., Hafs, Warsh, etc..), however, a
riwaya may branch further into t.uruq (transmission paths). Each of those t.uruq encodes even finer
rules of recitation, but the author is not aware of a digital annotated corpus of turuq audio.

4.2 Future Work

We outline a few directions which we hope to explore.

Predicting via aggregated logits. Logit aggregation across an entire recording prevents us from
accurately applying riwaya detection at a streaming rate. One wonders how varying the window
length affects the results; perhaps one can obtain similar performance gains by only aggregating
logits across a smaller window. This would allow deploying the model on live recitations.

Repositories of riwayat. Human-annotated datasets of different riwayat serve as a two-way resource:
they can be used both to train improved models and, conversely, to expand the datasets themselves
through model-assisted annotation. As it currently stands, the author is not aware of large-scale
digital databases of recitations involving different riwayat.

Label noise. Future work can incorporate techniques from the label-noise literature, such as gener-
alized cross-entropy loss [Zhang and Sabuncu, 2018], early stopping [Yuan et al., 2023], or other
robust training methods [Wei et al., 2021] that account for open noise.
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A Data

We collect over 700 hours of Qur’anic recitation by scraping online audio sources for recitations of
each sūrah (chapter) across different riwayat (transmission methods). Because large-scale human-
annotated resources are limited, we rely on keyword matching and search criteria to label the data.
This weak supervision introduces noise into our corpus, which we acknowledge as a key limitation to
be addressed in future work.

Each recording is segmented into 12-second windows with a stride of 3 seconds. Additional loudness
normalization allows for normalizing the volume. These overlapping sub-clips inherit the label of the
parent recording. Shorter windows allow for streaming-like performance but decrease the amount
of information available, creating a delicate tradeoff which we hope to explore. A further challenge
arises from the fact that some recordings contain more than one riwaya, meaning that inherited labels
are not always perfectly accurate.

In this work, we focus on six of the most prominent riwayat, shown in Table 4. These do not represent
the full diversity of recitations that exist in the Islamic tradition, but they cover some of the most
widely practiced transmissions for which we could find data for. Among them, Hafs ’an ’Asim is the
overwhelmingly dominant recitation, reportedly accounting for around 95% of global practice.3

Table 4: Hours of audio collected per riwāya

Riwaya Hours of Audio
Hafs ’an ’Asim 161.76
Warsh ’an Nafi’ 147.37
Qalun ’an Nafi’ 133.29

Al-Bazzi ’an Ibn Kathir 104.27
Qunbul ’an Ibn Kathir 106.74

Ibn Jummaz ’an Abu Ja’far 75.85

The train, validation, and test splits account for 80 %, 10%, and 10% of the data, respectively. As
described in the paper, we ensure that no subsets of the same clip are present in both train and
validation or train and test splits. This is done to prevent memorization and leakage.

3This figure is often cited informally but, to the best of our knowledge, has not been established through a
rigorous scientific study. Estimating prevalence can be done in future work once an accurate classifier has been
built.
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B Experimental Details

All experiments were conducted on a single machine equipped with 8 NVIDIA A100 GPUs using
PyTorch DataParallel. Models were initialized from Hugging Face checkpoints and trained with
the AdamW optimizer. Throughout the experiment, we adopt a batch size of 32. To adapt the pretrained
backbones, we first froze all layers and progressively unfroze the last N transformer layers according
to the hyperparameter sweep. Layer-wise Learning Rate Decay (LLRD) was applied with decay
factors ranging from 0.95 to 0.99.

We performed hyperparameter sweeps over classification head size, dropout rate, learning rates,
weight decay, and warmup schedules. Three pooling strategies were considered: mean pooling, stats
pooling, and attention pooling. For each pooling method, we varied hidden dimension sizes, dropout,
backbone vs. head learning rates, the number of unfrozen layers, and LLRD values. Additional
sweeps included weight decay (0.005–0.02), freeze warmup steps (1–3), and warmup epochs (1–3).
The best configuration for each model was selected on the validation set, with results reported in
Table 3.
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C Multiclass Experiment

The following is a confusion matrix obtained while training tarteel-ai/whisper-base to distin-
guish all available riwayat.

Figure 2: Confusion matrix for a tarteel-ai/whisper-base model which was trained on all 6
riwayat.

We particularly note some interesting features from this analysis. The confusion matrix demonstrates
a relatively higher error between more similar riwayat that are narrated from the same scholar. In
our dataset’s case, Warsh and Qalun are both narrated from Imam Nafi’, while Al-Bazzi and Qunbul
are narated from Ibn Kathir. These pairs of riwayat share many recitation rules and hence, this
phenomenon is not surprising.
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D Logit Aggregation Strategies

General setup and notation. Let a sequence (e.g., all clips from one section/video) be indexed by
time t = 1, 2, . . . , T . For each clip t, the model outputs logits zt ∈ RR over R classes (riwayat, and
probabilities

pt = softmax(zt), (pt)c =
ezt,c∑R
j=1 e

zt,j
.

Given a window length n ∈ N and a window Wt = {t, t+ 1, . . . , t+ n− 1} restricted to the same
section/video, we aggregate {zk, pk}k∈Wt

into a single distribution p̃
(n)
t ∈ ∆R−1 (the probability

simplex). Final prediction is ŷ
(n)
t = argmaxc∈{1,...,R} p̃

(n)
t,c . When n = 1 we recover per-clip

predictions.

• Logit Mean Aggregation.

p̃
(n)
t = softmax

( 1

n

∑
k∈Wt

zk

)
, p̃

(n)
t,c ∝ exp

( 1

n

∑
k∈Wt

zk,c

)
.

Equivalently, this is the normalized geometric mean of the unnormalized scores; it tends to
sharpen agreement across clips.

• Max of probabilities.

mc = max
k∈Wt

(pk)c, p̃
(n)
t,c =

mc∑R
j=1 mj

.

Element-wise maximum followed by renormalization (for a valid distribution); emphasizes
any high-confidence evidence.

• Probability Mean.

p̃
(n)
t =

1

n

∑
k∈Wt

pk, p̃
(n)
t,c =

1

n

∑
k∈Wt

(pk)c.

This averages calibrated posteriors; it is smoothing and robust to scale mismatch across
clips.

• Majority vote.

vk = argmax
c

(pk,c), p̃
(n)
t,c =

1

n

∑
k∈Wt

1{vk = c}, ŷ
(n)
t = argmax

c
p̃
(n)
t,c .

Remarks. All windows Wt are confined within a single section/video. One can easily verify that
for binary classification with R = 2 clips and a window length of n = 2, the first and third strategies
coincide. With binary classification, it suffices to consider a logit which is converted to a softmax via
the sigmoid σ(x) = 1

1+e−x .

This amounts to showing that

σ

(
z1 + z2

2

)
>

1

2
⇔ σ(z1) + σ(z2)

2
>

1

2
.

Equivalently, one must show that

1

1 + e−(z1+z2)/2
>

1

2
⇔ 1

1 + e−z1
+

1

1 + e−z2
> 1.

Expanding and rearranging, we get that the problem is equivalent to showing that

1 > e−(z1+z2)/2 ⇔ 1 > e−z1e−z2 ,

which clearly holds.
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However, for n ≥ 3 the strategies need not agree. For example,

z1 = [4.447, 1.723], z2 = [4.799, 1.254], z3 = [0.086, 6.752],

yield margins m1 = 2.724, m2 = 3.545, m3 = −6.666. Then

σ(m1) + σ(m2) + σ(m3)

3
≈ 0.637 > 0.5 while σ

(m1 +m2 +m3

3

)
≈ 0.467 < 0.5,

so the two strategies predict different classes.
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E Manually Curated Data

We evaluate our finetuned tarteel-ai/whisper-base model on a manually curated dataset of
differences between Hafs and Warsh, both recited by Sh. Abdul Basit Abdul Samad. This data
was obtained from everyayah.com. We use this to examine the model’s predictions and identify
particular failure/success modes.

Verse 4 Hafs Warsh
Mean p̂(Hafs) Maj. Pred. Mean p̂(Warsh) Maj. Pred.

1:4 0.330 Warsh 0.624 Warsh
2:125 0.278 Warsh 0.734 Warsh
12:35 0.587 Hafs 0.680 Warsh
12:101 0.503 Hafs 0.672 Warsh
18:2 0.483 Hafs 0.964 Warsh
20:1 0.403 Warsh 0.598 Warsh
23:1 0.312 Warsh 0.628 Warsh
27:31 0.591 Hafs 0.501 Warsh
36:10 0.705 Hafs 0.444 Hafs
48:17 0.408 Warsh 0.795 Warsh
72:7 0.562 Hafs 0.764 Warsh
75:37 0.884 Hafs 0.570 Warsh
91:15 0.347 Warsh 0.597 Warsh
98:6 0.047 Warsh 0.913 Warsh

Table 5: Comparison of Abdul Basit Abdul Samad’s recitations of the same verse in Hafs vs Warsh.
We report the predicted confidence (as the probability of the relevant class) as well as the majority
prediction taken over windows from the clip. We note that the v

One observes that Warsh is much accurately predicted on its class; whereas Hafs features a more
confused model. A few of these feature instances where the model’s confidence is low; with the
predicted probabilities being in the 0.3 to 0.5 range. A quick analysis with some basic audio
augmentations reveals minimal impact, and we defer it to a future study with more comprehensive
data to understand the reason behind this phenomenon.
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