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Abstract

Global dependency modeling and spatial position modeling are two core issues of
the foundational architecture design in current deep learning frameworks. Recently,
Vision Transformers (ViTs) have achieved remarkable success in computer vision,
leveraging the powerful global dependency modeling capability of the self-attention
mechanism. Furthermore, Mamba2 has demonstrated its significant potential in
natural language processing tasks by explicitly modeling the spatial adjacency prior
through the structured mask. In this paper, we propose Polyline Path Masked
Attention (PPMA) that integrates the self-attention mechanism of ViTs with an
enhanced structured mask of Mamba2, harnessing the complementary strengths
of both architectures. Specifically, we first ameliorate the traditional structured
mask of Mamba2 by introducing a 2D polyline path scanning strategy and derive
its corresponding structured mask, polyline path mask, which better preserves the
adjacency relationships among image tokens. Notably, we conduct a thorough theo-
retical analysis on the structural characteristics of the proposed polyline path mask
and design an efficient algorithm for the computation of the polyline path mask.
Next, we embed the polyline path mask into the self-attention mechanism of ViTs,
enabling explicit modeling of spatial adjacency prior. Extensive experiments on
standard benchmarks, including image classification, object detection, and segmen-
tation, demonstrate that our model outperforms previous state-of-the-art approaches
based on both state-space models and Transformers. For example, our proposed
PPMA-T/S/B models achieve 48.7%/51.1%/52.3% mIoU on the ADE20K seman-
tic segmentation task, surpassing RMT-T/S/B by 0.7%/1.3%/0.3%, respectively.
Code is available at https://github.com/zhongchenzhao/PPMA.

1 Introduction

The research of foundational models has long been a cornerstone of deep learning. In computer vision,
Convolutional Neural Networks (CNNs) [20, 19] and Vision Transformers (ViTs) [46, 9, 31, 22]
currently represent the dominant architectures. Notably, ViTs have become the most mainstream
architecture in large models through the powerful self-attention mechanism, which can capture
the non-local self-similarity within global receptive fields. However, the quadratic complexity of
the Transformer, when implementing self-attention, severely limits its application in large image
processing models. Moreover, as shown in Fig. 1 (b), classic positional encoding methods [46, 31, 38]
in ViTs lack the explicit modeling capability of spatial distance between image tokens, and largely
ignore the important spatial adjacency priors in texture, shape, semantics, and so on. This increases
the learning pressure and limits its capability for fine-grained image feature extraction.

Compared to CNNs and Transformers, the recently proposed Mamba [11] achieves linear complexity
while maintaining global receptive fields, demonstrating strong potential as the next-generation archi-
tecture. Specifically, Mamba follows the State Space Models (SSMs) paradigm and employs the se-
lective scan mechanism with the state transition matrix to recursively propagate dependencies among
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Figure 1: (a)-(b) Illustration of the modules in Mamba2 and
ViT. (c) Our method adapts the structured mask of Mamba2 to
2D scanning and integrates it with ViT’s self-attention.

tokens in a sequence. Building on
this foundation, Mamba2 [6] fur-
ther refines the state transition ma-
trix into a lightweight structured
mask and introduces a unified theo-
retical framework, Structured State
Space Duality (SSD), to bridge
SSMs and attention variants. Un-
der SSD, the core selective scan
mechanism of Mamba2 can be re-
formulated as a form of structured
masked attention, i.e., a Linear
Attention [23] element-wise multi-
plied by the structured mask, as il-
lustrated in Fig. 1 (a). Notably, this
structured mask explicitly encodes
the sequence adjacency of tokens,
enabling Mamba2 to match or surpass Transformers across various natural language processing
(NLP) tasks. Following its success in NLP, Mamba [11] has been rapidly adapted to various visual
domains, including: high-level tasks (classification, object detection, segmentation [58, 30, 49, 47]),
low-level tasks (super-resolution, denoising, deraining [13, 12, 59]), image generation [43], video
analysis [26], point cloud analysis [27, 51], and remote sensing images [54].

Although Mamba [11] has demonstrated impressive results on certain vision tasks, empirical results on
high-level vision tasks demonstrate that even state-of-the-art (SOTA) Mamba-based backbones [30,
49, 47, 15] still underperform SOTA Transformer-based backbones [57, 10] with a substantial
performance gap. As shown in Fig. 1 (a), this gap mainly stems from two issues: (I) 1D Scanning
Issue. Mamba’s 1D scanning strategy arranges the tokens of a 2D image into a 1D sequence, which
inevitably disrupts the inherent spatial adjacency within 2D images and limits the effectiveness of its
recursive selective scanning mechanism. (II) Weak Global Dependency Modeling Issue. The linear
attention in Mamba2 omits the non-linear softmax layer, leading to a decrease in the precision and
stability of global dependency modeling of images.

In this paper, we present Polyline Path Masked Attention (PPMA), a brand-new method that
effectively combines the advantages of ViTs and Mamba2. Specifically, as illustrated in Fig. 1 (c),
to address the 1D Scanning Issue when applying current Mamba to 2D images, we propose a novel
2D polyline path scanning strategy and derive an efficient calculation method for its corresponding
structured mask, the polyline path mask. Then, we embed the polyline path mask as an explicit
positional encoding into the ViT framework. This not only avoids the Weak Global Dependency
Modeling Issue of Mamba2, but also alleviates the positional encoding issue of ViTs. As a result,
our method fully leverages the powerful global context modeling capability of the self-attention
mechanism in ViTs together with the explicit spatial adjacency modeling capability of the polyline
path mask inspired by Mamba2, achieving SOTA performance on mainstream high-level vision tasks.

To the best of our knowledge, this is the first work to integrate Mamba2’s structured mask mechanism
into ViTs. The main contributions of this study are summarized as follows:

• We propose a 2D polyline path scanning strategy for visual Mamba, which better preserves
the inherent 2D spatial structure of images compared to existing scanning strategies. Building
on this, we further derive a novel structured mask, termed polyline path mask, which is more
suitable for 2D images than the traditional structured mask used in Mamba2.

• We conduct a comprehensive theoretical analysis for the proposed 2D polyline path mask.
Specifically, we theoretically prove that it can be decomposed into two 1D structured
masks with clear physical meanings (i.e., horizontal and vertical scanning masks). More
importantly, by leveraging this decomposability, we derive an efficient algorithm to reduce
its computational complexity from O(N2) in the naive calculation to O(N

3
2 ).

• The polyline path mask can be seamlessly integrated into various attention variants in a plug-
and-play manner without introducing a substantial increase in computational complexity. In
this paper, we incorporate it into the vanilla self-attention and criss-cross attention, deriving
the Polyline Path Masked Attention (PPMA).
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• Leveraging PPMA, we construct a hybrid Mamba2-Transformer model. Experimental
results demonstrate that our model achieves SOTA performance on standard benchmarks for
image classification, object detection, and segmentation.

2 Related Work

Vision Transformers. ViTs have become foundational in large-scale vision models such as SAM [24]
and Sora [1], primarily due to their self-attention mechanism that effectively captures the long-range
dependency. Moreover, the spatial structural information provided by positional encodings (e.g.,
APE [46], RPE [31], and RoPE [38]) is also crucial to ViTs. However, traditional positional encodings
fail to explicitly encode spatial adjacency. Recent works, such as RMT [10] and VVT [39], porpose to
incorporate RetNet’s input-independent temporal decay mask [40] into ViTs for more explicit spatial
modeling based on the Manhattan distance. In comparison, Mamba2’s input-dependent selective
structured mask not only explicitly encodes the relative positional information in the spatial space but
also captures the semantic continuity in the feature space.

Mamba. As a state space model, Mamba introduces an input-dependent selection mechanism into
the state transition matrix A, achieving Transformer-level performance with linear complexity on
NLP tasks. Building on this foundation, Mamba2 [6] further simplifies the matrix A to a scalar a,
enabling more hardware-efficient parallelizable training without sacrificing performance. Moreover,
Mamba2 [6] demonstrates that its formulation is mathematically equivalent to a 1-semiseparable
structured masked attention, and develops the State Space Duality (SSD) framework to connect
structured SSMs and attention variants. Furthermore, Mamba2 points out that other potential
structured masked attentions can also be integrated into the SSD framework.

In this paper, we introduce a novel structured masked attention, termed polyline path masked
attention, tailored for vision tasks. Different from the previous 2D selective SSM framework [53]
based on Mamba [11], our Mamba2-based polyline path mask is more lightweight and can be plugged
seamlessly into various attention variants. Moreover, compared to MambaVision [17] which naively
concatenates Mamba’s blocks and ViT self-attention layers, our method more effectively harnesses
complementary strengths of both architectures.

3 Preliminaries

Mamba2’s Recurrent Form. Mamba2 [6] initially adopts a recurrent form with linear complexity
for sequence modeling. Specifically, Mamba2 employs the selective state space models to map the
input sequence x∈RN×C to the output sequence y∈RN×C , i.e., for i=1:N ,

hi = aihi−1 +B⊤
i xi, yi = Cihi, (1)

where xi,yi ∈ R1×C , hi∈RD×C denotes the hidden state, ai ∈ R and Bi,Ci ∈ R1×D are input-
dependent parameters learned by multilayer perceptron (MLP) layers, the scalar ai serves as a decay
factor bounded in [0, 1], N,C and D denote the sequence length, channel number, and hidden state
dimension, respectively.

Mamba2’s Attention Form. Leveraging the SSD framework in Mamba2 [6], the recurrent form of
Mamba2 in Eq. (1) can be reformulated as its equivalent dual form, i.e., structured masked attention,
by eliminating the hidden state hi via substitution:

y =
(
CB⊤ ⊙L1D

)
x, L1D

ij = ai:j =


ai × · · · × aj+1 i > j

1 i = j

0 i < j

, (2)

where ⊙ denotes the Hadamard (element-wise) product, B,C ∈ RN×D, and the 1D structured mask
L1D ∈ RN×N is a 1-semiseparable matrix which can be efficiently calculated with a complexity of
O(N2) by the chunkwise algorithm [6]. Mamba2’s attention form (Eq. (2)) enables more efficient
parallelizable training than its recurrent form (Eq. (1)). Notably, parameters C and B in Eq. (2)
are learned analogously to the query Q and key K in ViTs, respectively. Thus, Eq. (2) reveals that
the selective state transition function in Mamba2 is equivalent to the Hadamard product of a linear
attention map CB⊤ and a 1D structured mask L1D. Here, the structured mask can be interpreted as
a form of relative positional encoding [6].
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Figure 2: Compared to existing scanning strategies (a) and (b), which flatten 2D tokens into a 1D
sequence, our polyline path scanning (c) better preserves the adjacency of 2D tokens.

In this work, we extend the structured masked attention in Mamba2 from 1D sequences to 2D images.
Specifically, we extend the 1D structured mask L1D to the 2D polyline path mask L2D by introducing
a novel 2D scanning strategy, and propose an efficient algorithm for computing and applying this
polyline path mask L2D. The proposed L2D can be substituted into Eq. (2) for replacing L1D or
adopted in ViTs as the explicit positional encoding.

4 Method

In this section, we introduce the idea of adapting the structured mask of Mamba2 to 2D scanning and
integrating it into the self-attention mechanism of ViTs, achieving an explicit positional encoding.
Specifically, we 1) introduce the definition of 2D polyline path mask in Sec. 4.1; 2) analyze the
theoretical properties of the proposed polyline path mask and introduce an efficient algorithm for the
proposed polyline path mask in Sec. 4.2; 3) apply the polyline path mask to standard self-attention
and criss-cross attention of ViTs in Sec. 4.3.

4.1 Definition of Polyline Path Mask

As a sequence autoregressive framework, visual Mamba starts from employing a scanning strategy to
flatten a 2D image into a 1D sequence of image tokens. This scanning strategy plays an important
role in Mamba’s performance, since the order of tokens is determined by it. As illustrated in Fig. 2,
previous works [58, 30, 27] have proposed various scanning strategies for visual Mamba. However,
these strategies fail to fully preserve the inherent spatial adjacency of 2D tokens. For example, as
shown in Fig. 2 (a) and (b), for two tokens B and C which are close in an image, previous scanning
strategies [30, 27] may cause them to be significantly farther apart in the 1D scanning path.
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Figure 3: An intuitive example
illustrating the polyline path
mask on a 4×4 grid.

Polyline Path Scanning. To address this limitation, we design a
2D polyline path scanning strategy. Specifically, for each token pair
(xi,j ,xk,l) in the 2D grid, we define their scanning path as the L-
shaped polyline connecting them, as shown in Fig. 2 (c). To ensure
symmetry in mutual distances, we set two bidirectional polyline
paths: vertical-then-horizontal path (V2H solid lines in Fig. 2 (c))
and horizontal-then-vertical path (H2V dotted lines in Fig. 2 (c)),
and use their combination as the final scanning path. In this way,
the adjacency relationship of 2D tokens can be strictly maintained
under the Manhattan distance2. Intuitively speaking, tokens close (or
far) to each other will be in close (or far) distance on the scanning
path, and vice versa. As the example shown in Fig. 2, polyline
scanning strategy better preserves the distance between token B and
C compared to the other two strategies. An more intuitive example
is shown in Fig. 8.

Definition of Polyline Path Mask. Based on the proposed polyline path scanning strategy, we
introduce the polyline path mask. As an example shown in Fig. 3, we define the horizontal and
vertical decay factors of each input token xi,j as αi,j and βi,j , respectively. In this paper, we employ
two MLP layers to learn αi,j and βi,j , respectively.3 Then, the decay weight of V2H polyline path

2The Manhattan distance between two points xi,j and xk,l in a 2D plane is |i− k|+ |j − l|.
3We apply the ReLU and exponential operator after the MLP layers to ensure αi,j , βi,j ∈ [0, 1].
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from xk,l to xi,j is defined as Li,j,k,l , which is the product of all decay factors along that path, i.e.,

Li,j,k,l = αi,j:lβi:k,l, where αi,j:l=


∏l

n=j+1 αi,n j < l

1 j = l∏j
n=l+1 αi,n j > l

, βi:k,l=


∏k

n=i+1 βn,l i < k

1 i = k∏i
n=k+1 βn,l i > k

. (3)

For example, as illustrated in Fig. 3, the V2H polyline path’s decay weight from token x4,4 to x1,1

is L1,1,4,4=α1,2α1,3α1,4β2,4β3,4β4,4. Similarly, the decay weight along the H2V polyline path is
defined as L̃i,j,k,l=αk,j:lβi:k,l. Due to the spatial symmetry, it is evident that L̃i,j,k,l=Lk,l,i,j . By
combining the V2H and H2V polyline paths, the final decay weight is

L2D=L+L̃. (4)

Note that L, L̃ and L2D are all 4D tensors of size RH×W×H×W , where H and W are the height and
width of the feature map, respectively. The polyline path mask, a 2D matrix L2D∈RHW×HW , can
be obtained by unfolding the decay weight tensor, i.e., for all i, j, k, and l,[

L2D
]
(i−1)×W+j,(k−1)×W+l

= L2D
i,j,k,l. (5)

For simplicity, we denote the above tensor-to-matrix unfolding operation as L2D =unfold(L2D),
and its inverse operation as L2D=fold(L2D) in the following sections. More details can be found in
Appendix A.2.

4.2 Efficient Computation Theory of Polyline Path Mask

According to the definition (3), the direct approach to compute the polyline path mask L2D is to
calculate each element individually. However, the large size of the mask and numerous multiplications
for each element lead to a high computational cost in both calculating and applying L2D. To address
this issue, we present a decomposition theorem for matrices structured as L2D. Based on this, we
further design an efficient algorithm for performing multiplication on L2D. For simplicity, we focus
our theoretical study on L, which is similar to the case of L2D. Complete proofs of the theorems are
provided in Appendix A.3 and A.5.
Theorem 1 (Matrix Decomposition). For any matrix M ∈ RHW×HW and M = fold (M), if
for ∀i, j, k, l, ∃Ai ∈RW×W and Bl ∈RH×H , s.t., Mi,j,k,l =

[
Ai
]
j,l

×
[
Bl
]
i,k

, then M can be
decomposed as:

M = MA ×MB = M̂A ⊙ M̂B , (6)

where MA,MB ,M̂A,M̂B∈RHW×HW , which satisfy

MA=unfold(MA),MB=unfold(MB), s.t.,MA
i,:,k,:=

{
Ai k= i

0 k ̸= i
, MB

:,j,:,l=

{
Bl j= l

0 j ̸= l
, (7)

M̂A=unfold(M̂
A
), M̂B=unfold(M̂

B
), s.t., M̂

A

i,:,k,:=Ai, M̂
B

:,j,:,l=Bl. (8)

As defined in Eq. (3), the polyline path mask L satisfies the conditions in Theorem 1 with [Ai]j,l=
αi,j:l and [Bl]i,k=βi:k,l. Thus, based on Theorem 1, the polyline path mask L can be decomposed
as L=LH×LV =L̂H ⊙ L̂V . Moreover, for the complexity of computing L, we have:
Corollary 1 (Mask Complexity). The complexity of directly computing polyline path mask L with
Eq.(3) and (5) is O(N

5
2 ), which can be reduced to O(N2) by applying Theorem 1, where N=H×W .

For matrices in the form of Eq. (7), when performing multiplication operations, we have:
Theorem 2 (Efficient Matrix Multiplication). For matrices MA,MB defined in Eq. (7), ∀x∈RHW ,
the following equation holds:

y = MA×MB×x ⇔ Z:,l = Bl×X:,l, Yi,: = Ai×Zi,:, (9)

where y ∈RHW , X =unvec(x)∈RH×W , Y =unvec(y)∈RH×W , Z ∈RH×W , and the operator
vec(·) vectorizes a matrix by stacking its columns and unvec(·) is its inverse operator.
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Figure 4: Illustration of the efficient algorithm for utilizing the proposed polyline path mask. Left:
Naive computation of matrix multiplication. Right: An intuitive illustration of Algorithm 1.

Algorithm 1: Efficient Masked Attention Computation.

Input: decay factors α, β of L, vector x∈RHW ;
1: Compute X=unvec(x)∈RH×W ;
2: Compute Bl∈RH×H , where for l=1:W, [Bl]i,k=βi:k,l;
3: Compute Z∈RH×W , where Z:,l = Bl×X:,l;
4: Compute Ai∈RW×W , where for i=1:H, [Ai]j,l=αi,j:l;
5: Compute Y ∈RH×W , where Yi,: = Ai×Zi,:;

Output: y=vec(Y );

Based on Theorem 2, we can design Al-
gorithm 1 for computing the matrix mul-
tiplication between polyline path mask
L and the vector x. Note that the in-
volved matrices Ai and Bl are sym-
metric matrices with lower triangular
parts being 1-semiseparable, as defined
in Mamba2 [6]. This will lead to a
substantial reduction in complexity as
stated in the following corollary.

Corollary 2 (Masked Attention Complexity). The computational complexity of the matrix multiplica-
tion between polyline path mask and vector x, i.e., y=Lx, can be reduced from O(N2) to O(N

3
2 )

by Algorithm 1, and further reduced to O(N) by applying the chunkwise algorithm of Mamba2 [6]
to steps 3 and 5 in Algorithm 1.

Remarks. Intuitively, as illustrated in Fig. 4, Algorithm 1 shows that the 2D polyline path scanning
on 2D tokens (i.e., Lx) can be decomposed as the 1D vertical scanning along each column of X (i.e.,
Z:,l = Bl×X:,l) followed by the 1D horizontal scanning along each row of Z (i.e., Yi,: = Ai×Zi,:).
This equivalence offers an intuitive understanding of the physical meaning of the decomposed polyline
path mask L = LHLV and enables its natural extension to 3D or higher-dimensional tokens, as
detailed in Appendix C.2.

4.3 Polyline Path Masked Attention

The proposed polyline path mask can be seamlessly integrated into various attention variants in a
plug-and-play manner. In this section, we integrate it into two softmax-based self-attention layers:
vanilla attention [9] and criss-cross attention [22]. Notably, theorems and algorithm given in Sec. 4.2
guarantee that integration of polyline path mask does not substantially increase the computational
complexity of the original attention mechanism. More applications, such as the polyline path masked
linear attention with a complexity of O(N), are provided in Appendix A.7.

Polyline Path Masked Vanilla Attention. The polyline path mask L2D is integrated into vanilla
attention via a Hadamard product with the attention map, i.e., for query Q, key K, and value V :

PPMVA(x) =
(
softmax(QK⊤)⊙L2D

)
V , (10)

where Q,K,V ∈RHW×C . Based on Corollary 1, Eq. (10) maintains the complexity of O(N2).

Polyline Path Masked Criss-Cross Attention. The original criss-cross attention [22] employs the
sparse attention over tokens located in the same row or column, achieving a complexity of O(N

3
2 ).

In this work, we follow RMT [10] to decompose criss-cross attention into the vertical attention over
each column followed by the horizontal attention over each row. The polyline path mask L2D is
applied to the decomposed criss-cross attention through the Hadamard product, that is:

PPMCCA(x)=
((
SH×SV

)
⊙L2D

)
V =

((
SH×SV

)
⊙L

)
V +

((
SH×SV

)
⊙L̃

)
V , (11)

where horizontal and vertical attention maps SH ,SV ∈RHW×HW satisfy the form in Eq. (7) with
Ai=softmax(Qi,:,:K⊤

i,:,:) and Bl=softmax(Q:,l,:K⊤
:,l,:), and Q,K∈RH×W×C are tensor forms
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Figure 5: Overall architecture of the Polyline Path Masked Attention based Vision Transformer.

of Q,K, respectively [22]. Based on Theorem 1, we can reformulate the left part of Eq. (11) as:((
SH×SV

)
⊙L

)
V =

((
SH×SV

)
⊙
(
LH×LV

))
V =

((
ŜH⊙ŜV

)
⊙
(
L̂H⊙L̂V

))
V

=
((

ŜH⊙L̂H
)
⊙
(
ŜV ⊙L̂V

))
V =

(
SH⊙LH

)
×
(
SV ⊙LV

)
×V .

(12)

Note that matrices ŜH⊙L̂H and ŜV ⊙L̂V also satisfy the form in Eq. (7). Thus, the computational
complexity of Eq. (12) can be reduced to O(N

3
2 ) by Algorithm 1. Similar conclusions can also be

derived for the right part of Eq. (11). Thus, the complexity of Eq.(11) maintains O(N
3
2 ).

4.4 Overall Architecture

Based on the proposed Polyline Path Masked Attention, we construct a hybrid Mamba2-Transformer
backbone for vision tasks. As illustrated in Fig. 5, our backbone adopts the four-stage hierarchical
architecture. Following RMT [10], we employ Polyline Path Masked Criss-Cross Attention in the
first three stages, and Polyline Path Masked Vanilla Attention in the final stage. Moreover, we develop
our model in three scales: tiny (PPMA-T), small (PPMA-S), and base (PPMA-B).

5 Experiments

To validate the effectiveness of our method, we conduct a series of experiments on mainstream
benchmarks for image classification (Sec. 5.1), object detection and instance segmentation (Sec. 5.2),
and semantic segmentation (Sec. 5.3). Comparison methods include advanced CNN-based [34, 32,
42], SSM-based [30, 53, 49, 47], and Transformer-based backbones [31, 8, 17, 16, 57, 10]. For a fair
comparison, we reproduce the experimental results of RMT [10] with the same experimental settings
as ours. We also perform comprehensive ablation studies on the structured mask design in Sec. 5.4.
More detailed experimental settings and results can be found in Appendix B.

5.1 Image Classification on ImageNet-1K

Settings. We evaluate the classification performance of our method on ImageNet-1K [7]. Following
the same training strategy as in [10, 44], we train our models from scratch for 300 epochs with the
input size of 224×224. We use the adaptive AdamW optimizer with a cosine decay learning rate
scheduler (batch size=1024, initial learning rate=0.001, weight decay=0.05).

Results. The comparison results presented in Table 1 show that our method achieves state-of-the-art
(SOTA) performance compared to other advanced models based on various architectures across tiny,
small, and base scales. Specifically, PPMA-S achieves 84.2% top-1 accuracy, surpassing 2DMamba-
T [53] by 1.4%, MLLA-T [15] by 0.7%, MambaVision-T2 [17] by 1.5%, and RMT-S [10] by 0.2%
with similar FLOPs. PPMA-T achieves 82.6% top-1 accuracy, outperforming the most competitive
RMT-T [10] by 0.2% without extra training tricks. Moreover, our PPMA-B also surpasses other
SOTA CNN-based, SSM-based, and Transformer-based backbones.
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Table 1: Image classification performance on the ImageNet-1K validation set.

Model Arch. #Param.
(M)

FLOPs
(G)

Top-1
(%)

RegNetY-1.6G [34]

C
N

N 11 1.6 78.0
EffNet-B3 [42] 12 1.8 81.6

Vim-T [58]

SS
M 7 1.5 76.1

MSVMamba-M [36] 12 1.5 79.8
BiFormer-T [57]

Tr
an

s.

13 2.2 81.4
NAT-M [16] 20 2.7 81.8
SMT-T [29] 12 2.4 82.2
RMT-T [10] 14 2.5 82.4

PPMA-T 14 2.7 82.6

RegNetY-4G [34]
C

N
N 21 4.0 80.0

ConvNeXt-T [32] 29 4.5 82.1
EffNet-B4 [42] 19 4.2 82.9

VMamba-T [30]

SS
M

30 4.9 82.6
2DMamba-T [53] 31 4.9 82.8
GrootVL-T [49] 30 4.8 83.4

Spatial-Mamba-T [47] 27 4.5 83.5
MLLA-T [15] 25 4.2 83.5
Swin-T [31]

Tr
an

s. 29 4.5 82.1
CSWin-T [8] 23 4.3 82.7

MambaVision-T2 [17] 35 5.1 82.7

Model Arch. #Param.
(M)

FLOPs
(G)

Top-1
(%)

NAT-T [16]

Tr
an

s.

28 4.3 83.2
BiFormer-S [57] 26 4.5 83.8

RMT-S [10] 27 4.5 84.0
PPMA-S 27 4.9 84.2

RegNetY-8G [34]

C
N

N 39 8.0 81.7
ConvNeXt-S [32] 50 8.7 83.1
EffNet-B5 [42] 30 9.9 83.6
VMamba-S [30]

SS
M

50 8.7 83.6
2DMamba-S [53] 50 8.8 83.8
GrootVL-S [49] 51 8.5 84.2
MLLA-S [15] 43 7.3 84.4

Spatial-Mamba-S [47] 43 7.1 84.6
Swin-S [31]

Tr
an

s.

50 8.7 83.0
NAT-S [16] 51 7.8 83.7

CSWin-B [8] 78 15.0 84.2
MambaVision-B [17] 98 15.0 84.2

BiFormer-B [57] 57 9.8 84.3
iFormer-B [37] 48 9.4 84.6

RMT-B [10] 54 9.7 84.9
PPMA-B 54 10.6 85.0

Table 2: Object detection and instance segmentation performance with Mask R-CNN [18] detector
on COCO val2017. FLOPs are calculated with input resolution of 1280× 800.

Mask R-CNN 1× schedule

Backbone #Param. (M) FLOPs (G) APb APb
50 APb

75 APm APm
50 APm

75

Vim-T [58] – – 45.7 63.9 49.6 39.2 60.9 41.7
MSVMamba-M [36] 32 201 43.8 65.8 47.7 39.9 62.9 42.9

MPViT-XS [25] 30 231 44.2 66.7 48.4 40.4 63.4 43.4
RMT-T [10] 33 218 46.7 68.6 51.6 42.1 65.3 45.2

PPMA-T 33 218 47.1 68.7 51.7 42.4 65.9 45.7
ResNet-50 [19] 44 260 38.2 58.8 41.4 34.7 55.7 37.2

ConvNeXt-T [32] 48 262 44.2 66.6 48.3 40.1 63.3 42.8
MLLA-T [15] 44 255 46.8 69.5 51.5 42.1 66.4 45.0

GrootVL-T [49] 49 265 47.0 69.4 51.5 42.7 66.4 46.0
VMamba-T [30] 50 271 47.3 69.3 52.0 42.7 66.4 45.9

Spatial-Mamba-T [47] 46 216 47.6 69.6 52.3 42.9 66.5 46.2
Swin-T [31] 48 267 43.7 66.6 47.7 39.8 63.3 42.7
CSWin-T [8] 42 279 46.7 68.6 51.3 42.2 65.6 45.4

BiFormer-S [57] – – 47.8 69.8 52.3 43.2 66.8 46.5
RMT-S [10] 46 262 48.8 70.8 53.4 43.6 67.4 47.3

PPMA-S 46 263 49.2 70.7 54.0 43.8 67.4 47.1

ResNet-101 [19] 63 336 40.4 61.1 44.2 36.4 57.7 38.8
ConvNeXt-S [32] 70 348 45.4 67.9 50.0 41.8 65.2 45.1
GrootVL-S [49] 70 341 48.6 70.3 53.5 43.6 67.5 47.1
VMamba-S [30] 70 349 48.7 70.0 53.4 43.7 67.3 47.0

Spatial-Mamba-S [47] 63 315 49.2 70.8 54.2 44.0 67.9 47.5
MLLA-S [15] 63 319 49.2 71.5 53.9 44.2 68.5 47.2
Swin-S [31] 69 359 45.7 67.9 50.4 41.1 64.9 44.2
CSWin-S [8] 54 342 47.9 70.1 52.6 43.2 67.1 46.2

BiFormer-B [57] – – 48.6 70.5 53.8 43.7 67.6 47.1
RMT-B [10] 73 373 50.7 72.0 55.7 45.1 69.2 49.0

PPMA-B 73 374 51.1 72.5 55.9 45.5 69.7 49.1
Mask R-CNN 3× schedule

ConvNeXt-S [32] 70 348 47.9 70.0 52.7 42.9 66.9 46.2
GrootVL-S [49] 70 341 50.1 71.2 54.9 44.6 68.7 47.8
VMamba-S [30] 70 349 49.9 70.9 54.7 44.2 68.2 47.7
MLLA-S [15] 63 319 50.5 71.8 55.2 44.9 69.1 48.2

Spatial-Mamba-S [47] 63 315 50.6 71.5 55.4 44.7 68.6 48.2
NAT-S [16] 70 330 48.4 69.8 53.2 43.2 66.9 46.4
Swin-S [31] 69 359 48.5 70.2 53.5 43.3 67.3 46.6
CSWin-S [8] 54 342 50.0 71.3 54.7 44.5 68.4 47.7
RMT-B [10] 73 373 52.2 72.9 57.0 46.1 70.4 49.9

PPMA-B 73 374 52.6 73.3 57.5 46.3 70.3 50.2
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Table 3: Semantic segmentation performance with UPerNet [48] segmentor on ADE20K val set. ‘SS’
and ‘MS’ represent single-scale and multi-scale testing, respectively.

Backbone #Param. FLOPs mIoU(%)
(M) (G) SS MS

LocalVim-T [21] 36 181 43.4 44.4
MSVMamba-M [36] 42 875 45.1 45.4

NAT-M [16] 50 900 45.1 46.4
RMT-T [10] 43 977 48.0 48.8

PPMA-T 43 983 48.7 49.1
ResNet-50 [19] 67 953 42.1 42.8

ConvNeXt-T [32] 60 939 46.0 46.7
VMamba-T [30] 62 949 48.0 48.8
2DMamba-T [53] 62 950 48.6 49.3
GrootVL-T [49] 60 941 48.5 49.4

Spatial-Mamba-S [47] 57 936 48.6 49.4
Swin-T [31] 60 945 44.4 45.8

MambaVision-T [17] 55 945 46.6 –
NAT-T [16] 58 934 47.1 48.4

CSWin-S [8] 60 959 49.3 50.7

Backbone #Param. FLOPs mIoU(%)
(M) (G) SS MS

BiFormer-S [57] – – 49.8 50.8
RMT-S [10] 56 937 49.8 49.7

PPMA-S 56 984 51.1 52.0
ResNet-101 [19] 85 1030 42.9 44.0
ConvNeXt-S [32] 82 1027 48.7 49.6
VMamba-S [30] 82 1028 50.6 51.2

Spatial-Mamba-S [47] 73 992 50.6 51.4
GrootVL-S [49] 82 1019 50.7 51.7

Swin-S [31] 81 1039 47.6 49.5
NAT-S [16] 82 1010 48.0 49.5

MambaVision-S [17] 84 1135 48.2 –
CSWin-S [8] 65 1027 50.4 51.5

BiFormer-B [57] – – 51.0 51.7
RMT-B [10] 83 1051 52.0 52.1

PPMA-B 83 1137 52.3 53.0

5.2 Object Detection and Instance Segmentation on COCO

Settings. We evaluate our method for object detection and instance segmentation tasks on
MSCOCO2017 [28] using the MMDetection library [2]. Following previous work [35], we ini-
tialize the backbone with ImageNet-1K pretrained weights and adopt Mask R-CNN [18] as the basic
framework. The models are trained for 12 epochs (1× schedule) and 36 epochs with multi-scale inputs
(3× schedule) using AdamW optimizer (batch size=16, learning rate=0.0001, weight decay=0.05).

Results. The results presented in Table 2 show that our model outperforms existing methods on most
evaluation metrics. Under the same experimental settings, PPMA-T achieves a box mAP of 47.1%
and a mask mAP of 42.4%, surpassing the SOTA Transformer-based backbone RMT-T [10] by 0.4%
and 0.3% in the 1× schedule, respectively. Moreover, PPMA-B achieves a box mAP of 51.1% and a
mask mAP of 45.5%, surpassing the SOTA SSM-based backbone MLLA-S [15] by 1.9% and 1.3%
in the 1× schedule, respectively. Furthermore, PPMA-B maintains its superior performance under
the 3× multi-scale training schedule.

5.3 Semantic Segmentation on ADE20K

Settings. We evaluate the semantic segmentation performance of our method on ADE20K [56] using
the MMSegmentation library [4]. Following the settings in previous works [35], we initialize the
backbone with ImageNet-1K pretrained weights and adopt UPerNet [48] as the basic framework. The
input size of images is set to 512 × 512 and all models are trained for 160K iterations with AdamW
optimizer (batch size=16, learning rate=6×10−5, weight decay=0.05).
Results. The semantic segmentation results are summarized in Table 3. Our method consistently
outperforms previous methods under all settings. Compared to SOTA Transformer-based counterparts,
PPMA-T/S/B surpass RMT-T/S/B by 0.7%/1.3%/0.3% mIoU in the Single-Scale (SS) setting and
0.3%/2.3%/0.9% mIoU in the Multi-Scale (MS) setting. Compared to SOTA SSM-based methods,
PPMA-T/S/B surpass them by at least 3.6%/2.5%/1.6% in SS mIoU, respectively.

5.4 Ablation Study

Polyline Path Mask Design. To verify the effectiveness of the proposed polyline path mask, we
conduct an ablation study on ImageNet-1K and ADE20K using PPMA-T as the backbone. Under the
same experimental settings, we compare various structured masks embedded into the softmax-based
self-attention layers by Hadamard product, including: no mask (baseline), RMT decay mask [10],
cross scan mask [30], Hilbert scan mask [27], V2H polyline path mask, and our final 2D polyline
path mask. As shown in Fig. 6, our polyline path mask L2D, compared to the RMT decay mask,
can selectively capture the semantic continuity in the image. Compared to the cross scan mask and
Hilbert scan mask, the polyline path mask better preserves the spatial relationships between 2D
tokens, alleviating the long-range forgetting issue. Experimental results in Table 4 show that the 2D
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Table 4: Ablation study of structured mask designs in PPMA-T on ImageNet-1K and ADE20K.

Structured Mask #Param. (M) FLOPs (G) Throughput (imgs/s) Top-1 (%) mIoU SS (%)

Baseline (w/o mask) 14.33 2.65 1779 82.28 47.78
+ RMT Decay Mask 14.33 2.65 1650 82.35 48.01
+ Cross Scan Mask 14.34 2.71 1100 82.44 48.14
+ Hilbert Scan Mask 14.34 2.71 1091 82.44 48.14
+ V2H Polyline Path Mask 14.34 2.71 1203 82.44 48.57
+ 2D Polyline Path Mask 14.34 2.71 1034 82.60 48.73
Shared Decay factors (αi,j =βi,j) 14.33 2.71 1124 82.37 48.27
Different Decay factors (αi,j ̸=βi,j) 14.34 2.71 1034 82.60 48.73

(a) Input Image (b) W/o Mask (d) Cross Scan Mask (e) Hilbert Scan Mask (f) Polyline Path Mask(c) RMT Decay Mask 

Figure 6: Illustration of various structured masks.

(a) Input Image (b) Horizontal 
Decay Factor 𝜶𝜶

(d) Original 
Attention Map

(e) Polyline Path 
Mask 𝑳𝑳2𝐷𝐷

(f) Polyline Path 
Masked Attention Map

(c) Vertical 
Decay Factor 𝜷𝜷

Figure 7: Visualizations of the decay factors and the polyline path masked attention maps of the
well-trained PPMA model. In each input image, the query token is marked by a red box.

polyline path mask L2D boosts the baseline by 0.32% top-1 accuracy on ImageNet-1K and 0.95%
SS mIoU on ADE20K, respectively. Visualization results in Fig. 7 further demonstrate that our 2D
polyline path mask L2D effectively suppresses the falsely highlighted areas in the original attention
maps. More visualizations and detailed discussions are provided in Fig. 12 and Sec. C.1.

Horizontal and Vertical Decay Factors. In our model, we employ different decay factors (αi,j ̸=βi,j)
to capture semantic similarity between adjacent tokens along horizontal and vertical directions,
respectively. As illustrated in Fig. 7 (b) and (c), the learned decay factors α and β effectively capture
semantic continuity in horizontal and vertical directions, respectively. Table 4 shows that replacing
different decay factors with a shared decay factor (αi,j =βi,j) results in a significant performance
drop, highlighting the importance of modeling horizontal and vertical decay factors separately.

6 Conclusion

In this paper, we argue that the key component of Mamba2 model is its structured mask, which
explicitly encodes the spatial distance information through the recursive propagation mechanism and
captures the semantic continuity in sequences through the selective mechanism. Building on this
insight, we propose to extend the structured mask from 1D text sequences to 2D images. To this end,
we propose a novel 2D polyline path scanning strategy with its corresponding structured mask tailed
for images. To achieve SOTA performance on high-level vision tasks, we integrate the polyline path
mask into the powerful self-attention mechanism of ViTs.

Limitations. Although the proposed efficient algorithm optimizes the integration complexity, it
inevitably incurs additional GPU memory occupation and lower throughput, as shown in Table 4. We
plan to alleviate this limitation through further engineering optimizations, such as CUDA-based or
Triton-based implementations, in the future work.
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A Efficient Computation Theory for Polyline Path Mask Applications

A.1 Notations

Following Mamba2 [6], we employ a large number of notations both for clarity and as a central tool
in stating and proving our theorems, including:

• Dimensions. We generally use N , H , W , C, D as the superscript letters of R to denote the
sequence length, the height of the feature map, the width of the feature map, channel number,
and hidden state dimension, respectively. The sequence length of the 2D feature map (i.e., the
number of tokens) is N = H ×W .

• Matrices and Tensors. Following convention, we use non-bolded lowercase letters, bolded
lowercase letters, bolded uppercase letters, and bolded calligraphy letters to denote scalars,
vectors, matrices, and 3D or higher dimensional tensors, respectively.

• Indexing. We use indexing i : j to refer to the range i + 1, i + 2, . . . , j when i < j and
i, i − 1, . . . , j + 1 when i > j. For example, for any scalar a, we let ai:j for i < j denote
the sequence (ai+1, ai+2, . . . , aj). For shorthand, we let a×i:j for i < j denote the product
ai+1 × ai+2 × · · · × aj

4. We let a×j:i = a×i:j for j > i.

• Tensor Unfolding. We use the operator vec(·) to vectorize a matrix by stacking its columns
and the operator unvec(·) as its inverse operation. We use the operator unfold(·) to unfolds a
4D tensor L∈RH×W×H×W to a 2D matrix L∈RHW×HW , where [L](i−1)×W+j,(k−1)×W+l =
Li,j,k,l, and the operator fold(·) as its inverse operation.

• Tensor Multiplication. For 2D matrices, we use the symbol × to denote the matrix multiplica-
tion and the symbol ⊙ to denote the Hadamard (element-wise) multiplication. For multiplication
operations involving 3D or higher dimensional tensors, we use the Einstein summation notation
einsum(·) to denote the tensor multiplication on the given dimension, which is commonly
used in modern tensor libraries such as PyTorch. For example, einsum(′nc, mc → nm′,Q,K)
denotes the matrix multiplication Q×K⊤.
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Figure 8: An illustration of the V2H polyline path scanning on a 3×3 grid (with a total of 9 tokens).
There are 81 scanning paths. Each scanning path (red polyline) corresponds to a decay weight in the
polyline path mask L.

A.2 Definition of Polyline Path Mask

For each token pair (xi,j ,xk,l) in the 2D grid, the decay weight of the vertical-then-horizontal (V2H)
polyline path from xi,j to xk,l is defined as Li,j,k,l, which is the product of all decay factors along
that path, i.e.,

Li,j,k,l = αi,j:lβi:k,l, where αi,j:l=


∏l

n=j+1 αi,n j < l

1 j = l∏j
n=l+1 αi,n j > l

, βi:k,l=


∏k

n=i+1 βn,l i < k

1 i = k∏i
n=k+1 βn,l i > k

, (13)

where αi,j:l and βi:k,l are horizontal and vertical decay factors bounded in the range [0, 1]. For
convenience, we unfold the 4D tensor L∈RH×W×H×W into a 2D matrix as the polyline path mask
L∈RHW×HW , i.e.,

L=unfold(L). (14)

L=



α1,1:1β1:1,1 α1,1:2β1:1,2 · · · α1,1:Wβ1:1,W

α1,2:1β1:1,1 α1,2:2β1:1,2 · · · α1,2:Wβ1:1,W

...
...

. . .
...

α1,W :1β1:1,1 α1,W :2β1:1,2 · · · α1,W :Wβ1:1,W

· · ·

α1,1:1β1:H,1 α1,1:2β1:H,2 · · · α1,1:Wβ1:H,W

α1,2:1β1:H,1 α1,2:2β1:H,2 · · · α1,2:Wβ1:H,W

...
...

. . .
...

α1,W :1β1:H,1 α1,W :2β1:H,2 · · · α1,W :Wβ1:H,W

...
. . .

...
αH,1:1βH:1,1 αH,2:1βH:1,1 · · · αH,W :1βH:1,1

αH,1:2βH:1,2 αH,2:2βH:1,2 · · · αH,W :2βH:1,2

...
...

. . .
...

αH,1:WβH:1,W αH,2:WβH:1,W · · · αH,W :WβH:1,W

· · ·

αH,1:1βH:H,1 αH,1:2βH:H,2 · · · αH,1:WβH:H,W

αH,2:1βH:H,1 αH,2:2βH:H,2 · · · αH,2:WβH:H,W

...
...

. . .
...

αH,W :1βH:H,1 αH,W :2βH:H,2 · · · αH,W :WβH:H,W


(15)

An intuitive example illustrating the polyline path scanning on a 3×3 grid is presented in Fig. 8. For
the 9 tokens in the 2D grid, there are 81 V2H scanning paths connecting them. The V2H scanning
path between each token pair is marked by the red polyline, which corresponds to a decay weight in

4In some contexts, it is always clear that the notation ai:j means a×
i:j , and the superscript is omitted.
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Figure 9: An overall illustration of the efficient computation theory and corresponding applications.

the polyline path mask L. The V2H polyline path mask L∈R9×9, constructed based on the scanning
paths in Fig. 8, is defined as:

L=



α1,1:1β1:1,1 α1,1:2β1:1,2 α1,1:3β1:1,3

α1,2:1β1:1,1 α1,2:2β1:1,2 α1,2:3β1:1,3

α1,3:1β1:1,1 α1,3:2β1:1,2 α1,3:3β1:1,3

α1,1:1β1:2,1 α1,1:2β1:2,2 α1,1:3β1:2,3

α1,2:1β1:2,1 α1,2:2β1:2,2 α1,2:3β1:2,3

α1,3:1β1:2,1 α1,3:2β1:2,2 α1,3:3β1:2,3

α1,1:1β1:3,1 α1,1:2β1:3,2 α1,1:3β1:3,3

α1,2:1β1:3,1 α1,2:2β1:3,2 α1,2:3β1:3,3

α1,3:1β1:3,1 α1,3:2β1:3,2 α1,3:3β1:3,3

α2,1:1β2:1,1 α2,1:2β2:1,2 α2,1:3β2:1,3

α2,2:1β2:1,1 α2,2:2β2:1,2 α2,2:3β2:1,3

α2,3:1β2:1,1 α2,3:2β2:1,2 α2,3:3β2:1,3

α2,1:1β2:2,1 α2,1:2β2:2,2 α2,1:3β2:2,3

α2,2:1β2:2,1 α2,2:2β2:2,2 α2,2:3β2:2,3

α2,3:1β2:2,1 α2,3:2β2:2,2 α2,3:3β2:2,3

α2,1:1β2:3,1 α2,1:2β2:3,2 α2,1:3β2:3,3

α2,2:1β2:3,1 α2,2:2β2:3,2 α2,2:3β2:3,3

α2,3:1β2:3,1 α2,3:2β2:3,2 α2,3:3β2:3,3

α3,1:1β3:1,1 α3,1:2β3:1,2 α3,1:3β3:1,3

α3,2:1β3:1,1 α3,2:2β3:1,2 α3,2:3β3:1,3

α3,3:1β3:1,1 α3,3:2β3:1,2 α3,3:3β3:1,3

α3,1:1β3:2,1 α3,1:2β3:2,2 α3,1:3β3:2,3

α3,2:1β3:2,1 α3,2:2β3:2,2 α3,2:3β3:2,3

α3,3:1β3:2,1 α3,3:2β3:2,2 α3,3:3β3:2,3

α3,1:1β3:3,1 α3,1:2β3:3,2 α3,1:3β3:3,3

α3,2:1β3:3,1 α3,2:2β3:3,2 α3,2:3β3:3,3

α3,3:1β3:3,1 α3,3:2β3:3,2 α3,3:3β3:3,3


(16)

A.3 Theorems and Proofs

In this section, we present three theorems and their proofs, which will be used to optimize the
computational complexity in the following applications A.7. Specifically, we present a decomposition
theorem 1 for matrices structured as the polyline path mask L. Based on Theorem 1, we present an
efficient matrix multiplication theorem 2 for performing multiplication on the polyline path mask L.
Then, we present an equivalent computation theorem 3 for the masked linear attention. An overview
illustration is provided in Fig. 9, which summarizes the theorems and their corresponding applications
in polyline path masked attention.

Note that the polyline path mask L defined in Eq. (15) is a matrix with special structures. Here, we
present a decomposition theorem for matrices structured as L.
Theorem 1 (Matrix Decomposition). For any matrix M ∈ RHW×HW and M = fold (M), if
for ∀i, j, k, l, ∃Ai ∈RW×W and Bl ∈RH×H , s.t., Mi,j,k,l =

[
Ai
]
j,l

×
[
Bl
]
i,k

, then M can be
decomposed as:

M = MA ×MB = M̂A ⊙ M̂B , (17)

where MA,MB ,M̂A,M̂B∈RHW×HW , which satisfy

MA=unfold(MA),MB=unfold(MB), s.t.,MA
i,:,k,:=

{
Ai k= i

0 k ̸= i
, MB

:,j,:,l=

{
Bl j= l

0 j ̸= l
,

(18)

M̂A=unfold(M̂
A
), M̂B=unfold(M̂

B
), s.t., M̂

A

i,:,k,:=Ai, M̂
B

:,j,:,l=Bl. (19)
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Proof. Let us first prove MA × MB = M in Eq. (17). For clarity, let i = ⌊u/W ⌋ + 1, j =
u mod W , k = ⌊v/W ⌋+ 1, l = v mod W , m = ⌊w/W ⌋+ 1, n = w mod W . For u = 1 : HW
and v = 1 : HW , we have

HW∑
w=1

MA
u,wM

B
w,v =

H∑
m=1

W∑
n=1

MA
i,j,m,nM

B
m,n,k,l

=

H∑
m=1

MA
i,j,m,lM

B
m,l,k,l +

W∑
n=1,n̸=l

MA
i,j,m,nM

B
m,n,k,l


=

H∑
m=1

MA
i,j,m,lM

B
m,l,k,l

= MA
i,j,i,lM

B
i,l,k,l +

H∑
m=1,m ̸=i

MA
i,j,m,lM

B
m,l,k,l

= MA
i,j,i,lM

B
i,l,k,l = Ai

j,lB
l
i,k = Mi,j,k,l

= Mu,v.

(20)

According to Eq. (19), we have

M̂A
u,vM̂

B
u,v = M̂

A

i,j,k,lM̂
B

i,j,k,l =
[
Ai
]
j,l

[
Bl
]
i,k

= Mi,j,k,l = Mu,v. (21)

Thus, Theorem 1 is proven.

For matrices of the form given in Eq. (18), when performing multiplication operations, we have:
Theorem 2 (Efficient Matrix Multiplication). For matrices MA,MB defined in Eq. (18), ∀x∈RHW ,
the following equation holds:

y = MA×MB×x ⇔ Z:,l = Bl×X:,l, Yi,: = Ai×Zi,:, (22)

where y∈RHW , X=unvec(x)∈RH×W , Y =unvec(y)∈RH×W , Z∈RH×W .

Proof. The left part of Eq. (22) can be calculated by z = MB × x and y = MA × z. For clarity,
let i = ⌊u/W ⌋+ 1, j = u mod W , k = ⌊v/W ⌋+ 1, l = v mod W . For u = 1 : HW , we have

zu =

HW∑
v=1

MB
u,v × xv =

H∑
k=1

W∑
l=1

MB
i,j,k,lXk,l

=

H∑
k=1

MB
i,j,k,jXk,j +

H∑
k=1

W∑
l=1,l ̸=j

MB
i,j,k,lXk,l

=

H∑
k=1

MB
i,j,k,jXk,j =

H∑
k=1

Bj
i,kXk,j

= Zi,j .

(23)

The final results in Eq. (23) is equivalent to Z:,j = Bj×X:,j . Then, for u = 1 : HW , we have

yu =

HW∑
v=1

MA
u,v × zv =

H∑
k=1

W∑
l=1

MA
i,j,k,lZk,l

=

W∑
l=1

MA
i,j,i,lZi,l +

H∑
k=1,k ̸=i

W∑
l=1

MA
i,j,k,lZk,l

=

W∑
l=1

MA
i,j,i,lZi,l =

W∑
l=1

Ai
j,lZi,l

= Yi,j .

(24)

The final results in Eq. (24) is equivalent to Yi,: = Ai×Zi,:. Thus, Theorem 2 is proven.
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Theorem 3. For any matrices Q,K∈RN×D

,L∈RN×N

,V ∈RN×C

, the following equation holds:

Y =
((
QK⊤)⊙L

)
V ⇔ KV = einsum (′nd, nc → ndc′,K,V )

LKV = einsum
(
′mn, ndc → mdc′,L,KV

)
Y = einsum

(
′md, mdc → mc′,Q,LKV

)
,

(25)

Proof. 1) the left part of the Eq. (25) can be rewritten as:

S = QK⊤, where Sm,n =
D∑

d=1

Qm,dKn,d,

Ym,c =
N∑

n=1
Lm,nSm,nVn,c =

N∑
n=1

(
Lm,n

D∑
d=1

Qm,dKn,d

)
Vn,c.

(26)

2) the right part of the Eq. (25) can be rewritten as:

KV
n,d,c = Kn,dVn,c,

LKV
m,d,c =

N∑
n=1

Lm,nKV
n,d,c =

N∑
n=1

Lm,nKn,dVn,c,

Ym,c =

D∑
d=1

Qm,dLKV
m,d,c =

D∑
d=1

(
Qm,d

N∑
n=1

Lm,nKn,dVn,c

)

=

D∑
d=1

N∑
n=1

Qm,dLm,nKn,dVn,c

=

N∑
n=1

(
Lm,n

D∑
d=1

Qm,dKn,d

)
Vn,c.

(27)

Thus, Theorem 3 is proven. Here, the computational complexity of the left part of Eq. (25) is O(N2).
The computational complexity of the first and third lines in right part of Eq. (25) is O(N). And the
computational complexity of the second line in right part of Eq. (25) is O(N2). Thus, if we can
reduce the complexity of computing LKV from O(N2) to O(N), then the complexity of computing
Y =

((
QK⊤)⊙L

)
V can be reduced to O(N).

A.4 Preliminaries: Complexity Analysis of Mamba2 Attention Form

In this section, we present the efficient algorithm proposed in Mamba2 [6] for its attention form,
achieving a computational complexity of O(N).

Mamba2’s Attention Form. Mamba2’s attention form (i.e., structured masked attention) given by
the SSD framework [6] is formulated as:

Y =
(
CB⊤ ⊙L1D

)
X, L1D

ij = ai:j =


ai × · · · × aj+1 i > j

1 i = j

0 i < j

, (28)

where X,Y ∈RN×C are the input and output sequences, respectively, B,C ∈ RN×D are input-
dependent parameters learned by multilayer perceptron (MLP) layers. The 1D structured mask
L1D∈RN×N is a 1-semiseparable matrix [6], and the scalar ai serves as a decay factor bounded in
the range [0, 1]. In Mamba2, parameters C and B in Eq. (28) correspond to the query Q and key
K in ViTs, respectively. Therefore, Eq. (28) reveals that the selective state transition function in
Mamba2 is equivalent to the Hadamard product of a linear attention map CB⊤ and a 1D structured
mask L1D.

Naive Computation. As defined in Eq. (28), the straightforward computation of structured
masked attention has a complexity of O(N2). In contrast, the complexity of linear attention
Y = (CB⊤)X = C(B⊤X) can be reduced from O(N2) to O(N) by the associative prop-
erty of matrix multiplication. However, this approach is not directly applicable to Eq. (28) because of
the introduction of the Hadamard product.
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Lemma 1. Let L∈RN×N be a 1-semiseparable matrix and X∈RN×C be a matrix, the complexity
of computing Y =LX can be reduced from O(N2) to O(N) by using the chunkwise algorithm in
Mamba2 [6].

Efficient Computation. Based on Theorem 3, Eq. (28) can be computed as follows:

BX = einsum (′nd, nc → ndc′,B,X)

LBX = einsum
(
′mn, ndc → mdc′,L1D,BX

)
Y = einsum

(
′md, mdc → mc′,C,LBX

)
.

(29)

Note that L1D is a 1-semiseparable matrix, and the second line of Eq. (29) can be reformulated
as a matrix multiplication. Therefore, by applying Lemma 1, the complexity of computing LBX

can be reduced from O(N2) to O(N). Moreover, the complexity of computing L1D is O(N).
Consequently, the overall computational complexity of Eq. (28) is O(N).

A.5 Complexity Analysis of Polyline Path Mask

In this section, we analyze the complexity of computing the polyline path mask L, as stated in
Corollary 1, with detailed explanation.
Corollary 1 (Mask Complexity). The complexity of directly computing polyline path mask L

via Eq.(16) and (14) is O(N
5
2 ), which can be reduced to O(N2) by applying Theorem 1, where

N=H×W .

Naive Computation. According to the definition in Eq. (15), the polyline path mask L∈RHW×HW

is large in size, and each element requires numerous multiplications, resulting in high computational
cost. The most straightforward way to compute L is to calculate each element Lu,v individually.
Hence, the total complexity of computing matrix L is N2 times the complexity of computing
each element Lu,v. As defined in Eq. (16) and Eq. (14), Lu,v = Li,j,k,l = αi,j:lβi:k,l, where
i = ⌊u/W ⌋+ 1, j = u mod W and k = ⌊v/W ⌋+ 1, l = v mod W . There are |l − j| and |k − i|
multiplication operations in αi,j:l and βi:k,l, respectively. Here, i, k range from 1 to H , and j, l range
from 1 to W . Therefore, the complexity of Lu,v is O(N

1
2 ). Consequently, the overall complex of

directly computing L is O(N
5
2 ).

Efficient Computation. The polyline path mask L satisfies the conditions in Theorem 1 with
[Ai]j,l=αk,j:l and [Bl]i,k=βi:k,j . Thus, based on Theorem 1, the polyline path mask L can be
decomposed as:

L = LH ×LV = L̂H ⊙ L̂V . (30)
For example, as illustrated in Fig. 10 (a), the polyline path mask L in Eq. (16) can be decomposed as:

L=



α1,1:1β1:1,1 α1,1:2β1:1,2 α1,1:3β1:1,3

α1,2:1β1:1,1 α1,2:2β1:1,2 α1,2:3β1:1,3

α1,3:1β1:1,1 α1,3:2β1:1,2 α1,3:3β1:1,3

α1,1:1β1:2,1 α1,1:2β1:2,2 α1,1:3β1:2,3

α1,2:1β1:2,1 α1,2:2β1:2,2 α1,2:3β1:2,3

α1,3:1β1:2,1 α1,3:2β1:2,2 α1,3:3β1:2,3

α1,1:1β1:3,1 α1,1:2β1:3,2 α1,1:3β1:3,3

α1,2:1β1:3,1 α1,2:2β1:3,2 α1,2:3β1:3,3

α1,3:1β1:3,1 α1,3:2β1:3,2 α1,3:3β1:3,3

α2,1:1β2:1,1 α2,1:2β2:1,2 α2,1:3β2:1,3

α2,2:1β2:1,1 α2,2:2β2:1,2 α2,2:3β2:1,3

α2,3:1β2:1,1 α2,3:2β2:1,2 α2,3:3β2:1,3

α2,1:1β2:2,1 α2,1:2β2:2,2 α2,1:3β2:2,3

α2,2:1β2:2,1 α2,2:2β2:2,2 α2,2:3β2:2,3

α2,3:1β2:2,1 α2,3:2β2:2,2 α2,3:3β2:2,3

α2,1:1β2:3,1 α2,1:2β2:3,2 α2,1:3β2:3,3

α2,2:1β2:3,1 α2,2:2β2:3,2 α2,2:3β2:3,3

α2,3:1β2:3,1 α2,3:2β2:3,2 α2,3:3β2:3,3

α3,1:1β3:1,1 α3,1:2β3:1,2 α3,1:3β3:1,3

α3,2:1β3:1,1 α3,2:2β3:1,2 α3,2:3β3:1,3

α3,3:1β3:1,1 α3,3:2β3:1,2 α3,3:3β3:1,3

α3,1:1β3:2,1 α3,1:2β3:2,2 α3,1:3β3:2,3

α3,2:1β3:2,1 α3,2:2β3:2,2 α3,2:3β3:2,3

α3,3:1β3:2,1 α3,3:2β3:2,2 α3,3:3β3:2,3

α3,1:1β3:3,1 α3,1:2β3:3,2 α3,1:3β3:3,3

α3,2:1β3:3,1 α3,2:2β3:3,2 α3,2:3β3:3,3

α3,3:1β3:3,1 α3,3:2β3:3,2 α3,3:3β3:3,3



=



α1,1:1 α1,1:2 α1,1:3
α1,2:1 α1,2:2 α1,2:3
α1,3:1 α1,3:2 α1,3:3

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

α2,1:1 α2,1:2 α2,1:3
α2,2:1 α2,2:2 α2,2:3
α2,3:1 α2,3:2 α2,3:3

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

α3,1:1 α3,1:2 α3,1:3
α3,2:1 α3,2:2 α3,2:3
α3,3:1 α3,3:2 α3,3:3


×



β1:1,1 0 0
0 β1:1,2 0
0 0 β1:1,3

β1:2,1 0 0
0 β1:2,2 0
0 0 β1:2,3

β1:3,1 0 0
0 β1:3,2 0
0 0 β1:3,3

β2:1,1 0 0
0 β2:1,2 0
0 0 β2:1,3

β2:2,1 0 0
0 β2:2,2 0
0 0 β2:2,3

β2:3,1 0 0
0 β2:3,2 0
0 0 β2:3,3

β3:1,1 0 0
0 β3:1,2 0
0 0 β3:1,3

β3:2,1 0 0
0 β3:2,2 0
0 0 β3:2,3

β3:3,1 0 0
0 β3:3,2 0
0 0 β3:3,3



=



α1,1:1 α1,1:2 α1,1:3
α1,2:1 α1,2:2 α1,2:3
α1,3:1 α1,3:2 α1,3:3

α1,1:1 α1,1:2 α1,1:3
α1,2:1 α1,2:2 α1,2:3
α1,3:1 α1,3:2 α1,3:3

α1,1:1 α1,1:2 α1,1:3
α1,2:1 α1,2:2 α1,2:3
α1,3:1 α1,3:2 α1,3:3

α2,1:1 α2,1:2 α2,1:3
α2,2:1 α2,2:2 α2,2:3
α2,3:1 α2,3:2 α2,3:3

α2,1:1 α2,1:2 α2,1:3
α2,2:1 α2,2:2 α2,2:3
α2,3:1 α2,3:2 α2,3:3

α2,1:1 α2,1:2 α2,1:3
α2,2:1 α2,2:2 α2,2:3
α2,3:1 α2,3:2 α2,3:3

α3,1:1 α3,1:2 α3,1:3
α3,2:1 α3,2:2 α3,2:3
α3,3:1 α3,3:2 α3,3:3

α3,1:1 α3,1:2 α3,1:3
α3,2:1 α3,2:2 α3,2:3
α3,3:1 α3,3:2 α3,3:3

α3,1:1 α3,1:2 α3,1:3
α3,2:1 α3,2:2 α3,2:3
α3,3:1 α3,3:2 α3,3:3


⊙



β1:1,1 β1:1,2 β1:1,3

β1:1,1 β1:1,2 β1:1,3

β1:1,1 β1:1,2 β1:1,3

β1:2,1 β1:2,2 β1:2,3

β1:2,1 β1:2,2 β1:2,3

β1:2,1 β1:2,2 β1:2,3

β1:3,1 β1:3,2 β1:3,3

β1:3,1 β1:3,2 β1:3,3

β1:3,1 β1:3,2 β1:3,3

β2:1,1 β2:1,2 β2:1,3

β2:1,1 β2:1,2 β2:1,3

β2:1,1 β2:1,2 β2:1,3

β2:2,1 β2:2,2 β2:2,3

β2:2,1 β2:2,2 β2:2,3

β2:2,1 β2:2,2 β2:2,3

β2:3,1 β2:3,2 β2:3,3

β2:3,1 β2:3,2 β2:3,3

β2:3,1 β2:3,2 β2:3,3

β3:1,1 β3:1,2 β3:1,3

β3:1,1 β3:1,2 β3:1,3

β3:1,1 β3:1,2 β3:1,3

β3:2,1 β3:2,2 β3:2,3

β3:2,1 β3:2,2 β3:2,3

β3:2,1 β3:2,2 β3:2,3

β3:3,1 β3:3,2 β3:3,3

β3:3,1 β3:3,2 β3:3,3

β3:3,1 β3:3,2 β3:3,3


(31)
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(a) Polyline Path Mask Decomposition

(b) Polyline Path Mask Multiplication

Figure 10: (a) Illustration of the decomposition of the polyline path mask L. (b) Illustration of the
multiplication between the polyline path mask L and vector x. (Algorithm 2) .
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Figure 11: The comparison of the relative time consuming and memory usage between the naive
computation and efficient computation (Algorithm 2) of Lx.

Note that there are H×W 2 non-zero elements in LH and each non-zero element αi,j:l requires O(N
1
2 )

multiplication operations. Thus, the complexity of computing LH and LV is O(N2). Similarly, the
complexity of computing L̂H and L̂V is also O(N2). Thus, the complexity of computing L can be
reduced to O(N2) by Eq. (30).

A.6 Complexity Analysis of Polyline Path Mask Multiplication

In this section, we analyze the complexity of computing the matrix multiplication between the polyline
path mask L and the vector x, as stated in Corollary 2 and Algorithm 2, with detailed explanation.
Fig. 11 presents the comparison of speed and memory usage between the naive computation and
efficient computation of Lx. Compared to the naive computation approach, Algorithm 2 achieves
substantial speed-up and significantly reduced GPU memory consumption, especially when the shape
of L and x is large.
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Corollary 2 (Masked Attention Complexity). The computational complexity of the matrix multiplica-
tion between polyline path mask and vector x, i.e., y=Lx, can be reduced from O(N2) to O(N

3
2 )

by Algorithm 2, and further reduced to O(N) by applying the chunkwise algorithm of Mamba2 [6]
to steps 3 and 5 in Algorithm 2.

Naive Computation. Typically, the polyline path mask L∈RN×N is a rank-N matrix. Thus, the
most direct approach to compute Lx requires a computational complexity of O(N2).

Efficient Computation. As mentioned above, the polyline path mask L can be decomposed as
LH×LV , where LH and LV satisfy the definition in Eq. (18) with [Ai]j,l=αi,j:l and [Bl]i,k=βi:k,l.
Thus, based on Theorem 2, we can design Algorithm 2 for computing the matrix multiplication
between polyline path mask L and the vector x. As shown in Algorithm 2, computing Bl×X:,l

has a complexity of O(H2). Thus, the complexity of computing Z (i.e., step 3 in Algorithm 2) is
O(H2W ). Similarly, the complexity of computing Y (i.e., step 5 in Algorithm 2) is O(HW 2). Thus,
the computational complexity of Algorithm 2 is O(N

3
2 ), where N = H ×W .

Algorithm 2: Efficient Masked Attention Computation.

Input: decay factors α, β of the polyline path mask L, vector x∈RHW ;
1: Compute X=unvec(x)∈RH×W ;
2: Compute Bl∈RH×H , where for l=1:W, [Bl]i,k=βi:k,l;
3: Compute Z∈RH×W , where Z:,l = Bl×X:,l;
4: Compute Ai∈RW×W , where for i=1:H, [Ai]j,l=αi,j:l;
5: Compute Y ∈RH×W , where Yi,: = Ai×Zi,:;

Output: y=vec(Y );

As illustrated in Fig. 10 (b),
the matrices Ai and Bl are
symmetric matrices, and their
lower triangular parts are both
1-semiseparable matrices as de-
fined in Mamba2 [6]. Therefore,
by applying Lemma 1 the com-
plexity of computing Bl×X:,l

and can be reduced from O(H2)
to O(H), and the complexity of
computing Ai×Zi,: can be reduced from O(W 2) to O(W ). Consequently, the overall complexity
of computing Lx is O(N).

A.7 Applications of Polyline Path Masked Attention

The proposed polyline path mask can be seamlessly integrated into various attention variants in a
plug-and-play manner. As illustrated in Fig. 9, theorems and algorithm given in Sec. A.5 and Sec. A.6
ensure that integrating the polyline path mask does not substantially increase the computational
complexity of the original attention mechanism. In this section, we introduce several Polyline Path
Masked Attention (PPMA), including Polyline Path Masked Vanilla Attention (PPMVA), Polyline
Path Masked Linear Attention (PPMLA), Polyline Path Masked Criss-Cross Attention (PPMCCA),
and Polyline Path Masked Decomposed Attention (PPMDA).

Basic Paradigm. The basic Polyline Path Masked Attention (PPMA) is implemented by performing
a Hadamard multiplication with the attention map. Specifically, given query Q, key K, and value
V ∈RHW×C , PPMA is formulated as:

PPMA(X) =
(
Attn(Q,K)⊙L2D

)
V

= (Attn(Q,K)⊙L)V +
(
Attn(Q,K)⊙ L̃

)
V .

(32)

1) Polyline Path Masked Vanilla Attention. According to Eq. (32), the polyline path masked vanilla
attention is formulated as:

PPMVA(X) =
(
softmax(QK⊤)⊙L2D

)
V , (33)

Based on Corollary 1, the computation of L2D has a complexity of O(N2). Thus, Eq. (33) maintains
the complexity of O(N2).

2) Polyline Path Masked Linear Attention. Similar to Mamba2’s attention form (Eq. (28)), the
polyline path masked linear attention is formulated as:

PPMLA(X) =
(
(QK⊤)⊙L2D

)
V =

(
(QK⊤)⊙L

)
V +

(
(QK⊤)⊙ L̃

)
V . (34)
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Based on Theorem 3, we can compute
(
(QK⊤)⊙L

)
V as follows:

KV = einsum (′md, mc → mdc′,K,V )

LKV = einsum
(
′nm, mdc → mdc′,L,KV

)
Y = einsum

(
′md, mdc → mc′,Q,LKV

)
.

(35)

Eq. (35) shows that the computational complexity of Eq. (34) depends on computing LKV . Based
on Corollary 2 and Algorithm 2, the computational complexity of the second line in Eq. (35) can be
reduced from O(N2) to O(N). Thus, the computational complexity of Eq. (34) maintains O(N).

3) Polyline Path Masked Criss-Cross Attention. The original criss-cross attention [22] employs
sparse attention over tokens located in the same row or column, achieving a computational complexity
of O(N

3
2 ). In this work, following RMT [10], we decompose criss-cross attention into vertical

attention over each column followed by horizontal attention over each row. The polyline path masked
criss-cross attention is formulated as:

PPMCCA(X)=
((
SH×SV

)
⊙L2D

)
V =

((
SH×SV

)
⊙L

)
V +

((
SH×SV

)
⊙L̃

)
V ,

(36)
where horizontal and vertical attention maps SH ,SV ∈RHW×HW satisfy the form in Eq. (18) with
Ai=softmax(Qi,:,:K⊤

i,:,:) and Bl=softmax(Q:,l,:K⊤
:,l,:), and Q,K∈RH×W×C are tensor forms

of Q,K, respectively [22]. Based on Theorem 1, we can reformulate the left part of Eq. (36) as:((
SH × SV

)
⊙L

)
V =

((
SH × SV

)
⊙
(
LH ×LV

))
V

=
((

ŜH ⊙ ŜV
)
⊙
(
L̂H ⊙ L̂V

))
V

=
((

ŜH ⊙ L̂H
)
⊙
(
ŜV ⊙ L̂V

))
V

=
(
SH ⊙LH

)
×
(
SV ⊙LV

)
× V

=
(
SH ⊙LH

)
×
((
SV ⊙LV

)
× V

)
.

(37)

Note that matrices ŜH⊙L̂H and ŜV ⊙L̂V also satisfy the form (i.e. MAand MB) in Eq. (18).
Thus, the computational complexity of Eq. (37) can be reduced to O(N

3
2 ) by Algorithm 2. Similar

conclusions can also be derived for the right part of Eq. (36). Thus, the overall computational
complexity of Eq.(36) maintains O(N

3
2 ).

4) Polyline Path Masked Decomposed Attention. For general decomposable attention which can
be decomposed as S = S1 × S2, where S1 ∈ RN×D and S2 ∈ RD×N , the polyline path masked
decomposed attention is formulated as:

PPDA(X) =
(
(S1 × S2)⊙L2D

)
V = ((S1 × S2)⊙L)V +

(
(S1 × S2)⊙ L̃

)
V (38)

According to Theorem 3, we can compute ((S1 × S2)⊙L)V as follows:

SV
2 = einsum

(′md, mc → mdc′,S⊤
2 ,V

)
LSV = einsum

(
′nm, mdc → mdc′,L,SV

2

)
Y = einsum

(
′md, mdc → mc′,S1,LSV

)
.

(39)

Based on Corollary 2 and Algorithm 2, the computational complexity of Eq. (39) can be reduced
from O(N2) to O(ND). Thus, the computational complexity of Eq. (38) is O(ND).

B Experimental Details

B.1 Architecture Details

As illustrated in Fig. 5, our backbone adopts the same four-stage hierarchical architecture as RMT [10],
where the first three stages employ Polyline Path Masked Criss-Cross Attention and the final stage
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employs the Polyline Path Masked Vanilla Attention. Moreover, we develop our model in three scales:
tiny (PPMA-T), small (PPMA-S), and base (PPMA-B).

The detailed configurations of PPMA variants are provided in Tab. 5. Following RMT [10], the stem
layer consists of five 3× 3 convolution layers followed by GELU and batch normalization to embed
the input image into 56× 56 tokens. The downsampling layer consists of 3× 3 convolution layers
with stride 2 to reduce the feature map’s resolution. Moreover, we follow RMT [10] and incorporate
RoPE [38], CPE [3], and LCE [57] into the PPMA blocks. All other configurations also follow
RMT [10]. Code is available at https://github.com/zhongchenzhao/PPMA.

B.2 Training Settings for ImageNet-1K

To ensure reproducibility and consistency with prior work, we follow the training strategy of RMT [10]
and DeiT [44]. Specifically, we employ various data augmentation techniques, including RandAug-
ment [5], Mixup [52] (prob=0.8), CutMix [50] (prob=1.0), Random Erasing [55] (prob=0.25). For
model optimization, we use the AdamW optimizer with a cosine decay learning rate scheduler and
train our model 300 epochs from scratch. The initial learning rate, weight decay, and batch size are set
to 0.001, 0.05, and 1024, respectively. The drop path rates for PPMA-T, PPMA-S, and PPMA-B are
set to 0.1, 0.15, and 0.4, respectively. We also adopt training techniques from RMT [10], including
Label Smoothing (0.1) [41] and Exponential Moving Average (EMA) [33].

B.3 Training Settings for Downstream Tasks

For experiments on the ADE20K [56] and MSCOCO2017 [28] datasets, we follow the training
settings of TransNeXT [35], and utilize the MMDetection [2] and MMSegmentation [4] libraries
for training. Specifically, in the MMDetection [2] library, we adopt Mask R-CNN [18] as the basic
framework and use the AdamW optimizer with an initial learning rate of 0.0001 and a weight decay
of 0.01. The model is trained for 12 epochs with a batch size of 16 using the standard 1× schedule. In
the MMSegmentation [4] library, we adopt UPerNet [48] as the basic framework and use the AdamW
optimizer with the initial learning rate of 6×10−5 and the weight decay of 0.01. All models are
trained for 160K iterations with a batch size of 16 on the ADE20K dataset. The input size of images
is set to 512 × 512 .

B.4 Throughput Comparison

To evaluate the inference speed of our model, we measure the throughput of PPMA-T/S/B on an A800
GPU with a batch size of 64 and the image resolution of 224×224. As shown in Table 6, the inference
throughput of PPMA-T/S/B decrease by 37%/30%/21% compared to RMT-T/S/B, respectively. This
is mainly caused by the additional GPU kernel launches and memory transactions required to compute
the polyline path mask. As shown in Table 6, the CUDA implementation of TransNeXt achieves
a significant speedup over the PyTorch implementation. In our implementation, the polyline path
mask is currently computed using PyTorch. Similar to TransNeXt, our implementation can also be
optimized through engineering efforts, such as using CUDA or Triton-based implementations, to
accelerate inference speed.

B.5 Visualization

The visualizations of the polyline path masked attention map are shown in Fig. 12. Input images are
taken from the ImageNet-1K validation set, and the query token is marked by a red box on each input

Model Blocks Channels Heads Ratios #Param.
(M)

FLOPs
(G)

PPMA-T [2, 2, 8, 2] [64, 128, 256, 512] [4, 4, 8, 16] [3, 3, 3, 3] 14 2.7
PPMA-S [3, 4, 18, 4] [64, 128, 256, 512] [4, 4, 8, 16] [4, 4, 3, 3] 27 4.9
PPMA-B [4, 8, 25, 8] [80, 160, 320, 512] [5, 5, 10, 16] [4, 4, 3, 3] 54 10.6

Table 5: Detailed Architectures of the Polyline Path Masked Attention based Vision Transformer.
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Table 6: Comparison of inference speed across different models on ImageNet-1K. Throughput is
measured on an A800 GPU with a batch size of 64.

Model #Param. (M) FLOPs (G) Throughput (imgs/s) Top-1 (%)

BiFormer-T [57] 13 2.2 1602 81.4
SMT-T [29] 12 2.4 636 82.2
RMT-T [10] 14 2.5 1650 82.4
TransNeXt-M (PyTorch) [35] 13 2.7 742 82.5
TransNeXt-M (CUDA) [35] 13 2.7 1299 82.5
PPMA-T 14 2.7 1034 82.6
CMT-S [14] 25 4.0 848 83.5
MaxViT-T [45] 31 5.6 826 83.6
SMT-S [29] 20 4.8 356 83.7
BiFormer-S [57] 26 4.5 766 83.8
RMT-S [10] 27 4.5 876 84.0
TransNeXt-T (PyTorch) [35] 28 5.7 508 84.0
TransNeXt-T (CUDA) [35] 28 5.7 947 84.0
PPMA-S 27 4.9 612 84.2
SMT-B [29] 32 7.7 237 84.3
BiFormer-B [57] 57 9.8 498 84.3
CMT-B [14] 46 9.3 447 84.5
TransNeXt-T (PyTorch) [35] 50 10.3 266 84.7
TransNeXt-T (CUDA) [35] 50 10.3 436 84.7
RMT-B [10] 54 9.7 457 84.9
PPMA-B 54 10.6 362 85.0

image. The decay factors and attention maps are generated by the second block of the first stage in
the PPMA-T model trained on the ImageNet-1K training set.

Input-dependent Decay Factor. As shown in Fig. 12 (b) and (c), the decay factors α and β learned
by the network can roughly capture the edge information of objects in the feature map: decay factors
at edges tend to be smaller (approaching zero), whereas those in homogeneous regions tend to be
larger (approaching one). Moreover, the supervised training encourages the decay factors α and β to
focus on horizontal and vertical edge information, respectively.

Polyline Path Mask. As shown in Fig. 12 (e), the polyline path mask, generated by the cumulative
multiplication of decay factors, effectively captures the semantic continuity in the feature space. It
maintains continuity in homogeneous regions sharing the same semantics and shows discontinuity at
the edges between regions of different semantics.

Polyline Path Masked Attention Map. Fig. 12 (d) shows that attention maps from shallow layers in
typical ViT models often struggle to focus on tokens relevant to the query token. In contrast, Fig. 12
(f) demonstrates that integrating the polyline path mask L2D successfully suppresses interference
from distant and irrelevant tokens, resulting in more semantically accurate masked attention maps.

C Discussion

C.1 Selectivity of Polyline Path Mask

Compared to previous state-space models (SSMs) such as RetNet [40], the primary contribution of
Mamba [11] and Mamba2 [6] is the introduction of a selective mechanism into the structured mask,
which leads to significant performance improvements. However, current studies still lack a deep
understanding of this crucial selectivity mechanism.

In this work, we argue that the selective mechanism in Mamba explicitly models the semantic
continuity in sequences, which corresponds to the local smoothness prior in images. Building on
this insight, we adopt the selective structured mask of Mamba2 and naturally generalize it into a 2D
polyline path mask for Vision Transformers (ViTs).

Semantic Continuity in Sequence. Similar to self-attention maps in ViTs, the structured mask
L∈RN×N can also be viewed as a weighting matrix that maps input tokens X ∈RN×C to output
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Figure 12: Visualizations of the decay factors and the polyline path masked attention maps of the
well-trained PPMA model. In each input image, the query token is marked by a red box.
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tokens Y ∈RN×C along the sequence length dimension. In this weighting matrix L, a larger decay
weight Li,j indicates a greater influence of the input token Xi on the output token Yj , and vice
versa. In Mamba2, Li,j is computed as the cumulative multiplication of decay factors a×i:j to achieve
linear complexity. As a result, if any factor is close to zero, Li,j approaches zero; conversely, Li,j

approaches one only when all decay factors are close to one.

For most semantic-related tasks, an ideal structured mask should model semantic continuity in the
sequence: it should maintain continuous between connected tokens with the same semantic, while
breaking between tokens with different semantics. This enables the aggregation and separation
of tokens according to their semantics. Accordingly, decay factors should ideally be larger in
homogeneous regions and smaller at heterogeneous regions. As illustrated in Fig. 12 (b) and (c), the
decay factors learned through supervised training align well with this assumption.

Local Smoothness Prior in Images. In natural images, spatially adjacent patches are more likely to
belong to the same object and share similar semantics. This local smoothness prior plays a crucial
role in natural image processing tasks, especially those requiring fine-grained feature extraction. The
selectivity of polyline path mask aligns naturally with this prior by modeling semantic continuity
within homogeneous regions and allowing discontinuities at object edges. Experimental results also
show that integrating the polyline path mask yields significant performance improvements on the
ADE20K semantic segmentation task.

C.2 3D Extension of Polyline Path Mask
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Figure 13: Illustration of the 3D
extension of polyline path mask.

Based on the decomposability, we naturally extend the 2D poly-
line path mask to 3D applications. As illustrated in Fig. 13, the
3D polyline path mask L3D can be decomposed as the multipli-
cation of three 1D structured masks, LH×LV×LD, representing
the horizontal, vertical, and depth scanning masks, respectively.
Specifically, for each token pair (xi,j,k,xl,m,n) in the 3D grid,
the 3D polyline path mask is defined as:

L3D
(i,j,k),(l,m,n) = αi,j,k:nβi,j:m,nγi:l,m,n, (40)

where L3D is the tensor form of matrix L3D, α, β, and γ are
the decay factors along the horizontal, vertical, and depth axes,
respectively. Compared to the cross-scanning strategy [30], the
3D polyline path scanning strategy better preserves the adjacency
relationships of 3D tokens.

C.3 Limitations

In this work, we introduce a learnable, input-dependent polyline path mask as the explicit positional
encoding for ViTs, replacing the fixed decay mask in RMT [10]. Experiments on high-level tasks
demonstrate the superiority of our method, particularly in fine-grained segmentation benchmarks,
where PPMA-T/S/B outperform RMT-T/S/B by 0.7%/1.3%/0.3% SS mIoU on ADE20K, respectively.

Notably, our carefully designed polyline path mask L2D is decomposable as described in Eq. (30),
enabling efficient computation via algorithms 2 to optimize the computational complexity. However,
despite these optimizations, the large size of the mask L2D still inevitably incurs extra GPU memory
occupation and slower inference speed compared to RMT [10]. As shown in Table 6, the inference
throughput of PPMA-T/S/B decrease by 37%/30%/21% in comparison with RMT-T/S/B, respectively.
This limitation can be mitigated through engineering optimizations, such as CUDA or Triton-based
implementations, which we plan to investigate in the future work.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately describe the proposed method (Poly-
line Path Masked Attention), theoretical contributions (Efficient Computation Theory), and
experimental results (experiments on image classification, object detection and segmentation
tasks), which align with the content presented in the paper (Sections 4 and 5).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the Appendix, where the authors acknowledge
constraints such as the proposed model has lower throughput than some existing models
with similar FLOPs.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results in the paper are accompanied by a complete set of clearly
stated assumptions and formal proofs. While the full detailed proofs are presented in the
Appendix for readability, the main paper includes a simple version to aid understanding.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes. The paper provides sufficient details to ensure the reproducibility of
its main experimental results. The overall architecture is clearly described in Section 4.
Furthermore, Section 5 outlines the experimental settings in detail. These descriptions are
sufficient for the reproduction to verify the main claims of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a GitHub repository in the abstract in the anonymised version.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details are presented in Section 5.1, 5.2 and 5.3.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiment for this task is time-consuming. Referring to previous work,
there is no such experimental data.
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• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational cost have been presented in the Appendix for readability

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that our
research fully adheres to its principles.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]
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Justification: This paper presents work whose goal is to advance the field of Deep Learn-
ing and Computer Vision. None of the potential societal consequences we feel must be
specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve pretrained models, generative tools, or scraped
datasets that carry a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly credited all existing assets used in our work, including
publicly available datasets and code repositories.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The primary new asset is the source code for the proposed methods, which is
open source. Documentation is assumed to be provided alongside the code in its repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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