
Mitigating Plasticity Loss in Continual Reinforcement Learning
by Reducing Churn

Hongyao Tang 1 2 Johan Obando-Ceron 1 2 Pablo Samuel Castro 1 2 Aaron Courville 1 2 Glen Berseth 1 2

Abstract

Plasticity, or the ability of an agent to adapt to
new tasks, environments, or distributions, is cru-
cial for continual learning. In this paper, we study
the loss of plasticity in deep continual RL from
the lens of churn: network output variability for
out-of-batch data induced by mini-batch training.
We demonstrate that (1) the loss of plasticity is
accompanied by the exacerbation of churn due
to the gradual rank decrease of the Neural Tan-
gent Kernel (NTK) matrix; (2) reducing churn
helps prevent rank collapse and adjusts the step
size of regular RL gradients adaptively. Moreover,
we introduce Continual Churn Approximated Re-
duction (C-CHAIN) and demonstrate it improves
learning performance and outperforms baselines
in a diverse range of continual learning environ-
ments on OpenAI Gym Control, ProcGen, Deep-
Mind Control Suite, and MinAtar benchmarks.

1. Introduction
Reinforcement learning (RL), when coupled with non-linear
function approximators, suffers from optimization chal-
lenges due to the non-stationarity of the data and the learn-
ing objectives (Sutton & Barto, 1988; van Hasselt et al.,
2018). This difficulty is amplified when there is a sequence
of changing tasks, as in continual RL (Abel et al., 2023).

One of the causes for this is what is known as loss of plas-
ticity (Berariu et al., 2021; Lyle et al., 2022; Dohare et al.,
2024), whereby an agent gradually loses its ability to adapt
to new data or objective function. It is hypothesized that
this is due to the agent’s network tendency to overfit early
experience, hampering its ability to learn on later experi-
ence (Nikishin et al., 2022a). Addressing this pathology is
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challenging, and there have been a number of recently pro-
posed remedies, such as resetting dormant neurons (Sokar
et al., 2023), regularization (Kumar et al., 2023b), and vari-
ants of backpropagation (Dohare et al., 2024). It has also
been argued that rank decrease of the empirical Neural Tan-
gent Kernel (NTK) (Achiam et al., 2019) is a consistent
indicator of plasticity loss (Lyle et al., 2024; Lewandowski
et al., 2023). However, the true causal factors and underly-
ing mechanism remain largely unknown.

In this work, we study the loss of plasticity from the an-
gle of churn (Schaul et al., 2022; Tang & Berseth, 2024):
network output variability for out-of-batch data induced by
mini-batch training. While it has been shown that churn is
endemic to most deep RL networks, affecting both gener-
alization (Bengio et al., 2020) and interference (Liu et al.,
2023), we demonstrate that plasticity loss is highly corre-
lated with increased churn. We use the NTK matrix as a
formal tool to establish the connection between churn and
plasticity loss, based on which we analyze the learning dy-
namics of continual learning across a sequence of tasks.
We demonstrate that under the continual changes in the
data distribution and objective function, the agent gradually
loses the rank information of its NTK matrix, leading to
highly correlated gradients and eventually the exacerbation
of churn. Consequently, this destroys the stability and con-
vergence of the learning dynamics, which is related to the
pathological learning behavior of plasticity loss.

Driven by the connection between plasticity and churn, we
extend the idea of churn reduction originally proposed for
single-MDP RL (Tang & Berseth, 2024) to continual RL.
We introduce Continual Churn Approximated Reduction (C-
CHAIN). C-CHAIN continually minimizes the churn for the
data out of the training batch alongside the regular training
of continual RL. Moreover, we formally demonstrate that
C-CHAIN has a two-fold efficacy in mitigating plasticity
loss with a gradient decorrelation effect by suppressing the
off-diagonal entries of the NTK matrix, and a step-size
adjustment effect by taking the gradient projection of the
data out of the training batch.

To evaluate our approach under extreme non-stationarity,
we conduct the experiments in various continual RL envi-
ronments built on OpenAI Gym Control (Brockman et al.,
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2016), ProcGen (Cobbe et al., 2020), DeepMind Control
Suite (Tassa et al., 2018), and MinAtar (Young & Tian,
2019) benchmarks, with a total of 24 continual RL envi-
ronments. The results show that reducing churn effectively
improves the agent’s performance in continual RL, and out-
performs related methods in most environments.

Our main contributions can be summarized as:

• We demonstrate the connection between plasticity loss
and increased churn, and show the pathological learn-
ing dynamics this connection induces.

• We unbox the efficacy of reducing churn in continual
RL by identifying a gradient decorrelation effect and a
step-size adjustment effect.

• We propose C-CHAIN1 and demonstrate it effectively
mitigates the loss of plasticity and outperforms prior
methods in a range of continual RL settings.

2. Related Work
Nonstationarity in Reinforcement Learning Non-
stationarity naturally occurs in various contexts, with con-
tinual RL being among the most prominent examples. Non-
stationarity can manifest as gradual changes. This may
happen when an RL agent continuously improves its policy
over time (Zhang et al., 2024) or when the data generation
process slowly evolves (Ellis et al., 2024). These different
forms of non-stationarity can coexist. For example, in con-
tinual reinforcement learning (Xie et al., 2021), both the
reward function and the transition dynamics may change
over time, requiring learning systems to adapt dynamically.

Due to the use of a non-linear function approximator under
non-stationarity, the model weights and optimization may
not lead to an optimal policy. There are two main chal-
lenges in optimizing under distribution shift, catastrophic
forgetting (also called backward transfer) (Rolnick et al.,
2019; Chaudhry et al., 2019; Nath et al., 2023) or the loss
of plasticity (called forward transfer) (Berariu et al., 2021;
Lyle et al., 2022; Dohare et al., 2024).

Continual Learning and the Loss of Plasticity Contin-
ual learning focuses on training models to learn sequential
tasks. It is broadly divided into continual supervised learn-
ing, which aims to retain knowledge across tasks in static
datasets (Wang et al., 2024), and continual RL, where agents
adapt to dynamic environments while retaining prior experi-
ence (Khetarpal et al., 2022; Kumar et al., 2023a; Dohare
et al., 2024; Elsayed & Mahmood, 2024). The loss of plas-
ticity refers to a phenomenon in neural network training
where the model gradually loses its ability to adapt or sig-
nificantly update its parameters (Dohare et al., 2024). This

1https://github.com/bluecontra/C-CHAIN

typically occurs when the network settles into sharp local
minima or becomes overly specialized to the initial stages
of training, resulting in reduced learning capacity, slower
convergence, or poor generalization to new data (Nikishin
et al., 2022b; 2024).

The underlying mechanisms responsible for the loss of plas-
ticity during training remain an area of active research (Ma
et al., 2023a; Lyle et al., 2024). Researchers have pro-
posed various strategies to mitigate the loss of plasticity;
approaches include ensuring active unit engagement (Sokar
et al., 2023), mitigating gradient starvation (Gogianu et al.,
2021; Dohare et al., 2023), employing smaller batch sizes
(Ceron et al., 2023), minimizing deviations from initial pa-
rameter values (Lewandowski et al., 2023; Kumar et al.,
2023a), resetting optimizer (Asadi et al., 2023; Ellis et al.,
2024), and regularizing weight orthogonality (Chung et al.,
2024). Periodically resetting network parameters has been
effective (Ash & Adams, 2020; Frati et al., 2024), especially
effective in data-efficient reinforcement learning (Schwarzer
et al., 2023; Nauman et al., 2024). Ceron et al. (2024a;b);
Liu et al. (2025) showed that dynamic sparse training leads
to improved performance and enhanced network plasticity.

3. Preliminaries
3.1. Reinforcement Learning

Consider a Markov Decision Process (MDP) defined by a tu-
ple ⟨S,A,P,R, γ, ρ0, T ⟩, with the state set S , the action set
A, the transition function P : S ×A → P (S), the reward
functionR : S ×A → R, the discounted factor γ ∈ [0, 1),
the initial state distribution ρ0 and the horizon T . The agent
interacts with the MDP by performing actions with its policy
at ∼ π(st) that defines the mapping from states to action
distributions. The objective of an RL agent is to optimize
its policy to maximize the expected discounted cumula-
tive reward J(π) = Eπ[

∑T
t=0 γ

trt], where s0 ∼ ρ0 (s0),
st+1 ∼ P (st+1 | st, at) and rt = R (st, at). The state-
action value function qπ defines the expected cumulative
discounted reward for all s, a ∈ S × A and the policy π,
i.e., qπ(s, a) = Eπ

[∑T
t=0 γ

trt | s0 = s, a0 = a
]
.

In deep RL, policy and value functions are approximated
with deep neural networks, conventionally denoted by Qθ

and πϕ with network parameters θ and ϕ. The parameter-
ized policy πϕ can be updated by taking the gradient of
the objective, i.e., ϕ′ ← ϕ + α∇ϕJ(πϕ) with a step size
α (Silver et al., 2014; Mnih et al., 2016; Schulman et al.,
2017; Haarnoja et al., 2018).

3.2. Continual Learning and Plasticity

Beyond the standard MDP setting which describes a sta-
tionary decision-making task, we consider a continual
learning scenario where the agent learns to solve tasks
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T = {T1, T2, ..., Tk} that arrive in a sequence. In this work,
each task is an MDP with a different reward or dynam-
ics function and has a budget of N interactions for the
agent. Aside from this, we do not use any assumption on the
task sequence, e.g., the similarity between tasks. The non-
stationarity manifests in the continual switch of learning
tasks. We focus on plasticity in this work, and the objective
of a continual RL agent in this context is to maximize the
average performance over the course of continual learning
on the task sequence.

Formally, for any point i within the total budget, we have the
policy πi where i ∈ {1, ..., k}, and the performance J(πi)
corresponding to it. Note that J(πi) is the performance
evaluated on the task T⌈i⌉, i.e., the current task at time step
i. For convenience, we define the average performance
regarding a task Tj as J(Tj) = 1

N

∑j∗N
i=(j−1)∗N+1 J(πi).

Thus, the average performance of the agent throughout the
learning on the sequence T is:

J(T) =
1

k

k∑
j=1

J(Tj) =
1

kN

kN∑
i=1

J(πi). (1)

Similar to the concept of Area Under Curve (AUC), the
average performance metric aggregates the learning perfor-
mance in terms of efficiency, stability and convergence. We
use average performance to evaluate and compare different
methods, and in practice, we take intervals within {1, ..., k}
for the estimation of J(T). In the context of continual
learning, the loss of plasticity means that the agent grad-
ually exhibits worse learning performance on later tasks.
Empirically, it can often be identified when we observe
J̄(Ti)− J(Ti) ≥ J̄(Tj)− J(Tj) for 1 ≤ i ≤ j ≤ k, where
J̄(Ti) denotes the performance of an agent of good plastic-
ity on the task Ti, e.g., a newly initialized network for the
current task.

4. Mitigating the Loss of Plasticity by
Reducing Churn

In this section, we formally study the loss of plasticity in
continual RL from the lens of churn. First, we establish a
connection between plasticity loss and churn by taking the
NTK matrix as a framework (Section 4.1), based on which
we analyze the continual learning dynamics (Section 4.2).
Further, we introduce Continual Churn Approximated Re-
duction (C-CHAIN), and formally dissect the efficacy of
churn reduction on plasticity (Section 4.3).

4.1. NTK as the Bridge between Plasticity and Churn

The loss of plasticity is a phenomenon that stems from the
pathological learning behavior of a deep network, while
churn is an innate feature of the network where the network
output for datapoints not included in the current training
batch is implicitly and potentially uncontrollably changed.

To study the relationship between the two concepts, we use
the empirical NTK (Achiam et al., 2019) matrix as a for-
mal tool, as its rank has been shown to be a good indicator
of plasticity loss (Lyle et al., 2024). For a parameterized
network function fθ(x) ∈ R, we use g(x) to denote the
gradient of fθ with respect to its parameters θ at the data x,
i.e., g(x) = ∇θfθ(x) ∈ Rd where |θ| = d is the dimension-
ality. The Neural Tangent Kernel matrix Nθ is the matrix of
gradient dot products between all data points (Achiam et al.,
2019; Lyle et al., 2024):

Nθ(i, j) = ∇θfθ(xi)
⊤∇θfθ(xj) for xi, xj

Nθ = G⊤
θ Gθ

(2)

where Gθ = [g(x1), g(x2), . . . , g(xi), . . . ] denotes the ma-
trix form of the gradients for all datapoints. This is also
referred to as the outer-product approximation of the Hes-
sian matrix (Lewandowski et al., 2023). In practice, the
empirical NTK matrix is often used by sampling a batch
of datapoints for the convenience of computation and vi-
sualization. Lyle et al. (2024) show that networks tend to
exhibit a low rank of the empirical NTK matrix Nθ when
they lose plasticity. This is also observed when the full
gradient is approximated by the penultimate layer network
representation (Kumar et al., 2022; Ma et al., 2023b).

Now consider the parameter changes from fθ to fθ′ and
let ∆θ = θ′ − θ. For data x̄ ∈ Bref (the reference data)
not included in training batch Btrain used for the parameter
update ∆θ, the churn of fθ at x̄ with respect to ∆θ is (Tang
& Berseth, 2024):

Cf (x̄, θ,∆θ) = fθ′(x̄)− fθ(x̄)

= ∇θfθ(x̄)
⊤∆θ +O(∥∆θ∥2).

(3)

The parameter update ∆θ made by mini-batch training can
have different forms, which depends on the context. Let-
ting L(θ) be a loss function of fθ, we can express the
parameter update in a general form via the chain rule:
∆θ = −ηEx[∇θfθ(x)∇fθL(θ, x)], where x ∈ Btrain is the
data sampled for the mini-batch training. We use vanilla
stochastic gradient descent and use η for the learning rate
here for legibility. By plugging the general form back, we
have the NTK expression of the churn:

Cf (x̄, θ,∆θ) ≈ −η∇θfθ(x̄)
⊤Ex[∇θfθ(x)∇fθL(θ, x)]

= −ηEx[Nθ(x̄, x)∇fθL(θ, x)].
(4)

Further, we can obtain the churn in vector form, which is
equivalent to the approximate change of the function value
for all datapoints:

Cf (θ,∆θ) ≈ −ηG⊤
θ GθSGL

= −ηNθSGL,
(5)

where GL is the gradient matrix of∇fθL(θ) and S is a diag-
onal matrix of the same size as Nθ with {0, 1}-binary values
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Training
Data

Reference
Data

Figure 1. An illustration of the matrix NθS, where the datapoints
are arranged with a separation between the training data and the
remaining ones (i.e., the reference data).

on its diagonal that corresponds to the sampling results of
Btrain. The vector form in Equation 5 indicates that the NTK
matrix Nθ plays an important role in determining the churn,
independent of the loss function (or objective function) and
the sampling strategy (or data distribution). Intuitively, Nθ

determines how the explicit mini-batch training shapes the
entire function landscape by generalization or interference
between different datapoints. Figure 1 shows an illustration
of the matrix NθS. For the symmetric NTK matrix Nθ, mul-
tiplying the sampling matrix Si zero-masks out the columns
corresponding to the reference data, denoted by the area.
The remaining entries consist of the training updates to the
sampled training data ( ) and the changes caused by churn
to the reference data ( ).

As the empirical NTK matrix plays important roles in both
plasticity loss and churn, it serves as a natural bridge be-
tween the two. We further our analysis below.

4.2. Exacerbation of Churn Induced by NTK Collapse

Starting from a random parameter initialization, the network
of a learning agent digests data from the sequential tasks
T = {T1, T2, ..., Tk} and updates it parameters to solve each
task at hand the best. Notice that each task is an MDP and
the data on the task is collected online by the agent within a
budget of interaction steps.

To formally characterize the learning process, let Ei(θ) =
f∗
i − fθ be the error vector of the network fθ regarding

the optimal objective function f∗
i corresponding to task Ti

with i ∈ {1, . . . , k}. We consider the commonly-used loss
function Li(θ, x) =

1
2 [f

∗
i (x)− fθ(x)]

2 . The dynamics of
the error Ei for iterative updates θt → θt+1 within the same
task Ti can be derived as:

Ei(θt+1)− Ei(θt) =
(
f∗
i − fθt+1

)
−
(
f∗
i − fθt

)
= fθt − fθt+1

= −Cf (θt, θt+1 − θt).

(6)

By plugging the vector form of churn in Equation 5 and
GL = −

(
f∗
i − fθt

)
= −Ei(θt), we further have:

Ei(θt+1) ≈ Ei(θt)− ηNθtSiEi(θt)
=

(
I − ηNθtSi

)
Ei(θt).

(7)

Equation 7 characterizes the iterative evolution of the error
regarding the task Ti, which is mainly determined by the
factor I − ηNθtSi. Nθt is full-rank when it has positive di-
agonal values (i.e., non-zero gradients fθ(xi) ̸= 0) and has
zero off-diagonal entries, i.e.,∇θfθ(xi)

⊤∇θfθ(xj) = 0 for
i ̸= j. In this case, it resembles the tabular function ap-
proximation where generalization and interference among
different datapoints do not exist. The learning process is sta-
ble when a proper η is selected. However, in most practical
cases, the off-diagonal entries of Nθt are non-zero and Nθt

is not full-rank, making the learning dynamics intricate.

Next, we continue to analyze the learning dynamics
by taking into consideration the task change in T =
{T1, T2, ..., Tk}. Different from a stationary learning sce-
nario, both the data distribution (related to Si) and the objec-
tive function (related to f∗

i , Ei) change throughout learning.
In the early stages of learning, the parameters of the agent’s
network are close to the initialization, thus having no plas-
ticity issue. Meanwhile, the empirical objective function
estimated with finite online data (related to Si, Ei)tends to
lie in low-dimensional space. With stochastic gradient de-
scent, the network fits the empirical objective function with
an implicit preference for simple functions (Arpit et al.,
2017; Nakkiran et al., 2019; Damian et al., 2021) in a low-
dimensional parameter subspace (Schneider et al., 2024;
Tang et al., 2024). In this process, the agent prefers the
parameters that have high correlations between different
datapoints (Kumar et al., 2022) in order to generalize the
updates, and thus loses the rank information in Nθ.

When the task changes from Ti to Ti+1, the agent continues
to fit the new objective function from Ei+1(θ) with a distri-
bution shift of sampling data Si+1. However, the function
landscape regarding the new data distribution was implicitly
shaped via churn in prior training. Compared to the pa-
rameters in the early stage, the gradients between different
datapoints correlate more and the rank of NθSi+1 becomes
lower. This echoes the findings in prior works (Lyle et al.,
2024; Kumar et al., 2021; Shah et al., 2020). As the task
changes along the sequence T, the rank decrease of the NTK
matrix and the exacerbation of churn operate in a vicious
cycle in the learning dynamics (Equation 7). Therefore, it
leads to even less stable learning and worse approximation
results, which is the pathological learning behavior identi-
fied as the loss of plasticity.

Naturally, a method that prevents the rank decrease of NθSi

and the exacerbation of churn should mitigate the loss of
plasticity. Therefore, we dissect the efficacy of reducing
churn on continual learning in the next subsection.

4.3. Effects of Continual Churn Reduction

We extend the study on churn reduction and explore its
potential in mitigating plasticity loss in continual RL. We
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Algorithm 1 Deep Continual RL with Continual Churn
Approximated Reduction (C-CHAIN).
1: Task sequence T = {T1, T2, ..., Tk}, interaction budget per

task N , continual RL algorithm A
2: Initialize agent’s parameter θ and a buffer D
3: for task i = 1, 2, 3, ..., k do
4: for step i = 1, 2, 3, ..., N do
5: Interact with the task by performing agent’s policy
6: Update the buffer D according to A
7: Perform regular parameter update ∆θ = A(θ,Btrain)

with the training batch Btrain ∼ D
8: Regularize agent’s parameter to reduce churn for the

reference batch Bref ∼ D (Bref ∩Btrain = ∅)
9: end for

10: end for

introduce Continual Churn Approximated Reduction (C-
CHAIN). As depicted by the pseudo-code in Algorithm 1,
the agent interacts with the tasks that arrive in a sequence.
Alongside the regular training of the continual RL algorithm,
C-CHAIN continually minimizes the churn for the data out
of the current training batch (i.e., the reference batch Bref).

Formally, the churn reduction loss function of C-CHAIN is
defined with the reference data x̄ ∈ Bref as follows:

Lcr
f (θ) =

1

2
Ex̄∈Bref [Cf (x̄, θ,∆θ)

2] (8)

Next, we look into the gradient of the churn reduction loss
to shed light on how it influences the continual learning
dynamics we discussed in the previous subsection:

∇θL
cr
f (θ, x̄) = Cf (x̄, θ,∆θ)∇θCf (x̄, θ,∆θ)

∇θCf (x̄, θ,∆θ) ≈ −η∇θ

(
Ex[Nθ(x̄, x)∇fθL(θ, x)]

) (9)

For clarity we use g = ∇θfθ(x), ḡ = ∇θfθ(x̄), thus the
kernel Nθ(x̄, x) = ḡ⊤g, and ∇fLf = ∇fθL(θ, x). We
then have the derivative in the expectation below:

∇θ

(
ḡ⊤g∇fLf

)
= ∇θ

(
ḡ⊤g

)
∇fLf︸ ︷︷ ︸

①

+ ḡ⊤g∇θ

(
∇fLf

)︸ ︷︷ ︸
②

(10)
The ① term is the partial derivative of the gradients of fθ.
With Hθ be the Hessian matrix of fθ, we have:

① =
(
Hθ(x̄)g +Hθ(x)ḡ

)
∇fLf (11)

Equation 11 indicates the first efficacy of reducing churn. It
takes the gradient of the kernel Nθ(x̄, x) regarding each pair
of the reference data x̄ and the training data x, with∇fLf

(as well as Cf (x̄, θ,∆θ) playing the role of a weighting
factor. As a result, the off-diagonal entries in the NTK
matrix Nθ (corresponding to the area of Figure 1) are
suppressed to zero for minimization.

The ② term depends on the specific form of Lf regarding
which the regular training (i.e., ∆θ) is performed. Here we
use the Temporal Difference (TD) learning of Q-network

for Lf as a common example in deep RL for demonstra-
tion, where LQ(θ) =

1
2Ex,x′ [

(
(r + γQ−(x′))−Qθ(x)

)2
].

Note that we use x for s, a and Q− is the target Q-function
detached from backpropagation. In this case, we have
∇Qθ

LQ(θ, x) = −Qθ(x) + (r + γQ−(x′)) and thus:

② = −(ḡ⊤g)g = −projg ḡ ∥g∥22 (12)

Equation 12 shows that the second efficacy of reducing
churn can be interpreted as the projection of ḡ on g with the
square norm of g as a scaling factor. This term could either
dampen or accelerate the regular gradient g∇fLf which
depends on the sign of the kernel between the reference data
and the training data, and also the∇fLf .

The two terms work together when reducing churn during
the continual learning process. The ① term decorrelates the
gradients between the reference data and the training data
by suppressing the off-diagonal entries in the NTK matrix
Nθ. This combats the rank decrease and mitigates the loss
of plasticity under the changes of the data distribution and
the objective function as discussed in Section 4.2. Besides,
the ② term regulates the regular training gradient based on
additional gradient information of the reference data. More
regularization occurs when the gradients correlates more.

To summarize, reducing churn improves the stability of the
continual learning dynamics in Equation 7 and mitigates
the loss of plasticity. In the next section, we conduct the
empirical study for our formal findings discussed above.

5. Experiments
In our experiments, we first evaluate C-CHAIN in com-
parison with recent related methods, to find out whether it
improves continual RL (Section 5.1). Then, we conduct the
empirical analysis to examine whether reducing churn pre-
vents the rank decrease and how the two effects contribute
differently (Section 5.2). Finally, we extend the evaluation
to more continual learning settings (Section 5.3).

5.1. Performance Evaluation

To evaluate the performance of continual RL, we adopt
OpenAI Gym Control (Brockman et al., 2016) and Proc-
Gen (Cobbe et al., 2020) and follow the setups in
TRAC (Muppidi et al., 2024).

Setups For Gym Control, we use four environ-
ments: CartPole-v1, Acrobot-v1, LunarLander-v2 and
MountainCar-v0. For each environment, a task sequence T
is built by chaining k instances of the environment with a
unique Gaussian observation noise ϵi ∼ N (0, σ2) sampled
once for each. The number k is 10 for all the environments,
except that k is 5 for MountainCar-v0. For ProcGen, we
use all sixteen environments in the suit, while only four
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Table 1. Performance comparison on continual Gym Control. The reported scores are the average performance (Eq. 1) in terms of
episode return with mean and standard error over six seeds. The top-2 values (excluding Oracle) are marked by bold and underline.

Env
Calibration Baselines Related Methods Ours

Oracle Vanilla TRAC Weight Clipping L2 Init C-CHAIN

C-Acrobot -125.736 ± 8.303 -372.725 ± 3.268 -166.584 ± 8.922 −118.821± 13.440 -134.038 ± 14.292 -119.211 ± 6.929

C-CartPole 299.925 ± 5.986 61.766 ± 6.927 217.376 ± 26.307 154.306 ± 16.047 266.114± 5.345 160.396 ± 14.643

C-LunarLander 1.118 ± 2.002 -499.396 ± 19.571 -58.059 ± 17.474 -58.575 ± 2.896 −6.666± 5.903 -16.659 ± 8.369

C-MountainCar -322.608 ± 9.384 -346.604 ± 4.635 -399.989 ± 0.010 -267.900 ± 6.883 -369.395 ± 27.914 −245.746± 14.691

Agg. Score -147.302 -1156.958 -407.256 -290.99 -243.985 −221.22

Table 2. Performance comparison on continual ProcGen. The reported scores are the average performance (Eq. 1) in terms of episode
return with mean and standard error over six seeds. The top-2 values (excluding Oracle) on each row are marked by bold and underline.

Env
Calibration Baselines Related Methods Ours

Oracle Vanilla TRAC Weight Clip L2 Init LayerNorm ReDo AdamRel C-CHAIN

Starpilot 13.142 ± 0.262 8.028 ± 0.667 18.106 ± 0.716 8.200 ± 0.729 11.353 ± 0.207 14.085±0.652 9.824±0.221 11.863±0.910 19.717± 0.699

Fruitbot 1.613 ± 0.105 1.549 ± 0.139 0.855 ± 0.327 1.457 ± 0.090 1.657 ± 0.107 0.921±0.254 1.586±0.227 1.487±0.149 1.689± 0.188

Chaser 2.923 ± 0.016 2.714 ± 0.028 3.096 ± 0.021 2.812 ± 0.039 3.067 ± 0.023 2.960±0.034 2.894±0.032 2.720±0.053 3.432± 0.033

Dodgeball 5.017 ± 0.415 3.636 ± 0.488 6.757 ± 0.617 3.066 ± 0.600 4.859 ± 0.459 5.895±0.787 3.799±0.324 3.780±0.643 7.690± 0.840

Bigfish 4.206 ± 0.343 2.363 ± 0.632 5.783 ± 0.729 2.561 ± 0.334 3.752 ± 0.267 4.406±0.434 3.010±0.199 2.746±0.343 7.866± 0.319

Caveflyer 5.889 ± 0.285 5.605 ± 0.282 6.760 ± 0.400 5.157 ± 0.362 5.922 ± 0.307 6.103±0.228 5.595±0.330 5.232±0.491 7.653± 0.587

Climber 5.404 ± 0.659 4.557 ± 0.692 2.557 ± 0.500 5.003 ± 0.740 5.415 ± 0.662 5.349±0.658 5.372±0.634 5.207±0.677 5.594± 0.579

Ninja 2.169 ± 0.311 1.679 ± 0.705 1.278 ± 0.556 1.314 ± 0.601 3.219± 0.364 2.760±0.572 2.184±0.434 1.297±0.597 3.146 ± 0.436

Coinrun 4.953 ± 0.458 4.711 ± 0.676 3.943 ± 1.414 4.985 ± 0.757 4.857 ± 0.362 5.459±1.063 4.689±0.376 4.377±0.503 6.829± 1.093

Miner 5.147 ± 0.235 4.250 ± 0.314 4.288 ± 0.807 5.182 ± 0.634 6.153 ± 0.228 5.491±0.542 4.853±0.397 5.500±0.645 9.924± 0.636

Jumper 2.175 ± 0.330 1.095 ± 0.211 1.753 ± 0.456 1.536 ± 0.474 2.598 ± 0.299 2.666±0.471 1.269±0.274 2.225±0.509 2.896± 0.371

Heist 2.426 ± 0.295 2.404 ± 0.290 2.424 ± 0.294 2.506 ± 0.295 2.929 ± 0.343 2.402±0.292 2.691±0.368 2.668±0.372 3.950± 0.681

Leaper 0.350 ± 0.302 0.347 ± 0.302 0.334 ± 0.304 0.474 ± 0.305 0.557 ± 0.287 0.809± 0.443 0.467±0.303 0.511±0.314 0.668 ± 0.608

Maze 5.528 ± 0.525 5.324 ± 0.621 4.916 ± 0.774 5.314 ± 0.885 5.701 ± 0.999 5.084±0.550 4.747±0.616 5.299±0.867 5.940± 0.424

Plunder 7.113 ± 0.413 4.801 ± 0.430 9.719 ± 0.776 5.290 ± 0.389 6.695 ± 0.383 7.262±0.363 5.910±0.331 5.296±0.298 10.340± 0.287

Bossfight 2.735 ± 0.369 1.986 ± 0.667 4.722 ± 1.027 2.235 ± 0.630 3.791 ± 0.436 3.503±0.320 2.290±0.352 1.541±0.506 4.920± 0.45

Agg. Score 70.789 55.049 77.289 57.092 72.961 75.154 61.180 61.443 101.792

Sampling a unique observation noise
for each task in the sequence 𝕋

…

Sampling a new procedurally generated
level for each task in the sequence 𝕋

…

Sampling a unique observation noise
for each task in the sequence 𝕋

…

Sampling a new procedurally generated
level for each task in the sequence 𝕋

…

Figure 2. The continual learning settings for Gym Control and
ProcGen. The task switches for continual CartPole (above) and
Starpilot (below) are illustrated for demonstration.

(i.e., Starpilot, Fruitbot, Chaser, Dodgeball) were adopted
in (Muppidi et al., 2024). For each environment, the task
sequence consists of 5 instances procedurally generated by
sampling a unique game level. The budget is 2M steps per
task. Figure 2 illustrates the continual RL setups.

Baselines To calibrate the performance of continual RL,
we make use of a standard Proximal Policy Optimization
(PPO) (Schulman et al., 2017) agent as the vanilla baseline.
The agent is initialized once before the continual learning
starts. On the other side, we use a PPO agent that gets fully
re-initialized every time the task is switched to be the oracle

baseline. The oracle baseline learns each task from ran-
dom initialization, thus free of the influence of task change.
Additionally, we consider six related methods including
TRAC (Muppidi et al., 2024), Weight Clipping (Elsayed
et al., 2024b) and L2 Init (also called Regenerative Regular-
ization) (Kumar et al., 2023b), Recycles Dormant Neurons
(ReDo) (Sokar et al., 2023), Layer Normalization (Lyle
et al., 2024), Adam with Relative Timesteps (AdamRel) (El-
lis et al., 2024) as our baselines. Note that TRAC outper-
forms other related methods like Concatenated ReLU (Ab-
bas et al., 2023), EWC (Schwarz et al., 2018), Modulating
Masks (Nath et al., 2023) in the same settings adopted in
our experiments. Therefore, we do not include them here.
Besides, we found that L2 regularization performed very
similarly (slightly worse) to L2 Init in our experiments, thus
we use L2 Init for representation as they are very similar
when the network parameterization is close to zero.

Implementation We use the official implementation of
TRAC as the code base, based on which we implement all
the baselines above as well as C-CHAIN (i.e., Algorithm 1
with the vanilla PPO agent as A) to ensure that they only
differ in the corresponding algorithm features. One thing to
note is that C-CHAIN PPO, both Btrain and Bref are sampled
from the online interaction data collected by the policy in
the current iteration. Therefore, CHAIN PPO does not use
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Figure 3. Learning curves of different methods in four contin-
ual Gym Control environments. The curves and the shades are
means and standard errors over six seeds.

a cross-task buffer and does not need to be aware of task
switches. For the hyperparameters of the PPO baseline
agent, we use the default values and keep them consistent
across all the methods. For the hyperparameters specific to
each method, we search around the recommendation values
in the original papers and report the best. More experiment
details are provided in Appendix A.

Quantitative Comparison Table 1,2 summarizes the
quantitative evaluation for different methods on continual
Gym Control and ProcGen, respectively. Figure 3 and Fig-
ure 4 show the learning curves. For clarity, we plot the
learning curves for three related baseline methods for Proc-
Gen. As task switch happens frequently, the learning curves
of all methods show a phasic pattern. For the calibration
baselines, i.e., Vanilla and Oracle, Vanilla quickly degrades
and collapses (especially in Gym Control) after learning
the first task in the sequence, while Oracle learns each
task as it re-initializes when task switch happens. Over-
all, C-CHAIN and the other baseline methods effectively
prevent the collapse of Vanilla and improve the learning
performance greatly. One may note that TRAC, L2 Init
and C-CHAIN outperform Oracle in ProcGen. This is be-
cause, aside from task switch, non-stationarity also exists in
the learning process of single-MDP RL. Oracle still suffers
from plasticity loss due to the change of sampling and policy
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Figure 4. Learning curves of different methods in four (of six-
teen) continual ProcGen environments. The curves and the
shades are means and standard errors over six seeds.

learning within each task, while C-CHAIN also mitigates it
effectively. This also indicates that naive network resetting
is not adequate to address plasticity loss in continual RL.

Among the methods in comparison, TRAC is a competitive
baseline in most environments except for the failure in envi-
ronments like MountainCar and Coinrun. Weight Clipping
works well in Gym Control but performs almost on par with
Vanilla in ProcGen. Similarly, L2 Init performs the best in
LunarLander and CartPole while it falls below C-CHAIN by
a clear margin. A possible explanation is that both Weight
Clipping and L2 Init mitigate plasticity loss by constraining
the feasible parameter space near the initialization. There-
fore, for problems where the agent needs a complex solution
that is not easy to be found near the initialization, Weight
Clipping and L2 Init can limit the learning in this sense. Our
method C-CHAIN achieves the best aggregation scores in
both continual Gym Control and ProcGen, demonstrating
its superiority in improving continual RL.

Moreover, for continual MountainCar that needs more ex-
ploration and is a bit more difficult than the other three Gym
control tasks, we notice that TRAC almost totally fail on
it. The low early-stage performance of C-CHAIN might
also be due to the exploration feature of MountainCar, as
reducing churn could also slow down the generalization of
exploration behavior learned by the policy. Therefore, C-
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Figure 5. Performance comparison with Reliable metrics (Agarwal et al., 2021). For each method in the comparison, the results are
aggregated over sixteen continual ProcGen environments with six random seeds for each.
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Figure 6. Analysis on NTK matrix in terms of approximate rank
(above) and the sum of absolute off-diagonal values (below) in
continual ProcGen Starpilot.

CHAIN learns slowly but improves steadily, while vanilla
PPO learns quicker and collapses. Continual ProcGen envi-
ronments like Leaper, Jumper have sparse or even episodic
rewards. To gain more understanding for these environ-
ments, we looked into the average scores of the Max, Mean,
Min curves and observed that C-CHAIN improves the av-
erage Max scores over PPO Vanilla and the average Mean
scores (either by improving Max or by reducing failure
numbers); while it does not fully avoid the (near-)zero Min
scores due to the limited exploration ability of PPO base.

Reliable Metrics To obtain a conclusive evaluation, we
provide the aggregation evaluation by using Reliable met-
rics (Agarwal et al., 2021). The evaluation uses Mean, Me-
dian, Inter-Quantile Mean (IQM) and Optimality Gap, with
95% confidence intervals. It aggregates over 9 methods, 6
seeds for each of 16 ProcGen tasks as reported in Table 2,
i.e., 864 runs in total.

The results are shown in Figure 5. We can observe that
C-CHAIN performs the best regarding all four metrics and
outperforms the second-best with no overlap of Confidence
Intervals for Median, IQM, and a minor one for Mean.

5.2. Empirical Analysis

To better understanding how C-CHAIN improves contin-
ual RL and examine whether the empirical efficacy of C-
CHAIN matches our formal analysis. We conduct empirical
analysis on (1) the rank evolvement of the empirical NTK

Approx Rank of PPO (Vanilla): 6 Approx Rank of C-CHAIN: 87

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 7. Visualization of the empirical NTK matrix (100 by
100) for Vanilla (left) and C-CHAIN (right) at 8M timesteps (10M
in total) in continual ProcGen Starpilot.

matrix (corresponding to Section 4.2) and (2) the ablation of
the two effects of reducing churn (i.e., ①, ② in Section 4.3).

On the Evolvement of the Empirical NTK Matrix We
empirically compute and record the NTK matrix of the
agent’s policy network at every iteration for the analysis.
The details are provided in Appendix B. Figure 6 shows
the approximate rank (Kumar et al., 2021) of the empirical
NTK matrix and the summation of absolute off-diagonal
values. For the vanilla PPO agent, the curve of approximate
rank exhibits large instability, overall decreasing to a low
rank throughout learning. This corresponds to the sharp
increase of the scale of off-diagonal values. As expected,
C-CHAIN suppresses the off-diagonal values of the NTK
matrix and maintains a stable and high rank. This explains
the performance of C-CHAIN in Figure 4 and Table 1,2,
and empirically confirms our formal analysis in Section 4.

Moreover, as shown by the visualization in Figure 7, we
can observe that the vanilla PPO agent exhibits a highly
correlated NTK with off-diagonal cells of large absolute
values (i.e., blue or red). The existence of high correlation
leads to low rank, i.e., the sign of plasticity loss, which
also echoes the empirical findings in (Lyle et al., 2024). In
contrast, C-CHAIN shows a less correlated NTK and thus
maintains the plasticity of the agent.

On the Ablation of the Two Effects of C-CHAIN We
empirically dissect the gradient (denoted by ḡcr) of C-
CHAIN’s churn reduction loss function (Equation 8) into a
projective component (i.e., projgPPO ḡcr and gPPO for the gra-
dient of the PPO base agent) and an orthogonal component
(i.e., gcr − projgPPO ḡcr). We use the projective component to
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Figure 8. Ablation study for the projective and orthogonal gra-
dient components of C-CHAIN in ProcGen Starpilot and Chaser.

approximate the ② term and use the orthogonal component
for the ① term. By applying either component only, we
have two variants of C-CHAIN, denoted by Proj Only and
Orth Only. We then evaluate the contribution of the two
components by comparing with C-CHAIN and Vanilla.

As in Figure 8, we can observe that both the orthogonal
and the projective components are beneficial to the vanilla
baseline. The two components contribute collectively and
add up to the effectiveness of C-CHAIN. Moreover, the
orthogonal component contributes more than the projective
component. This indicates that suppressing the off-diagonal
entries of the NTK (i.e., the ① term) is critical to C-CHAIN.
This naturally delineates the difference between the efficacy
of C-CHAIN and the related methods that alters RL gradient
with projective information in different ways (Chaudhry
et al., 2019; Yu et al., 2020).

5.3. C-CHAIN in More Continual Learning Settings

Continual DeepMind Control Suite (DMC) In addition
to the discrete-action settings above, we evaluate C-CHAIN
in continual continuous control. We build three contin-
ual RL environments based on DMC (Tassa et al., 2018):
Continual Walker (Stand-Walk-Run), Continual Quadruped
(Walk-Run-Walk), Continual Dog (Stand-Walk-Run-Trot),
each of which is a continual RL scenario that chains the
corresponding individual tasks in a sequence.
Table 3. Performance comparison in continual DMC. The re-
ported scores are means and standard errors over twelve seeds.

Env Oracle Vanilla C-CHAIN

C-Walker 395.971 ± 8.116 305.199 ± 18.519 472.828± 17.865

C-Quadruped 234.529 ± 19.193 250.153 ± 26.385 314.510± 44.321

C-Dog 137.080 ± 3.133 129.744 ± 5.914 174.098± 9.169

The results are shown in Table 3. We can observe that
C-CHAIN PPO significantly outperforms PPO in all three
settings, showing the effectiveness for continual control.
C-CHAIN also outperforms PPO Oracle because it does
not reset for each task and thus can transfer the learned
skill from previous tasks to future ones (e.g., Dog-Stand to
Dog-Walk). Details are provided in Appendix A.2.

Continual MinAtar To evaluate the generality across
different base agents, we implement C-CHAIN Dou-
bleDQN (van Hasselt et al., 2016) and evaluate it in a con-
tinual MinAtar (Young & Tian, 2019) setting built by us.
Specifically, we chain three tasks: SpaceInvaders, Asterix,
Seaquest. The results in Table 4 show that C-CHAIN also
improves the continual learning performance upon Dou-
bleDQN in a sequence of totally different tasks. Details are
provided in Appendix A.3.

Table 4. Performance comparison in continual MinAtar. The
reported scores are means and standard errors over twelve seeds.

Env Vanilla C-CHAIN

C-MinAtar 22.044 ± 0.733 29.513± 0.682

Continual Supervised Learning (SL) on MNIST We
extend our empirical evaluation of C-CHAIN to continual
supervised learning setting. We follow the settings in L2
Init (Kumar et al., 2023b) and adopt RandomLabel-MNIST
and Permuted-MNIST as our testbed. The results and imple-
mentation details can be found in Table 8 and Appendix A.4.
The results show that C-CHAIN improves the vanilla agent
but does not perform on par with L2 Init and Weight Clip-
ping. The efficacy of C-CHAIN is relatively limited in the
two continual SL settings, in contrast to its superiority in the
continual RL experiments. We hypothesize this is because
RL suffers more from churn accumulation due to the chain
effect (Tang & Berseth, 2024), which acts as a prominent
cause of plasticity loss in continual RL, thus C-CHAIN can
address it effectively. Besides, the two MNIST settings are
simple, where a good solution can be found near the initial-
ization as preferred by L2 Init and Weight Clipping. A more
thorough study on this point is expected in the future with
more continual supervised learning settings.

6. Conclusion
In this paper, we study plasticity loss from the lens of churn.
We established a formal connection between the two with
NTK and demonstrated the interplay between the rank de-
crease of NTK and the exacerbation of churn in learning
dynamics. We show that our method C-CHAIN effectively
improves continual RL results across a wide range of tasks.

Limitation and Future work Beyond theoretical ad-
vancements, applying churn reduction to real-world contin-
ual learning settings, as robotics or large language models
(LLMs), could address plasticity loss and catastrophic for-
getting in adaptive learning settings (Wu et al., 2024; Zhai
et al., 2024). Investigating its role in reinforcement learn-
ing from human feedback (RLHF) could improve stability
in policy updates, ensuring LLMs retain learned behaviors
while adapting to evolving human preferences. Besides,
Equation 11 reveals an interesting direction to realizing
churn reduction in a more direct and effective way by esti-
mating Hessian (Elsayed et al., 2024a).
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A. Experimental Details
A.1. Continual RL

Environment Setups We follow the setups in (Muppidi et al., 2024). For Gym Control, we use four environments:
CartPole-v1, Acrobot-v1, LunarLander-v2 and MountainCar-v0. For each environment, a task sequence T is built by
chaining k instances of the environment with a unique Gaussian observation noise ϵi ∼ N (0, σ2) sampled once for each.
The number k is 10 and the interaction budget N is 0.16M for all the environments, except that k is 5 and N is 0.32M for
MountainCar-v0. For CartPole-v1, Acrobot-v1 and LunarLander-v2, we use σ = 2.0 as provided in (Muppidi et al., 2024).
For MountainCar-v0, it was not originally included in (Muppidi et al., 2024) and we found σ = 2.0 is too large for this
environment to be learnable. Therefore, we use σ = 0.02 for MountainCar-v0.

For ProcGen, we use all sixteen environments in the suite, while only four (i.e., Starpilot, Fruitbot, Chaser, Dodgeball) were
adopted in (Muppidi et al., 2024). For each environment, the task sequence consists of 5 instances procedurally generated by
sampling a unique level of the environment. The budget is 2M steps per task.

Algorithm Implementation We use the official implementation2 of TRAC (Muppidi et al., 2024) as our code base. We
implement all other methods to ensure that they only differ in the corresponding algorithm features. For the hyperparameters
of the PPO baseline agent, we use the default values recommended in the code base and keep them consistent across all the
methods. For the hyperparameters specific to each method, we search around the recommendation values in the original
papers and report the best.

For C-CHAIN, we follow the practice in (Tang & Berseth, 2024) and we only reduce churn for the policy network of the
PPO agent. The coefficient λπ of the policy churn reduction regularization is determined by an auto-adjustment mechanism,
which keeps a consistent relative scale (denoted by β) between the churn reduction regularization terms and the original DRL
objectives. Specifically, by maintaining the running means of the absolute PPO loss |L̄π| and the policy churn reduction
term |L̄PC|, the churn reduction regularization coefficient λπ is computed dynamically as λπ = β |L̄π|

|L̄PC|
. For the size of Bref,

we did the experiments with different batch sizes on continual Gym control tasks. Our findings were that using a 2x, 4x or
8x batch size for Bref (compared to the regular training batch size) sometimes improved the learning performance, but not
consistently. To some degree, increasing the batch size of Bref acts similarly to increasing the regularization coefficient, as
both of them reduce more churn. Thus, we did not search for the best batch size for Bref and set it equal to the training batch
size to alleviate the hyperparameter choice burden.

The hyperparameters are provided in Table 5. The codebase will be released upon publication of this work.

Table 5. Hyperparameters of different methods used in continual Gym Control and ProcGen environments. We use ‘-’ to denote
the ‘not applicable’ situation.

Agent Hyperparam Gym Control ProcGen

Vanilla PPO (Schulman et al., 2017)

Learning Rate 1e−3 1e−3

Optimizer Adam Adam
Discount Factor (γ) 0.99 0.99
GAE Parameter (λ) 0.95 0.95

Training Interval 800 steps 1000 steps
Mini-batch Size 32 125
Update Epoch 5 3

Clipping Range Parameter (ϵ) 0.2 0.2
Entropy Loss Coef 0 0.01

TRAC (Muppidi et al., 2024) (Hyperparam Free) - -

Weight Clipping (Elsayed et al., 2024b) Clipping Range Best in {0.1, 0.5, 1, 10} Best in {0.1, 0.5, 1, 10}
L2 Init (Kumar et al., 2023b) Regularization Coeff Best in {0.1, 1, 10, 100, 1000} Best in {0.1, 1, 10, 100, 1000}

C-CHAIN (Ours) Target Relative Loss β for Auto λπ Best in {1000, 1e4, 1e5} Best in {1000, 1e4, 1e5}

Compute Resource For the continual Gym Control and ProcGen experiments, we allocate a single V100 GPU, 16 CPUs
and 32GB memory for 4 to 6 jobs, typically running for around 4 hours for Gym Control and 20 hours for ProcGen to

2https://github.com/ComputationalRobotics/TRAC
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complete.

A.2. Continual DeepMind Control Suite

We use the public implementations of PPO and DMC task setups in CleanRL3 as our codebase. The actor and critic
networks are two-layer MLPs with 256 units for each layer. We made no change to the network structure, recommended
hyperparameter choices, etc. The hyperparameters are in Table 6.

Upon the code base, we build three continual RL settings in with DMC tasks:

• Continual Walker: run Walker-stand, Walker-walk, Walker-run, sequentially.

• Continual Quadruped: run Quadruped-walk, Quadruped-run, Quadruped-walk, sequentially (repeat because only two
Quadruped tasks are available in DMC).

• Continual Dog: run Dog-stand, Dog-walk, Dog-run, Dog-trot, sequentially.

We run 1M steps for each task.

Table 6. Hyperparameters of PPO and C-CHAIN used in continual DMC environments. The values of conventional hyperparameters are
taken from the recommended values in CleanRL.

PPO Hyperparameters

Learning Rate 3e−4

Training Interval 2048 steps
Discount Factor (γ) 0.99
GAE Parameter (λ) 0.95

Num. of Minibatches 32
Update Epoch 10

Clipping Range Parameter (ϵ) 0.2

Target Relative Loss β for Auto λπ
0.5 for Continual Walker

0.05 for Continual Quadruped and Continual Dog

Similarly, we compare PPO Oracle, PPO Vanilla, and C-CHAIN in the three settings. The results are summarized in Table 3
and Figure 9 shows the learning curves. We can observe that C-CHAIN PPO significantly outperforms PPO in all three
settings, showing the effectiveness for continual control. C-CHAIN also outperforms PPO Oracle because it does not reset
for each task and thus can transfer the learned skill from previous tasks to future ones (e.g., Dog-Stand to Dog-Walk).

A.3. Continual MinAtar

We use the official code of MinAtar paper4 as our codebase. For DoubleDQN, we modify the DQN implementation provided
in the official MinAtar code with no change to the network structure, recommended hyperparameter choices, etc. We
use DoubleDQN as the base agent, and apply C-CHAIN to the training of the value network, with no modification to the
hyperparameters of DoubleDQN. The hyperparameters are summarized in Table 7.

To build the continual MinAtar setting, we chain three tasks: SpaceInvaders, Asterix, Seaquest, by padding the observation
space to be [10, 10, 10]. We run 1.5M steps for each task, i.e., 4.5M in total.

We compare DoubleDQN (i.e., Vanilla) and C-CHAIN DoubleDQN with 12 random seeds. The results are shown in Table 4
and Figure 10 shows the learning curves. The results show that C-CHAIN also improves the continual learning performance
upon DoubleDQN in a sequence of totally different tasks. This indicates that C-CHAIN is not only beneficial to PPO
in continual RL but has the potential to be a general and easy-to-use remedy to different off-the-shelf RL algorithms in
combating plasticity loss in continual RL scenarios.

3https://github.com/vwxyzjn/cleanrl
4https://github.com/kenjyoung/MinAtar
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(c) Continual Dog
Figure 9. Learning curves for PPO and C-CHAIN PPO in continual DMC. The curves and the shades are means and standard errors
over twelve seeds.
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Table 7. Hyperparameters of DoubleDQN and C-CHAIN used in continual MinAtar environments. The values of conventional hyperpa-
rameters are taken from the recommended values in (Young & Tian, 2019).

DoubleDQN Hyperparameters

Learning Rate 3e−4

Training Interval 1 step
Discount Factor (γ) 0.99

Hard Replacement Interval 1000 steps
Replay Buffer Size 0.5M

Batch Size 32
Initial ϵ 1.0
End ϵ 0.1

ϵ Decay Steps 0.5M
Initial Random Steps 10k

Target Relative Loss β for Auto λQ 0.01
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Figure 10. Learning curves for DoubleDQN and C-CHAIN in continual MinAtar. The curves and the shades are means and standard
errors over twelve seeds.

A.4. Continual Supervised Learning

We follow the settings in L2 Init (Kumar et al., 2023b) and adopt RandomLabel-MNIST and Permuted-MNIST as our testbed.
For RandomLabel-MNIST, each task in the task sequence is a classification learning task with 1200 images randomly
sampled from the MNIST dataset and random labels assigned to each individual image. The task sequence consists of
50 tasks and we use train the agent for a total of 400 epochs per task. For Permuted-MNIST, each task is a classification
learning task with 10000 images sampled from MNIST. Different from RandomLabel-MNIST, a Permuted MNIST task is
characterized by applying a fixed randomly sampled permutation to the input pixels of all the images. The task sequence
consists of 500 tasks and the agent is trained for one epoch per task.

We use the official implementation of L2 Init5 as the code base and implement C-CHAIN and Weight Clipping with simple
modifications. We make no modifications to common hyperparameters and use the recommended values in the code base.

The results are summarized in Table 8. We can observe that C-CHAIN improves the vanilla agent but does not perform on
par with L2 Init and Weight Clipping. This shows that the efficacy of C-CHAIN is relatively limited in the two continual
supervised learning environments, especially in contrast to its superiority in the continual RL experiments. We hypothesize
this is because RL suffers more from churn accumulation and thus more severe plasticity loss due to the chain effect of
churn (Tang & Berseth, 2024). Besides, Permuted-MNIST and RandomLabel-MNIST are simple, where the agent can find
a good solution near the initialization. We expect to evaluate C-CHAIN in more complex continual supervised learning
environments in the future.

B. Empirical NTK Analysis Details
During the learning process, we collect the empirical NTK matrices in each training iteration of the PPO agent. Specifically,
for the interaction experience collected within each iteration, we divide it into m mini-batches randomly (m = 100 for
our NTK analysis in ProcGen). Then, for each mini-batch, we compute the gradient of the policy network’s parameters
θ regarding the PPO policy optimization objective, denoted by gi with i ∈ {1, 2, . . . ,m}. The empirical NTK matrix Nθ

5https://github.com/skumar9876/L2_Init
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Table 8. Performance comparison in continual supervised learning environments. The reported scores are the average performance
(Equation 1) in terms of accuracy with mean and standard error over three seeds.

Algorithm RandomLabel-MNIST Permuted-MNIST

Vanilla 0.1501 ± 0.0030 0.6430 ± 0.0029
C-CHAIN 0.2482 ± 0.0141 0.6797 ± 0.0042

L2 Init 0.8607 ± 0.0021 0.8039 ± 0.0027
Weight Clipping 0.4304 ± 0.0052 0.8281 ± 0.0001

is then computed by following the definition in Equation 2: Nθ(i, j) = g⊤i gj for i, j ∈ {1, 2, . . . ,m}. With the empirical
NTK matrix, statistics for the off-diagonal values (i.e., Figure 6, below and Figure 11, middle) and the diagonal values (i.e.,
Figure 11, below) can be computed conveniently.

For the computation of approximate rank, we follow the prior convention in (Yang et al., 2020; Kumar et al., 2021). For a
matrix N , let {σi(N)} be the singular values of it arranged in decreasing order, i.e., σ1 ≥ · · · ≥ σd ≥ 0. the approximate
rank regarding a threshold δ is defined as srankδ(N) = min{k :

∑k
i=1 σi(N) ≥ (1 − δ)

∑d
i=1 σi(N)}. In this paper,

we use δ = 0.01. In other words, this means the approximate rank is the first k singular values that hold more than 99%
information of all singular values. Accordingly, we use this computation for the results of approximate rank in Figure 6
(above) and Figure 11 (above).

Apart from our analysis on empirical NTK shown in Figure 6, we provide additional NTK analysis by including TRAC in
comparison and also showing the summation of the diagonal values of empirical NTK matrix. The results are shown in
Figure 11. C-CHAIN not only suppresses the off-diagonal values to decorrelate gradients, but also suppresses the diagonal
values to prevent the increased scale of gradient, which is also deemed to be a pathology of neural network. Moreover, we
found TRAC lies between C-CHAIN and Vanilla. This indicates that the NTK statistics used in our work also explain the
efficacy of TRAC.
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Figure 11. Analysis on NTK matrix in terms of approximate rank (above), the sum of absolute off-diagonal values (middle), and the sum
of absolute diagonal values(below) in continual ProcGen Starpilot.
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C. Complete Learning Curves
The learning curves for the missing twelve contiunal ProcGen environments are provided in Figure 12, Figure 13 and
Figure 14.
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Figure 12. Learning curves of different methods in four (of sixteen) continual ProcGen environments: fruitbot, chaser, bigfish,
caveflyer. The curves and the shades are means and standard errors over six seeds.
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Figure 13. Learning curves of different methods in four (of sixteen) continual ProcGen environments: climber, ninja, jumper, heist.
The curves and the shades are means and standard errors over six seeds.
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Figure 14. Learning curves of different methods in four (of sixteen) continual ProcGen environments: leaper, maze, plunder,
bossfight. The curves and the shades are means and standard errors over six seeds.
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