
Published as a workshop paper at DeLTa Workshop (ICLR 2025)

INTERLEAVED GIBBS DIFFUSION FOR CONSTRAINED
GENERATION

Gautham Govind Anil∗† Sachin Yadav† Dheeraj Nagaraj∗† Karthikeyan Shanmugam†

Prateek Jain†

ABSTRACT

We introduce Interleaved Gibbs Diffusion (IGD), a novel generative modeling
framework for mixed continuous-discrete data, focusing on constrained genera-
tion problems. Prior works on discrete and continuous-discrete diffusion models
assume factorized denoising distribution for fast generation, which can hinder
the modeling of strong dependencies between random variables encountered in
constrained generation. IGD moves beyond this by interleaving continuous and
discrete denoising algorithms via a discrete time Gibbs sampling type Markov
chain. IGD provides flexibility in the choice of denoisers, allows conditional
generation via state-space doubling and inference time scaling via the ReDeNoise
method. Empirical evaluations on three challenging tasks—solving 3-SAT, gen-
erating molecule structures, and generating layouts—demonstrate state-of-the-art
performance. Notably, IGD achieves a 7% improvement on 3-SAT out of the box
and achieves state-of-the-art results in molecule generation without relying on
equivariant diffusion or domain-specific architectures. We explore a wide range of
modeling, and interleaving strategies along with hyperparameters in each of these
problems.

1 INTRODUCTION

Autoregressive models have been highly successful at modeling languages in a token by token fashion.
While finetuned autoregressive (AR) models can produce realistic texts and maintain lengthy human-
like conversations, they are known to fail at simple planning and reasoning tasks. One hypothesis
is that AR generation is not suited for generating tokens where non-trivial constraints have to be
satisfied. There have been efforts such as Chain-of-Thought prompting (Wei et al., 2022) and O1
(OpenAI, 2024) which force the model to “think over” the solution in many steps before answering.

Diffusion models, another class of generative models, start with pure noise and slowly denoise to
obtain a sample from the desired distribution (Ho et al., 2020; Song et al., 2020). While its outstanding
applications have been in the context of generating images (i.e, continuous data) (Saharia et al., 2022;
Rombach et al., 2022), it has been extended to discrete data (Austin et al., 2021; Lou et al., 2023).
This model has shown promising results in constrained generation in a wide range of tasks, such
as layout generation, molecule generation, 3SAT, SuDoKu (Ye et al., 2024) and traveling salesman
problem (Zhang et al., 2024), outperforming AR models. This is attributed to diffusion models being
able to parse the entire set of generated tokens multiple times during denoising.

Algorithms based on D3PM (Austin et al., 2021) as presented in prior works (Inoue et al., 2023;
Ye et al., 2024) and mixed mode diffusion based works such as Hua et al. (2024) assume that the
denoising process samples from a product distribution of the tokens, which seems unreasonable in
cases of constrained generation where the tokens can be highly dependent. It would be desirable if
partial denoising of a token (continuous or discrete) is dependent on current denoised status of all
other tokens. Alternative proposals such as Concrete Score Matching (Meng et al., 2022), SEDD
(Lou et al., 2023), symmetric diffusion (Zhang et al., 2024) and Glauber Generative Model (GGM)

∗Correspondence to: Gautham Govind Anil (gauthamga@google.com) and Dheeraj Nagaraj
(dheerajnagaraj@google.com).

†Google DeepMind.

1

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

(Varma et al., 2024) do not assume such a factorization. Symmetric diffusion considers the special
case of generating permutations using riffle shuffle as the noising process and derives algorithms for
denoising it exactly. This demonstrates gains in a variety of planning problems. GGM is a discrete
diffusion model which denoises a lazy random walk exactly by learning to solve a class of binary
classification problems.

Gibbs Sampler is a Markov chain which samples jointly distributed random variables by resampling
one co-ordinate at a time from the accurate conditional distribution. This has been studied widely
in Theoretical Computer Science, Statistical Physics, Bayesian Inference and Probability Theory
(Geman & Geman, 1984; Turchin, 1971; Gelfand & Smith, 1990; Martinelli, 1999; Levin & Peres,
2017). While the original form gives a Markov Chain Monte Carlo (MCMC) algorithm, Varma
et al. (2024) considered a learned, time dependent, systematic scan variant of the Gibbs sampler for
generative modeling over discrete spaces.

In this work, we extend the principle of time dependent Gibbs sampler to mixed mode data - sequences
with both discrete tokens and continuous vectors. Such problems arise naturally in applications like
Layout Generation (Levi et al., 2023) and Molecule Generation (Hua et al., 2024).

Our Contributions: We introduce an effective method to train a diffusion based model to solve
planning problems and constrained generation problems where the sequence being generated could
involve both discrete and continuous tokens. The key contributions include:

1. The Interleaved Gibbs Diffusion (IGD) framework for sampling from mixed distributions
(mix of continuous and discrete variables), by performing Gibbs sampling type denoising,
one element at a time. This does not assume factorizability of the denoising process.

2. Theoretical justification for the proposed denoising process and a novel adaptation of
Tweedie’s formula to the IGD setting where we require learn conditional score function
by estimating the the cumulative noise over multiple round robins despite the conditioning
chain during the process.

3. A framework for conditional sampling when some elements are fixed via state space
doubling inspired by DLT (Levi et al., 2023) and an inference time algorithm called
ReDeNoise inspired by SDEdit (Meng et al., 2021). ReDeNoise can potentially boost the
accuracy of generation at the cost of additional compute.

4. State-of-the-art performance in constrained generation problems such as 3-SAT, molecule
generation and layout generation. In molecule generation and layout generation, we outper-
form existing discrete-continuous frameworks and achieve SoTA results without relying on
specialized diffusion processes or domain-specific architectures. In 3-SAT, we outperform
the SoTA diffusion model out of the box and study how accuracy improves with the model
size and dataset size.

2 PRELIMINARIES

Notation Let X be a finite set, let L be the sequence length such that L = L1 + L2, L1, L2 ∈
N ∪ {0}. Let dL1+1, . . . , dL ∈ N be the continuous dimensions. We let our state space to be
SL = XL1 ×L

i=L1+1 Rdi . The elements of this set can be represented as a tuple/sequence of length
L. For any s ∈ SL, let si denote the element in s at position i in the tuple. Note that, si is a discrete
token from the set X if i ≤ L1 and it is a continuous vector sampled from Rdi if L1 < i ≤ L. Let
s−i denote the tuple of length L− 1 obtained by removing the element at the ith position of s.

Problem Setup Given samples s1, . . . , sN from the target distribution π over SL, the task is to learn
a model which can generate more samples approximately from π. We will call D = {s1, . . . , sN} to
be the dataset.

3 INTERLEAVED GIBBS DIFFUSION

We now describe the Interleaved Gibbs Diffusion (IGD) framework for sampling from a target
distribtuion π over SL, given access to discrete and continuous denoisers which satisfy certain

2

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

C0
0 D0

0 C0
1 D0

1 C0
2 D0

2 …

Forward
Process

Time 0

C1
0 D0

0 C0
1 D0

1 C0
2 D0

2 … Time 1

C1
0 D1

0 C0
1 D0

1 C0
2 D0

2
… Time 2

C1
0 D1

0 C1
1 D0

1 C0
2 D0

2

…

Time 3

C1
0 D1

0 C1
1 D1

1 C0
2 D0

2

C1
0 D1

0 C1
1 D1

1 C1
2 D0

2

C1
0 D1

0 C1
1 D1

1 C1
2 D1

2

One Round Robin

…

Time 4

C0
0

C1
0

D0
0

D1
0

Figure 1: Interleaved Noising Process: Sequential noising of discrete tokens (Ds) and continuous
vectors (Cs). Noising occurs one element at a time, keeping other elements unchanged.

properties. In IGD, both the forward noising and reverse denoising processes operate one element at
a time. Our noising process is illustrated in Figure 1.

3.1 FORWARD NOISING PROCESS

The forward noising process takes a sample s from the target distribution π and applies a discrete
time Markov chain to obtain the trajectory s(0), s(1), . . . , s(T), where T is the total number of
timesteps. We refer to t as the sequence time. Note that s(0) = s. For each t, we choose a position
it ∈ {1, 2, . . . , L} to be noised at sequence time t. In this work, we choose it in a round-robin fashion
from some permutation of {1, 2, . . . , L} so that all positions are noised exactly once after every L
sequence timesteps; we call this permutation the interleaving pattern. Given it, the corresponding
sequence element sit can either be discrete or continuous, based on which we either perform either
discrete noising or continuous noising.

Discrete Noising If sit is discrete (i.e, it ≤ L1), following Varma et al. (2024), we consider token
ϕ /∈ X and define a probability distribution Πt over X ∪ {ϕ}. Note that Πt depends on the sequence
time t. We refer to Πt as the discrete noise schedule. Then the discrete noising process is as follows:

Sample zt ∼ Πt independent of s(t). Then we have:

s
(t+1)
j =

{
zt, if j = it and zt ̸= ϕ

s
(t)
j , otherwise

Continuous Noising If sit is continuous (i.e, L1 < it ≤ L2), we use mt
it

to denote the number of
times position it has been visited by sequence time t (including the visit at t). Let m = maxit m

T
it

.
Define [β̃j]

m
j=1 to be a monotonically increasing sequence, which we refer to as the continuous

noise schedule. Then, the continuous noising process is given by: s(t+1)
it

=
(√

1− β̃mt
it

)
s
(t)
it

+(√
β̃mt

it

)
ϵ(t) where ϵ(t) ∼ N (0, I). Note that s(t+1)

j = s
(t)
j ∀j ̸= it.

Lemma 3.1 (Mild extension of Lemma 1 in Varma et al. (2024)). Denote the distribution of
s(t) by Pt. Suppose Πt (·|X) = Π (·|X) for all t, Πt(ϕ) ≤ 1 − ϵ for some ϵ > 0 and

limT→∞
∑

j log
(
1− β̃j

)
= −∞. As T → ∞, PT converges to the product distribution:

Π(·|X)L1 ×L
i=L1+1 N (0, Idi) .

Co-ordinate wise independent noising: The noising process of any element s(t)it
at any time t is

independent of other elements; this allows us to sample s(t) at any time t directly from s(0) without
having to compute s(1), s(2), ..., s(t) sequentially (Algorithm given in Appendix C).

3.2 REVERSE DENOISING PROCESS

The reverse denoising process takes a sample ŝ(T) from PT as the input and applies a discrete time
Markov chain to obtain the trajectory ŝ(T), ŝ(T−1), . . . , ŝ(0), where T is the total number of sequence
timesteps. Recall that it denotes the position which was noised at time t during the forward process.

3

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Given ŝ(t+1), we set ŝ(t)−it
= ŝ

(t+1)
−it

. Depending on whether ŝ(t+1)
it

is discrete (resp. continuous) we

use the discrete denoiser (resp. continuous denoiser) to sample ŝ
(t)
it

(s(t+1) is the sample from the
forward process at time t+ 1):

Discrete Denoiser is a (learned) sampling algorithm which can sample from P̂t,it(·|s), a probability
distribution over X given s as the input. P̂t,it(·|s = ŝ(t+1)) approximates one of the following:

P(s(t)it
= ·|s(t+1)

−it
= ŝ

(t+1)
−it

) or P(s(t)it
= ·|s(t+1) = ŝ(t+1))

Discrete Denoising Step: DiscDen(ŝ(t), it, t) outputs a sample ŝ
(t)
it
∼ P̂t,it

(
·|s = ŝ(t+1)

)
.

Continuous Denoiser is a (learned) sampling algorithm which can sample from the distribution
P̂t,it(·|s) over Rdit given ŝ(t+1) as the input. P̂t,it(·|s = ŝ(t+1)) approximates the conditional
distribution P(s(t)it

= ·|s(t+1) = ŝ(t+1)).

Continuous Denoising Step: ContDen(ŝ(t)it
, it, t) outputs a sample ŝ

(t)
it
∼ P̂t,it

(
·|s = ŝ(t+1)

)
.

Lemma 3.2. Assume ŝ(T) ∼ PT and assume we have access to ideal discrete and continuous
denoisers. Then, ŝ(0) obtained after T steps of reverse denoising process, will be such that ŝ(0) ∼ π.

From the definition of the discrete and continuous denoisers, it is clear that unlike the forward process,
the reverse process is not factorizable. However, by sacrificing factorizability, we are able to achieve
exact reversal of the forward process, provided we have access to ideal denoisers. The denoising
algorithm is detailed in Appendix D.

3.3 REDENOISE ALGORITHM

Inspired by Meng et al. (2021), we propose a simple but effective mechanism for quality improvements
at inference time. Given a sample obtained through complete reverse process ŝ(0), we repeat the
following two steps NR times: (1) Noise ŝ(0) for TR rounds to obtain ŝ(TR). (2) Denoise ŝ(TR) back
to ŝ(0). While NR decides the number of times the noise-denoise process is repeated, TR decides
how much noising is done each time; these are hyperparameters which can be tuned.

3.4 CONDITIONAL GENERATION

We train the model for conditional generation - i.e, generate a subset of the co-ordinates conditioned
on the rest. We adopt the state-space doubling strategy, inspired by Levi et al. (2023). A binary mask
vector is created indicating whether each element in the sequence is part of the conditioning or not; for
vectors in Rd, a mask is created for each element in the vector. The mask is now embedded/projected
and added to the discrete/continuous embedding and fed into the model while training. Further,
during the forward and reverse processes, the conditioned elements are not noised/denoised.

4 TRAINING THE DENOISERS

Having established the IGD framework, we now describe strategies to train the discrete and continuous
denoisers, which have been black boxes in our discussion so far.

4.1 TRAINING THE DISCRETE DENOISER

Throughout this subsection, we use gθ to denote a parameterised neural network which is trained to
be the discrete denoiser. gθ takes input from the space SL × {0, 1, . . . , T − 1} and outputs logits in
the space [0, 1]|X |. We now describe two strategies to train gθ:

4.1.1 |X |-ARY CLASSIFICATION

In this approach, the objective is to learn P
(
s
(t)
it

= ·|s(t+1) = ŝ(t)
)

. So, we directly train the model

to predict s(t)it
given s(t+1). Since there are |X | discrete tokens in the vocabulary, this is a |X |-ary

4

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

classification problem, where the input is s(t+1) and the corresponding label is s
(t)
it

. Hence, we
minimize the cross-entropy loss: LCE

(
θ; s(t+1), t

)
= − log

(
g
sit
θ

(
s(t+1), t

))
where gsitθ (·) denotes

the logit corresponding to token s
(t)
it

.

4.1.2 BINARY CLASSIFICATION

In this approach, the objective is to learn P
(
s
(t)
it

= ·|s(t+1)
−it

= ŝ
(t)
−it

)
. We adapt Lemma 3.1 from

Varma et al. (2024) to simplify this objective:

Lemma 4.1. Let s ∈ SL. Then, for x ∈ X and discrete s
(t)
it

, we can

write P
(
s
(t)
it

= x|s(t+1)
−it

= s−it

)
as : P(zt=x)

P(zt=ϕ)

(
1

P
(
zt=x|s(t+1)

−it
=s−it ,s

(t+1)
it

=x
) − 1

)
where(

s(0), . . . s(T),
)

is obtained from forward process.

Hence, it is sufficient for the model to learn P
(
zt = x|s(t+1)

−it
= s−it , s

(t+1)
it

= x
)

for all x ∈

X . This can be formulated as a binary classification task: Given s
(t+1)
−it

and s
(t+1)
it

= x as the
input, predict whether zt = x or zt = ϕ. Hence, we minimize the binary cross-entropy loss:
LBCE

(
θ; s

(t+1)
−it

, t
)
= −1zt ̸=ϕ log

(
gxθ

(
s
(t+1)
−it

, t
))
−1zt=ϕ log

(
1− gxθ

(
s
(t+1)
−it

, t
))

where gxθ (·)
denotes the logit corresponding to token x.

Preliminary experiments (Appendix I.4) gave better results with the binary classification loss; hence
we use binary classification for training the discrete denoiser.

4.2 TRAINING THE CONTINUOUS DENOISER

In continuous diffusion, the noising (and denoising) process happens in an uninterrupted fashion.
However, in IGD, the noising and denoising happen with interruptions, because of the sequential
nature. Thus, in the reverse process, the conditioning surrounding a continuous element changes
every time it is picked for denoising. We adapt the standard Tweedie’s formula to show that using the
current conditioning and estimating the cumulative noise added across interruptions, still reverses the
continuous elements in an interleaved manner. This is the novelty behind Lemma 4.2.

Suppose we are given a sample s(t) from the distribution at time t. Let d
= denote equality in

distribution. Suppose x0 = s
(t)
it
∈ Rdit and consider the Ornstein-Uhlenbeck Process dxτ =

−xτdτ +
√
2dBτ with standard Brownian motion Bτ . Then xτ0 |s(t)

d
= s

(t+1)
it
|s(t) whenever

τ0 = 1
2 log

(
1

1−βmt
it

)
. Based on the observations in Song et al. (2020); Ho et al. (2020), the reverse

SDE given by
xrev
τ = xrev

τ dτ + 2∇ log qτ0−τ (x
rev
τ |s

(t)
−it

)τ +
√
2dBτ (1)

is such that if xrev
0 = s

(t+1)
it

then xrev
τ0 |s

(t+1) d
= s

(t)
it
|s(t+1) where qτ (·|s(t+1)) is the conditional

density function of xτ . We use DDPM (Ho et al., 2020) to sample from P(s(t)it
= ·|s(t+1)) by learning

the score function∇ log qτ (·|s(t+1)
−it

) and then discretizing the reverse SDE in Equation equation 1.

To obtain a more precise discretization, we divide the noising at sequence timestep t into Kt
it

element

timesteps (whenever sit is a continuous vector). We define s
(t,0)
it

= s
(t)
it

, s
(t,Kt

it
)

it
= s

(t+1)
it

, and for

k ∈ [0, 1, . . . ,Kt
it
− 1]: s(t,k+1)

it
∼ N

((√
1− β(t, k)

)
s
(t,k)
it

, (β(t, k)) I
)

where β is a continuous
noise schedule which outputs a scalar given (t, k) as input. Following the popular DDPM (Ho et al.,
2020) framework, we rewrite the noising process as:

s
(t,k+1)
it

=
(√

ᾱ(t, k)
)
s
(0)
it

+
(√

1− ᾱ(t, k)
)
ϵ (2)

where ϵ ∼ N (0, I) and ᾱ is a cumulative noise schedule obtained from β̂. The exact relations
between β̃ (defined in 3.1), β and ᾱ are given in Appendix B. With this discretization, the reverse

5

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

process becomes:ŝ(t,k)it
=

(
ŝ
(t,k+1)
it

−β(t,k+1)p(s(t,k+1))
)

√
1−β(t,k+1)

+
√
β(t, k + 1)ϵ′ where ϵ′ ∈ N (0, I) and

p(s(t,k+1)) is the score function ∇
s
(t,k+1)
it

log q(s
(t,k+1)
it

|s(t,k+1)
−it

). Now to learn the score function,

we use the following Lemma:
Lemma 4.2. Under the considered forward process where noising occurs independently, we have:

∇
s
(t,k+1)
it

log q(s
(t,k+1)
it

|s(t,k+1)
−it

) = − 1√
1− ᾱ

E
[
ϵ|s(t,k+1)

]

Hence, if we learn E
[
ϵ|s(t,k+1)

]
exactly, the forward process can be reversed exactly starting from

the stationary distribution. Hence, we minimize the regression loss:
∥∥ϵ− g

(
s(t,k+1), t, k

)∥∥2
2

where
g(·) is a neural network which is trained to predict ϵ given

(
ŝ(t,k+1), t, k

)
.

Apart from DDPM sampling, we also evaluated DDIM, which is an ODE based method. However,
preliminary results (reported in Appendix H.6) indicated that DDPM performs better. A detailed
description of the exact training and inference algorithms we use is given in Appendix E. Refer to
Appendix F for Model Architecture details.

5 EXPERIMENTS

We evaluate the IGD framework on three different tasks: Layout Generation, Molecule Generation
and the Boolean Satisfiability problem. While the first two tasks involve generating both discrete
tokens and continuous vectors, 3SAT involves only discrete tokens. Nevertheless, all three problems
are constrained generation problems and can hence benefit from the exact reversal of IGD framework.
(See Appendix H for Molecule Generation results.)

5.1 LAYOUT GENERATION

5.1.1 BACKGROUND

Layout generation aims to generate coherent arrangements of UI elements (e.g., buttons, text blocks)
or document components (e.g., titles, figures, tables) that satisfy both functional requirements and
aesthetic principles. This problem is important in graphic design and interface prototyping.

Formally, each layout is a set of N elements {ei}Ni=1. Each element ei is represented by a discrete
category ti ∈ N and a continuous bounding box vector pi ∈ R4. We use the parameterization
pi = [xi, yi, li, wi]

⊤, where (xi, yi) represents the upper-left corner of the bounding box, and
(li, wi) its length and width, respectively.

5.1.2 EXPERIMENTAL SETUP

We adopt a setup similar to Guerreiro et al. (2025) for standardized comparison to existing layout
generation methods.

Datasets: We evaluate our method on two popular layout generation datasets:
1. PubLayNet (Zhong et al., 2019): Contains layouts of scientific documents annotated with 5 element
categories.
2. RICO (Deka et al., 2017): Provides user-interface (UI) layouts with 25 element categories.
Following prior works (Jiang et al., 2023; Zhang et al., 2023), layouts containing more than 20
elements are discarded from the datasets.

Evaluation metrics: Following previous works (Inoue et al., 2023; Chen et al., 2024), we evaluate
our method primarily using two metrics: Frechet Inception Distance (FID) and Maximum Intersec-
tion over Union (mIoU). Details about these metrics and results on additional evaluation metrics
(Alignment and Overlap) are presented in Appendix I.1. Baseline metrics in Table 1 are reported as
given in Guerreiro et al. (2025).

Tasks: Results are presented on three common layout generation tasks:

6

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Table 1: Layout Generation: Quantitative results on the RICO and PubLayNet datasets. Refer to
section 5.1.2 for details on evaluation tasks and metrics.

RICO

Unconditioned
Category

Conditioned
Category+Size

Conditioned
Method FID↓ mIoU↑ FID↓ mIoU↑ FID↓ mIoU↑
LayoutTransformer 24.32 0.587 - - - -
LayoutFormer++ 20.20 0.634 2.48 0.377 - -
NDN-none - - 13.76 0.350 - -
LayoutDM 4.43 0.582 2.39 0.341 1.76 0.424
DLT 13.02 0.566 6.64 0.326 6.27 0.424
LayoutDiffusion 2.49 0.620 1.56 0.345 - -
LayoutFlow 2.37 0.570 1.48 0.322 1.03 0.470

Ours 2.54 0.594 1.06 0.385 0.96 0.524

PubLayNet

Unconditioned
Category

Conditioned
Category+Size

Conditioned
Method FID↓ mIoU↑ FID↓ mIoU↑ FID↓ mIoU↑
LayoutTransformer 30.05 0.359 - - - -
LayoutFormer++ 47.08 0.401 10.15 0.333 - -
NDN-none - - 35.67 0.310 - -
LayoutDM 36.85 0.382 39.12 0.348 29.91 0.436
DLT 12.70 0.431 7.09 0.349 5.35 0.426
LayoutDiffusion 8.63 0.417 3.73 0.343 - -
LayoutFlow 8.87 0.424 3.66 0.350 1.26 0.454

Ours 8.32 0.419 4.08 0.402 0.886 0.553

1. Unconditional Generation: No constraints.
2. Category-Conditioned Generation: Element categories are specified.
3. Category + Size-Conditioned Generation: Both element categories and sizes are specified.

Baselines: Diffusion-based approaches include: LayoutDM (Inoue et al., 2023) (applies discrete
diffusion to handle element categories and positions), LayoutDiffusion (Zhang et al., 2023) (employs
iterative refinement with tailored noise schedules for layout attributes), and DLT (Levi et al., 2023) (
separates element categories and coordinates into distinct diffusion processes). Flow-based: Layout-
Flow (Guerreiro et al., 2025) (leverages trajectory learning for efficient sampling). Non-diffusion
baselines comprise: LayoutTransformer (Gupta et al., 2021) (autoregressive sequence generation),
LayoutFormer++ (Jiang et al., 2023) (serializes constraints into token sequences for conditional
generation), and NDN-none (Lee et al., 2020) (adversarial training without constraints).

5.1.3 RESULTS

Table 1 presents quantitative results across different tasks and datasets. On RICO, we outperform
all baselines in category-conditioned and category+size-conditioned generation, with competitive
performance on unconditioned generation. On PubLayNet, we achieve the best FID in unconditioned
and category+size-conditioned generation.

Notably, IGD outperforms DLT, a discrete-continuous diffusion model which assumes factorizability
of the reverse process, on most of the tasks in both datasets by a significant margin. This further
demonstrates the effectiveness of our framework in comparison to existing discrete-continuous
diffusion models. We also note that models such as LayoutDM and LayoutDiffusion employ
specialized diffusion processes tailored for layout generation, whereas we directly employ our
discrete-continuous diffusion framework without further modifications. We refer to Appendix I for
further implementation details, example generations as well as extensive ablations.

5.2 BOOLEAN SATISFIABILITY PROBLEM

5.2.1 BACKGROUND

The Boolean Satisfiability (SAT) problem is the task of determining whether there exists a binary
assignment to the variables of a given Boolean expression (in Conjunctive Normal Form (CNF)) that
makes it evaluate to True. SAT is a canonical NP-Complete problem (Cook, 1971) and underlies a
broad range of real-world applications (Clarke et al., 2001; Gomes et al., 2008; Vizel et al., 2015).

Our goal is to find a valid assignment for the Boolean variables, when the given CNF formula is
satisfiable. Let n be the number of variables and m the number of clauses. In Random k-SAT, a
well-studied variation of SAT, the relative difficulty of an instance is determined by the clause density
m
n . There is a sharp transition between satisfiable and unsatisfiable instances of random 3-SAT at
the critical clause density αsat(k = 3), when m is set close to m = 4.258n+ 58.26n− 2

3 (Ding et al.,
2015). Following the setup of Ye et al. (2024), we choose m close to this threshold to focus on
relatively hard random 3-SAT instances.

5.2.2 EXPERIMENTAL SETUP

Datasets: We consider two experimental setups:

7

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Table 2: SAT: Accuracy with increasing
number of variables n. Separate model
trained for each n.

Method Params n = 5 n = 7 n = 9

GPT-2 Scratch 6M 97.6 85.6 73.3
MDM 6M 100.0 95.9 87.0

Ours 6M 100.0 98.0 94.5
85M - 99.9 99.9

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Variables (n)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Model Size:
6M
85M
185M

Figure 2: SAT: Accuracy for different
number of variables across model sizes
trained on a combined dataset for n ∈
{6, 7, . . . , 20}.

Setup 1 (Single n): We follow the train and test partitions from Ye et al. (2024), which provide
separate datasets for n= 5, 7, and 9, for direct comparison. Specifically, n = 5 and n = 7, use a
training set of 50K samples each, while for n = 9, the training set consists of 100K samples.

Setup 2 (Combined n): We then move to a more challenging, large-scale setting by extending the
range of n up to 20. Following the same generation procedure, for each n in 6, 7, . . . , 20, we generate
1M training samples, resulting in a combined dataset of 15M instances. In this setup, we train a
single model on the aggregated data covering all n from 6 to 20. Figure 2 illustrates how the model’s
accuracy varies with n under different model sizes.

More details on data generation and model configuration are provided in Appendix J.

Baselines: We compare against two types of baselines: 1) Autoregressive Models with GPT-2
architecture (Radford et al., 2019) trained from scratch and 2) Discrete diffusion models (Ye et al.,
2024) (MDM) that applies adaptive sequence- and token-level reweighting to emphasize difficult
subgoals in planning and reasoning. MDM has demonstrated strong performance on tasks such as
Sudoku and SAT compared to standard autoregressive and discrete diffusion approaches.

5.2.3 RESULTS

In Table 2, we see that our method consistently outperforms the autoregressive (GPT-2) and diffusion-
based (MDM) baselines across different choices for n. This performance gap is more pronounced for
larger n: at n = 9, our model achieves 94.5% accuracy, compared to 87.0% for MDM and 73.3%
for GPT-2. Scaling the model to 85M parameters further reaches near-perfect accuracy (99.9%) for
n = 7 and n = 9, thus highlighting the crucial role of model capacity in handling complex SAT
instances.

For Setup 2, Figure 2 reveals a steep accuracy drop for the 6M-parameter model; it starts declining
around n = 8 and approaches zero by n = 12. In contrast, the 85M-parameter model remains
robust up to n = 18, and an even larger 185M-parameter model sustains high accuracy near n = 19.
This degradation trend aligns with the theoretical hardness of random 3-SAT, where solution spaces
become exponentially sparse as n increases. Larger models postpone this accuracy drop underscoring
a direct relationship between parameter count and combinatorial reasoning capacity.

6 CONCLUSION AND FUTURE WORK

We propose IGD, a diffusion framework for mixed-mode data sampling. We theoretically establish
the exactness of this framework and empirically validate its effectiveness across multiple tasks
through extensive experiments. Future work can explore other choices for samplers such as Flow
Matching/Rectified Flow. In layout generation and molecule generation, specialized architectures
and losses could be incorporated to further improve performance.

8

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Jian Chen, Ruiyi Zhang, Yufan Zhou, and Changyou Chen. Towards aligned layout generation via
diffusion model with aesthetic constraints. In The Twelfth International Conference on Learning
Representations, 2024.

Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking using
satisfiability solving. Form. Methods Syst. Des., 19(1):7–34, July 2001. ISSN 0925-9856. doi:
10.1023/A:1011276507260.

Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, STOC ’71, pp. 151–158, 1971.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey
Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design
applications. In Proceedings of the 30th annual ACM symposium on user interface software and
technology, pp. 845–854, 2017.

Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. In Proceedings
of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, pp. 59–68,
2015.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d roto-
translation equivariant attention networks. Advances in neural information processing systems, 33:
1970–1981, 2020.

Niklas Gebauer, Michael Gastegger, and Kristof Schütt. Symmetry-adapted generation of 3d point
sets for the targeted discovery of molecules. In Advances in Neural Information Processing Systems
32. 2019.

Alan E Gelfand and Adrian FM Smith. Sampling-based approaches to calculating marginal densities.
Journal of the American statistical association, 85(410):398–409, 1990.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on pattern analysis and machine intelligence, (6):
721–741, 1984.

Carla P Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability solvers. Foundations
of Artificial Intelligence, 3:89–134, 2008.

Julian Jorge Andrade Guerreiro, Naoto Inoue, Kento Masui, Mayu Otani, and Hideki Nakayama.
Layoutflow: flow matching for layout generation. In European Conference on Computer Vision,
pp. 56–72. Springer, 2025.

Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry S Davis, Vijay Mahadevan, and Abhi-
nav Shrivastava. Layouttransformer: Layout generation and completion with self-attention. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1004–1014, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International conference on machine learning, pp. 8867–8887.
PMLR, 2022.

Chenqing Hua, Sitao Luan, Minkai Xu, Zhitao Ying, Jie Fu, Stefano Ermon, and Doina Precup.
Mudiff: Unified diffusion for complete molecule generation. In Learning on Graphs Conference,
pp. 33–1. PMLR, 2024.

9

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit for prototyping
with SAT oracles. In SAT, pp. 428–437, 2018. doi: 10.1007/978-3-319-94144-8 26. URL
https://doi.org/10.1007/978-3-319-94144-8_26.

Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. Layoutdm:
Discrete diffusion model for controllable layout generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10167–10176, 2023.

Zhaoyun Jiang, Jiaqi Guo, Shizhao Sun, Huayu Deng, Zhongkai Wu, Vuksan Mijovic, Zijiang James
Yang, Jian-Guang Lou, and Dongmei Zhang. Layoutformer++: Conditional graphic layout
generation via constraint serialization and decoding space restriction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18403–18412, 2023.

Jonas Köhler, Leon Klein, and Frank Noe. Equivariant flows: Exact likelihood generative learning for
symmetric densities. In Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research. PMLR, 2020.

Greg Landrum et al. Rdkit: Open-source cheminformatics, 2006.

Hsin-Ying Lee, Lu Jiang, Irfan Essa, Phuong B Le, Haifeng Gong, Ming-Hsuan Yang, and Weilong
Yang. Neural design network: Graphic layout generation with constraints. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III
16, pp. 491–506. Springer, 2020.

Elad Levi, Eli Brosh, Mykola Mykhailych, and Meir Perez. Dlt: Conditioned layout generation
with joint discrete-continuous diffusion layout transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2106–2115, 2023.

David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American Mathemat-
ical Soc., 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. 2023.

Fabio Martinelli. Lectures on glauber dynamics for discrete spin models. Lectures on probability
theory and statistics (Saint-Flour, 1997), 1717:93–191, 1999.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021.

Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching: Generalized
score matching for discrete data. Advances in Neural Information Processing Systems, 35:34532–
34545, 2022.

OpenAI. Learning to reason with llms, 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Xingang Peng, Jiaqi Guan, Qiang Liu, and Jianzhu Ma. Moldiff: Addressing the atom-bond
inconsistency problem in 3d molecule diffusion generation. In International Conference on
Machine Learning, pp. 27611–27629. PMLR, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

10

https://doi.org/10.1007/978-3-319-94144-8_26
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Valentin F Turchin. On the computation of multidimensional integrals by the monte-carlo method.
Theory of Probability & Its Applications, 16(4):720–724, 1971.

Harshit Varma, Dheeraj Nagaraj, and Karthikeyan Shanmugam. Glauber generative model: Discrete
diffusion models via binary classification. arXiv preprint arXiv:2405.17035, 2024.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. In The Eleventh International Confer-
ence on Learning Representations, 2023a. URL https://openreview.net/forum?id=
UaAD-Nu86WX.

Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d
denoising diffusion for molecule generation. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 560–576. Springer, 2023b.

Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfiability solvers and their
applications in model checking. Proceedings of the IEEE, 103(11):2021–2035, 2015.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding and
improving layer normalization. In Advances in Neural Information Processing Systems, vol-
ume 32, 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf.

Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3d molecule generation. In International Conference on Machine Learning,
2023.

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
Beyond autoregression: Discrete diffusion for complex reasoning and planning. arXiv preprint
arXiv:2410.14157, 2024.

Junyi Zhang, Jiaqi Guo, Shizhao Sun, Jian-Guang Lou, and Dongmei Zhang. Layoutdiffusion:
Improving graphic layout generation by discrete diffusion probabilistic models. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 7226–7236, 2023.

Yongxing Zhang, Donglin Yang, and Renjie Liao. Symmetricdiffusers: Learning discrete diffusion
on finite symmetric groups. arXiv preprint arXiv:2410.02942, 2024.

Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: largest dataset ever for document
layout analysis. In 2019 International Conference on Document Analysis and Recognition (ICDAR),
2019. doi: 10.1109/ICDAR.2019.00166.

11

https://openreview.net/forum?id=UaAD-Nu86WX
https://openreview.net/forum?id=UaAD-Nu86WX
https://proceedings.neurips.cc/paper_files/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

A PROOFS

A.1 LEMMA 3.1

Statement:
Denote the distribution of s(t) by Pt. Suppose Πt (·|X) = Π (·|X) for all t, Πt(ϕ) ≤ 1 − ϵ for

some ϵ > 0 and limT→∞
∑

j log
(
1− β̃j

)
= −∞. As T → ∞, PT converges to the product

distribution: Π(·|X)L1 ×L
i=L1+1 N (0, Idi

) .

Proof:
We closely follow the proof of Lemma 1 in Varma et al. (2024).

Note that the forward noising for each element is independent of all other elements. Hence, it suffices
to consider the noising of each element separately.

Consider a discrete element. By assumption, the probability of not choosing ϕ:

1−Π(ϕ) ≥ ϵ

where ϵ > 0 for all. Further, when ϕ is not chosen at time t, then the distribution of the discrete token
is Π(·|X) for all time ≥ t independent of other tokens. The probability of choosing only ϕ until time
t is at most (1− ϵ)t and this goes to 0 as t→∞. Therefore with probability 1, asymptotically, every
discrete element is noised to the distribution Π(·|X).
Consider a continuous vector at position i. From the definition of the forward process, we have:

s
(t+1)
i =

(√
1− β̃mt

i

)
s
(t)
i +

(√
β̃mt

i

)
ϵ (3)

where ϵ ∼ N (0, I). Merging the Gaussians, we have:

s
(t+1)
i =

(√
α̃mt

i

)
s
(0)
i +

(√
1− α̃mt

i

)
ϵ

where:

α̃mt
i
=

mt
i∏

j=0

(1− β̃j)

Since mt
i denotes the number of times the position i is visited by sequence time t, mt

i → ∞ as

t→∞. Hence, from the assumption limT→∞
∑

j log
(
1− β̃j

)
= −∞, we have limt→∞ α̃mt

i
= 0

and hence the continuous vector will converge to an independent Gaussian with variance 1 per
continuous dimension.

12

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

A.2 LEMMA 3.2

Statement:
Assume ŝ(T) ∼ PT and assume we have access to ideal discrete and continuous denoisers. Then,

ŝ(0) obtained after T steps of reverse denoising process, will be such that ŝ(0) ∼ π.

Proof:
Recall that s(t) ∈ SL denotes the the sequence at sequence time t of the forward process. Further,

Pt denotes the probability measure of s(t) over SL. ŝ(t) ∈ SL denotes the the sequence at sequence
time t of the reverse process and let P̂t denote the probability measure of ŝ(t) over SL.

We now prove the lemma by induction. Assume that ŝ(t+1) d
= s(t+1), i.e., Pt+1 = P̂t+1. Consider a

measurable set A such that A ⊆ SL . Let y ∼ P̂t+1. From the measure decomposition theorem, we
have:

P(ŝ(t) ∈ A) =
∫
y

P
(
ŝ(t) ∈ A|ŝ(t+1) = y

)
dP̂t+1(y)

From the induction assumption, we can rewrite this as:

P(ŝ(t) ∈ A) =
∫
y

P
(
ŝ(t) ∈ A|ŝ(t+1) = y

)
dPt+1(y)

From the definition of the reverse process, we know that ŝ(t)−it
= ŝ

(t+1)
−it

. Therefore, we have:

P
(
ŝ(t) ∈ A|ŝ(t+1) = y

)
= P

(
ŝ
(t)
it
∈ A−it (y−it) |ŝ(t+1) = y

)
where A−it (y−it) = {xit : x ∈ A, x−it = y−it}. Depending on the reverse process chosen, we
have:

P
(
ŝ
(t)
it
∈ A−it (y−it) |ŝ(t+1) = y

)
= P

(
s
(t)
it
∈ A−it (y−it) |s(t+1) = y

)
or

P
(
ŝ
(t)
it
∈ A−it (y−it) |ŝ(t+1) = y

)
= P

(
s
(t)
it
∈ A−it (y−it) |s

(t+1)
−it

= y−it

)
Case 1: P

(
ŝ
(t)
it
∈ A−it (y−it) |ŝ(t+1) = y

)
= P

(
s
(t)
it
∈ A−it (y−it) |s(t+1) = y

)
We have:

P
(
ŝ(t) ∈ A|ŝ(t+1) = y

)
= P

(
s
(t)
it
∈ A−it (y−it) |s(t+1) = y

)
And hence:

P(ŝ(t) ∈ A) =
∫
y

P
(
s
(t)
it
∈ A−it (y−it) |s(t+1) = y

)
dPt+1(y)

= P(s(t) ∈ A)

Case 2: P
(
ŝ
(t)
it
∈ A−it (y−it) |ŝ(t+1) = y

)
= P

(
s
(t)
it
∈ A−it (y−it) |s

(t+1)
−it

= y−it

)
We have:

P
(
ŝ(t) ∈ A|ŝ(t+1) = y

)
= P

(
s
(t)
it
∈ A−it (y−it) |s

(t+1)
−it

= y−it

)
And hence:

P(ŝ(t) ∈ A) =
∫
y

P
(
s
(t)
it
∈ A−it (y−it) |s

(t+1)
−it

= y−it

)
dPt+1(y)

By measure decomposition theorem Pt+1(y) is factorizable as:

Pt+1(y) = Pt+1,−it(y−it)Pt+1,it(yit |y−it)

13

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Therefore:

P(ŝ(t) ∈ A) =
∫
y

P
(
s
(t)
it
∈ A−it (y−it) |s

(t+1)
−it

= y−it

)
(dPt+1,−it(y−it)) (dPt+1,it(yit |y−it))

=

∫
y−it

P
(
s
(t)
it
∈ A−it (y−it) |s

(t+1)
−it

= y−it

)
(dPt+1,it(yit |y−it)))

∫
yit

(dPt+1,it(yit))

= P(s(t) ∈ A)

Hence, we have ŝ(t)
d
= s(t), i.e. Pt = P̂t. Therefore, by induction P̂0 = π, provided P̂T = PT .

14

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

A.3 LEMMA 4.2

Statement: Under the considered forward process where noising occurs independently, we have:

∇
s
(t,k+1)
it

log q(s
(t,k+1)
it

|s(t,k+1)
−it

) = − 1√
1− ᾱ

E
[
ϵ|s(t,k+1)

]
Proof: Let us split ŝ(t,k+1) =

[
ŝ
(t,k+1)
it

ŝ
(t,k+1)
−it

]
. Note that, ŝ(t,k+1)

it
is the continuous part that is

being de noised.

∇
ŝ
(t,k+1)
it

log q(ŝ
(t,k+1)
it

|ŝ(t,k+1)
−it

) =
∇

ŝ
(t,k+1)
it

q(ŝ
(t,k+1)
it

|ŝ(t,k+1)
−it

)

q(ŝ
(t,k+1)
it

|ŝ(t,k+1)
−it

)

=
∇

ŝ
(t,k+1)
it

q(ŝ
(t,k+1)
it

|ŝ(t,k+1)
−it

)q(ŝ
(t,k+1)
−it

)

q(ŝ
(t,k+1)
it

|ŝ(t,k+1)
−it

)q(ŝ
(t,k+1)
−it

)

=
∇

ŝ
(t,k+1)
it

q(ŝ
(t,k+1)
it

, ŝ
(t,k+1)
−it

)

q(ŝ
(t,k+1)
it

, ŝ
(t,k+1)
−it

)

=
∇

ŝ
(t,k+1)
it

∫
q(ŝ

(t,k+1)
it

, ŝ
(t,k+1)
−it

|s(0)it
)q(s

(0)
it

)ds
(0)
it

q(ŝ
(t,k+1)
it

, ŝ
(t,k+1)
−it

)

(a)
=
∇

ŝ
(t,k+1)
it

∫
q(ŝ

(t,k+1)
it

|s(0)it
)q(ŝ

(t,k+1)
−it

|s(0)it
)q(s

(0)
it

)ds
(0)
it

q(ŝ
(t,k+1)
it

, ŝ
(t,k+1)
−it

)

(b)
=

∫ −ϵ√
1−ᾱ

q(ŝ
(t,k+1)
it

|s(0)it
)q(ŝ

(t,k+1)
−it

|s(0)it
)q(s

(0)
it

)ds
(0)
it

q(ŝ
(t,k+1)
it

, ŝ
(t,k+1)
−it

)

(a)
=

∫ −ϵ√
1−ᾱ

q(ŝ
(t,k+1)
it

, ŝ
(t,k+1)
−it

, s
(0)
it

)ds
(0)
it

q(ŝ
(t,k+1)
it

, ŝ
(t,k+1)
−it

)

=

∫
−ϵ√
1− ᾱ

q(s
(0)
it
|ŝ(t,k+1)

it
, ŝ

(t,k+1)
−it

)ds
(0)
it

(4)

In the RHS of the chain in equation 4, we observe that ŝt,k+1 is being conditioned on and given
ŝt,k+1, ϵ is a function only of s(0)it

from equation 2. Therefore, the above chain yields:

∇
ŝ
(t,k+1)
it

log q(ŝ
(t,k+1)
it

|ŝ(t,k+1)
−it

) =
1√

1− ᾱ
E
[
−ϵ|ŝ(t,k+1)

]
(5)

This is the exactly gθ(·)√
1−ᾱ

if the estimator was a perfect MMSE estimator.

Justifications:- (a) observe that conditioned on s
(0)
it

, how it-th element is noised in the forward process
is independent of all other elements. This gives rise to the conditional independence.(b) We exchange
the integral and the ∇ operator. Let q(x|y) be conditionally Gaussian, i.e. x|y ∼ N (

√
ᾱy; (1− ᾱ)),

then it is a property of the conditional Gaussian random variable that ∇xq(x|y) = −
(

x−
√
ᾱy

1−ᾱ

)
∗

q(x|y). Taking x = ŝt,kit
and y = s

(0)
it

from equation 2, we see that: ∇
ŝ
(t,k+1)
it

q(ŝ
(t,k+1)
it

|s(0)it
) =

−ϵ√
1−ᾱ
∗ q(ŝ(t,k+1)

it
|s(0)it

).

15

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

B CONNECTION BETWEEN β̃, β AND ᾱ

From subsection 3.1, we have:

s
(t+1)
it

=
(√

1− β̃mt
it

)
s
(t)
it

+
(√

β̃mt
it

)
ϵ(t) (6)

And from subsection 4.2, we have:

s
(t,k+1)
it

=
(√

1− β(t, k)
)
s
(t,k)
it

+
(√

β(t, k)
)
ϵ (7)

where s
(t,0)
it

= s
(t)
it

and s
(t,Kt

it
)

it
= s

(t+1)
it

. Define α(t, k) = 1− β(t, k). Then, we have:

s
(t,k+1)
it

=

√√√√ k∏

k′=0

α(t, k′)

 s
(t,0)
it

+

√√√√1−

k∏
k′=0

α(t, k′)

 ϵ

where we have merged the Gaussians. Setting k = Kt
it
− 1 and comparing equation 6 and equation 7,

we have:

β̃mt
it
= 1−

Kt
it
−1∏

k′=0

α(t, k′) (8)

Recall from subsection 4.2 that:

s
(t,k+1)
it

=
(√

ᾱ(t, k)
)
s
(0)
it

+
(√

1− ᾱ(t, k)
)
ϵ (9)

Again rewriting equation 7 by merging gaussians, we have:

s
(t,k+1)
it

=

√√√√√ t−1∏

t′=0

Kt′
i∏

k′=0

α(t′, k′)

k∏
k′′=0

α(t, k′′)

 s
(0,0)
it

+

√√√√√1−

t−1∏
t′=0

Kt′
i∏

k′=0

α(t′, k′)

k∏
k′′=0

α(t, k′′)

 ϵ

Comparing with equation 9, we have:

ᾱ(t, k) =

t−1∏
t′=0

Kt′
i∏

k′=0

α(t′, k′)

k∏
k′′=0

α(t, k′′) (10)

16

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

C FORWARD PROCESS: GENERATING s(t) DIRECTLY

For training the model for denoising at sequence time t (and element time k if we are denoising a
continuous vector), we need access to:

• (s(t−1), s(t)) if s(t)it
is discrete

• (s(t,k), ϵ) if s(t,k)it
is continuous

Note that ϵ is as defined in equation 2. Once you have s(t−1), s(t) can be generated by applying
one discrete noising step, by sampling zt−1. ϵ is required to compute s

(t,k)
it

from s
(t,k)
it

and hence
having access to s(t,k) would imply access to ϵ. Hence, if we can directly sample s(t,k) without going
through all intermediate timesteps, the model can be trained efficiently to denoise at time t.

Let us denote by m
(t,k)
j the total number of times an element at position j has been noised by

sequence time t and element time k. Further, let τ tj = {t′ ∈ {0, 1, . . . , t}; it′ = j} denote the set of
all sequence timesteps t′ at which position j was visited prior to (and including) sequence time t.

For discrete elements, m(t,k)
j =

∣∣τ tj ∣∣. That is, for discrete elements, the number of noising steps is
equal to the number of visits at that position by time t (Note that element time k is irrelevant for
discrete noising).

For continuous vectors, m(t,k)
j =

∑
t′∈τt

j
Kt′

j , provided j ̸= it. That is, for continuous vectors which
are not being noised at time t, the total number of noising steps are obtained by summing up the
element times for all prior visits at that position. For j = it, m

(t,k)
j =

∑
t′∈τt

j−{t} K
t′

j + k. That is,
if a continuous vector is being noised at time t, the number of noising steps for that vector is obtained
by summing up the element times for all prior visits as well as the current element time.

Since the noising process for each element is independent of other elements, to describe the generation
of s(t)(or s(t,k)) from s0, it is sufficient to describe generating s

(t)
j (or s(t,k)j) from s

(0)
j individually

for each j.

If s(t)j is discrete:
Recall from subsection 3.1 that Πt(ϕ) denotes the probability of sampling the token ϕ at sequence

time t. Further, assume Πt(·|X) is same for all t. Define ptj = 1 −
∏

t′∈τt
j
(1 − Πt′(ϕ)). Sample

z ∼ Π(·|X) Then:

s
(t)
j =

{
s
(0)
j , with probability 1− ptj
z, with probability ptj

The above follows from the fact that each flip for t′ ∈ τ tj is an independent Bernoulli trial and hence,

even if there is one success among these m
(t,k)
j trials, the token is noised to Π(·|X).

If s(t,k)j is continuous:
Following subsection 4.2, we define the continuous noise schedule for the continuous vector at

position j as βj = {βi; i ∈ {0, 1, . . . ,m(T,0)
j − 1}}. Let βj [i] denote the ith element of βj . Define

ᾱj = {
∏

i′≤i(1− βj [i
′]); i ∈ {0, 1, . . . ,m(T,0)

j − 1}}. Let ᾱj [i] denote the ith element of ᾱj . Then,
following equation 2, we have:

s
(t,k)
it

=

(√
ᾱit [m

(t,k)
it

]

)
s
(0)
it

+

(√
1− ᾱit [m

(t,k)
it

]

)
ϵ

where ϵ ∼ N (0, I).

The forward process can thus be thought of as the block FwdPrcs with the following input and
output:

Input: (s(0), t, {iτ}tτ=0, {Πτ}tτ=0) Output: (s(t), zt, s(t+1)) if s(0)it
is discrete

Input: (s(0), t, k, {iτ}tτ=0, {βj}L2

j=L1+1) Output: (s(t,k+1), ϵ) if s(0)it
is continuous

17

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

D ALGORITHM FRAMEWORK: PSEUDOCODE

Algorithm 1 Interleaved Gibbs Diffusion: Ideal Denoising
Input: ŝT ∼ PT , discrete denoiser DiscDen , continuous denoiser ContDen, noise positions
{it}
Output: ŝ0 ∼ π
for t ∈ [T, T − 1, . . . , 1] do
ŝ
(t−1)
−it

= ŝ
(t)
−it

if ŝ(t)it
is discrete then

ŝ
(t−1)
it

= DiscDen(ŝ(t), it, t)
else
ŝ
(t−1)
it

= ContDen(ŝ(t), it, t)
end if

end for

18

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

E MODEL TRAINING AND INFERENCE: PSEUDOCODE

We use the binary classification based loss for describing the training of the model to do discrete
denoising since this leads to better results. Note that for this, from , the input to the model should
be s

(t+1)
−it

and the model should predict P
(
zt = x|s(t+1)

−it
= s−it , s

(t+1)
it

= x
)

for all x ∈ X . To do
this efficiently, we adapt the masking strategy from Varma et al. (2024). Define a token ω /∈ X . Let
X̃ = X ∪ ω. Let s̃(t+1) ∈ S̃L, where S̃L = X̃L1 ×L

i=L1+1 Rdi , be defined as: s̃t+1
−it

= st+1
−it

and
s̃t+1
it

= ω. The neural network fθ then takes as input: time tuple (t, k), noising position it, sequence
s̃t+1 (or s̃t,k+1 if it corresponds to a continuous vector). The time tuple (t, k) is (t, 0) if the element
under consideration is discrete since discrete tokens only have one noising step. The model has |X |
logits corresponding to each discrete token (and hence a total of L1|X | logits) and Rdi dimensional
vectors corresponding to each continuous vector (and hence a total of L2 continuous vectors). it
is necessary for the model to decide which output needs to be sliced out: we use f it

θ to denote the
output of the model corresponding to the element at position it (which could either be discrete or

continuous). Further, we use f
(it,s

t+1
it

)

θ to denote the logit corresponding to position it and token
st+1
it

, provided it corresponds to a discrete token.

We can then write the pseudocode for training as follows:

Algorithm 2 Model Training
Input: Dataset D, model fθ , forward process block FwdPrcs, optimizer opt, total sequence
timesteps T , noise positions {it}T−1

t=0 , discrete noise schedule {Πt}T−1
t=0 , continuous noise schedule

{βj}L2

j=L1+1, continuous noising steps {Kt
j}

j=L2,t=T−1
j=L11+1,t=0

Output: trained model parameters θ
for each iteration: do

sample s(0) from D
sample t from [0, 1, . . . , T − 1]

if ŝ(0)it
is discrete then

(s(t), zt, s
(t+1)) = FwdPrcs(s(0), t, {iτ}tτ=0, {Πτ}tτ=0)

construct s̃t+1 from st+1

compute the BCE loss:

L = −1zt ̸=ϕ log

(
f
(it,s

(t+1)
it

)

θ

(
s̃(t+1), t, it

))
−1zt=ϕ log

(
1− f

(it,s
(t+1)
it

)

θ

(
s̃(t+1), t, 0, it

))
else

sample k from [0, 1, . . . ,Kt
it
− 1]

(s(t,k+1), ϵ) = FwdPrcs(s(0), t, k, {iτ}tτ=0, {βj}L2

j=L1+1)
compute the MSE loss:

L =
∥∥∥ϵ− f it

θ

(
s(t,k+1), t, k, it

)∥∥∥2
2

end if
θ ← opt.update(θ,∇θL)

end for

19

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Recall that ŝ(t) represents the sequence from the reverse process at time t and PT =

Π(·|X)L1 ×L
i=L1+1 N (0, Idi

) denotes the stationary distribution of the forward process. If the
training of the model is perfect, we will have ŝ(0) ∼ π. Then the pseudocode for inference:

Input: total sequence timesteps T , noise positions {it}T−1
t=0 , discrete noise schedule {Πt}T−1

t=0 ,
continuous noise schedule {βj}L2

j=L1+1, continuous noising steps {Kt
j}

j=L2,t=T−1
j=L1+1,t=0

Output: ŝ(0)
sample ŝ(T) ∼ PT

for t in [T − 1, T − 2, · · · , 0] do
if ŝ(t+1)

it
is discrete then

construct s̃(t+1) from ŝ(t+1)

get ŷ = f it
θ

(
s̃(t+1), t, it

)
{ ŷ denotes the vector of |X | logits corresponding to position it}

compute P̂
(
s
(t)
it

= a|s(t+1)
−it

)
= Πt(a)

Πt(ϕ)

(
1

ŷ(a) − 1
)

for all a ∈ X {ŷ(a) denotes logit corre-
sponding to token a}
sample ŝ

(t)
it
∼ P̂

(
s
(t)
it

= a|s(t+1)
−it

)
set ŝ(t)−it

= ŝ
(t+1)
−it

else
set ŝ(t,K

t
it
) = ŝ(t+1)

for k in [Kt
it
− 1,Kt

it
− 2, · · · , 0] do

get ϵθ = f it
θ

(
ŝ(t,k+1), t, k, it

)
{ f it

θ denotes the continuous vector corresponding to
position it}
if t = k = 0 then

get ϵ = 0
else

get ϵ ∼ N (0, I)
end if

set ŝ(t,k)it
=

(
ŝ
(t,k+1)
it

−βit (t,k+1)ϵθ

)
√

1−βit (t,k+1)
+
(√

βit(t, k + 1)
)
ϵ

set ŝ(t,k)−it
= ŝ

(t,k+1)
−it

end for
set ŝ(t) = ŝ(t,0)

end if
end for

20

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Generalized DiT Block

Discrete
Tokens

Continuous
Vectors

Continuous
Time

Discrete
Time

Embed Embed EmbedProject

Layer Norm Layer Norm

Linear Linear

Discrete
Logits

Continuous
Predictions

N x {

(a)

Discrete
Embeddings

Layer Norm

Scale, Shift

Multi-Head Self Attention

Scale

Layer Norm

Scale, Shift

Scale

+

Concatenate

Continuous
Embeddings

Layer Norm

Scale, Shift

Scale

Layer Norm

Scale, Shift

Scale

Pointwise Feedforward

+

++

Concatenate

Split

Split

Disc: Time
Embedding

MLP

𝞪1

𝜸1, 𝜷1

𝞪2

𝜸2, 𝜷2

Cont: Time
Embedding

MLP

𝞪4

𝞪3

𝜸4, 𝜷4

𝜸3, 𝜷3

…

…

…

…

(b)

Figure 3: Dis-Co DiT Architecture: (a) illustrates overall architecture, with both discrete and
continuous inputs and outputs (b) shows detailed architecture of a single block, where time information
is incorporated through adaptive layer normalization.

F MODEL ARCHITECTURE

Inspired by Peebles & Xie (2023), we use a transformer-based architecture closely resembling
Diffusion Transformers (DiTs) for the model. Since DiT has been designed for handling discrete
tokens, we modify the architecture slightly to accommodate continuous vectors as well. However, we
keep modifications to a minimum, so that the proposed architecture can still benefit from DiT design
principles. Our proposed architecture, which we refer to as Discrete-Continuous (Dis-Co) DiT, is
illustrated in Figure 3.

Figure 3a gives a high-level overview of the model with N Dis-Co DiT blocks stacked on top of each
other. Discrete embeddings, continuous projections and their corresponding time embeddings are
passed into the Dis-Co DiT blocks. Figure 3b details the structure of a single Dis-Co DiT block. The
discrete embeddings and continuous vectors are processed as in a regular transformer block; however
the discrete and continuous time information ((t, k) variables) is incorporated using adaptive layer
normalization (Xu et al., 2019). Exact details are given in Appendix F.

Figure 3a gives a high level overview of the proposed Dis-Co DiT architecture. Just like DiT, we feed
in the discrete tokens and corresponding discrete time as input to the Dis-Co DiT block; however, we
now also feed in the continuous vector inputs and corresponding continuous time. Also note that time
is now the tuple (t, k), where t is the sequence time and k is the element time. For discrete elements
k = 0 always. Time is now embedded through an embedding layer similar to DiT; discrete tokens are
also embedded through an embedding layer. Continuous vectors are projected using a linear layer
into the same space as the discrete embeddings; these projected vectors are referred to as continuous
embeddings. Discrete embeddings, continuous embeddings and their corresponding time embeddings
are then passed into the Dis-Co DiT blocks. Following DiT, the outputs from the Dis-Co DiT blocks
are then processed using adaptive layer normalization and a linear layer to obtain the discrete logits
and continuous predictions.

Figure 3b details the structure of a single Dis-Co DiT block. The discrete and continuous time
embeddings are processed by an MLP and are used for adaptive layer normalization, adaLN-Zero,
following DiT. The discrete and continuous embedding vectors, after appropriate adaptive layer
normalization, are concatenated and passed to the Multi-Head Self Attention Block. The output from
the Self Attention block is again split into discrete and continuous parts, and the process is then
repeated with a Pointwise Feedforward network instead of Self Attention. This output is then added
with the output from Self Attention (after scaling) to get the final output from the Dis-Co DiT block.

Generating Time Embeddings: Assume you are embedding the time tuple (t, k) (k = 0 for
discrete). Following DiT, we compute the vector d whose ith element is given by:

d[i] = k ∗ f
−i

din−1

21

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

where k is the element time, f is the frequency parameter (set to 10000 in all our experiments) and
din is the time embedding input dimension (set to 256 in all our experiments). Similarly, we compute
the vector c whose ith element is given by:

c[i] = t ∗ (TCf)
−i

din−1

where t is the sequence time, TC is a frequency multiplier designed to account for the fact that
multiple continuous noising steps happen for a single discrete flip. In our experiments, we set
TC = Kt

it
. Once we have these vectors, we construct the following vector:

y = [sin(d) cos(d) sin(c) cos(c)]

i.e., we concatenate the vectors after applying sin and cos elementwise. This vector y is then passed
through 2 MLP layers to get the final time embedding.

22

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

G INFERENCE COMPUTE COST

We provide a comparison of the number of diffusion steps employed. Because continuous diffusion
steps incrementally add noise and necessitate the same forward pass through a DiT as a discrete
update, the overall inference compute is dominated by the continuous updates (typically in the
hundreds, compared to a single pass for a discrete token). For molecule generation, aggregating all
continuous coordinates into a single vector yields the best performance and results in faster inference
than the baselines. In contrast, for layout generation, processing each continuous vector separately
produces the highest quality results, though it is computationally expensive.

Table 3: Inference Cost for Molecular Generation Methods

Method Discrete Steps Continuous Steps Effective Steps
EDM – 1000 1000
MuDiff 1000 1000 1000 (steps run in parallel)
IGD 116 800 916

Table 4: Inference Cost for Layout Generation Methods

Method Discrete Steps Continuous Steps Effective Steps
LayoutDM 100 – 100
DLT 10 100 100 (both run in parallel)
LayoutDiffusion 160 – 160
IGD (Cont. vars together) 80 800 880
IGD (Cont. vars separate) 80 16,000 16,080

Table 5: Inference Cost for 3SAT Methods

Method Discrete Diffusion Steps
MDM 20
IGD – 5 variables 30
IGD – 7 variables 42
IGD – 9 variables 54

23

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

H MOLECULE GENERATION

H.1 BACKGROUND

Molecule generation aims to synthesize new valid molecular structures from a distribution learned
through samples. Recently, generative models trained on large datasets of valid molecules have
gained traction. In particular, diffusion-based methods have shown strong capabilities in generating
discrete atomic types and their corresponding 3D positions.

We represent a molecule with n atoms by (zi,pi)
n
i=1, where zi ∈ N is the atom’s atomic number and

pi ∈ R3 is the position. We focus on organic molecules with covalent bonding, where bond orders
(single, double, triple, or no bond) between atoms are assigned using a distance-based lookup table
following Hoogeboom et al. (2022).

H.2 EXPERIMENTAL SETUP

We closely follow the methodology used in prior works (Hua et al., 2024; Hoogeboom et al., 2022)
for 3D molecule generation. Further details are given below:

Datasets: We evaluate on the popular QM9 benchmark (Ramakrishnan et al., 2014) which contains
organic molecules with up to 29 atoms and their 3D coordinates. We adopt the standardized
100K/18K/13K train/val/test split to ensure fair comparison with prior works. We generate all atoms,
including hydrogen, since this is a harder task.

Evaluation metrics: We adopt four metrics following prior works Hua et al. (2024); Hoogeboom
et al. (2022):

1. Atom Stability: The fraction of atoms that satisfy their valency. Bond orders (single, double,
triple, no bond) are determined from pairwise atomic distances using a distance-based
lookup table given in Hoogeboom et al. (2022).

2. Molecule Stability: Fraction of molecules where all atoms are stable.
3. Validity: RDKit-based Landrum et al. (2006) molecular sanitization checks, as in Hooge-

boom et al. (2022). These checks include: chemical plausibility of bond angles and lengths,
absence of disconnected components, kekulization of aromatic rings, and more.

4. Uniqueness: Fraction of unique and valid molecules.

Baselines: We compare with state-of-the-art methods: E-NF (equivariant normalizing flows)
(Köhler et al., 2020) models molecular generation via invertible flow transformations. G-SchNet
(Gebauer et al., 2019) employs an autoregressive architecture with rotational invariance. Diffusion-
based approaches include EDM (Hoogeboom et al., 2022) (with SE(3)-equivariant network (Fuchs
et al., 2020)) , GDM (Hoogeboom et al., 2022) (non-equivariant variant of EDM), and DiGress
Vignac et al. (2023a) (discrete diffusion for atoms/bonds without 3D geometry). GeoLDM (Xu et al.,
2023) leverages an equivariant latent diffusion process, while MUDiff (Hua et al., 2024) unifies
discrete (atoms/bonds) and continuous (positions) diffusion with specialized attention blocks. While
Peng et al. (2023) and Vignac et al. (2023b) are also diffusion based methods, they are not directly
comparable due to reasons we list in H.4.

H.3 RESULTS

Table 6 compares our method with others on QM9. Notably, without relying on specialized equivariant
diffusion or domain-specific architectures, IGD attains strong performance across four key metrics.
Our model achieves 98.9% atom stability and 95.4% molecular validity, equaling or surpassing
other methods. Our model achieves a molecule stability of 90.5%, surpassing the baselines. While
not the best in ‘uniqueness’, our approach still yields more than 95% unique samples among the
valid molecules. In addition, we observe noticeably lower standard deviations than most baselines,
reflecting consistent performance.

Notably, applying ReDeNoise at inference yielded an improvement of 4.99% in molecular stability.
Further implementation details, and ablation studies examining design choices such as the interleaving
pattern, discrete and continuous noise schedules are presented in Appendix H.

24

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Table 6: Molecule Generation: Quantitative results on QM9 benchmark. We report mean (standard
deviation) across 3 runs, each with 10K generated samples. Refer to section H.2 for details on
evaluation metrics.

Method Atom stable (%) Mol stable (%) Validity (%) Uniqueness (%)

E-NF 85.0 4.9 40.2 39.4
G-Schnet 95.7 68.1 85.5 80.3
GDM 97.6 71.6 90.4 89.5
EDM 98.7± 0.1 82.0±0.4 91.9 ±0.5 90.7 ±0.6
DiGress 98.1± 0.3 79.8±5.6 95.4 ±1.1 97.6 ±0.4
GeoLDM 98.9±0.1 89.4±0.5 93.8 ±0.4 92.7 ±0.5
MUDiff 98.8± 0.2 89.9±1.1 95.3 ±1.5 99.1 ±0.5
Ours 98.9±0.03 90.5 ±0.15 95.4 ±0.2 95.6 ±0.1
Data 99.0 95.2 99.3 100.0

H.4 OTHER BASELINES

Vignac et al. (2023b) proposes to generate 2D molecular graphs in tandem with 3D positions to allow
better molecule generation. Our numbers cannot be directly compared with this work since they use
a different list of allowed bonds, as well as use formal charge information. We also note that our
framework can also be used to generate 2D molecular graphs along with 3D positions; we can also
make use of the rEGNNs and uniform adaptive schedule proposed in Vignac et al. (2023b). Hence,
our framework can be thought of as complementary to Vignac et al. (2023b). Similarly, Peng et al.
(2023) proposes to use the guidance of a bond predictor to improve molecule generation. Again,
we cannot directly compare the numbers since they use a dedicated bond predictor to make bond
predictions instead of a look-up table. The idea of bond predictor can also be incorporated in our
framework seamlessly; hence our framework is again complementary to this work.

H.5 TRAINING DETAILS

We train a Dis-Co DiT model with the following configuration:

Number of Generalized DiT Blocks 8
Number of Heads 8
Model Dimension 512
MLP Dimension 2048

Time Embedding Input Dimension 256
Time Embedding Output Dimension 128

Table 7: Model configuration for QM9

We use the AdamW optimizer (with β1 = 0.9, β2 = 0.999 and ϵ = 10−8) with no weight decay and
with no dropout. We use EMA with decay 0.9999. We set the initial learning rate to 0 and warm it up
linearly for 8000 iterations to a peak learning rate of 10−4; a cosine decay schedule is then applied to
decay it to 10−6 over the training steps. For QM9, we train for 2.5 Million iterations with a batch
size of 2048. We use pad tokens to pad the number of atoms to 29 if a molecule has fewer atoms.

Distance-based embedding for atom positions: We adapt the distance embedding part from the
EGCL layer proposed in Hoogeboom et al. (2022). Consider a molecule with N atoms; let us denote
the atom position of the ith atom as xi. Then, we begin by computing the pairwise distance between
the ith atom and all the other atoms (including the ith atom itself) to get an N− dimensional vector di.
di is fed into the Generalized DiT block and embedded to a vector of size D, where D is the model
dimension, using a linear projection. This D dimensional array is processed as usual by the block and
at the end of the block, it is projected back into an N dimensional vector, which we call mi, using
another linear layer. Then, we modify xi as follows:

xi ← xi +
∑
j ̸=i

xi − xj

dij + 1
mij

where dij denotes the jth element of di and mij denotes the jth element of mi. The distance di is
now recomputed using the modified xi and the process is repeated for each block. After the final
block, we subtract out the initial value of xi from the output.

25

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

H.6 ABLATIONS

Unless specified otherwise, all the results reported in ablations use top-p sampling with p = 0.99
and do not use the ReDeNoise algorithm at inference. For all molecule generation experiments, we
noise the sequence in a round-robin fashion, and in each round, Π(ϕ) is constant for discrete tokens
across all positions. Similarly, Kt

it
which is the number of continuous noising steps per round, is

constant across all positions per round. By default, we choose Π(ϕ) to be [0.5, 0.5, 0.5, 0.5], where
the 4 element sequence, which we refer to as the discrete noise schedule, denotes noising for 4 rounds
with Π(ϕ) for the round chosen from the sequence. Similarly, the default value of Kt

it
is chosen to

be [200, 200, 200, 200], and we refer to this sequence as the continuous noising steps. Let us denote∑
t K

t
it

as K. Note that K is same across positions since we assume same number of continuous
noising steps across positions per round. Given K, we use the following noise schedule for β:

β(j) = 0.03 + 0.5(0.0001− 0.03)(1 + cos

((
j

K

)
π

)
)

where j is the total number of continuous noising steps at sequence time t and element time k. We
denote this noise schedule as cosine(0.0001, 0.03).

Interleaving pattern: We broadly considered two interleaving patterns. In the first pattern, the
atom positions of each atom was treated as a separate vector to form the interleaving pattern
[z1, p1, z2, p2, . . . , zn, pn], where zi ∈ N is the discrete atomic number and pi ∈ R3 is its cor-
responding atom position. This interleaving pattern results in 29 discrete tokens and 29 continuous
vectors. In the second pattern, the atom positions of all the n atoms were bunched together as a single
vector to form the interleaving pattern [z1, z2, . . . , zn, p

c], where pc ∈ R3n is a single vector which
is formed by concatenating the atom positions of all n atoms.This interleaving pattern results in 29
discrete tokens and 1 continuous vector. The atom and molecule stability for these two configurations
are given in Table 8.

Interleaving Pattern Atom. Stability Mol. Stability

Positions separate 88.99 28.9
Positions together 98.07 83.83

Table 8: Ablation on Interleaving Pattern

As we can see, having the atom positions together helps improve performance by a large margin; we
hypothesize that this could be due to the fact that having the positions together allows the model to
capture the symmetries of the molecules better. We choose the interleaving pattern with the positions
together for all further experiments.

DDPM v/s DDIM: We evaluate both DDPM and DDIM using the positions together interleaving
pattern. The results are given in Table 9. DDPM outperforms DDIM by a large margin and hence we
use DDPM for all experiments.

Saampling Strategy Atom. Stability Mol. Stability

DDIM 94.84 61.29
DDPM 98.07 83.83

Table 9: Ablation on Sampling Strategy

Distance-based atom position embedding: As we discussed in H.5, we use a distance-based
embedding for the atom positions. We tried directly using the positions, as well as using both by
concatenating distance along with the positions. The atom and molecule stability for these two
configurations are given in Table 10.

As we can see, using the distance embedding leads to the best results. This could be due to the
fact that molecules inherently have rotation symmetry, which distance-based embeddings capture

26

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Embedding Atom. Stability Mol. Stability

Position 91.87 55.93
Distance 98.07 83.83

Position + Distance 95.54 68.15

Table 10: Ablation on embedding

more naturally. This could also be due to the fact that both atom and molecule stability are metrics
which rely on the distance between atoms and allowing the model to focus on the distance allows
it to perform better. Hence, we choose the distance-based atom position embedding for all further
experiments.

Sequence time sampling: While the sequence time t is typically sampled uniformly between 0 and
T − 1, note that for the interleaving pattern with the positions together, only one sequence timestep
per round corresponds to noising continuous vectors since we have n discrete tokens and 1 continuous
vector. This may make it slower for the model to learn the reverse process for the continuous vector.
Hence, we also try a balanced sequence time sampling strategy, where we sample t such that the
time steps where continuous vector is noised is sampled with probability 0.5. For the same number
of training steps, performance of both strategies are detailed in Table 11.

Sequence Time Sampling Atom. Stability Mol. Stability

Uniform sampling 97.92 79.78
Balanced sampling 98.24 84.47

Table 11: Ablation on Sequence Time Sampling

Since the balanced sampling strategy leads to better performance, we choose this strategy for all
further experiments.

Discrete noise schedule and continuous noising steps: We fix the total number of noising
rounds in the forward process as 4, the total number of continuous noising steps as 800 and the
β schedule as cosine(0.0001, 0.03) based on initial experiments. The discrete noise schedule and
continuous noising steps are then varied. Despite trying out multiple schedules, the default schedule

Discrete Noise Schedule Continuous Noising Steps Atom. Stability Mol. Stability

[0.5,0.5,0.5,0.5] [200,200,200,200] 98.07 83.83
[0.5, 0.5, 0.5, 0.5] [100, 100, 300, 300] 97.63 79.40
[0.5, 0.5, 0.5, 0.5] [300, 300, 100, 100] 97.93 81.37
[0.5, 0.5, 0.5, 0.5] [100, 300, 100, 300] 98.08 83.08
[0.75, 0.5, 0.5, 0.25] [100, 200, 200, 300] 98.13 83.00
[0.85, 0.5, 0.5, 0.25] [50, 250, 200, 300] 98.14 81.99

Table 12: Ablation on Noise Schedules

of [200, 200, 200, 200] and [0.5, 0.5, 0.5, 0.5] give the best results; we use these noise schedules for
further experiments. Results are given in Table 12.

Effect of ReDeNoise: We examine the effect of ReDeNoise algorithm at inference. Preliminary
results indicated that noising and denoising for more than one round does not improve performance.
Hence, we apply ReDeNoise for one round, but do multiple iterations of the noising and denoising.
We observe the following: ReDeNoise improves performance upto 6 iterations, after which the
metrics saturate. However, we see that there is a substantial improvement in the moelcular stability
metric on using ReDeNoise. Table 13 gives the results of ReDeNoise in the unbalanced sequence
time sampling setting. Since we observed performance improvement till 6 rounds, we used this for
further experiments. The results for balanced sequence time sampling is given in Table 14.

27

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

No. of times ReDeNoise is applied Atom. Stability Mol. Stability

No ReDeNoise 97.94 80.24
1x 98.23 83.42
2x 98.37 85.17
3x 98.46 85.78
4x 98.48 86.20
5x 98.52 86.49
6x 98.60 87.11
7x 98.48 86.30

Table 13: Ablation on ReDeNoise (unbalanced sequence time sampling)

No. of times ReDeNoise is applied Atom. Stability Mol. Stability

No ReDeNoise 98.24 84.47
6x 98.74 89.46

Table 14: Ablation on ReDeNoise (balanced sequence time sampling)

Effect of Top-p sampling: We vary top-p sampling value at inference and examine the effects in
Table 15.

Top-p Atom. Stability Mol. Stability

0.8 98.60 88.5
0.9 98.90 90.74
0.99 98.74 89.46

Table 15: Ablation on Top-p

Best configuration: After all the above ablations, we obtain the best results with the following
configuration:

Interleaving Pattern Positions together
Atom Position Embedding Distance-based
Sequence Time Sampling Balanced
Discrete Noise Schedule [0.5, 0.5, 0.5, 0.5]

Continuous Noising Steps [200, 200, 200, 200]
Continuous Noise Schedule cosine(0.0001, 0.03)

ReDeNoise 6x
Top-p 0.9

Table 16: Best configuration for QM9

28

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

I LAYOUT GENERATION

I.1 ADDITIONAL RESULTS

Table 17: Layout Generation: Additional metrics on the RICO and PubLayNet datasets.

RICO

Unconditioned
Category

Conditioned
Category+Size

Conditioned
Method Ali→ Ove→ Ali→ Ove→ Ali→ Ove→
LayoutTransformer 0.037 0.542 - - - -
LayoutFormer++ 0.051 0.546 0.124 0.537 - -
NDN-none - - 0.560 0.550 - -
LayoutDM 0.143 0.584 0.222 0.598 0.175 0.606
DLT 0.271 0.571 0.303 0.616 0.332 0.609
LayoutDiffusion 0.069 0.502 0.124 0.491 - -
LayoutFlow 0.150 0.498 0.176 0.517 0.283 0.523

Ours 0.198 0.443 0.215 0.461 0.204 0.490
Alignment Overlap

Validation Data 0.093 0.466

PubLayNet

Unconditioned
Category

Conditioned
Category+Size

Conditioned
Method Ali→ Ove→ Ali→ Ove→ Ali→ Ove→
LayoutTransformer 0.067 0.005 - - - -
LayoutFormer++ 0.228 0.001 0.025 0.009 - -
NDN-none - - 0.350 0.170 - -
LayoutDM 0.180 0.132 0.267 0.139 0.246 0.160
DLT 0.117 0.036 0.097 0.040 0.130 0.053
LayoutDiffusion 0.065 0.003 0.029 0.005 - -
LayoutFlow 0.057 0.009 0.037 0.011 0.041 0.031

Ours 0.094 0.008 0.088 0.013 0.081 0.027
Alignment Overlap

Validation Data 0.022 0.003

Alignment and Overlap capture the geometric aspects of the generations. As per Guerreiro et al.
(2025), we judge both metrics with respect to a reference dataset, which in our case is the validation
dataset. We see that there is no consistent trend with respect to these metrics among models. Further,
note that most of the reported models use specialized losses to ensure better performance with respect
to these metrics; our model achieves comparable performance despite not using any specialized losses.
Our framework can be used in tandem with domain-specific losses to improve the performance on
these geometric metrics.

I.2 GENERATED EXAMPLES

Table 18 shows generated samples on PubLayNet dataset on the three tasks of Unconditioned,
Category-conditioned and Category+Size conditioned.

Unconditioned Generation Category-conditioned Generation Category+Size-conditioned Generation

Table 18: Generated Layouts on PubLayNet Dataset

I.3 TRAINING DETAILS

We train a Dis-Co DiT model with the configuration in Table 19.

We use the AdamW optimizer (Loshchilov & Hutter, 2019) (with β1 = 0.9, β2 = 0.999 and
ϵ = 10−8) with no weight decay and with no dropout. We use EMA with decay 0.9999. We set the
initial learning rate to 0 and warm it up linearly for 8000 iterations to a peak learning rate of 10−4; a
cosine decay schedule is then applied to decay it to 10−6 over the training steps. For PubLayNet, we
train for 4 Million iterations with a batch size of 4096, whereas for RICO, we train for 1.1 Million

29

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Number of Generalized DiT Blocks 6
Number of Heads 8
Model Dimension 512
MLP Dimension 2048

Time Embedding Input Dimension 256
Time Embedding Output Dimension 128

Table 19: Model configuration for Layout Generation

iterations with a batch size of 4096. By default, the sequence is noised for 4 rounds (T = 120); each
continuous vector is noised 200 times per round. We use pad tokens to pad the number of elements to
20 if a layout has fewer elements.

Data sampling and pre-processing: Since we train a single model for all three tasks (unconditional,
class conditioned, class and size conditioned), we randomly sample layouts for each task by applying
the appropriate binary mask required for the state-space doubling strategy. We begin training by
equally sampling for all three tasks; during later stages of training, it may help to increase the fraction
of samples for harder tasks to speed up training. For instance, we found that for the RICO dataset,
doubling the fraction of samples for unconditional generation after 700k iterations results in better
performance in unconditional generation (while maintaining good performance in the other two tasks)
when training for 1.1 Million iterations. Further, each bounding box is described as [xi, yi, li, wi],
where (xi, yi) denotes the positions of the upper-left corner of the bounding box and (li, wi) denotes
the length and width of the bounding box respectively. Note that 0 ≤ xi, yi, li, wi ≤ 1 since the
dataset is normalized. We further re-parameterize these quantities using the following transformation:

g(x) = log

(
x

1− x

)
Note that we clip x to [10−5, 1 − 10−5] so that g(x) is defined throughout. We then use this re-
parameterized version as the dataset to train the diffusion model. While inference, the predicted
vectors are transformed back using the inverse transformation:

h(x) = g−1(x) =

(
ex

1 + ex

)
I.4 ABLATIONS

Unless specified otherwise, all the results reported in ablations use top-p sampling with p = 0.99 and
do not use the ReDeNoise algorithm at inference. From preliminary experiments, we found top-p
sampling and ReDeNoise to only have marginal effects on the FID score; hence, we did not tune this
further. For all layout generation experiments, we noise the sequence in a round-robin fashion, and
in each round, Π(ϕ) is constant for discrete tokens across all positions. Similarly, Kt

it
which is the

number of continuous noising steps per round, is constant across all positions per round. Hence, from
here on, we use sequences of length r. where r is the total number of noising rounds to denote Π(ϕ)
and Kt

it
values for that particular round. By default, we choose Π(ϕ) to be [0.5, 0.5, 0.5, 0.5], where

the 4 element sequence, which we refer to as the discrete noise schedule, denotes noising for 4 rounds
with Π(ϕ) for the round chosen from the sequence. Similarly, the default value of Kt

it
is chosen to

be [200, 200, 200, 200], and we refer to this sequence as the continuous noising steps. Let us denote∑
t K

t
it

as K. Note that K is same across positions since we assume same number of continuous
noising steps across positions per round. Given K, we define the following as the cosine schedule for
β (denoted by cosine(a, b)):

β(j) = b+ 0.5(a− b)(1 + cos

((
j

K

)
π

)
)

where j is the total number of continuous noising steps at sequence time t and element time k. We
use cosine(0.0001, 0.03) as the default schedule. We also define a linear noise schedule for β (β
(denoted by lin(a, b))):

β(j) = a+ (b− a)(1 + (

(
j

K

)
))

30

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Further, we report only the unconditional FID for PubLayNet/RICO in the ablations as this is the
most general setting.

Interleaving pattern: We broadly considered two interleaving patterns. In the first pattern, the
bounding box vectors of each item was treated as a separate vector to form the interleaving pattern
[t1, p1, t2, p2, . . . , tn, pn], where ti ∈ N is the discrete item type and pi ∈ R4 is its corresponding
bounding box description (pi = [xi, yi, li, wi]

⊤). This interleaving pattern leads to 20 discrete
elements and 20 continuous vectors per layout, resulting in a sequence of length 40. In the second
pattern, the bounding box vectors of all the n items were bunched together as a single vector to form
the interleaving pattern [t1, t2, . . . , tn, p

c], where pc ∈ R4n is a single vector which is formed by
concatenating the bounding box vectors of all n items. This interleaving pattern leads to 20 discrete
elements and 1 continuous vector per layout, resulting in a sequence of length 21. We compare FID
scores on unconditional generation on PubLayNet with these two interleaving patterns in Table 20.

Interleaving Pattern Disc. Noise Schedule Cont. Noise Schedule Cont. Noise Steps FID

Positions separate [0.5, 0.5, 0.5, 0.5] cosine(0.0001, 0.03) [200, 200, 200, 200] 8.76
Positions together [0.5, 0.5, 0.5, 0.5] cosine(0.0001, 0.03) [200, 200, 200, 200] 14.21
Positions together [0.35, 0.5, 0.5, 0.5] cosine(0.0001, 0.03) [200, 200, 200, 200] 13.59
Positions together [0.75, 0.5, 0.5, 0.5] cosine(0.0001, 0.03) [200, 200, 200, 200] 13.99
Positions together [0.99, 0.9, 0.8, 0.5, 0.5, 0.5] cosine(0.0001, 0.03) [150, 150, 150, 150, 150, 150] 25.38
Positions together [0.9, 0.75, 0.5, 0.5, 0.25] cosine(0.0001, 0.015) [500, 500, 500, 500, 500] 17.86

Table 20: Ablation on Interleaving Pattern

We see that despite tuning multiple hyperparameters for noise schedules, having the positions together
leads to worse results than having the positions separate. Hence, we use the interleaving pattern of
having the positions separate for all further experiments.

|X |-ary classification v/s Binary classification: We compare the two strategies for training the dis-
crete denoiser, |X |-ary classification and Binary classification (as described in 4), on the unconditional
generation task in the RICO dataset. The results are given in Table 21.

Discrete Loss Considered FID

|X |-ary Cross Entropy 3.51
Binary Cross Entropy 2.62

Table 21: Ablation on choice of discrete loss function

Discrete and continuous noise schedules: We evaluate the unconditional FID scores on PubLayNet
and RICO for multiple configurations of discrete and continuous noise schedules. We report the
results in Tables 22 and 23.

From the ablations, it seems like for layout generation, noising the discrete tokens faster than the
continuous vectors gives better performance. This could be because denoising the bounding boxes
faster allows the model to make the element type predictions better.

31

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Disc. Noise Schedule Cont. Noise Schedule Cont. Noise Steps FID

[0.5,0.5,0.5,0.5] cosine(0.0001,0.03) [100,100,300,300] 8.32
[0.5, 0.5, 0.5, 0.5] lin(0.0001, 0.02) [200, 200, 200, 200] 13.19
[0.5, 0.5, 0.5, 0.5] lin(0.0001, 0.035) [200, 200, 200, 200] 10.62
[0.5, 0.5, 0.5, 0.5] cosine(0.0001, 0.03) [200, 200, 200, 200] 8.86
[0.5, 0.5, 0.5, 0.5] cosine(0.0001, 0.03) [25, 25, 50, 700] 8.68
[0.5, 0.5, 0.5, 0.5] cosine(0.0001, 0.06) [10, 10, 10, 370] 12.78

[0.75, 0.5, 0.25, 0.25] cosine(0.0001, 0.03) [10, 10, 10, 770] 10.06
[0.5, 0.5, 0.5, 0.5] cosine(0.0001, 0.025) [10, 10, 10, 970] 9.67
[0.5, 0.5, 0.5, 0.5] cosine(0.0001, 0.02) [10, 10, 10, 1170] 10.83

[0.9, 0.75, 0.5, 0.5, 0.25] cosine(0.0001, 0.06) [50, 50, 50, 50, 50, 50] 9.10
[0.5, 0.5, 0.5, 0.5, 0.5, 0.5] cosine(0.0001, 0.03) [10, 10, 10, 10, 10, 850] 10.42

[0.99, 0.9, 0.8, 0.5, 0.25, 0.05] cosine(0.0001, 0.03) [400, 400, 70, 10, 10, 10] 17.69

Table 22: Ablation on Discrete and Continuous Noise Schedules - PubLayNet

Disc. Noise Schedule Cont. Noise Schedule Cont. Noise Steps FID

[0.5,0.5,0.5,0.5] cosine(0.0001,0.03) [10,10,10,770] 2.54
[0.5, 0.5, 0.5, 0.5] cosine(0.0001, 0.06) [10, 10, 10, 370] 3.67
[0.5, 0.5, 0.5, 0.5] cosine(0.0001, 0.05) [10, 10, 10, 570] 3.35
[0.5, 0.5, 0.5, 0.5] cosine(0.0001, 0.03) [300, 300, 100, 100] 5.13
[0.5, 0.5, 0.5, 0.5] cosine(0.0001, 0.03) [100, 100, 300, 300] 4.33

[0.9, 0.8, 0.7, 0.5, 0.5, 0.5] cosine(0.0001, 0.03) [10, 10, 10, 10, 380, 380] 3.88

Table 23: Ablation on Discrete and Continuous Noise Schedules - RICO

Best configuration: We obtain the best results with the configuration in Table 24.

Hyperparameter PubLayNet RICO

Interleaving Pattern Positions separate Positions separate
Discrete Noise Schedule [0.5, 0.5, 0.5, 0.5] [0.5, 0.5, 0.5, 0.5]

Continuous Noising Steps [100, 100, 300, 300] [10, 10, 10, 770]
Continuous Noise Schedule cosine(0.0001, 0.03) cosine(0.0001, 0.03)

Top-p 0.99 0.99

Table 24: Best configuration for Layout Generation

32

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

J BOOLEAN SATISFIABILITY PROBLEM

J.1 TRAINING DETAILS

We trained models of three different sizes (6M, 85M, and 185M parameters), whose configurations
are summarized in Table 25. Each model was trained for 1M steps on the combined dataset with
n ∈ 6, . . . , 20. For the experiments where a separate model was trained for each n (corresponding to
Table 2), the batch size was increased from 8192 to 16384 and trained for 200K steps. A gradual
noising schedule of [0.99, 0.9, 0.8, 0.5, 0.5, 0.25] was used for the discrete noising process in all SAT
experiments.

Parameter 6M 85M 185M
Number of DiT Blocks 4 12 24
Number of Heads 8 12 16
Model Dimension 336 744 768
MLP Dimension 1344 2976 3072
Time Embedding Input Dim 256 256 256
Time Embedding Output Dim 128 128 128
Learning Rate 2e-4 7.5e-5 5e-5
Batch Size 8192 8192 4096

Table 25: Model Configurations for Different Parameter Sizes for Boolean Satisfiability Problem

Here DiT Block (Peebles & Xie, 2023) is a modified transformer block designed to process
conditional inputs in diffusion models. For Boolean Satisfiability (SAT), these blocks evolve variable
assignments and clause states while incorporating diffusion timestep information through specialized
conditioning mechanisms.

Adaptive Layer Norm (adaLN-Zero) Xu et al. (2019): Dynamically adjusts normalization parameters
using timestep embeddings:

AdaLN(h, t) = ts · LayerNorm(h) + tb (11)

where ts, tb are learned projections from timestep t. The adaLN-Zero variant initializes residual
weights (α) to zero, preserving identity initialization for stable training.

Time-conditioned MLP: Processes normalized features with gated linear units (GLU), scaled by the
diffusion timestep.

We use the AdamW optimizer (Loshchilov & Hutter, 2019) (with β1 = 0.9, β2 = 0.999 and
ϵ = 10−8) with no weight decay and with no dropout. We use EMA with decay 0.9999.

J.2 DATA GENERATION

We follow the procedure of Ye et al. (2024) to create a large dataset of 15M satisfiable 3-SAT instances
covering n ∈ 6, . . . , 20. Each instance is generated by:

1. Sampling clauses where each clause has exactly three variables, chosen uniformly at random
from the n available.

2. Randomly deciding whether each variable in the clause appears in complemented or non-
complemented form.

After generating the clauses, we run a standard SAT solver to ensure each instance is satisfiable,
discarding any unsatisfiable cases. Finally, the data is split into training and test sets, with multiple
checks to prevent overlap.

33

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

0
20
40
60
80

100

Ac
cu

ra
cy

 (%
)

10
0K

20
0K

30
0K

40
0K

50
0K

60
0K

70
0K

80
0K

90
0K

10
00

K

Training Steps

70

75

80

85

90

3S
AT

 C
la

us
es

 S
at

isf
ie

d

Total
Clauses
(85)

Random
Baseline
(74.37)

Figure 4: Evolution of the model’s SAT accuracy and number of satisfied clauses over training for
random 3-SAT instances with n = 18 on 185M model.

J.3 ACCURACY TREND DURING TRAINING

Figure 4 illustrates how the SAT accuracy evolves over training for a model trained on instances,
showing for n = 18 as a representative example. In the early stages (roughly the first half of training),
the accuracy remains near zero, even as the model steadily improves in satisfying individual clauses.
This indicates that the model initially learns partial solutions that satisfy a growing fraction of the
clauses. Once the model begins consistently satisfying nearly all clauses in an instance, accuracy
jumps sharply, reflecting that the assignments finally meet all the constraints simultaneously.

34

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

K LICENSES AND COPYRIGHTS ACROSS ASSETS

1. PubLayNet Benchmark
• Citation: Zhong et al. (2019)
• Asset Link: [link]
• Lincense: [link]

2. RICO Benchmark
• Citation: Deka et al. (2017)
• Asset Link: [link]
• License:[link]

3. QM9 Benchmark
• Citation: Ramakrishnan et al. (2014)
• Asset Link: [link]
• License: [link]

4. PySAT SAT Solver
• Citation: Ignatiev et al. (2018)
• Asset Link: [link]
• License: [link]

35

https://github.com/ibm-aur-nlp/PubLayNet
https://github.com/ibm-aur-nlp/PubLayNet/blob/master/LICENSE.md
http://www.interactionmining.org/rico.html
http://www.interactionmining.org/rico_copyright.txt
http://quantum-machine.org/datasets/
https://creativecommons.org/licenses/by/4.0/
https://github.com/pysathq/pysat
https://github.com/pysathq/pysat/blob/master/LICENSE.txt

	Introduction
	Preliminaries
	Interleaved Gibbs Diffusion
	Forward Noising Process
	Reverse Denoising Process
	ReDeNoise Algorithm
	Conditional Generation

	Training the Denoisers
	Training the Discrete Denoiser
	X-ary classification
	Binary classification

	Training the Continuous Denoiser

	Experiments
	Layout Generation
	Background
	Experimental Setup
	Results

	Boolean Satisfiability Problem
	Background
	Experimental Setup
	Results

	Conclusion and Future Work
	Proofs
	Lemma 3.1
	Lemma 3.2
	Lemma 4.2

	Connection between , and
	Forward process: Generating s(t) directly
	Algorithm Framework: Pseudocode
	Model Training and Inference: Pseudocode
	Model Architecture
	Inference Compute Cost
	Molecule Generation
	Background
	Experimental Setup
	Results
	Other Baselines
	Training Details
	Ablations

	Layout Generation
	Additional Results
	Generated Examples
	Training Details
	Ablations

	Boolean Satisfiability Problem
	Training Details
	Data Generation
	Accuracy Trend During Training

	Licenses and Copyrights Across Assets

