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Abstract

Pathology whole slide image (WSI) analysis is vital for disease diagnosis and
understanding. While foundation models (FMs) have driven recent advances, their
scalability in pathology remains a key challenge. In particular, vision-language
(VL) pathology FMs align visual features with language annotation for downstream
tasks, but they rely heavily on large-scale image-text paired data, which is scarce
thus limiting generalization. On the other hand, vision-only pathology FMs can
leverage abundant unlabeled data via self-supervised learning (SSL). However,
current approaches often use the [CLS] token from tile-level ViTs as slide-level
input for efficiency (a tile with 224×224 pixels composed of 196 patches with
16×16 pixels). This SSL pretrained [CLS] token lacks alignment with downstream
objectives, limiting effectiveness. We find that spatial patch tokens retain a wealth
of informative features beneficial for downstream tasks, but utilizing all of them
incurs up to 200× higher computation and storage costs compared [CLS] token
only (e.g., 196 tokens per ViT224). This highlights a fundamental trade-off between
efficiency and representational richness to build scalable pathology FMs. To address
this, we propose a feature distillation framework via vector-quantization (VQ) that
compresses patch tokens into discrete indices and reconstructs them via a decoder,
achieving 64× compression (1024 → 16 dimensions) while preserving fidelity. We
further introduce a multi-scale VQ (MSVQ) strategy, enhancing both reconstruction
and providing SSL supervision for slide-level pretraining. Built upon MSVQ
features and supervision signals, we design a progressive convolutional module and
a slide-level SSL objective to learn spatially rich representations for downstream
WSI tasks. Extensive experiments across multiple datasets demonstrate that our
approach achieves state-of-the-art performance, offering a scalable and effective
solution for high-performing pathology FMs in WSI analysis.

1 Introduction

Cancer remains one of the most challenging diseases to diagnose and prognosticate, with pathology
playing a pivotal role in understanding its complexities [28]. Traditional histopathological analysis
relies heavily on manual examination of tissue samples by pathologists, a process that is not only time-
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consuming but also prone to inter-observer variability [24]. In recent years, computational pathology
has emerged as a transformative method, leveraging whole-slide images (WSIs) to enable automated
and quantitative analysis of tissue samples [49, 79, 48]. WSIs, which are high-resolution digital scans
of entire tissue slides, provide a wealth of information that can be harnessed for cancer diagnosis,
prognosis, and treatment planning. However, the ultra-high resolution of WSIs, often exceeding
billions of pixels, presents significant challenges for effective computational modeling [61, 41].

Recent advances in foundation models (FMs)[3, 6, 51, 70] have shown strong potential in com-
putational pathology. Studies have demonstrated the effectiveness of self-supervised learning
(SSL)[75, 10, 20, 52] and vision-language (VL) pretraining [17, 48, 57] in extracting semantic
features on pathology images. The FMs typically process WSIs by dividing them into smaller tiles
(e.g., 224×224 pixels as a tile), extracting features from each tile, and aggregating these features
to make slide-level predictions. VL-FMs [57, 48] excel in downstream tasks (e.g. zero-/few-shot
ROI classification [65]), but their scalability is limited by the scarcity of large-scale image-text
pairs [29, 65, 30]. In contrast, vision-only FMs trained on unlabeled data via SSL are more scalable.
However, most methods adopt the task-agnostic [CLS] token from pretrained ViTs as a global repre-
sentation of each tile [48, 20] and fed as WSI input [31, 61, 10, 33, 40, 62, 43, 67]. This approach
overlooks critical spatial information captured by other spatial tokens, which are particularly essential
for modeling nuanced pathological variations in gigapixel WSIs.

Notably, some studies have attempted to address this issue by scaling up to larger models (UNI-
2 [10] using ViT-giant) or combining [average pooling] features with the [CLS] token (Virchow-
2 [90]). Disappointingly, these approaches yield only marginal improvements. Consequently,
we argue that the scalability and performance of FMs is fundamentally constrained by the trade-
off between efficiency (using [CLS] only) and representational richness (using all patch tokens):
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Figure 1: Evaluation on information loss via reconstruction
training. Directly using the [CLS] token results in significant
information loss, making it difficult to reconstruct all patch
tokens, potentially discarding critical details for downstream
tasks. In contrast, vector quantization retains more original
information and show stronger result on downstream task
’BRACS’. The TopK patch tokens via CLS tokens attention
selection are included for comparison.

Leveraging all spatial patch tokens
benefit WSI analysis but incurs nearly
200× higher storage and training
costs as shown in Figure 1 (e.g., 196
tokens in ViT224). To address this,
we introduce feature distillation via
vector quantization (VQ) [71, 53] on
patch features, which efficiently com-
presses spatial patch tokens using dis-
crete indices and a decoder. Our
method reduces token dimensional-
ity from 1024 to 16, achieving a 64×
compression rate while preserving re-
construction fidelity. This compres-
sion process retains original spatial
and contextual information, ensuring
that critical features are preserved for
downstream tasks.

Furthermore, we employ a multi-scale
VQ (MSVQ) strategy, which uni-
fies patch-level and tile-level feature
VQ. Intuitively, tile-level feature like
[CLS] token can be seen adaptive
combination all patch features, thus
they share the same feature space and
can be learned into a single VQ model. The MSVQ not only enhances VQ reconstruction performance
but also serves as a SSL supervision target for a seamless slide-level pretraining objective (working
as a tokenizer thus can be pretrained like BERT [15, 25, 53]). By integrating slide SSL into our
framework, we enable the model to learn rich, discriminative representations from unlabeled WSIs,
addressing the challenge of limited WSI samples in computational pathology downstream tasks. Built
upon the quantized features of patches and supervision targets of tiles via MSVQ, we develop a
progressive convolutional module and slide-level SSL to extract representations with rich spatial
information for downstream WSI tasks, leading to more accurate and interpretable predictions for
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tasks like cancer diagnosis and prognosis. The contributions of our work can be summarized as
follows:

1) Efficient Token Compression with VQ Distillation: We propose a novel VQ-based framework
that compresses patch-level spatial tokens by 64× while retaining critical spatial and contextual
information, enabling scalable and efficient WSI analysis.

2) SSL Supervision via offline tokenizer: Our improved MSVQ strategy not only enhances feature
reconstruction but also serves as an SSL supervision target for slide-level mask prediction, providing
a new direction for pretraining WSI models.

3) Rigorous Validation: Extensive evaluations on multiple datasets demonstrate the effectiveness of
our approach, achieving state-of-the-art performance in WSI analysis tasks, with practical implications
for clinical applications.

By addressing the computational challenges of WSI analysis while preserving critical spatial infor-
mation, our framework offers a new perspective on the development of computational pathology
foundation models, paving the way for more accurate and scalable cancer diagnostics.

2 Method

2.1 Preliminary

For WSI modeling, a WSI X is first divided into N tiles: X = [x1,x2, . . . ,xN ], which are then pro-
cessed by the FM. The pretrained FM ViT converts tile image x into n patches x = [p1,p2, . . . ,pn],
where the most commonly used patch size is 16 × 16. The ViT outputs all patch representations
within a tile: [s;h1,h2, . . . ,hn], where s serves as a summary [CLS] of the spatial tokens of all
patches (ST = [h1,h2, . . . ,hn]). Most existing approaches [31, 84, 10] rely on the [CLS] token
from each tile to form WSI input embeddings S = [s1, s2, . . . , sN ] ∈ RN×D. These embeddings are
subsequently aggregated for slide-level prediction: Ŷ = g(S; θ), where g(θ) can be an attention [31]
mechanism or a Transformer.

In contrast, this paper explores using all spatial tokens H = [ST1,ST2, . . . ,STN ] ∈ RN×n×D for
slide-level prediction. Here, N (the number of tiles) can easily exceed 5k, n = 196 (the number of
patches per tile), and the feature dimension D = 1024 (for UNI [10]). So, directly leveraging these
high-dimensional data (about 1 million patch tokens) is computationally prohibitive for WSI training.

2.2 Vector Quantization Learning

To mitigate the computational burden while incorporating all patches’ ST representations, we intro-
duce vector-quantization (VQ) learning on the pretrained FM’s patch ST, as illustrated in Figure 3b.
This framework consists of an encoder, a quantizer, and a decoder. Additionally, we extend VQ to
support both patch and tile representations via a multi-scale VQ strategy.

2.2.1 VQ for Patches

The spatial tokens (ST) are mapped into discrete codes through vector quantization (VQ). Specifically,
the tile-level representation ST = [h1,h2, . . . ,hn] is first passed through an MLP encoder to reduce
its dimensionality from D to d:

[e1, e2, . . . , en] = Enc([h1,h2, . . . ,hn]), (1)
where the resulting low-dimensional representations [e1, e2, . . . , en] are subsequently tokenized into
discrete indices STtok = [z1, z2, . . . , zn]. The codebook V = [v1,v2, · · · ,vC ] ∈ RC×d consists of
C learnable embeddings. Each patch-level representation ei is assigned to its nearest neighbor in the
codebook via:

zi = argmin
j

∥ℓ2(ei)− ℓ2(vj)∥2 , (2)

where j ∈ {1, 2, . . . , C}, and ℓ2 denotes L2 normalization used for distance computation, ensuring
that each patch token is matched to the most similar codebook vector.

After quantization, the selected embeddings Ez1 ,Ez2 , . . . ,Ezn are passed to a multi-layer Trans-
former decoder to reconstruct the original spatial token representation. During training, the decoder
output oi is aligned with the target hi by maximizing their cosine similarity.
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Figure 2: Multi-scale Vector Quantization (MSVQ) visualization. Based on MSVQ, the tile- and
patch-level can be quantified simultaneously for slide-level pretraining and feature compression,
respectively. The region data can be used to pretrain ABMIL via token index frequency matching.

Since the quantization operation in Equation 2 is non-differentiable, we adopt the straight-through
gradient estimator [71], which copies gradients from the decoder input to the MLP encoder output
for backpropagation.

The overall training objective of VQ is defined as:

max
∑
x∈M

n∑
i=1

cos(oi,hi)− ∥ℓ2(ei)− ℓ2(vi)∥22 , (3)

where M denotes the dataset of image tiles. For simplicity, we omit the straight-through gradient
path and stop-gradient notation [71]. During optimization, the MLP encoder, codebook embeddings,
and Transformer decoder are jointly trained to reconstruct the original spatial token representations.

2.2.2 Multi-Scale Vector Quantization

To simultaneously compress patch-level spatial token ST representations and generate an offline
tokenizer for WSI self-supervised learning, we propose a Multi-Scale Vector Quantization (MSVQ)
module. MSVQ encodes the FM tile ST features into K multi-scale discrete token maps R =
(r1, r2, . . . , rK).

MSVQ builds upon the VQ architecture described in Section 2.2.1, with the key addition of a multi-
scale quantization module. The encoding process is designed with residual paradigm [68, 38], as
detailed in Algorithm 1.

Intuitively, when R = (r1) as scale ratio, MSVQ reduces to a standard VQ applied to the average-
pooled patch token representation—akin to the tile-level [CLS] token. On the other hand, when
R = (rK), MSVQ behaves identically to the patch-level VQ introduced in Section 2.2.1. The general
form R = (r1, . . . , rK) enables vector quantization at multiple-scale semantic levels, including tile,
patch, and intermediate resolutions. Please refer to Figure 2 for a visual illustration.

A shared codebook Z is employed across all scales, ensuring that tokens from each rk are drawn
from a unified vocabulary [VC ]. The decoding process mirrors the encoding pipeline in reverse order.
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Algorithm 1: Multi-Scale VQ Encoding

1 Inputs: FM’s spatial token feature ST = [h1,h2, . . . ,hn] # hi is the ViT outputs tokens despite of CLS;
Hyperparameters: number of scales K, resolutions (Hk,Wk)

K
k=1;

2 f ← Enc(ST) is encoded feature, R← [] represents the residual list;
3 for k = 1, . . . ,K do
4 rk ← Q(interpolate(f , Hk,Wk)), # get residual of resolution level k;
5 R← queue_push(R, rk);
6 zk ← lookup(Z, rk);
7 zk ← interpolate(zk, Hk,Wk);
8 f ← f − zk;
9 Return: multi-scale tokens R and codebook indices Z = [z1, . . . , zK ];
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Figure 3: Overview of the proposed framework. (a) The pipeline for compressing spatial patch tokens
using vector quantization (VQ) and multi-scale VQ (MSVQ). (b) Slide-level self-supervised learning
(SSL) using MSVQ-generated tokenizers. (c) Downstream WSI task fine-tuning with compressed
patch features.

2.3 Slide-Level Self-Supervised Learning

Leveraging the offline tokenizer generated by MSVQ for all WSI tiles, we design a self-supervised
learning (SSL) pretraining framework tailored for WSI-MIL analysis. This framework is compatible
with both mainstream MIL architectures, including attention-based MIL (ABMIL) and Transformer-
based models.

2.3.1 ABMIL-Based Self-Supervised Learning

In supervised ABMIL training (e.g., WSI classification), adaptive pooling or max-pooling is typically
employed to aggregate tile-level features for prediction at the WSI level. Inspired by this paradigm,
we formulate a simple yet effective SSL objective for ABMIL, grounded in the level-1 quantized
indices from MSVQ (as shown in Figure 2).
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Given a large-region crop from a WSI (e.g., a region of size 14336 × 14336, corresponding 4096
tiles each sized 224× 224), the SSL objective for each region x is defined as:

L(θ) = −
C∑

c=1

qc(x) log pθ(x)c, (4)

where the soft target distribution qc(x) is computed based on the frequency of MSVQ token indices
within the region, normalized over all C codebook categories. Specifically, qc(x) represents the
proportion of tiles in region x assigned to token class c. The predicted probability pθ(x)c for class
c is obtained by passing the region through an ABMIL model followed by a classifier head with
softmax activation:

pθ(x)c = softmax (classifier [AttnPool(x)])c . (5)

2.3.2 WSI Transformer-Based Self-Supervised Learning

We adopt a masked image modeling (MIM) strategy inspired by MAE [25] and BEiT [53], but with a
key difference: instead of raw image patches, we operate on pre-extracted feature representations as
input. Given an input region composed of k tiles, represented as x = {t1, t2, . . . , tk}, we randomly
mask a subset of tiles indexed by M. The masked positions are replaced with a shared learnable
embedding e[M], and Rotary Positional Embedding (RoPE) [64] is applied to retain spatial coherence.
The corrupted input becomes:

xcorrupt = {t1,��t2, . . . ,�ti, ti+1, . . . , tk}. (6)

For each masked tile, a softmax classifier is trained to predict the corresponding token index, which is
obtained from the level-1 quantized output of the MSVQ tokenizer (see Section 2.2.2). This provides
a discrete and consistent supervision signal.

The training objective is formulated as:

Lmask-modeling(θ) = −
∑
x∈D

∑
i∈M

log pθ(zi | xM
i ), (7)

where zi denotes the MSVQ token index for the i-th masked tile, and D is the dataset of training
regions. Compared to the online tokenizer used in iBOT and related frameworks, our MSVQ-based
offline tokenizer provides a more stable and reliable supervisory signal for SSL pretraining.

2.4 WSI Downstream-Task Fine-Tuning

As illustrated in Figure 3c, the refined WSI input consists of patch feature embeddings with a
compressed shape of (N, 14, 14, dim), where N represents the total number of tiles in a WSI, and
(14, 14) corresponds to the standard 2D patch arrangement in ViT for each tile. To enhance the feature
representation for downstream tasks, we first apply convolutional layers (Convs) with upsampling,
increasing the output channel size while reducing to fewer tokens to better capture task-relevant
information. The extracted features are then reshaped to match the original CLS token representation
of tile-based ViT.

It is notable that the encoding direction of ST is not so controllable since the the encoded embeddings
are in the middle layers (after encoding, before decoding). To keep its feature space as original, we
align the output of Convs to original level-1 tile feature during VQ pre-training. This module will be
further fine-tuned during slide-level task. Finally, the processed features are fed into downstream
MIL models, including both ABMIL and WSI-Transformer (see Section 2.1).

2.5 Overall Framework and Implementation

We summarize the overall framework of our method below. The WSI pre-processing follows the
approach used in previous work [49]:

• Patch-Level VQ Learning (Figure 3b): This module aims to compress all patch token
features from FMs, making them trainable for downstream tasks. Multi-scale VQ learning
(Figure 2) further enables slide-level SSL supervision and subsumes patch-level VQ learning.
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• Slide-Level SSL (Figure 2): Leveraging the tile-level tokenizer learned via MSVQ, SSL
can be effectively applied to both ABMIL and WSI-Transformer models.

• WSI Downstream-Task Fine-Tuning (Figure 3c): Fine-tuning serves two purposes: (a)
transforming patch features into a more suitable representation for downstream tasks, and
(b) fine-tuning the pretrained slide-level SSL model for improved performance.

3 Experiments

In this section, we evaluate the performance of the proposed method and compare it with various
baselines. Additionally, we conduct ablation studies to further analyze its effectiveness.

3.1 Pretraining Implementation Details

VQ Pretraining: We conduct VQ pretraining on 1M randomly cropped 224× 224 tiles extracted
from all TCGA [69] diagnostic pathology WSIs. During training, the FM backbone (e.g., UNI with
ViT-Large) remains frozen. The codebook has a size of C = 8192 with an embedding dimension
of 16. For MSVQ, we employ a multi-scale resolution list: {1 × 1, 2 × 2, 4 × 4, 7 × 7, 14 × 14}.
The VQ encoder, decoder, and codebook are frozen after pretraining. The model is trained on 4
RTX-3090 GPUs for 50 epochs using a batch size of 128 tile images per GPU. The total training time
is approximately 22 hours.

WSI-SSL Pretraining: We crop all TCGA diagnostic WSIs into regions of resolution 3584× 3584,
yielding a dataset of approximately 250k regions. To facilitate SSL, a pretrained MSVQ model is
used to extract the quantized indices of each tile within a region, requiring only about 65MB for
storage.

During pretraining, the indices of each region are first re-embedded via a frozen VQ module, resulting
in a feature representation of shape (256, 14× 14, 16). The convolutional module consists of four
conv layers with a stride of 2, progressively increasing the output channels from 128 → 256 →
512 → 1024. This process transforms the features into spatially enriched embeddings of shape
(256, 1× 1, 1024). These embeddings are subsequently fed into either an ABMIL model or a 6-layer
WSI-Transformer for pretraining.

3.2 Downstream Tasks

UNI
linear probe

UNI
FT last block

UNI
PathVQ

UNI-2
linear probe

GigaPath
linear probe

0.93

0.94

0.95
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Ac
cu
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ROI Classification Performance
CRC-100K
C17.WILDS

Figure 4: ROI classification. Obviously, further
fine-tuning (FT) on the last block of UNI ViT can
further improve the downstream results. PathVQ,
by compressing and reconstructing the patch spa-
tial token, can achieve comparable improvement.
UNI-2, however, does not show consistency im-
provement compared to FT and PathVQ.

We primarily focus on WSI classification and
survival prediction. For dataset details, please
refer to Appendix A.2. For illustration purpose,
we also run two experiments on ROI classifica-
tion to clarify [CLS] token is not all we need.

The data processing and embedding procedure
are identical to the region-based approach but
are applied at the WSI level. The (x, y) coor-
dinates of tiles are also stored to facilitate posi-
tional encoding in the WSI-Transformer.

During fine-tuning, both the convolutional mod-
ule and the WSI model are trained with a batch
size of 1 for 20 epochs. The learning rate is fixed
at 1×10−4, with a weight decay of 1×10−4, us-
ing the AdamW optimizer with default settings.

For ABMIL, both randomly initialized and pre-
trained models are fine-tuned using the same
hyper-parameters and training protocol. For
WSI-Transformer, LoRA [27] adaptation (ap-
plied to all nn.Linear layers) is used with rank = 16 during fine-tuning of the pretrained model to
mitigate overfitting. For Transformer initialized from scratch, full fine-tuning is employed.
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3.2.1 Tile/ROI Classification

We evaluate tile/ROI classification performance using dataset CRC-100K [35] (9 categories) and
Camelyon-17 WILDS [36] tiles (binary). The result in shown in Figure 4: By only updating the
last Transformer block of UNI, the result can be significantly improved. Our PathVQ method is also
included and shown comparable improvement to FT. All these results are better than linear probe
(freeze backbone and fed [CLS] token feature to classification head). UNI-2, also using linear-probe
seems can not scaling up with strong performance on every down-stream tasks.

3.2.2 WSI Tumor Classification

Table 1: Slide-Level Tumor Classification based on FM. The results in the first-row are all trained on
UNI, while the second-row we include some recent stronger FMs. The cyan rows are our methods
including PathVQ and Slide-level Pre-Training (SPT). The orange rows demonstrate how much (∆)
of our PathVQ method and UNI-2 improved over UNI with ABMIL setting. The bold and underline
denote the best and second-best result, respectively.

Tumor classification Mutation Prediciton
BRACS LGG-GBM

Method F1 AUC F1 AUC

CLAM-SB [49] 0.640±0.05 0.844±0.03 0.672±0.06 0.842±0.03

DTFD-MIL [84] 0.655±0.03 0.878±0.02 0.697±0.04 0.857±0.02

TransMIL [61] 0.592±0.03 0.859±0.02 0.678±0.05 0.847±0.03

ABMIL [31] 0.692±0.03 0.875±0.02 0.685±0.07 0.852±0.04

+PathVQ 0.730±0.02 0.902±0.01 0.723±0.04 0.871±0.04

∆ over UNI + ABMIL 3.8% ↑ 2.7% ↑ 4.8% ↑ 1.9% ↑
+PathVQ + SPT 0.747±0.01 0.906±0.01 0.752±0.03 0.879±0.02

Roformer 0.678±0.03 0.882±0.01 0.675±0.03 0.861±0.02

+PathVQ 0.711±0.02 0.892±0.01 0.739±0.04 0.872±0.02

+PathVQ + SPT 0.754±0.02 0.910±0.01 0.758±0.02 0.886±0.01

UNI-2 + ABMIL 0.698±0.03 0.887±0.02 0.699±0.03 0.859±0.01

∆ over UNI + ABMIL 0.6% ↑ 1.2% ↑ 1.4% ↑ 0.7% ↑

GigaPath 0.677±0.03 0.862±0.03 0.703±0.04 0.864±0.02

TITAN 0.696±0.04 0.891±0.01 0.711±0.03 0.868±0.02

We first evaluate our method on the BRACS [4], a dataset with three categories—negative, benign,
and malignant cancer. We then evaluate on TCGA LGG-GBM [69] focus on R132 [2] gene mutation
as binary classification. (We notice that popular-used WSI binary tumor classification tasks(e.g.
Camelyon [47], TCGA-NSCLC [69]) are nearly solved (AUC>97) given FMs progress. So here we
mainly focus on more difficult task, like more categories, and will explore and validate more difficult
datasets in near future.)

Compared Baselines: Since our method primarily focuses on extracting improved tile-level features
for WSI analysis, we compare it against various WSI analysis models with different architectural
designs: ABMIL [31], DSMIL [39] (introduces a max-pooling branch alongside the attention
mechanism), and DTFD-MIL [84] (employs sub-bags for hierarchical learning). TransMIL [61]
(leveraging Nyström self-attention [78] for computational efficiency), Transformer with 2-d RoPE [64,
41, 54].

FMs like GigaPath (a 12-layers WSI-Transformer (efficiently implemented using LongViT [74]),
pretrained on large-scale private data via MAE [25], with a [CLS] token as tile feature), TITAN [79,
17] (a 6-layers WSI-Transformer with 2D-ALiBi positional encoding [55, 41], pretrained on large-
scale private data using iBOT [88], with Conch-v1.5 as the tile feature extractor ([CLS] token).),
and UNI-2 are also included. Certain works that focus on orthogonal aspects, such as overfitting
mitigation, hard instance mining, etc. [89, 86, 87, 56, 66, 67, 14, 45, 80], are not included in our
primary comparison.
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For all the experiments, we report the macro-AUC and macro-F1 scores (over five-runs or five-fold
cross validation) because of class imbalance.

WSI Classification Results Analysis: The results are reported in Table 1. We can first observe that
ABMIL and Roformer show significant improvement when combined with our PathVQ compressor
into UNI. The results difference of UNI+PathVQ+ABMIL (about 3% improvement with adding 1M
tile data) and UNI2+ABMIL (about 1% improvement with adding large-scale (>>1M) of tile data,
and 2 ∼ 6× model size) demonstrate that the scalability of previous FMs are bottlenecked by the
[CLS] token information losses. In addition, the results of our slide-level pretraining (SPT) also show
consistency improvement compared with random initialization.

3.2.3 WSI Survival Prediction

Table 2: Survival prediction Results of PathVQ and baselines for measuring patient disease-specific
survival. All methods in Prototype and MIL use UNI features [10]. Best performance in bold, second
best underlined.

TCGA BRCA CRC BLCA UCEC KIRC

Prototype
(unsup. cox loss)

H2T [73] 0.672±0.07 0.639±0.11 0.566±0.05 0.715±0.09 0.703±0.11

OT [50] 0.755±0.06 0.622±0.09 0.603±0.04 0.747±0.08 0.695±0.09

PANTHER [63] 0.758±0.06 0.665±0.10 0.612±0.07 0.757±0.10 0.716±0.10

MIL
(supervised. UNI)

AttnMISL [81] 0.627±0.08 0.639±0.10 0.485±0.06 0.581±0.12 0.649±0.09

ILRA [77] 0.649±0.10 0.555±0.10 0.550±0.04 0.632±0.02 0.637±0.14

TransMIL [61] 0.612±0.07 0.684±0.06 0.595±0.06 0.695±0.08 0.671±0.10

ABMIL [31] † 0.644±0.05 0.608±0.09 0.550±0.06 0.669±0.07 0.684±0.06

ABMIL reproduce 0.633±0.06 0.612±0.08 0.540±0.07 0.671±0.08 0.691±0.08

+ PathVQ 0.655±0.05 0.649±0.12 0.608±0.05 0.721±0.10 0.760±0.08

∆ over ABMIL 2.2% ↑ 3.7% ↑ 6.8% ↑ 5.0% ↑ 6.9% ↑
+PathVQ + SPT 0.674±0.06 0.659±0.08 0.616±0.05 0.748±0.11 0.778±0.08
Roformer 0.602±0.09 0.617±0.13 0.572±0.07 0.721±0.08 0.655±0.13

+PathVQ 0.644±0.07 0.587±0.09 0.597±0.05 0.741±0.09 0.748±0.09

+PathVQ + SPT 0.673±0.07 0.679±0.08 0.603±0.05 0.734±0.11 0.765±0.08

UNI-2 ABMIL 0.614±0.02 0.618±0.11 0.539±0.08 0.672±0.08 0.659±0.11

Slide-FMs
(SOTA, ckpt-only)

CHIEF [76] 0.737±0.04 0.680±0.08 0.599±0.02 0.758±0.10 0.736±0.06

GigaPath [79] 0.687±0.08 0.628±0.08 0.589±0.05 0.779±0.10 0.751±0.07

TITAN [16] (cox loss) 0.713±0.04 0.710±0.11 0.657±0.05 0.789±0.09 0.774±0.06

We evaluate survival prediction on five TCGA datasets: BRCA, BLCA, CRC, UCEC, and KIRC.
The model is trained using the negative log-likelihood (NLL, notice that some compared models’ are
trained via Cox-loss generally gain better result, please check Appendix A.6 for details.) loss and
evaluated using the c-index with 5-fold cross validation (the result of last epoch is reported).

For fair comparison, we follow the default training pipeline of PANTHER [63], including hyper-
parameters and data splits, and integrate our proposed model modifications along with pretrained
weights.

Compared Baselines: We categorize the baselines into three groups: Unsupervised Prototype-
Based Approaches: H2T [73] (clusters tile embeddings and pools them within each cluster), OT [50]
(aggregates patch features into a set of prototypes using Optimal Transport), PANTHER [63] (models
prototype tile embeddings via a Gaussian Mixture Model). Supervised MIL Models: AttnMISL [81]
(combines prototype-based learning with MIL), ABMIL [31], TransMIL [61], ILRA [77], and
Transformer with RoPE [64]. Slide-Level FMs: CHIEF [76]: A large-scale ABMIL-pretrained
model using contrastive learning to predict organ source, with CTransPath as the tile feature extractor
(mean-pooled features), GigaPath [79] and TITAN [17]. UNI-2 [10] feature extractor with ABMIL
model.

Survival Prediction Results Analysis: The results are reported in Table 2. We can observe that
ABMIL and Roformer show significant improvement when combined with our PathVQ compressor
into UNI. But for Roformer with large-scale of parameters, the performance get easily overfitting to
labels thus showing interior performance, which demonstrate the necessity of pretraining. For UNI-2,
the improvement is marginal, proving our previous claim on the [CLS] bottleneck of scalability.
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Performance vs. Complexity across Methods

Figure 5: Performance–complexity trade-off across
various token reduction strategies on BRACS. Our
proposed VQ method achieves the best balance be-
tween accuracy and efficiency, delivering the highest
F1-score (0.73) with significantly reduced token com-
plexity. Other approaches, including PCA, average pool-
ing, and CLS-based methods, show varying trade-offs.

3.3 Ablations and Visualization

Performance vs. Complexity across re-
duction methods is shown in Figure 5.
PCA: Reduces token dimensions by pro-
jecting them onto a low-rank linear sub-
space, preserving variance but potentially
discarding discriminative details.The F1-
score reaches about 0.70.

Average Pooling: Aggregates tokens by
computing their mean, leading to compact
representations but often oversmoothing
critical local information. We have con-
ducted pooling original 196=14x14 token
features into 4x4 and 7x7 tokens, resulting
in about 10 and 2 times token reduction.
However, the result only show similar per-
formance compared to original CLS token.

CLS and overall average-pooling: as per-
formed in virchow, the CLS and average-
pooling token can complement a little to each other and resulting in around 1.0 point improvement.

We also performed token selection via CLS token attention top-k ranking. The selected top64 can
reach a F1-score around 0.72 but is still too heavy in computation cost. The selected top16 can reach
a F1-score of 0.70, can be seen as a trade-off, but lose too much on performance.

Our proposed VQ-based method achieves the best balance, attaining the highest F1-score of 0.73
while significantly reducing token complexity. In contrast, other strategies demonstrate varying
degrees of compromise between accuracy and computational cost.

Convs pretraining ablation: Please check Appendix Figure 6.

For additional ablation studies and visualizations, please refer to the Appendix A.4. The main
findings: The VQ reconstruction performance remains relatively stable when varying the quantized
embedding dimension (32) and codebook size (16384). The reconstruction results of MSVQ show
improvements.

4 Conclusion and Limitations

In this work, we introduced a novel vector quantization (VQ) distillation framework to address the
inherent bottleneck of existing computational pathology foundation models in whole-slide image
analysis. Furthermore, our multi-scale VQ strategy unifies patch- and tile-level features, not only
improving feature reconstruction but also serving as an effective self-supervised learning supervision
target for slide-level pretraining. The main limitation is that the VQ learning process need extra
training data. And the VQ still lose some information though it is acceptable. By efficiently
compressing patch-level spatial tokens while preserving critical spatial and contextual information,
our method significantly reduces storage and computational costs without compromising performance.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction are accurately reflect
the paper’s contributions and scope, matching the empirical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:[Yes]
Justification: The main weakness is discussed in last section: need further pre-training, the
training data mainly include TCGA.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide patch and tile visualizations to support the theoretical multi-scale
Vector Quantization learning.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide comprehensive details of dataset selection and pre-processing,
together with training details. We will release full code implementation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All our data is public and use ’CLAM’ for pre-processing. We will release full
code implementation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide model backbone selection and implementation details in core
paper and further provide data split and pre-processing in supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For each experiments we have reported the mean and std via multi-runs or
cross-folds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our memory efficiency method is run on RTX3090 GPU (24g), as detailed in
core paper and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and understood the policies, and we
believe that neither the manuscript nor the study violates any of these.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: There is no negative societal impact of our paper. Our work focus on computer
aided diagnosis for potential medical use, which is discussed in conclusions of core paper.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work mainly focus on recognition for real-world medical pathology image,
without any generative problem.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the data and tools are public accessible and well referenced.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There is no new assets right now.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were directly involved in this study. The research was con-
ducted using publicly available datasets that have been previously collected with appropriate
ethical approvals and anonymization. Therefore, no additional IRB approval was required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: the LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplementary Materials

A.1 Related Work

A.1.1 Pathological Whole Slide Image Analysis

Whole Slide Images (WSIs) contain a wealth of visual information that plays a crucial role in
pathological analysis [5, 49]. However, obtaining detailed cell-level annotations is both labor-
intensive and time-consuming [5, 49, 9], posing a significant challenge for large-scale WSI analysis.
To address this, weakly-supervised learning has emerged as a promising direction in computational
pathology.

Computational Pathology Foundation Models The performance of early WSI MIL approaches [31,
11, 39, 49, 84, 34, 56, 14, 1, 9, 61, 41, 11, 44, 23, 7, 21] relied heavily on tile-level features extracted
from pre-trained models [42, 20]. To address this, FMs have been developed and shown significant
advancements in both tile-level [75, 48, 10, 20, 72, 59] and WSI-level analysis [79, 17]. These FMs
leverage visual Self-supervised Learning (SSL) techniques [6, 52, 13, 12] on large-scale unlabeled
datasets [75, 10, 20] or organize pathology image-text pairs to learn multimodal representation [57,
17, 48]. FMs have demonstrated superior performance in downstream tasks such as cancer subtyping,
survival prediction, and biomarker identification.

Recently, authors in Hest-1k [32] observe that tile encoders like Conch [48] can be further fine-tuned
to obtain better downstream tile task result. However, the key challenge that the computational cost
high-resolution WSIs makes fine-tuning [85, 42] FMs with overwhelm parameters difficult. Most
approaches [48, 10, 20] resort to using pretrained [CLS] token representation of tile-level FM as
slide-level inputs, which may lead to the loss of critical spatial information. Some models, such
as UNI-2 [10], attempt to scale up ViTs into larger-size as tile encoders to extract better feature
representations, but only achieve marginal improvements from ViT-Large to ViT-Giant. We argue
that this performance bottleneck stems from the spatial information loss inherent in [CLS] token
representations. Other efforts, such as Virchow-2 [90], find that combining [CLS] tokens with [AVG]
(average pooling of all spatial tokens) can yield some improvement (less than 1 point). Motivated by
these findings, we propose to keep but compress all spatial patch tokens and further extract useful
information for downstream WSI tasks analysis.

Slide-level FMs / SSL pretraining: Some recent slide-level FMs, e.g. GigaPath [79] and TITAN
[17] are modeled via Transformer with 6 to 12 layers, then pretrained via MAE [25] and iBOT [88]
respectively. Some other slide SSL models [26, 37, 9] also propose to employ slide-level augmentation
with contrastive learning (CL) [12, 52] for pretraining. But there are some training problems of these
works: 1) The main augmentations in slide-level to generate different views for CL is limited, like
crop or random-drop, since the tile feature are pre-processed and stored. This hinders the performance
of CL pretraining. 2) The self-supervised target. The iBOT, [88] used in TITAN [17] predicting
masked token to match online-tokenizer, is not so stable during training. The MAE in GigaPath [79]
need to regress the feature of masked tiles, which may be too difficult to fit and hinder downstream
tasks. The CHIEF [76], on the other way, pretrain ABMIL by constrastively predicting tumor organ
source (extra information).

Different to these work, in this paper we train a offline tile tokenizer via vector quantization which
can offer self-supervision for both WSI-Transformer mask modeling and ABMIL. This is more stable
for pretraining and need no further information.

A.1.2 Vector Quantization

Vector quantization (VQ) [22] is a fundamental technique in signal processing and machine learning,
widely used for data compression, clustering, and generative modeling [18, 71, 58]. Recent devel-
opments in deep learning have led to neural vector quantization methods, such as Vector Quantized
Variational Autoencoders (VQ-VAEs) [71, 58, 8] and quantized transformers [46], which integrate
VQ into end-to-end learning pipelines to enhance expressiveness and efficiency. To further improve
VQ, techniques such as residual quantization [38] and rotation tricks [19] have been proposed. Recent
studies [82, 83] reveal that lower-dimensional quantized vectors (dimension size ranging from 8 to
32) can improve codebook usage and reconstruction performance, providing strong compression
capabilities that benefit this study. Unlike recent VQ methods that focus primarily on visual genera-
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tion [71, 68, 58], our work focus on feature compression and distillation of pretrained pathology tile
encoder features via a VQ quantizer.

A.2 Data Description

BReAst Carcinoma Subtyping (BRACS) [4] collect H&E stained Histology Images, containing 547
WSIs for three lesion types, i.e., benign, malignant and atypical, which are further subtyped into
seven categories. Here, since the WSIs number is limited, we only perform three class subtyping.

TCGA [69]: Breast Invasive Carcinoma (BRCA, n = 1, 041, WSI = 1, 111), Colon and Rectum
Adenocarcinoma (CRC, n = 566, WSI = 575), Bladder Urothelial Carcinoma (BLCA, n = 373, WSI
= 437), Uterine corpus endometrial carcinoma (UCEC, n = 504, WSI = 565), Kidney renal clear
cell carcinoma (KIRC, n = 511, WSI = 517), Brain Lower Grade Glioma (LGG) and Glioblastoma
Multiforme (GBM) constitute WSI = 463. The train/val split is performed on the patient level.

A.3 Experimental settings

VQ Pretraining: We conduct VQ pretraining on 1M randomly cropped 224× 224 tiles extracted
from all TCGA [69] diagnostic pathology WSIs. During training, the FM backbone (e.g., UNI with
ViT-Large) remains frozen. The input tile images are augmented using RandomCrop (minimum ratio:
0.4) and RandomHorizontalFlip (probability: 0.5). The codebook has a size of C = 8192 with an
embedding dimension of 16. The MLP encoder consists of two linear layers with a tanh activation
in between, transforming the feature dimension from 1024 to 16. The decoder first upsamples the
feature dimension from 16 to 768 using a linear layer, followed by three Transformer blocks. Another
linear layer then maps the features from 768 to 1024, ensuring alignment with the original feature
tokens.

For MSVQ, we employ a multi-scale resolution list: {1× 1, 2× 2, 4× 4, 7× 7, 14× 14}.

The model is trained on 4 RTX-3090 GPUs for 50 epochs using a batch size of 128 tile images. The
total training time is approximately 22 hours. The learning rate is set to 2 × 10−4 with a 5-epoch
warmup, followed by cosine decay to a minimum learning rate of 1 × 10−5. The weight decay is
1× 10−4, and the AdamW optimizer is used with β parameters set to (0.9, 0.99).

WSI-SSL Pretraining: We crop all TCGA diagnostic WSIs into regions of resolution 3584× 3584,
yielding a dataset of approximately 250k regions. To facilitate SSL, a pretrained MSVQ model is
used to extract the quantized indices of each tile within a region, requiring only about 65MB for
storage.

All pretraining is conducted on 4 GPUs for 20 epochs with an initial learning rate of 5× 10−4. The
first 2 epochs serve as a warmup phase, followed by cosine decay to a minimum learning rate of
1 × 10−5. The AdamW optimizer is employed with β parameters set to (0.9, 0.98) to ensure fast
convergence.

For ABMIL pretraining, a batch size of 64 is used due to the model’s simplicity. For WSI-Transformer,
the batch size is set to 32, with 96 masked tokens out of 256. The learning objective for both models
is formulated as a cross-entropy loss over 8192 categories, with ABMIL additionally utilizing soft
targets.

UNI RD+FT PT+FT PT+FZ
0.85

0.90

AU
C

Figure 6: The PathVQ feature with Convs need pretraining and aligning tile’s level-0 feature to attain
good feature space and compression. RD: random initialize Convs. FT: fine-tuning during WSI
analysis. PT: pretrained during VQ learning (align to level-0 tile feature). FZ: freeze during WSI
analysis.
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Figure 7: Reconstruction using Multi-Scale (MSVQ) or not. MSVQ obviously improve the rec
performance.
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Figure 8: Reconstruction ablation on quantization codebook size, 8k and 16k.
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Figure 9: Reconstruction ablation on quantization codebook embedding, 16 and 32.
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Region-level 

VQ

Tile-level

VQ

Figure 10: The VQ are performed on both tile-level and patch-level. The quantized index can be seen
as a type of prototypes (n=8k) with strong interpretability. Be aware that since the codebook is too
large, the heatmap on different index may share similar color.

A.4 Ablations on VQ

Multi-Scale (MSVQ) Please check Figure 7.

Codebook Size Please check Figure 8.

Codebook Embedding Dimension Please check Figure 9.

A.5 Illustrative Visualization

Please check Figure 10.

A.6 Survival Prediction Loss Comparison

Most current MIL methods [31, 61] use NLL loss since WSI batch size is limited (most settings are
1) when the MIL models need fine-tuned with large bag size (GPU memory limit). However, the
NLL loss is not optimal for this setting [60]. Cox loss [60], on the other hand, is better than NLL
in performance but it need large batch size to calculate the hazard ranking matrix among different
samples, which is currently inevitable for MIL models. However, this is easy to be implemented
if the bag-size is small (e.g. using unsupervised learning) to prototyping instances’ features like
PANTHER [63]. Or using a strong WSI pretrained module like TITAN [17] pre-extract the slide-level
representations. Though currently our method can not surpass above methods, but it show strong
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improvement compared to other baselines which also using NLL loss. And we will further explore
this problem (combining Cox loss into fine-tuning WSI-level representation model) in the future.
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