BIDPO: COMPOSITIONAL TEXT-TO-IMAGE GENERATION VIA REGION-AWARE BIMODAL DIRECT PREFERENCE OPTIMIZATION

Anonymous authorsPaper under double-blind review

ABSTRACT

Despite the rapid progress of text-to-image (T2I) models, generating images that accurately reflect complex compositional prompts (covering attribute bindings, object relationships, counting) still remains challenging. To address this, we propose B1DPO, a framework to enhance T2I model's capability of compositional text-to-image generation. We begin by introducing an carefully designed pipeline to construct a large-scale preference dataset, B1COMP, with strictly quality control. Then, we extend Diffusion DPO to jointly optimize image and text preferences, which is shown to greatly effective in improving the models to follow complex text prompt in generation. To further enhance the models for fine-grained alignment, we employ a region-level guidance method to focus on regions relevant to compositional concepts. Experimental results demonstrate that our B1DPO substantially improves compositional fidelity, consistently outperforming prior methods across multiple benchmarks. Our approach highlights the potential of preference-based fine-tuning for complex text-to-image tasks, offering a flexible and scalable alternative to existing techniques.

1 Introduction

Text-to-Image (T2I) generation has witnessed remarkable advancements in recent years, largely driven by the rapid development of diffusion models (Peebles & Xie, 2023; Esser et al., 2024; Betker et al., 2023; Labs, 2024). While existing models excel at generating images with high fidelity and aesthetics quality, they still struggle to accurately follow complex text instructions, especially when there are multiple objects, different attributes binding to each object, and complex inter-object relationships like spatial and numeracy involved (Huang et al., 2023).

To address these challenges, the research community has explored a variety of strategies. Some previous works introduce additional modalities, such as layouts (Zhang et al., 2024), scene graphs (Li et al., 2024b), or semantic panels (Feng et al., 2023) to provide structural guidance for the image generation process. While these approaches have achieved notable improvements, they heavily relies on supplementary inputs that may be difficult to obtain in practice. Another line of work seeks to enhance model comprehension through the integration of Large Language Models (Lian et al., 2023a) as a tool; however, such methods can be unstable and computationally intensive. **Motivated by this, we aim to enhance the compositional generation ability under pure text conditions**, without relying on external tools or modalities.

Direct Preference Optimization (DPO) (Rafailov et al., 2023), a powerful variant of Reinforcement Learning from Human Feedback (RLHF), refines traditional reward-model-based RLHF methods and has shown considerable promise in aligning generative models with human preferences. Despite its potential, the application of DPO to compositional text-to-image generation remains largely unexplored. We posit that DPO is particularly well-suited for this domain, as it can effectively leverage human feedback to enhance a model's ability to interpret and generate intricate compositions. Importantly, as a post-training technique, DPO can be applied to any pre-trained text-to-image model without requiring additional inputs or substantial architectural modifications, thereby offering a simple yet flexible and efficient solution.

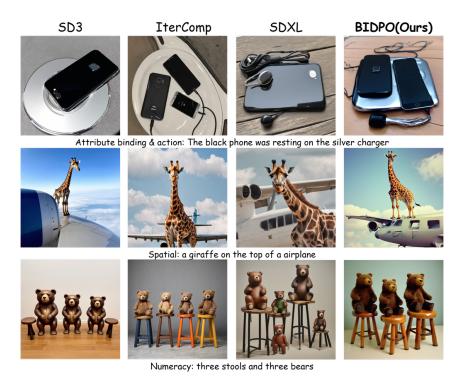


Figure 1: **Visualization of text-to-image generation results**. From left to right are Stable Diffusion 3 (Esser et al., 2024), IterComp (Zhang et al., 2025a), Stable Diffusion XL (Podell et al., 2023), and Stable Diffusion XL finetuned with our proposed B1DPO.

In this work, we introduce BIDPO, a novel framework that employs Bimodal Direct Preference Optimization to advance compositional text-to-image generation. Our approach is distinguished by a fully automated data pipeline for generating high-quality preference data, comprising the following stages: (1) collecting composition-related captions from diverse sources and generating corresponding images using a pre-trained text-to-image model; (2) regenerating captions for these images via a pipeline that integrates object detection, segmentation, and labeling; (3) editing the regenerated captions to produce distinct variants and utilizing an image editing model to modify the original images accordingly; and (4) applying a VQA-based filtering step to ensure the fidelity of the resulting image-caption pairs. The resulting dataset is characterized by high quality, diversity, large scale, and minimal visual differences between preference pairs—attributes essential for effective DPO training.

Subsequently, we extend Diffusion DPO (Rafailov et al., 2023) to a bimodal formulation that jointly considers image and text preferences, and employ this method to fine-tune a pre-trained Stable Diffusion model on the generated preference data. To further enhance model robustness and realism, we incorporate real-world data from the VisMin (Awal et al., 2024) dataset, thereby increasing the diversity and authenticity of the training corpus. Additionally, we introduce a region-aware training loss that accentuates specific regions of the image corresponding to edited captions. This, in conjunction with minimal visual differences in other regions, enables the model to more effectively learn and apply compositional modifications. Experimental results on T2I-CompBench (Huang et al., 2023) shows that our method leads to an average of 17% improvement in "attribute binding" category and a overall 10% improvement over the base model, demonstrating the effectiveness of our approach.

Our contributions are summarized as follows:

- We introduce BiDPO, a novel framework that improves model alignment by performing finegrained preference optimization on both text and image modalities.
- We propose a region-level guidance mechanism that selectively steers the model's focus toward
 regions of interest. This mechanism is shown to substantially enhance the capability for fine-grained
 text-to-image alignment.

- We developed an automated data pipeline to construct a large-scale, high-quality text-to-image preference dataset, which includes both textual and visual negative examples. The proposed BICOMP comprise 57,474 original images and 94,502 edited images, covering six dimensions: color, shape, texture, spatial relationship, non-spatial relationship and numeracy.
- We conducted extensive experiments on several widely-used benchmarks, demonstrating significant performance gains over previous state-of-the-art methods.

2 RELATED WORKS

2.1 Compositional Text-to-Image Generation

The field of text-to-image (T2I) generation has undergone rapid progress with the emergence of large-scale diffusion models. These models are capable of synthesizing highly realistic images conditioned on textual prompts, and recent systems such as Stable Diffusion 3 (Esser et al., 2024), DALL-E 3 (Betker et al., 2023), and Flux (Labs, 2024) have achieved strong performance on standard quality benchmarks. Nevertheless, accurately capturing compositional semantics—involving multiple objects, attributes, and relations—remains a persistent challenge. Recent benchmark studies, including T2I-CompBench (Huang et al., 2023), GenEval (Ghosh et al., 2023) and DPG-Bench (Hu et al., 2024), highlight that state-of-the-art models often fail on fine-grained object binding and spatial reasoning tasks. Multiple methods have been proposed to address these limitations, such as incorporating structured scene representations (Feng et al., 2023; Zhang et al., 2024; Li et al., 2024b), conducting more precise control by generating the foreground objects and background separately (Xie et al., 2023; Lian et al., 2023a), leveraging large vision-language models to improve understanding (Lian et al., 2023a), employing contrastive learning techniques (Han et al., 2025), and introducing reinforcement learning strategies (Zhang et al., 2025a). Our work complements these approaches by focusing on preference-based optimization techniques to further align T2I models with human expectations on compositional tasks.

2.2 REINFORCEMENT LEARNING IN IMAGE SYNTHESIS

Preference alignment has become a central strategy for bridging the gap between model generations and human expectations. Early approaches adapt Reinforcement Learning from Human Feedback (RLHF), which is originally developed for large language models, to the image domain by training reward models or synthetic comparisons and optimizing with on-policy algorithms such as PPO (Lee et al., 2023; Xu et al., 2023). However, RLHF pipelines are computationally expensive and unstable when applied to high-dimensional image spaces. To address these limitations, Direct Preference Optimization (DPO) (Rafailov et al., 2023) was proposed as a simpler, more stable alternative that bypasses reinforcement learning by directly optimizing a contrastive preference objective. While DPO was first studied in language generation, recent works have begun adapting it to diffusion models, showing promising improvements in human preference alignment(Wallace et al., 2023). These results suggest that preference-based optimization without explicit reward modeling provides a practical pathway for fine-grained alignment in image synthesis. However, existing studies primarily focus on overall image quality and safety, with limited exploration of compositional capabilities. Our work extends the application of DPO to compositional T2I tasks, demonstrating that it can effectively enhance models' abilities to handle complex object interactions and attributes.

3 Method

3.1 PRELIMINARY

Diffusion DPO.

Diffusion DPO (Wallace et al., 2023) is a recent advancement in the field of diffusion models, which applies the principles of Direct Preference Optimization (DPO) to enhance the training of diffusion models. The core idea is to leverage human feedback in the form of preference data to guide the model towards generating outputs that are more aligned with human preferences. In Diffusion DPO,

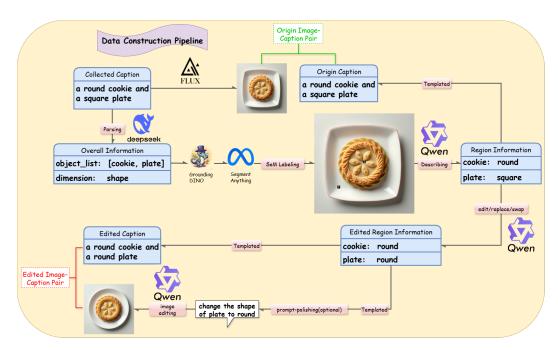


Figure 2: The data construction pipeline of our BICOMP dataset.

Table 1: **Number of images in each dimension.** Each original image may correspond to multiple edited images.

	Color	Shape	Texture	Spatial	Non-spatial	Numeracy	Total
Numer of Original Image	19714	5399	9728	7919	3647	11067	57474
Number of Edited Image	46006	8473	17345	7919	3647	11112	94502

the training loss is defined as:

$$\mathcal{L}_{\text{DiffusionDPO}}(\theta) = -\mathbb{E}_{(\boldsymbol{x}_{0}^{w}, \boldsymbol{x}_{0}^{l}) \sim \mathcal{D}, \ t \sim \mathcal{U}(0, T), \ \boldsymbol{x}_{t}^{w} \sim q(\boldsymbol{x}_{t}^{w} | \boldsymbol{x}_{0}^{w}), \ \boldsymbol{x}_{t}^{l} \sim q(\boldsymbol{x}_{t}^{l} | \boldsymbol{x}_{0}^{l})} \\ \log \sigma \left(-\beta T \omega(\lambda_{t}) \right) \left(\|\boldsymbol{\epsilon}^{w} - \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_{t}^{w}, t)\|_{2}^{2} - \|\boldsymbol{\epsilon}^{w} - \boldsymbol{\epsilon}_{\text{ref}}(\boldsymbol{x}_{t}^{w}, t)\|_{2}^{2} \\ - \left(\|\boldsymbol{\epsilon}^{l} - \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_{t}^{l}, t)\|_{2}^{2} - \|\boldsymbol{\epsilon}^{l} - \boldsymbol{\epsilon}_{\text{ref}}(\boldsymbol{x}_{t}^{l}, t)\|_{2}^{2} \right) \right)$$
(1)

where \mathcal{D} is the dataset of preference pairs, \boldsymbol{x}_0^w and \boldsymbol{x}_0^l are the preferred and less preferred samples respectively, t is a randomly sampled time step, $q(\boldsymbol{x}_t|\boldsymbol{x}_0)$ is the forward diffusion process, ϵ_{θ} is the model's noise prediction, ϵ_{ref} is the reference model's noise prediction, β is a scaling factor, and $\omega(\lambda_t)$ is a weighting function based on the noise level at time step t.

3.2 Data Pipeline

Prompt Collection and Image Generation. We collect composition-related captions from various sources, including: CONPAIR (Han et al., 2025), ReasonGen-R1 (Zhang et al., 2025b), T2I-R1 (Jiang et al., 2025), T2I-CompBench Training Set (Huang et al., 2023).

For each collected caption, we generate 2-4 images using Flux.1-dev (Labs, 2024).

Caption Generation. Considering that the generated images may not always perfectly align with the original captions, we employ a caption generation pipeline to create new captions that better describe the generated images. The pipeline includes the following steps:

• **Dimension Parsing:** We use DeepSeek-V3 (DeepSeek-AI et al., 2024) to parse the original captions and identify which dimension the caption is referring to ("color", "shape", "texture",

"spatial", "action", "numeracy" or "other"). If the caption refer to multiple dimensions, we select one with the following priority (from highest to lowest): object relationship(spatial, action), numeracy, attribute binding(color, shape, texture). If the caption does not refer to any of the specified dimensions, we classify it as "other".

- Object List Parsing: We use DeepSeek-R1 (DeepSeek-AI et al., 2025) to extract the list of objects mentioned in the original captions.
- **Grounding Dino Detection and SAM Segmentation:** We use Grounding Dino (Liu et al., 2023) to detect objects in the generated images based on the object list extracted in the previous step. We then use SAM2 (Ravi et al., 2024) to segment the detected objects and obtain their masks.
- VLM Describing: We use Qwen2.5-VL-72B-Instruct (Bai et al., 2025) to label each segmented object in the image. First we label the image with SoM (Set-of-Mark) masks, which are highlighted regions in the image. Then, we ask Qwen to describe each masked object in detail, including its attributes (e.g., color, shape, texture) or relationships with other objects. We use specific prompts to guide the model based on the dimension identified in the first step.
- Caption Synthesis: Finally, we synthesize a new caption by combining the labels generated in the previous step. We use a template-based approach to ensure that the new caption is coherent and accurately describes the content of the image. In addition, for the "numeracy" dimension, we skip the VLM labeling step and directly use the result from Grounding Dino to count the number of objects and generate a caption accordingly.

We also filter out image-caption pairs that contain too many objects, with the consideration of the bad performance of detection and segmentation models in such cases and the convenience of the following image editing step.

Caption Editing and Image Editing. To generate the preference data, we first edit the regenerated captions to create distinct versions. We use Qwen2.5-VL-72B-Instruct (Bai et al., 2025) to generate distinct region information (attributes, relationships) based on the image with SoMs and the original region information. Then, we use Qwen-Image-Edit (Wu et al., 2025) model to edit the original image based on specific prompts. These prompts are designed to reflect the changes made in the edited captions, which are also generated in a template-based manner. For "action" and "numeracy" dimensions, Considering the complexity of editing images with multiple objects, we enhance the prompts by adding more detailed instructions using Qwen2.5-VL-72B-Instruct.

In order to enhance the model's ability to correctly attribute properties to objects, we add three more edited captions for each image-caption pair in the "color", "shape", and "texture" dimensions when the number of object is exactly two:

- Swap the attributes of the two objects. For example, if the original caption is "A red ball and a blue cube", the edited caption would be "A blue ball and a red cube".
- Replace the attributes of one object with the same attribute of another object. For example, if the original caption is "A red ball and a blue cube", the edited captions would be "A red ball and a red cube" and "A blue ball and a blue cube".

Creatilayout Generation. For the "spatial" dimension, it is hard to edit the image to reflect the changes in the edited caption. We use a different pipeline to generate the source and edited image-caption pairs. First, we use DeepSeek-V3 (DeepSeek-AI et al., 2024) to parse the original caption and generate a layout that describes the whole scene. Then, we use DeepSeek-V3 (DeepSeek-AI et al., 2025) again to edit the layout to a distinct version which differs in spatial relationships. Finally, we use CreatiLayout (Zhang et al., 2024) to generate images based on these layouts.

VQA-based Filtering. We employ a VQA-based filtering step to ensure the quality of the generated image-caption pairs. We use Qwen2.5-VL-72B-Instruct (Bai et al., 2025) to answer specific questions about the content of the images based on their captions. If the model's answers do not align with the expected responses, we discard those image-caption pairs. This step helps to ensure that the captions accurately describe the content of the images and that any edits made are reflected in both the images and their corresponding captions. The final dataset composition is shown in Table 1, and some samples are shown in Figure 3.

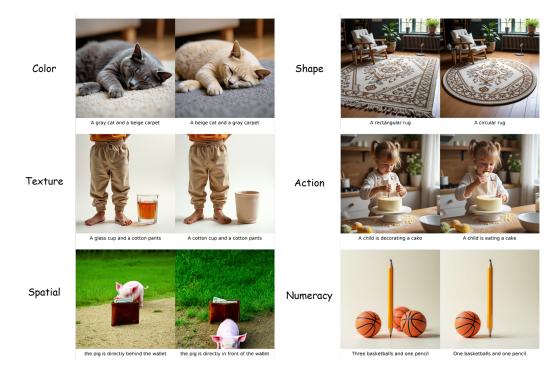


Figure 3: **Samples of each dimension in our BICOMP dataset.** For each group, the left image is generated from the original caption, and the right image is generated from the edited caption.

3.3 BIDPO

Bimodal DPO. We extend the Diffusion DPO to a text-based version that focuses on text preferences. The training loss is defined as:

$$\mathcal{L}_{\text{TextDPO}}(\theta) = -\mathbb{E}_{(\boldsymbol{x}_{0}^{w}, \boldsymbol{y}^{u}, \boldsymbol{y}^{l}) \sim \mathcal{D}, \ t \sim \mathcal{U}(0, T), \ \boldsymbol{x}_{t}^{w} \sim q(\boldsymbol{x}_{t}^{w} | \boldsymbol{x}_{0}^{w})}$$

$$\log \sigma \left(-\beta T \omega(\lambda_{t})\right) \left(\|\boldsymbol{\epsilon}^{w} - \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_{t}^{w}, t, c^{w})\|_{2}^{2} - \|\boldsymbol{\epsilon}^{w} - \boldsymbol{\epsilon}_{\text{ref}}(\boldsymbol{x}_{t}^{w}, t, c^{w})\|_{2}^{2}$$

$$-\left(\|\boldsymbol{\epsilon}^{l} - \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_{t}^{w}, t, c^{l})\|_{2}^{2} - \|\boldsymbol{\epsilon}^{l} - \boldsymbol{\epsilon}_{\text{ref}}(\boldsymbol{x}_{t}^{w}, t, c^{l})\|_{2}^{2}\right) \right)$$

$$(2)$$

where \mathcal{D} is the dataset of preference pairs, \boldsymbol{x}_0^w is the preferred image, \boldsymbol{y}^w and \boldsymbol{y}^l are the preferred and less preferred captions respectively, t is a randomly sampled time step, $q(\boldsymbol{x}_t|\boldsymbol{x}_0)$ is the forward diffusion process, ϵ_{θ} is the model's noise prediction which also conditioned on text embeddings c^w and c^l , ϵ_{ref} is the reference model's noise prediction, β is a scaling factor, and $\omega(\lambda_t)$ is a weighting function based on the noise level at time step t.

If we look into the original Diffusion DPO loss, we can see that it basically depresses the diffusion process of the less preferred sample while enhancing the diffusion process of the preferred sample. In our TextDPO loss, we keep the same idea but change the less preferred sample to be the preferred image with the less preferred caption. However, this approach only considers the preference in one modality (text) while ignoring the other modality (image). We argue that both modalities should be considered to fully capture the preferences.

We consider adding image preferences in a implicit way, by using another preference data pair for training. For each image-caption pair $(\boldsymbol{x}_0^w, \boldsymbol{y}^w)$ and $(\boldsymbol{x}_0^l, \boldsymbol{y}^l)$, we create two training samples: one with $(\boldsymbol{x}_0^w, \boldsymbol{y}^w, \boldsymbol{y}^l)$ and another with $(\boldsymbol{x}_0^l, \boldsymbol{y}^l, \boldsymbol{y}^w)$. This way, the model learns to prefer the correct caption for each image while also considering the less preferred caption in the context of the other image. Concretely, through the TextDPO loss, the model learns to prefer caption \boldsymbol{y}^w over \boldsymbol{y}^l for image \boldsymbol{x}_0^w , which means that image \boldsymbol{x}_0^w and caption \boldsymbol{y}^l are the less preferred pair and this diffusion process should be depressed. Similarly, through the second training sample, the model learns to prefer caption \boldsymbol{y}^l over \boldsymbol{y}^w for image \boldsymbol{x}_0^l , which means that image \boldsymbol{x}_0^l and caption \boldsymbol{y}^l are the preferred



Figure 4: **Overview of our proposed BIDPO.** We conduct preference optimizing from both image and text side, and introduce a region-level guidance on the most related regions.

pair and this diffusion process should be enhanced. If we combine these two information together, we can see that the model implicitly learns to prefer image x_0^l over x_0^w for caption y^l . And also the same way, the model implicitly learns to prefer image x_0^w over x_0^l for caption y^w . In this way, the model learns to consider both image and text preferences during training.

Region-level Guidance for Fine-grained Alignment. To further enhance the model's ability to focus on specific regions of the image that correspond to the edited captions, we introduce a region-level guidance method. This method adjusts the importance of different regions in the image during training, helping the model to better understand and learn the desired modifications. We define the region-level guidance method as follows:

$$\mathcal{L}_{\text{BIDPO-region}}(\theta) = \mathcal{L}_{\text{BIDPO}}(\theta) \odot M \tag{3}$$

where M is a mask that highlights the regions of the image corresponding to the edited captions, and the operator \odot denotes element-wise multiplication. The mask is generated according to the bounding boxes of the objects involved in the edits, which are obtained from the caption generation and editing pipeline. We set a smaller weight for the regions not involved in the edits, ensuring that the loss is focused on the relevant regions of the image.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Implementation Details. We use Stable Diffusion XL (SDXL) (Podell et al., 2023) as our base model and fine-tune it with LoRA (Hu et al., 2022) and set rank to 8. We train the model for 200 steps with an effective batch size equals to 2048. The learning rate is set to 2048 * 4e-8 with a constant schedule and 50 warm-up steps. All experiments are conducted on $4 \times H100$ GPUs, with a total runtime of 13 hours. For the region-level guidance method, we set the weight to 1 for regions-of-interest and 0.5 for external regions to guide the model to focus on these regions. We do not use region-level guidance for data related to object numeracy or spatial relationships, as understanding these concepts requires a global focus. For the training data, we use 53k samples in total, combining 42k from our BICOMP dataset with 12k from VisMin (Awal et al., 2024) dataset.

Evaluation Benchmarks. We evaluate the effectiveness of our method on three challenging benchmarks designed to assess compositional capabilities in text-to-image generation, *i.e.* T2I-CompBench (Huang et al., 2023), GenEval Ghosh et al. (2023) and DPG-Bench Hu et al. (2024).

4.2 MAIN RESULTS

T2I-CompBench. T2I-Compbench (Huang et al., 2023) is a challenging benchmark that focuses on evaluating models in compositional generation, including object attributes and inter-object relationships. As shown in Table 2, our method achieves significant improvements over the baseline SDXL

378 379

Table 2: Main Results on T2I-CompBench (Huang et al., 2023).

380
381
382
383
384
385
386

391 392 393

402 403 404

405

406

401

413

421

422

423

424 425 426 427 428

429

430

431

Attribute Binding Object Relationship Model Color Texture Spatial Non-Spatial Shape 49.22 13.42 Stable Diffusion 2 (Rombach et al., 2021) 50.65 42 21 30.96 GLIGEN (Li et al., 2023) 42.88 39 98 39 04 26 32 30.36 LMD+ (Lian et al., 2023a) 56.99 25.37 28.28 48.14 48.65 InstanceDiffusion (Wang et al., 2024b) 52.93 44.72 27.91 29.47 54.33 Attn-Exct v2 (Chefer et al., 2023) 64.00 45.17 59.63 14.55 31.09 PixArt- α (Chen et al., 2023a) 68.86 55.82 70.44 20.82 31.79 ECLIPSE (Patel et al., 2023) 54.29 19.03 31.39 61.19 61.65 Dimba-G (Fei et al., 2024) 69.21 57.07 68.21 21.05 32.98 71.50 GenTron (Chen et al., 2023b) 76.74 57.00 20.98 32.02 GORS (Huang et al., 2023) 66.03 47.85 62.87 18.15 31.93 ELLA (Hu et al., 2024) 72.60 56.34 66.86 30.69 MARS (He et al., 2024) 69.13 54.31 71.23 19.24 32.10 EVOGEN (Han et al., 2025) 71.04 54.57 72.34 21.76 33.08 SDXL (baseline) 58.90 46.90 53.13 21.23 31.20 79.35 ↑20.4 60.47 \(\frac{13.6}{} 71.36 \(18.2 \) 23.41 ↑2.2 32.29 \(1.1 \)

Table 3: Main Results on GenEval (Ghosh et al., 2023).

Model	Single Obj.	Two Obj.	Counting	Colors	Position	Color Attri.	Overall
SDv2.1 (Rombach et al., 2021)	0.98	0.51	0.44	0.85	0.07	0.17	0.50
PlayGroundv2.5 (Li et al., 2024a)	0.98	0.77	0.52	0.84	0.11	0.17	0.56
Show-o (Xie et al., 2024)	0.95	0.52	0.49	0.82	0.11	0.28	0.53
Emu3-Gen (Wang et al., 2024a)	0.98	0.71	0.34	0.81	0.17	0.21	0.54
IF-XL (Deep Floyd)	0.97	0.74	0.66	0.81	0.13	0.35	0.61
FLUX (Labs, 2024)	0.98	0.81	0.74	0.79	0.22	0.45	0.66
DALL-E 3 (Betker et al., 2023)	0.96	0.87	0.47	0.83	0.43	0.45	0.67
SDXL (baseline)	0.95	0.68	0.42	0.85	0.11	0.19	0.53
SDXL-B1DPO	$1.00 \uparrow 0.05$	$0.86 \uparrow 0.18$	$0.59 \uparrow 0.17$	$0.88 \uparrow 0.03$	$0.19 \uparrow 0.08$	$0.22 \uparrow 0.03$	$0.62 \uparrow 0.09$

model, especially in the attribute binding tasks (color, shape, texture). This demonstrates our method is effective in enhancing the model's ability to correctly associate attributes with their corresponding objects. Overall, our method achieves a substantial increase in the average score across all categories, highlighting its effectiveness for compositional text-to-image generation. Compared to other models designed for compositional generation, such as GLIGEN (Li et al., 2023), LMD+ (Lian et al., 2023b), and InstanceDiffusion (Wang et al., 2024b), our model still demonstrates a clear advantage. It worth noting that these models require an additional layout condition for control, whereas BIDPO achieves its strong performance using only the text prompts.

GenEval. We alse evaluate our BIDPO on GenEval (Ghosh et al., 2023), a benchmark designed to assess text-to-image models in complex instruction following. As shown in Tab. 3, our BIDPO achieves clear improvements over the SDXL baseline model across most of the sub-tasks. The overall score shows a notable increase (0.62 vs. 0.53), which demonstrates our method's effectiveness in enhancing the base model to follow complex text prompts. Furthermore, our method even surpasses state-of-the-art models such as DALL-E 3 (Betker et al., 2023) and FLUX.1-dev (Labs, 2024) in several sub-tasks, including "single object" and "colors". This is particularly notable given our model is significantly smaller size and is trained on substantially less data.

DPG-Bench We also evaluate our method on DPG-Bench (Hu et al., 2024), a comprehensive benchmark for assessing the intricate semantic alignment capabilities of text-to-image models. As illustrated in Tab. 4, our B1DPO-SDXL achieves competitive results on the benchmark. Specifically, our model obtains comparable scores across all categories, including Global (83.92), Entity (85.28), Attribute (85.13), Relation (85.03), and Other (84.55), with a strong overall score of 78.84. Compared to the SDXL baseline (73.38 overall), our method demonstrates clear improvements, particularly in the Entity, Attribute, and Relation categories. These results validate the effectiveness and robustness of our approach for compositional text-to-image generation.

4.3 ABLATION STUDIES

We conduct extensive ablation studies to evaluate the key designs of BIDPO. We use SDXL as our baseline model, and explore several fine-tuning configurations:

Table 4: Main Results on DPG-Bench (Hu et al., 2024).

Model	Global	Entity	Attribute	Relation	Other	Overall
PixArt- (Chen et al., 2023a)	74.97	79.32	78.60	82.57	76.96	71.11
PlayGroundv2 (Li et al.)	83.61	79.91	82.67	80.62	81.22	74.54
PlayGroundv2.5 (Li et al., 2024a)	83.06	82.59	81.20	84.08	83.50	75.47
Lumina-Next (Zhuo et al., 2024)	82.82	88.65	86.44	80.53	81.82	74.63
DALLE-3 (Betker et al., 2023)	90.97	89.61	88.39	90.58	89.83	83.50
SD3-medium (Esser et al., 2024)	87.90	91.01	88.83	80.70	88.68	84.08
SDXL (baseline)	82.44	81.87	81.17	80.54	79.77	73.38
SDXL-BIDPO	83.92 \(\dagger1.5\)	85.28 ↑3.4	85.13 \(\dagger 4.0 \)	85.03 \(\dagger 4.5	84.55 ↑4.8	78.84 ↑5.4

Table 5: **Ablation on key designs.** We report the overall scores over each benchmark.

Method	T2I-CompBench	GenEval	DPG-Bench
SDXL	43.57	53.29	79.86
SDXL-SFT	43.34	52.29	79.90
SDXL-ImageDPO	45.58	53.00	81.11
SDXL-TextDPO	13.48	4.71	39.39
SDXL-BIDPO w/o region-level guidance	53.10	60.71	83.52
SDXL-B1DPO w/ region-level guidance	54.37	62.14	83.79

- SFT: Supervised fine-tuning on our dataset without preference optimization.
- **ImageDPO**: Applying Direct Preference Optimization (DPO) using only image preferences (positive and negative images).
- **TextDPO**: Applying Direct Preference Optimization (DPO) using only text preferences (positive and negative texts).
- **BIDPO** (w/o region-level guidance): Our method with bimodal DPO, using both positive and negative images and texts.
- BIDPO (w/ region-level guidance): Combining bimodal DPO with region-level guidance based on bounding box annotations.

Effectiveness of Bimodal Preference Optimizing. As shown in Sec. 4.3, directly performing supervised fine-tuning on the composition-aware dataset fails to guide the model to focus on attribute binding and object relationships. In contrast, ImageDPO achieves a certain degree of performance improvement. This highlights the importance of guiding the model to focus on fine-grained compositional attributes through the comparison between positive and negative examples via direct preference optimization. However, solely perform text comparison leads to significant performance drop. In contrast, simultaneously optimizing preferences from both images and text more effectively promotes the model's cross-modal alignment, leading to a highly significant performance improvement.

Effectiveness of Region-level Guidance. From the last two lines of Tab. 5, it can be observed that the introduction of region-level guidance on top of BIDPO leads to further improvements (1.2% on T2I-CompBench and 1.4% on GenEval). This indicates that explicitly guiding the model to focus on regions in the image that are relevant to the text description can effectively enhance the models to achieve fine-grained cross-modal alignment.

5 CONCLUSION

In this work, we present BIDPO, a novel method that introduces Direct Preference Optimization (DPO) to compositional text-to-image generation as well as extends it to a bimodal version and further enhances it with region-level scaling. Trained on our created compositionally-aware preference dataset, BIDPO significantly improves the compositional capabilities of text-to-image models, as demonstrated by extensive experiments on three standard benchmarks: T2I-CompBench, GenEval, DPG-Bench. For future work, we plan to extend our method to other kinds of generative models like autoregressive models, and more diverse generative tasks.

REFERENCES

486

487

488

489

490 491

492

493

494

495

496 497

498

499

500

501

502

504 505

506

507

508

509

510

511

512

513

514 515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

534

535

536

538

Rabiul Awal, Saba Ahmadi, Le Zhang, and Aishwarya Agrawal. Vismin: Visual minimal-change understanding. *ArXiv*, abs/2407.16772, 2024. URL https://api.semanticscholar.org/CorpusID:271404384.2,7

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *ArXiv*, abs/2502.13923, 2025. URL https://api.semanticscholar.org/CorpusID: 276449796. 5, 17, 18, 20

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf*, 2(3):8, 2023. 1, 3, 8, 9

Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite: Attention-based semantic guidance for text-to-image diffusion models. *ACM Transactions on Graphics (TOG)*, 42:1 – 10, 2023. URL https://api.semanticscholar.org/CorpusID:256416326.8

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James T. Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer for photorealistic text-to-image synthesis. *ArXiv*, abs/2310.00426, 2023a. URL https://api.semanticscholar.org/CorpusID:263334265.8,9

Shoufa Chen, Mengmeng Xu, Jiawei Ren, Yuren Cong, Sen He, Yanping Xie, Animesh Sinha, Ping Luo, Tao Xiang, and Juan-Manuel Pérez-Rúa. Gentron: Diffusion transformers for image and video generation. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6441-6451, 2023b. URL https://api.semanticscholar.org/CorpusID:266053134.8

Deep Floyd. IF by deep floyd. https://github.com/deep-floyd/IF. 8

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bing-Li Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dong-Li Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Jun-Mei Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Oiancheng Wang, Oihao Zhu, Oinyu Chen, Oiushi Du, R. J. Chen, Ruigi Jin, Ruigi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shao-Ping Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, Wangding Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wen-Xuan Yu, Wentao Zhang, X. Q. Li, Xiangyu Jin, Xianzu Wang, Xiaoling Bi, Xiaodong Liu, Xiaohan Wang, Xi-Cheng Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yao Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yi Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yi-Bing Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxiang Ma, Yuting Yan, Yu-Wei Luo, Yu mei You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Zehui Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhen guo Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zi-An Li, Ziwei Xie,

541

543

544

546

547

548

549

550

551

552

553

554

558

559

561

563

565

566

567

568

569 570

571

572

573574

575

576

577578

579

580

581 582

583

584

585

586

588

590

592

Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report. *ArXiv*, abs/2412.19437, 2024. URL https://api.semanticscholar.org/CorpusID:275118643.4,5,15

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Jun-Mei Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiaoling Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bing-Li Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dong-Li Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Jiong Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, M. Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, Ruiqi Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shao-Kang Wu, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wen-Xia Yu, Wentao Zhang, Wangding Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyu Jin, Xi-Cheng Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yi Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yu-Jing Zou, Yujia He, Yunfan Xiong, Yu-Wei Luo, Yu mei You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanping Huang, Yao Li, Yi Zheng, Yuchen Zhu, Yunxiang Ma, Ying Tang, Yukun Zha, Yuting Yan, Zehui Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhen guo Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zi-An Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. ArXiv, abs/2501.12948, 2025. URL https://api.semanticscholar.org/CorpusID:275789950.5,16

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024. 1, 2, 3, 9

Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li, Youqiang Zhang, and Junshi Huang. Dimba: Transformer-mamba diffusion models. *ArXiv*, abs/2406.01159, 2024. URL https://api.semanticscholar.org/CorpusID:270217205.8

Yutong Feng, Biao Gong, Di Chen, Yujun Shen, Yu Liu, and Jingren Zhou. Ranni: Taming text-to-image diffusion for accurate instruction following. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4744—4753, 2023. URL https://api.semanticscholar.org/CorpusID:265466135.1,3

Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for evaluating text-to-image alignment. In *NeurIPS*, 2023. 3, 7, 8, 15

Xu Han, Linghao Jin, Xiaofeng Liu, and Paul Pu Liang. Contrafusion: Contrastively improving compositional understanding in diffusion models via fine-grained negative images. In *ICLR*, 2025. 3, 4, 8, 16

Wanggui He, Siming Fu, Mushui Liu, Xierui Wang, Wenyi Xiao, Fangxun Shu, Yi Wang, Lei Zhang, Zhelun Yu, Haoyuan Li, Ziwei Huang, Leilei Gan, and Hao Jiang. Mars: Mixture of auto-regressive models for fine-grained text-to-image synthesis. *ArXiv*, abs/2407.07614, 2024. URL https://api.semanticscholar.org/CorpusID:271089041.8

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. In *ICLR*, 2022. 7

```
Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models with llm for enhanced semantic alignment, 2024. 3, 7, 8, 9, 15
```

- Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A comprehensive benchmark for open-world compositional text-to-image generation. In *NeurIPS*, 2023. 1, 2, 3, 4, 7, 8, 15, 16
- Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong, Hao Li, Le Zhuo, Shilin Yan, Pheng-Ann Heng, and Hongsheng Li. T2i-r1: Reinforcing image generation with collaborative semantic-level and token-level cot. *ArXiv*, abs/2505.00703, 2025. URL https://api.semanticscholar.org/CorpusID:278237703. 4, 16
- Black Forest Labs. Flux, 2024. 1, 3, 4, 8

- Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, P. Abbeel, Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human feedback. *ArXiv*, abs/2302.12192, 2023. URL https://api.semanticscholar.org/CorpusID:257102772.3
- Daiqing Li, Aleks Kamko, Ali Sabet, Ehsan Akhgari, Linmiao Xu, and Suhail Doshi. Playground v2. URL [https://huggingface.co/playgroundai/playground-v2-1024px-aesthetic] (https://huggingface.co/playgroundai/playground-v2-1024px-aesthetic).9
- Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation. *ArXiv*, abs/2402.17245, 2024a. URL https://api.semanticscholar.org/CorpusID: 268033039. 8, 9
- Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2023. 8
- Zejian Li, Chen Meng, Yize Li, Ling Yang, Shengyuan Zhang, Jiarui Ma, Jiayi Li, Guang Yang, Changyuan Yang, Zhi-Yuan Yang, Jinxiong Chang, and Lingyun Sun. Laion-sg: An enhanced large-scale dataset for training complex image-text models with structural annotations. *ArXiv*, abs/2412.08580, 2024b. URL https://api.semanticscholar.org/CorpusID: 274638337.1,3
- Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion: Enhancing prompt understanding of text-to-image diffusion models with large language models. *Trans. Mach. Learn. Res.*, 2024, 2023a. URL https://api.semanticscholar.org/CorpusID: 258841035.1,3,8
- Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion: Enhancing prompt understanding of text-to-image diffusion models with large language models. *arXiv preprint arXiv:2305.13655*, 2023b. 8
- Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chun yue Li, Jianwei Yang, Hang Su, Jun-Juan Zhu, and Lei Zhang. Grounding dino: Marrying dino with grounded pre-training for open-set object detection. In *European Conference on Computer Vision*, 2023. URL https://api.semanticscholar.org/CorpusID:257427307.5
- Maitreya Patel, Chang Soo Kim, Sheng Cheng, Chitta Baral, and Yezhou Yang. Eclipse: A resource-efficient text-to-image prior for image generations. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9069–9078, 2023. URL https://api.semanticscholar.org/CorpusID:266149498.8
- William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, 2023. 1

```
Dustin Podell, Zion English, Kyle Lacey, A. Blattmann, Tim Dockhorn, Jonas Muller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. 

ArXiv, abs/2307.01952, 2023. URL https://api.semanticscholar.org/CorpusID: 259341735. 2, 7
```

- Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. ArXiv, abs/2305.18290, 2023. URL https://api.semanticscholar.org/CorpusID: 258959321. 1, 2, 3
- Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya K. Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloé Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross B. Girshick, Piotr Doll'ar, and Christoph Feichtenhofer. Sam 2: Segment anything in images and videos. *ArXiv*, abs/2408.00714, 2024. URL https://api.semanticscholar.org/CorpusID:271601113.5
- Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10674–10685, 2021. URL https://api.semanticscholar.org/CorpusID:245335280.8
- Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam, Stefano Ermon, Caiming Xiong, Shafiq R. Joty, and Nikhil Naik. Diffusion model alignment using direct preference optimization. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8228–8238, 2023. URL https://api.semanticscholar.org/CorpusID:265352136. 3
- Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan Zhang, Yueze Wang, Zhen Li, Qiying Yu, Yingli Zhao, Yulong Ao, Xuebin Min, Tao Li, Boya Wu, Bo Zhao, Bowen Zhang, Lian zi Wang, Guang Liu, Zheqi He, Xi Yang, Jingjing Liu, Yonghua Lin, Tiejun Huang, and Zhongyuan Wang. Emu3: Next-token prediction is all you need. *ArXiv*, abs/2409.18869, 2024a. URL https://api.semanticscholar.org/CorpusID: 272968818.8
- Xudong Wang, Trevor Darrell, Sai Saketh Rambhatla, Rohit Girdhar, and Ishan Misra. Instancediffusion: Instance-level control for image generation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2024b. 8
- Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng ming Yin, Shuai Bai, Xiao Xu, Yilei Chen, Yuxiang Chen, Zecheng Tang, Zekai Zhang, Zhengyi Wang, An Yang, Bowen Yu, Chen Cheng, Da-Wei Liu, De mei Li, Hang Zhang, Hao Meng, Hu Wei, Ji-Li Ni, Kai Chen, Kuan Cao, Liang Peng, Lin Qu, Min Wu, Peng Wang, Shuting Yu, Tingkun Wen, Wensen Feng, Xiao-Xue Xu, Yi Wang, Yichang Zhang, Yong-An Zhu, Yujia Wu, Yu-Jiao Cai, and Ze-Yang Liu. Qwen-image technical report. *ArXiv*, abs/2508.02324, 2025. URL https://api.semanticscholar.org/CorpusID:280422608.5
- Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wentian Zhang, Yefeng Zheng, and Mike Zheng Shou. Boxdiff: Text-to-image synthesis with training-free box-constrained diffusion. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7418–7427, 2023. URL https://api.semanticscholar.org/CorpusID:259991581. 3
- Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin, Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer to unify multimodal understanding and generation. *ArXiv*, abs/2408.12528, 2024. URL https://api.semanticscholar.org/CorpusID:271924334.8
- Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation. *ArXiv*, abs/2304.05977, 2023. URL https://api.semanticscholar.org/CorpusID: 258079316.3

Hui Zhang, Dexiang Hong, Tingwei Gao, Yitong Wang, Jie Shao, Xinglong Wu, Zuxuan Wu, and Yu-Gang Jiang. Creatilayout: Siamese multimodal diffusion transformer for creative layout-to-image generation. *ArXiv*, abs/2412.03859, 2024. URL https://api.semanticscholar.org/CorpusID:274514668. 1, 3, 5

- Xinchen Zhang, Ling Yang, Guohao Li, Yaqi Cai, Jiake Xie, Yong Tang, Yujiu Yang, Mengdi Wang, and Bin Cui. Itercomp: Iterative composition-aware feedback learning from model gallery for text-to-image generation. In *ICLR*, 2025a. 2, 3
- Yu Zhang, Yunqi Li, Yifan Yang, Rui Wang, Yuqing Yang, Dai Qi, Jianmin Bao, Dongdong Chen, Chong Luo, and Lili Qiu. Reasongen-r1: Cot for autoregressive image generation models through sft and rl. *ArXiv*, abs/2505.24875, 2025b. URL https://api.semanticscholar.org/CorpusID:279070833. 4, 16
- Le Zhuo, Ruoyi Du, Han Xiao, Yangguang Li, Dongyang Liu, Rongjie Huang, Wenze Liu, Lirui Zhao, Fu-Yun Wang, Zhanyu Ma, Xu Luo, Zehan Wang, Kaipeng Zhang, Xiangyang Zhu, Si Liu, Xiangyu Yue, Dingning Liu, Wanli Ouyang, Ziwei Liu, Yu Jiao Qiao, Hongsheng Li, and Peng Gao. Lumina-next: Making lumina-t2x stronger and faster with next-dit. *ArXiv*, abs/2406.18583, 2024. URL https://api.semanticscholar.org/CorpusID:270764997.9

6 APPENDIX

In this appendix, we provide additional details and results as follows:

- In Section 6.1, we provide the full results of the ablation study on SDXL based models.
- In Section 6.2, we provide more details about our data construction process, including the composition of collected captions from various sources and the prompts used in various stages.
- In Section 6.3, we provide more visualization results of our BICOMP dataset and our BIDPO method.

6.1 ABLATION STUDY DETAILS.

The full results of the ablation study on SDXL based models are shown in Table 6, Table 7 and Table 8.

Table 6: Ablation Study on T2I-CompBench (Huang et al., 2023).

Model	Attı	ribute Bi	nding	Object	Numeracy	
1.10401	Color	Shape	Texture	Spatial	Non-Spatial	1 (diller de)
SDXL	58.90	46.90	53.13	21.23	31.20	50.08
SDXL-SFT	58.67	46.65	52.21	21.13	31.28	50.08
SDXL-ImageDPO	67.39	53.12	59.42	23.4	30.82	39.34
SDXL-TextDPO	23.32	16.22	14.62	0.26	20.3	6.13
SDXL-B1DPO w/o region-level guidance	77.04	57.43	68.89	23.19	32.19	59.83
SDXL-BIDPO w/ region-level guidance	79.35	60.47	71.36	23.41	32.29	59.33

Table 7: Ablation Study on GenEval Ghosh et al. (2023).

Model	Single Obj.	Two Obj.	Counting	Colors	Position	Color Attri.	Overall
SDXL	0.95	0.68	0.42	0.85	0.11	0.19	0.53
SDXL-SFT	0.95	0.68	0.37	0.85	0.09	0.20	0.52
SDXL-ImageDPO	0.99	0.78	0.15	0.89	0.14	0.23	0.53
SDXL-TextDPO	0.13	0.01	0.01	0.11	0.01	0.02	0.04
SDXL-BIDPO w/o region-level guidance	1.00	0.83	0.52	0.90	0.16	0.23	0.61
SDXL-BIDPO w/ region-level guidance	1.00	0.87	0.56	0.90	0.17	0.23	0.62

Table 8: Ablation Study on DPG-Bench Hu et al. (2024).

Model	Global	Entity	Attribute	Relation	Other	Overall
SDXL	82.44	81.87	81.17	80.54	79.77	73.38
SDXL-SFT	82.68	81.94	79.52	81.02	81.03	73.23
SDXL-ImageDPO	79.13	83.19	82.76	83.39	82.49	75.70
SDXL-TextDPO	40.07	40.44	43.14	43.92	44.82	23.98
SDXL-BIDPO w/o region-level guidance	85.46	84.22	84.45	85.28	84.18	77.53
SDXL-BIDPO w/ region-level guidance	83.92	85.28	85.13	85.03	84.55	78.84

6.2 Data Construction Details

Caption Collection. Table 9 shows the number of captions collected from each source.

LLM Prompt for Dimension Parsing. Our dimension parsing prompt is shown in Listing 1. We use DeepSeek-V3 (DeepSeek-AI et al., 2024) as our LLM to parse the captions.

Listing 1: prompt for dimension parsing

819

856

857

858 859

860

861

862

863

Dataset	Number of Captions
CONPAIR (Han et al., 2025)	13,432
ReasonGen-R1 (Zhang et al., 2025b)	23,470
T2I-R1 (Jiang et al., 2025)	7,223
T2I-CompBench Training Set (Huang et al., 2023)	5,600
Total	49,725

Table 9: Number of composition-related captions collected from various sources.

```
820
       - shape: describes geometric forms or outlines (e.g., "round", "
821
          → triangular", "curved")
822
       - texture: describes textures (e.g., "smooth", "rough") or materials (e.g
823

→ ., "a plastic chair", "a glass window")
      - spatial: describes spatial relationships or positions (e.g., "on the
824
          → table", "next to", "inside", "beneath")
825
       - non-spatial: describes actions/events without spatial focus (e.g., "
826
          827
       - numeracy: describes quantities or numbers (e.g., "three apples", "four
828
          → ", "two")
      - others: when none of the above categories apply
829
830
      # Priority Rules
831
      If multiple dimensions are present, select according to this priority:
832
      1. spatial and non-spatial have highest priority (equal)
833
      2. numeracy comes next
      3. color, shape and texture have equal priority (lower than above)
834
      4. others is always lowest priority
835
836
      # Output Format
837
      Provide your analysis in exact JSON format as shown below. Only include
838
          → the JSON object in your response.
839
840
           "dimension": "selected_dimension"
841
      } }
842
843
      # Examples
      Input: "The cube is on the shelf"
844
      Output: {{ "dimension": "spatial" }}
845
846
      Input: "Five rough textured stones"
847
      Output: {{ "dimension": "numeracy" }}
848
      Input: "The soft yellow pillow"
849
      Output: {{ "dimension": "color" }}
850
851
       # Input
852
      The input sentence is: {positive_caption}
853
854
       # Output
      For this sentence, the dimension is:
855
```

LLM Prompt for Object List Parsing. We use the prompt shown in Listing 2 to parse the object list from captions. We use DeepSeek-R1 (DeepSeek-AI et al., 2025) as our LLM to parse the captions.

Listing 2: prompt for object list parsing

```
You are an expert in parsing textual sentences. Given a text that

→ describing an image, you task is to identify and extract the main

→ entities in the image.

# Requirements
```

865

866

867

868

869

870

871 872

873

874 875

876

877

878 879

880

881

882

883

884

885

886

887

888 889

890

891

892

893

894

895

896 897

898

899

900

901

902 903

904 905

907 908

909

910

911 912

914

```
- You should only put the main entities that are visually visible in the
   \hookrightarrow image.
- Make sure the entities you identify are concrete objects, not abstract
   → concepts; objects like 'living room' or 'wind' should not be
   \hookrightarrow identified.
- Make sure these entity objects can be detected by an object detector.
- Only output the entities themselves, without their adjectives or
   \hookrightarrow descriptions; for example, output 'dog' instead of 'white dog'.
# Output format
Orgainize the identified main objects in the scene into a json dict like
    \hookrightarrow this:
    "object_list": ["object 1", "object 2", ...]
} }
# Input
For the sentence: {caption}, please identify the main visible objects.
```

Image Describing Details. Before we prompt the VLM to do the describing tasks, we restrict the image to follow the following rules: 1) with dimension "color", "shape", or "texture", the image should contain one or two objects 2) with dimension "spatial" or "non-spatial", the image should contain exactly two objects. 3) no repeated classes in the image; each object must belong to a unique class. We use specific prompts for different dimensions. Examples of "color" and "spatial" dimension are shown in Listing 3 and Listing 4. The prompts for "shape", "texture", and "non-spatial" dimensions are similar to the "color" and "spatial" ones, respectively. We use Qwen2.5-VL-72B-Instruct (Bai et al., 2025) as our VLM to describe the images.

Listing 3: prompt for VLM describing, with dimension "color"

```
# Task explanation
      Given an image with clearly marked regions-of-interest (each region is
          \hookrightarrow indicated by a numerical ID and contour lines), please:
      1. Identify all visible regions-of-interest by their numerical IDs
      2. For each region, determine the predominant color of the object

→ contained within it

      3. Describe colors using standard web color names (e.g., "red", "
          → forestgreen", "royalblue")
      4. Handle uncertainty cases appropriately
      # Output Requirements:
       Strict JSON format
      - For unclear cases: use "unknown" as color value
      - Sort results by region ID in ascending order
      Output Example:
         "color_predictions": [
             "region_id": 1,
             "color": "red"
906
           },
             "region_id": 2,
             "color": "unknown"
        ]
913
       # Special Instructions:
        Ignore background colors outside marked regions
915
       - Focus on the dominant colors
      - IDs and contour lines are only for reference. DO NOT use them for color
916
          → analysis
917
```

956

957

958

959

960 961

962

963

964

965

966

967 968

969

970

971

Listing 4: prompt for VLM describing, with dimension "spatial"

```
919
       # Task explanation
920
       Given an image with two clearly marked regions-of-interest (each region
921
           \hookrightarrow is indicated by a numerical ID and contour lines), please:
922
       1. Identify the two regions-of-interest by their numerical IDs
923
       2. Determine the precise spatial relationship between the two objects
          \hookrightarrow contained within the two regions-of-interest, where:
924
          - The reference object should be the visually more salient/dominant
925
              \hookrightarrow object (typically larger, more central, or more prominent in the
926
              → scene)
927
          - The target object's position is described relative to the reference
928
              → object
          - Use specific spatial descriptors (e.g., "on the right of", "above",
929
              → "behind")
930
       3. Handle uncertainty cases appropriately when spatial relationships
931

→ cannot be clearly determined

932
       # Output Requirements:
933
       - Strict JSON format
934
       - For unclear spatial relationship: use "unknown"
935
       - Always describe the target object's position relative to the reference
936
           → object
937
938
       Output Example:
939
         "reference_object_id": 1,
940
         "target_object_id": 2,
941
         "spatial_prediction": "in front of",
942
         "notes": "object 2 is in front of object 1"
943
944
       For unknown cases:
945
946
         "spatial_prediction": "unknown"
947
948
       # Special Instructions:
949
       - Do not use unclear descriptions like "next to", "beside", "near", "
950
           \hookrightarrow close to", etc
951
       - IDs and contour lines are only for reference. DO NOT use them for
952

→ spatial relationship analysis

       - If neither object is clearly more salient, default to using the lower
953
           \hookrightarrow ID as reference
954
955
```

VLM prompts for Region Information Differing. We use specific prompt for each dimension to generate distinct region information. Examples of "color" and "spatial" dimension are shown in Listing 5 and Listing 6. The prompts for "shape", "texture", and "non-spatial" dimensions are similar to the "color" and "spatial" ones, respectively. We use Qwen2.5-VL-72B-Instruct (Bai et al., 2025) as our VLM to generate the distinct region information.

Listing 5: prompt for VLM differentiation, with dimension "color"

```
972
       1. For each region, suggest ONE color that contrasts distinctly with ALL
973
          \hookrightarrow dominant colors in the image
974
       2. Consider human perceptual difference (avoid suggesting similar hues/
975
          → brightness)
       3. Prefer standard color names (e.g., "red", "green")
976
       4. Never suggest the same as any input dominant color
977
       5. When multiple options exist, choose the highest-contrast alternative
978
979
       # Output Format (strict JSON):
980
       { {
         "output": [
981
          {{"region_id": N, "different_color": "color_name"}},
982
           ...(other regions)
983
984
       } }
985
       # Examples:
986
       Input Colors: [{{"region_id": 1, "dominant_color": "red"}}, {{"region_id"
987
          → ": 2, "dominant_color": "blue"}}]
988
       Output: {{
989
         "output": [
           {{"region_id": 1, "different_color": "yellow"}},
990
           {{"region_id": 2, "different_color": "black"}}
991
         ]
992
       } }
993
994
       Input Colors: [{{"region_id": 1, "dominant_color": "green"}}, {{"
          → region_id": 2, "dominant_color": "yellow"}}]
995
       Output: {{
996
         "output": [
997
           {{"region_id": 1, "different_color": "magenta"}},
998
           {{"region_id": 2, "different_color": "navy_blue"}}
999
         1
1000
       } }
```

Listing 6: prompt for VLM differentiation, with dimension "spatial"

```
1003
       # Task Explanation
1004
      Here is an image with TWO outlined regions (each region is indicated by a
          → numerical ID and contour lines).
1005
      And here is the spatial relationship between the two objects contained in
1006
          \hookrightarrow the two regions:
1007
      object {object_id_1} is {spatial_relation} object {object_id_2}
1008
1009
      Now please propose a geometrically distinct spatial relationship that
1010
          \hookrightarrow significantly differs from the given relationship.
1011
       # Requirements:
1012
       1. Suggest ONE primary spatial relationship that contrasts maximally with
1013
          \hookrightarrow the input relationship
1014
       2. Consider these transformation axes for differentiation:
          a) Vertical inversion (above/below
1015
                                                  swap)
          b) Horizontal inversion (left/right
                                                    swap)
1016
          c) Dimensional shift (adjacent
                                            separated)
1017
          d) Topological change (inside
                                              outside)
1018
       3. Use standard spatial terms from this vocabulary:
1019
          [above, below, on the left of, on the right of, in front of, behind,
1020
             \hookrightarrow ...]
       4. The new relationship must be:
1021
         a) Physically plausible for the objects' shapes/sizes
1022
         b) Perceptually distinct from original
1023
          c) Expressed as "object X [RELATION] object Y"
1024
      5. Include brief reasoning in "notes"
1025
       # Output Format (strict JSON):
```

1054

1055

1056

```
1026
       { {
1027
         "output": {{
1028
           "different_spatial_relation": "relation_term",
1029
           "notes": "object [object_id_X] [RELATION] object [object_id_Y]"
         } }
1030
       } }
1031
1032
       # Examples:
1033
       Input: "object A is above object B"
1034
       Output: {{
         "output": {{
1035
           "different_spatial_relation": "below",
1036
           "notes": "object A is below object B (vertical inversion)"
1037
         } }
1038
       } }
1039
       Input: "object X is inside object Y"
1040
       Output: {{
1041
         "output": {{
1042
           "different_spatial_relation": "outside",
1043
           "notes": "object X is outside object Y (topological complement)"
1044
         } }
       } }
1045
1046
       Input: "object 1 is adjacent to object 2"
1047
       Output: {{
1048
         "output": {{
           "different_spatial_relation": "separated",
1049
           "notes": "object 1 is separated from object 2 (proximity reversal)"
1050
         } }
1051
       } }
1052
```

VLM prompt for VQA-based filtering. We use the prompt shown in Listing 7 to filter out lowquality samples. We use Qwen2.5-VL-72B-Instruct (Bai et al., 2025) as our VLM to perform the filtering.

Listing 7: prompt for VLM VQA-based filtering

```
1057
1058
       You are given an image with several regions of interest (ROIs). Each ROI
           \hookrightarrow is highlighted in the image with contour lines and labeled with a
1059

→ unique numerical ID.

1060
1061
       You are also given a list of questions. Each question refers to one or
1062
           \hookrightarrow more ROIs. Here are the questions:
1063
       {questions}
1064
       Your task:
1065
1066
       1. For each question, evaluate whether the statement is correct with
1067
           \hookrightarrow respect to the corresponding region(s).
1068
       2. Provide a confidence score between 0 and 1 ('answer') indicating how
1069
           \hookrightarrow strongly you agree with the statement (1 = completely true, 0 =
           \hookrightarrow completely false).
1070
       3. Provide a short explanation ('reason') describing why you assigned
1071
           \hookrightarrow this score.
1072
1073
       The output format must strictly follow this JSON structure:
1074
       '''ison
1075
       [
1076
         { {
1077
            "question_id": <int>,
1078
            "answer": <float between 0 and 1>,
            "reason": "<string explanation>"
1079
         } } ,
```

```
1080
         . . .
1081
1082
       . . .
1083
       **Example:**
1084
       Input image: contains region 1 (a yellow lemon) and region 2 (a red apple
1085
          \hookrightarrow ).
1086
       Questions:
1087
       '''json
1088
1089
         {{"question_id": 0, "question": "Does region 1 mark a yellow lemon?"}},
1090
         {{"question_id": 1, "question": "Does region 2 mark a blue apple?"}}
1091
1092
1093
       Expected output:
1094
1095
       '''json
1096
1097
         {{"question_id": 0, "answer": 0.99, "reason": "Region 1 does mark a
             → yellow lemon."}},
1098
         {{"question_id": 1, "answer": 0.01, "reason": "The apple in region 2 is
1099
             → actually red."}}
1100
1101
       * * *
1102
```

6.3 More Visualization Results.

We provide more visualization results of our BICOMP dataset and our BIDPO method in Figure 6 and Figure 5, respectively.

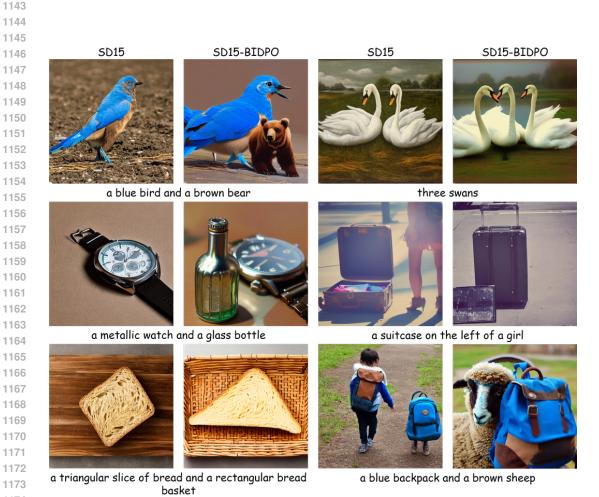


Figure 5: Visualization of text-to-image generation results of Stable Diffusion 1.5 finetuned with our proposed BiDPO, compared with the original Stable Diffusion 1.5.

Figure 6: Samples of each dimension in our constructed preference dataset. For each group, the left image is generated from the original caption, and the right image is generated from the edited caption.