
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOOSTING VISION-AND-LANGUAGE NAVIGATION IN
URBAN ENVIRONMENTS WITH A HIERARCHICAL
SPATIAL-COGNITION MEMORY SYSTEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-and-Language Navigation (VLN) in large-scale urban environments re-
quires embodied agents to ground linguistic instructions in complex scenes and
recall relevant experiences over extended time horizons. Prior modular pipelines
offer interpretability but lack unified memory, while end-to-end (M)LLM agents
excel at fusing vision and language yet remain constrained by fixed context win-
dows and implicit spatial reasoning. We introduce Mem4Nav, a hierarchical
spatial–cognition memory system that can augment most of the VLN backbones.
Mem4Nav fuses a sparse octree for fine-grained voxel indexing with a semantic
topology graph for high-level landmark connectivity, storing environmental context
in trainable memory tokens embedded via a reversible Transformer. Long-term
memory (LTM) losslessly compresses historical observations, while short-term
memory (STM) caches recent entries for real-time local planning. At each step, the
agent dynamically retrieves from STM for immediate context or queries LTM to re-
construct deep history as needed. When evaluated on the Touchdown and Map2Seq
benchmarks, Mem4Nav demonstrates substantial performance gains across three
distinct backbones (modular, LLM-based, and MLLM-based). Our method im-
proves Task Completion by up to 13.3 percentage points and enhances path fidelity
(nDTW) by more than 12 percentage points, while also reducing the final goal
distance. Extensive ablation studies confirm the indispensability of both the hierar-
chical map and the dual memory modules. Our code is open-sourced via https:
//anonymous.4open.science/r/anonymous_Mem4Nav-62B0/.

1 INTRODUCTION

Vision-and-Language Navigation (VLN) requires an agent to follow free-form natural language
instructions and navigate through complex visual environments to reach a specified target (Anderson
et al., 2018; Gu et al., 2022). Most existing methods primarily address indoor VLN. One class of
methods (Anderson et al., 2018; Chen et al., 2022; Kurita & Cho, 2020; Gao et al., 2023; Chen
et al., 2024; Huo et al., 2023) frames the task as traversal on a discrete topological graph, allowing
agents to teleport between fixed nodes without modeling motion uncertainty, which limits their
applicability in real-world continuous spaces. Other techniques remove the reliance on such graphs
by learning end-to-end action policies (Krantz et al., 2020; Chen et al., 2021; Raychaudhuri et al.,
2021) or by predicting intermediate waypoints (Hong et al., 2022; An et al., 2024; Wang et al., 2024b).
Action-based methods struggle with diverse semantic variations in scenes, while waypoint-based
approaches do not generalize well to expansive outdoor settings. Recent work has attempted to extend
VLN from indoor settings to outdoor urban environments(Schumann et al., 2024; Liu et al., 2024; Xu
et al., 2025; Feng et al., 2024), yet it still lacks the ability to sustain long-term perception, memory,
and autonomous decision-making over complex 3D scenes at city scale.

Recent VLN approaches fall into two camps. On one hand, Hierarchical Modular Pipelines
decouple perception, mapping, planning and control, offering interpretability but relying on hand-
crafted interfaces and lacking unified memory (Raychaudhuri et al., 2021; Hong et al., 2022; Du et al.,
2025). On the other hand, (M)LLM-Based Agents leverage large (multimodal) language models to
fuse vision and language, achieving near end-to-end performance but still bounded by fixed context
windows and implicit spatial memory (Shah et al., 2023; Schumann et al., 2024; Liu et al., 2024; Xu
et al., 2025). Neither paradigm natively supports efficient, lossless storage and retrieval of large-scale

1

https://anonymous.4open.science/r/anonymous_Mem4Nav-62B0/
https://anonymous.4open.science/r/anonymous_Mem4Nav-62B0/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Long-instruction navigation in urban environments demands that agents retain both fine-
grained spatial detail and high-level landmark semantics over many steps—a core challenge that
leads to information loss or retrieval overload. Mem4Nav meets this by building a hierarchical
spatial-cognition long-short memory system.

3D structure nor fast adaptation to dynamic, local changes. The primary bottleneck in urban VLN may
be the agent’s inability to model its current 3D spatial information, store it in memory in a structured
form, and retrieve it quickly and efficiently when required. Therefore, based on existing research, we
propose the following hypothesis: the key to endowing an embodied agent with complex autonomous
decision-making capabilities in urban environments-and thus achieving more powerful Vision-and-
Language Navigation is a high-performance memory system that is seamlessly integrated into the
agent’s other cognitive functions, such as perception and decision-making.

To bridge this gap, we propose Mem4Nav, a hierarchical 3D spatial–cognition long–short memory
framework that augments any VLN backbone. After the visual encoder, we build a sparse octree
for voxel-level indexing of observations, a semantic topology graph linking landmark nodes and
intersections, a long-term memory reversible memory tokens and a compact short-term memory
cache of recent entries in local coordinates for rapid adaptation. We evaluate Mem4Nav on two
street-view VLN benchmarks, Touchdown (Chen et al., 2019) and Map2Seq (Schumann & Riezler,
2021), and use three backbones: a non-end-to-end modular pipeline, a prompt-based LLM navigation
agent (Schumann et al., 2024), and a strided-attention MLLM navigation agent (Xu et al., 2025).
Under the same training cost and hardware budget as the strongest baselines, Mem4Nav delivers
absolute improvements of seven to thirteen percentage points in Task Completion, reduces the final
stop distance by up to 1.6 m, and increases normalized DTW by more than ten percentage points.
Ablation studies confirm that each component—the sparse octree, the semantic graph, the long-term
memory tokens, and the short-term cache—is essential to these gains.

In summary, our contributions are:

• We introduce a dual-structured 3D map combining sparse octree indexing with a semantic
topology graph, unifying fine-grained geometry and landmark connectivity.

• We design a reversible Transformer memory that losslessly compresses and retrieves spatially
anchored observations at both octree leaves and graph nodes. We develop a short-term memory
cache for high-frequency local lookups, and a unified retrieval mechanism that dynamically
balances short- and long-term memories within the agent’s attention.

• We demonstrate that Mem4Nav consistently enhances three distinct VLN backbones on Touch-
down and Map2Seq, delivering substantial improvements in success rate, path fidelity, and
distance metrics.

2 RELATED WORK

Vision-and-Language Navigation (VLN). VLN, introduced with the R2R benchmark (Anderson
et al., 2018), requires agents to follow natural language instructions in visual environments. While
numerous methods have addressed indoor navigation (Shridhar et al., 2020; Gao et al., 2023; Huo
et al., 2023; Chen et al., 2023; Zheng et al., 2024a; Dai et al., 2023; Li et al., 2023; Chen et al., 2022;
Guhur et al., 2021; Qi et al., 2021; Zhou et al., 2024b; Chen et al., 2024; Zhou et al., 2024a; An
et al., 2024), outdoor urban settings present unique challenges due to their scale and complexity.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Contributions of Mem4Nav: Prior VLN systems treat spatial maps and memory as
separate, using flat, monolithic maps that are either too detailed (noisy, slow to query) or too coarse
(lossy), and simple text-based memory that merely appends raw history to instructions, leading to
clutter and forgetting. Mem4Nav jointly implements a hierarchical spatial representation and a dual
long–short memory mechanism, and can be seamlessly integrated into existing vision-and-language
navigation pipelines to boost performance.

Datasets like Touchdown (Chen et al., 2019) and Map2Seq (Schumann & Riezler, 2021) were created
to address this gap. Despite recent progress in outdoor VLN (Schumann et al., 2024; Liu et al., 2023;
Xu et al., 2025; Gao et al., 2024; Wang et al., 2024a; Tian et al., 2024; Feng et al., 2024; 2025),
efficiently handling long-horizon tasks remains a key challenge.

Modular vs. End-to-End VLN Architectures. VLN architectures typically fall into two paradigms.
Modular pipelines decompose navigation into stages like perception and planning (Mirowski
et al., 2018; Parvaneh et al., 2020), offering interpretability but often struggling with long-horizon
consistency. In contrast, end-to-end models learn a direct mapping from multimodal inputs to actions.
These range from early cross-modal Transformers (Schumann & Riezler, 2022) to modern agents
based on Large Language Models (LLMs) (Qiao et al., 2023; Zhang et al., 2024a; Schumann et al.,
2024; Zhou et al., 2024b) and Multimodal LLMs (MLLMs) (Xu et al., 2025). While simpler to train,
they are constrained by fixed-size context windows and lack explicit spatial memory. Our work is
motivated by the need for a structured, long-term memory system that complements both approaches.

Spatial Representation Methods in VLN. Effective VLN relies on robust spatial representations.
Common approaches include point clouds, which offer geometric flexibility but can be slow to index
(Wang et al., 2024b), and topological graphs, which abstract environments for efficient, high-level
planning (Wang et al., 2025; Zemskova & Yudin, 2024). Mem4Nav integrates the strengths of
both, using a sparse octree for fine-grained indexing and a landmark graph for macroscopic routing,
creating a unified and hierarchical 3D representation.

Memory Mechanisms in VLN. Memory is crucial for grounding decisions in past experiences.
While simple caches can aid in landmark re-recognition (Sun et al., 2025), recent methods for
longer-horizon memory often inject historical text directly into a model’s prompt. This strategy scales
poorly and lacks structured spatial grounding in complex urban environments (Zeng et al., 2024).
Mem4Nav addresses this limitation by embedding reversible memory tokens directly into its spatial
representation, enabling efficient and structured recall over extended trajectories.

3 METHODOLOGY

Our proposed framework, Mem4Nav, enhances large-scale urban VLN by integrating a hierarchical
spatial representation with a dual long-short memory system. This section details the core components
of our architecture, focusing on its multi-level environmental mapping and memory management
mechanisms.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 HIERARCHICAL SPATIAL REPRESENTATION

To support both fine-grained geometric lookup and high-level route planning, Mem4Nav builds a
dual-component spatial map. It uses a sparse octree for efficient, voxel-level indexing of the local
3D environment, complemented by a semantic topological graph that abstracts the world into key
landmarks and their connections for macroscopic planning.

Sparse Octree Indexing

We discretize the continuous 3D space into a hierarchical octree of maximum depth Λ, where each
level ℓ ∈ {0, . . . ,Λ} corresponds to axis-aligned cubes of side length L/2ℓ. Only those leaf cubes
that the agent visits or that contain relevant observations are instantiated and stored in a hash map,
ensuring both sparsity and O(1) average lookup time. To recover 3D structure from RGB panoramas,
we employ the universal monocular metric depth estimator UniDepth. (Piccinelli et al., 2024)

Morton Code Addressing. The agent’s position pt = (xt, yt, zt) is quantized to integer indices

p̄t =
(
⌊xt 2

Λ/L⌋, ⌊yt 2Λ/L⌋, ⌊zt 2Λ/L⌋
)
∈ {0, . . . , 2Λ − 1}3,

which are interleaved to form a Morton code

κ(pt) = InterleaveBits(p̄t) ∈ {0, . . . , 23Λ − 1}.
This single integer uniquely identifies the visited leaf. On each visit, if κ(pt) is not already present,
a new leaf entry is created; otherwise, the existing leaf’s embedding is updated with the latest
observation in constant time.

Leaf Embedding Updates. Each instantiated leaf maintains an aggregated embedding of the
observations within its cube. Upon revisiting, the current feature vector vt is fused into this embedding
via a reversible update operator, preserving both efficiency and information fidelity. More details are
provided in appendix A.2.

3.1.1 SEMANTIC TOPOLOGICAL GRAPH

While the octree captures raw geometry, high-level navigation relies on semantic landmarks and
decision points. We therefore maintain a dynamic directed graph G = (V, E), where each node u ∈ V
corresponds to a landmark or intersection and edges (ui, uj) ∈ E encode traversability and cost.

Node Creation. Given the current embedding vt and existing node descriptors {ϕ(u)}, we create a
new node whenever

min
u∈V
∥vt − ϕ(u)∥ > δ,

assigning the new node the position pt and initializing its descriptor to vt.

Edge Weighting. Whenever the agent moves from node ut−1 to ut, we add or update the directed
edge (ut−1, ut) with weight

wt−1,t = α ∥pt−1 − pt∥2 + β cinstr,

where cinstr encodes instruction-based penalties (e.g. turns). If the edge already exists, its weight is
averaged to smooth out noise.

Query Modes. At decision time, the agent may perform:

• Voxel lookup: compute κ(p) and fetch the corresponding octree leaf embedding for precise local
reasoning.

• Graph lookup: run a shortest-path algorithm on G to retrieve a sequence of landmark nodes for
macro-scale routing.

Combined Query Modes. At query time, the agent can:

• Voxel lookup: given a precise coordinate, compute κ and fetch θrκ.
• Node lookup: given a semantic goal node ug , perform a shortest–path search (e.g. Dijkstra) on G

to retrieve the sequence of graph tokens along the plan.

This dual representation ensures that Mem4Nav can rapidly retrieve the memory tokens most rele-
vant to either microscopic obstacle avoidance or macroscopic route guidance, all within real–time
constraints.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: The Mem4Nav Pipeline. Perceived observations are encoded into a dual memory system.
Long-Term Memory uses a reversible Transformer to losslessly store information in a hierarchical map
composed of a sparse octree and a semantic graph. Short-Term Memory caches recent observations
for fast, local lookups. During planning, the agent queries STM for immediate context, falling back
to a search over LTM for deeper history. The retrieved memory vectors are then fused with current
perception to guide the agent’s actions.

3.2 LONG–TERM MEMORY WITH REVERSIBLE TOKENS

Long–Term Memory (LTM) provides high–capacity, lossless storage of spatially anchored observa-
tions via virtual memory tokens embedded in both octree leaves and semantic graph nodes. Each
spatial element s (leaf or node) maintains a read–token θrs and write–token θws , both in Rd. New
observations vt ∈ Rd are absorbed into LTM by a bijective update, and past information can be
exactly reconstructed when needed.

Reversible Transformer Block. We adopt a reversible architecture R composed of L layers. At
each layer ℓ, inputs (x1

ℓ , x
2
ℓ) are transformed via two submodules Fℓ and Gℓ:

y1ℓ = x1
ℓ + Fℓ(x

2
ℓ), y2ℓ = x2

ℓ +Gℓ(y
1
ℓ),

x2
ℓ = y2ℓ −Gℓ(y

1
ℓ), x1

ℓ = y1ℓ − Fℓ(x
2
ℓ).

Here each Fℓ, Gℓ is a lightweight adapter atop a frozen Transformer layer. Collectively, R maps
(θrs , vt) 7→ θws and supports exact inverse.

Write Update. When an observation vt falls into spatial element s:

θws ← R
(
θrs ∥ vt

)
, θrs ← θws .

Concatenation ∥ yields a 2d-dimensional input. BecauseR is bijective, no information is lost: the
original (θrs , vt) can be recovered by the inverse pass.

Cycle–Consistency Training. To enforce faithful reconstruction, we minimize a cycle consistency
loss on synthetic trajectories:

Lcycle = Ev

[∥∥v − v̂
∥∥2
2

]
, v̂ = πv

(
R−1

(
R(θr; v)

))
,

where πv is a small decoder projecting reversed hidden states back to the embedding space. Jointly
with any downstream navigation loss, this trains the reversible block to faithfully encode and decode.

Retrieval from LTM. At decision time, if local cache misses, we compose a query qt = Proj([vt; pt])
and perform an approximate nearest neighbor lookup over {θrs} using HNSW (Hierarchical Navigable
Small World, A.2.3) graphs. For each retrieved token θrsi , we recover the original embedding via
inverse transform:

v̂si = R−1
(
θrsi

)
,

and then decode:
p̂si = πp(v̂si), d̂si = πd(v̂si),

where πp, πd are MLP decoders for position and descriptor. A small set of top-m memories
{(p̂si , d̂si)} is fed into the policy for global reasoning.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 SHORT–TERM MEMORY CACHE

Short–Term Memory (STM) is a fixed–size, high–frequency buffer attached to the current semantic
node uc. It stores the most recent observations in relative coordinates for rapid local lookup and
dynamic obstacle avoidance.

Entry Structure. Each STM entry e = (o, prel, v, τ) comprises:

• o: object or event identifier (e.g. car, traffic light),
• prel = pt − puc : coordinate relative to current node,
• v ∈ Rd: multimodal embedding,
• τ : timestamp or step index.

Replacement Policy. To maximize hit rate under capacity K, we combine frequency and recency:

Score(ei) = λ freq(ei) − (1− λ)
(
tnow − τi

)
,

where freq(ei) is the access count. On cache full and new entry:

eevict = argmin
i

Score(ei).

This Frequency–and–Least–Frequently Used policy preserves both frequently accessed and recently
used items.

STM Retrieval. At time t, given current embedding vt and relative query qrel:

C = { ei : ∥prel,i − qrel∥ ≤ ϵ},
then compute cosine similarity

si =
⟨vt, vi⟩
∥vt∥∥vi∥

, i ∈ C,

and return top–k entries {ei1 , . . . , eik}. Both filtering and similarity ranking cost O(K), with
K ≤ 128 in practice.

By combining LTM for deep history and STM for immediate context, our Mem4Nav system achieves
both large–scale recall and rapid local adaptation in real time.

3.4 MULTI–LEVEL MEMORY RETRIEVAL AND DECISION MAKING

At each time step t, with current observation embedding vt and position pt, Mem4Nav first attempts
a short-term memory lookup by computing the relative query qrel = pt − puc , filtering STM entries
within radius ϵ, and ranking them by cosine similarity. If the highest similarity exceeds threshold
τ , the agent aggregates the top-k STM embeddings into mSTM; otherwise it falls back to long-term
memory by projecting qt = Proj([vt; pt]), performing an HNSW search over all read-tokens {θrs}
in the sparse octree and semantic graph, decoding the top-m tokens via the reversible Transformer
inverse into {v̂si}, and aggregating them into mLTM. The final memory vector is chosen as

mt =

{
mSTM, maxi⟨vt, vi⟩ ≥ τ,

mLTM, otherwise,

which is concatenated to the baseline keys and values {K,V } in the policy’s cross-attention:

K ′ = [K; mt], V ′ = [V ; mt],

and combined via a learned gate αt:

Outt = αt Attn(Q,K ′, V ′) + (1− αt)Attn(Q,K, V).

The result then flows through the feed-forward and action-selection layers, allowing the agent to rely
on fresh local context whenever possible and deeper historical cues when necessary.

4 EXPERIMENTS

We evaluate Mem4Nav on two large-scale urban VLN benchmarks, Touchdown (Chen et al., 2019)
and Map2Seq (Schumann & Riezler, 2021). To demonstrate its broad applicability, our system is
tested by augmenting three distinct backbones: a modular pipeline, the LLM-based agent VELMA
(Schumann et al., 2024), and the MLLM-based agent FLAME (Xu et al., 2025).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Test-set performance on Touchdown and Map2Seq backbones, with (“+Mem4Nav”) and
without memory.

Model Touchdown Dev Touchdown Test Map2Seq Dev Map2Seq Test

TC↑ SPD↓ nDTW↑ TC↑ SPD↓ nDTW↑ TC↑ SPD↓ nDTW↑ TC↑ SPD↓ nDTW↑

VLN-Trans (Majumdar et al., 2021) 15.00 20.30 27.00 16.20 20.80 27.80 18.60 — 31.10 17.00 — 29.50
ARC+L2S (2020) (Cho et al., 2020) 19.48 17.05 — 16.68 18.84 — — — — — — —
ORAR (2022) (Liu et al., 2022) 30.05 11.12 45.50 29.60 11.79 45.30 49.88 5.87 62.70 47.75 6.53 62.10
VLN-Video (2024) (Zhang et al., 2024b) 34.50 9.60 — 31.70 11.20 — — — — — — —
Loc4Plan (2024) (Tian et al., 2024) 34.50 10.50 — 32.90 11.50 — 48.00 7.00 — 45.30 7.20 —

Hierarchical Modular Pipeline 31.93 12.84 46.07 29.27 13.05 44.29 53.03 6.22 69.06 50.54 6.33 65.50
+ Mem4Nav (ours) 45.18 11.21 59.03 42.21 11.95 56.36 58.19 5.49 74.74 57.64 5.54 73.57

VELMA Baseline (Schumann et al., 2024) 29.83 14.67 43.44 27.38 15.03 41.93 52.75 6.78 66.45 48.70 6.80 62.37
+ Mem4Nav (ours) 35.29 12.16 55.35 34.04 12.90 48.82 58.33 6.01 75.06 56.84 6.10 72.71

FLAME Baseline (Xu et al., 2025) 41.28 9.14 55.96 40.20 9.53 54.56 56.95 5.95 71.36 52.44 5.91 67.72
+ Mem4Nav (ours) 50.10 9.01 65.05 48.48 9.10 63.63 61.03 5.87 80.40 60.41 5.90 75.94

4.1 EXPERIMENTAL SETUP

Metrics. We evaluate performance using three standard metrics: Task Completion (TC), the success
rate of stopping within 3m of the goal (↑); Shortest-path Distance (SPD), the final geodesic distance
to the goal (↓); and normalized Dynamic Time Warping (nDTW), which measures path fidelity
against the expert trajectory (↑). Formally, for N episodes, given the final distance to goal di, expert
path length Li, and warping cost DTWi:

TC =
1

N

N∑
i=1

1[di ≤ 3], SPD =
1

N

N∑
i=1

di, nDTW =
1

N

N∑
i=1

exp
(
−DTWi/Li

)
.

Backbones and Implementation. We integrate Mem4Nav into three diverse backbones to test its
effectiveness: (1) Hierarchical Modular Pipeline is a fully modular, non–end-to-end system: a large
language model generates scene descriptions, which are embedded and fed into our sparse octree +
semantic graph builder; a hierarchical planner then decomposes the instruction into landmark, object
and motion subgoals; and a lightweight policy network fuses planner outputs with retrieved memory
to select actions. This pipeline was specifically devised by us to rigorously evaluate the performance
of the memory module. (2) VELMA (Schumann et al., 2024) is an LLM-based agent that uses text
prompts for action generation; and (3) FLAME (Xu et al., 2025) is an MLLM agent with strided
cross-attention over visual tokens. All models are trained under a unified three-phase schedule on a
single NVIDIA A100 GPU for fair comparison. Further implementation details for all backbones can
be found in Appendix A.3.

4.2 MAIN RESULTS

As summarized in Table 1, Mem4Nav consistently improves performance across all three backbones
on both the Touchdown and Map2Seq datasets.

Hierarchical Modular Pipeline. This backbone sees the most significant improvements, with
Mem4Nav boosting Task Completion (TC) by +13.25 points and nDTW by +12.96 points on
Touchdown Dev. These substantial gains underscore the critical need for an explicit, structured
memory system in agents that lack strong innate memory capabilities.

VELMA (LLM-based). Even with a powerful LLM, adding structured memory yields substantial
benefits. Mem4Nav improves TC by +5.46 points and nDTW by over 10 points on Touchdown Dev,
demonstrating that our explicit spatio-temporal memory helps the LLM ground instructions more
effectively in complex environments.

FLAME (MLLM-based). Our system also enhances the state-of-the-art MLLM agent, boosting
TC by +8.82 points and nDTW by +9.09 points on Touchdown Dev. This shows that while
FLAME’s attention mechanism provides some implicit memory, Mem4Nav’s explicit and hierarchical
representation further refines its long-range coherence and path alignment.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Analysis of Mem4Nav’s Hyper-parameters and Scalability. (a) Navigation performance
metrics (TC, nDTW, SPD) as a function of STM cache size. Performance gains saturate around
K=128. (b) STM efficiency, showing that hit rate increases with cache size while latency also rises.
(c) Long-horizon memory usage, illustrating the sub-linear growth of LTM tokens and GPU memory
over 50,000 steps. (d) Long-horizon latency, demonstrating the near-constant O(1) write latency and
the efficient O(log N) retrieval latency.

Overall, Mem4Nav consistently elevates navigation performance across diverse agent architectures.
The pronounced improvements in Task Completion and nDTW confirm that our memory system
successfully increases success rates and brings agent trajectories closer to expert demonstrations.

4.3 FURTHER ANALYSIS AND PARAMETER STUDIES

To further understand the behavior of Mem4Nav and validate its design choices, we conducted a
series of analytical experiments focusing on hyper-parameter sensitivity and long-horizon scalability.
We present the key findings in this section, with more detailed results available in the appendix.

The hyper-parameter and scalability analyses, visualized in Figure 4, offer deeper insights into
Mem4Nav’s design. As shown in plots (a) and (b), increasing the STM cache size (K) improves
navigation performance (TC, nDTW) and hit rate, but these gains begin to saturate after K = 128.
Given that latency continues to rise, this analysis validates our selection of K = 128 as a default
configuration that strikes an optimal balance between high performance and low-latency local lookups.
Furthermore, we assessed the system’s long-horizon scalability. The results in plot (d) are particularly
telling: the average octree write latency remains constant, empirically confirming the theoretical
O(1) average-time complexity of our hash-map-based sparse octree. Concurrently, the LTM retrieval
latency scales sub-linearly, which is consistent with the efficient O(logN) query complexity of the
HNSW index. Together, these findings demonstrate that Mem4Nav is not only effective but also
highly efficient and scalable, making it well-suited for demanding, long-duration navigation tasks.

In addition to scalability, we analyzed the sensitivity to the STM replacement policy and robustness
to depth estimation noise, summarized in Table 2. A balanced policy (λ = 0.5) that considers
both recency and frequency is crucial for performance, outperforming policies that rely on only one
factor. The system also exhibits graceful degradation under moderate depth sensor noise, though its
dependency on input quality is clear. For a more comprehensive analysis, including the scalability of
the semantic graph and a zero-shot transfer experiment showing Mem4Nav’s generalization to indoor
R2R environments, please refer to Appendix B.

Table 2: Analysis of STM Policy and Robustness to Depth Noise on Touchdown Dev.

Category Parameter / Condition Key Finding & Impact on Task Completion (TC)

STM Policy
λ = 0.0 (Recency-only) Vulnerable to forgetting key landmarks (TC: 48.91%).
λ = 0.5 (Balanced, Default) Optimal trade-off, achieving the highest performance (TC: 50.10%).
λ = 1.0 (Frequency-only) Fails to adapt to new context; Cognitive inertia (TC: 48.54%).

Robustness Gaussian Depth Noise (σ = 0.5m) Performance degrades gracefully (TC drops by 4.08 pp).
20% Depth Dropout Highlights dependency on depth quality (TC drops by 5.54 pp).

4.4 ABLATION STUDIES

We conduct a component-wise ablation study to validate the contribution of each module in Mem4Nav:
the sparse octree, semantic graph, Long-Term Memory (LTM), and Short-Term Memory (STM).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Component-wise ablations of Mem4Nav on Touchdown and Map2Seq. “w/o X” denotes
removing component X from full Mem4Nav framework.

Model Touchdown Dev Touchdown Test Map2Seq Dev Map2Seq Test

TC↑ SPD↓ nDTW↑ TC↑ SPD↓ nDTW↑ TC↑ SPD↓ nDTW↑ TC↑ SPD↓ nDTW↑

FLAME + full Mem4Nav 50.10 9.01 65.05 48.48 9.10 63.63 61.03 5.87 80.40 60.41 5.90 75.94
FLAME +Mem4Nav w/o Octree 48.72 9.08 60.90 47.52 9.18 58.85 59.10 5.95 76.20 58.35 6.02 73.10
FLAME +Mem4Nav w/o Semantic Graph 44.40 9.25 62.10 45.83 9.55 61.42 58.50 6.10 78.00 56.90 6.20 74.50
FLAME +Mem4Nav w/o LTM 47.28 9.03 64.02 47.90 9.12 62.70 60.10 5.88 79.20 59.00 5.95 75.50
FLAME +Mem4Nav w/o STM 48.67 9.00 62.35 48.10 9.08 62.10 60.50 5.87 79.80 59.90 5.90 75.30

VELMA + full Mem4Nav 35.29 12.16 55.35 34.04 12.90 48.82 58.33 6.01 75.06 56.84 6.10 72.71
VELMA +Mem4Nav w/o Octree 34.05 12.50 53.00 32.80 13.20 45.90 57.00 6.20 73.21 55.00 6.30 70.50
VELMA +Mem4Nav w/o Semantic Graph 33.50 12.70 51.50 32.20 13.40 44.21 56.20 6.33 71.20 54.30 6.45 69.10
VELMA +Mem4Nav w/o LTM 31.32 13.20 47.01 29.85 14.06 41.40 54.00 7.12 67.00 51.50 7.10 62.50
VELMA +Mem4Nav w/o STM 33.14 12.16 49.50 32.50 12.91 47.05 56.55 6.02 74.00 55.50 6.10 71.00

Hierarchical + full Mem4Nav 45.18 11.21 59.03 42.21 11.95 56.36 58.19 5.49 74.74 57.64 5.54 73.57
Hierarchical +Mem4Nav w/o Octree 39.31 12.50 52.42 38.25 12.91 50.45 55.85 6.04 70.32 55.20 5.82 67.35
Hierarchical +Mem4Nav w/o Semantic Graph 35.56 12.24 52.35 34.05 12.76 46.04 54.46 6.05 71.15 52.52 6.13 69.20
Hierarchical +Mem4Nav w/o LTM 33.42 12.54 51.23 31.52 12.73 47.30 55.42 6.13 72.02 52.34 6.02 66.23
Hierarchical +Mem4Nav w/o STM 41.34 11.25 53.31 38.50 11.98 52.00 56.00 5.51 69.85 53.50 5.57 67.26

Each component is removed individually to assess its impact on the three backbones, with results
presented in Table 3.

Hierarchical Modular Pipeline. This agent is highly sensitive to all components. Removing the
LTM causes a catastrophic drop in task success (TC falls by 11.76 points), demonstrating its critical
role in long-term recall. Similarly, ablating the semantic graph severely hampers high-level planning,
resulting in a 9.62-point drop in TC.

VELMA (LLM-based). The LLM agent relies heavily on explicit memory. Ablating the STM
significantly degrades path fidelity (nDTW drops by 5.85 points), while removing the LTM harms
task completion (TC drops by 3.97 points). The impact of removing spatial modules is less severe, as
the LLM can partially compensate through its internal reasoning.

FLAME (MLLM-based). Despite its implicit memory from cross-attention, the MLLM still requires
explicit spatial structures. Removing the semantic graph significantly reduces task completion (TC
drops by 5.70 points), while ablating the sparse octree hurts path fidelity (nDTW drops by 4.15 points),
proving that both high-level and fine-grained spatial awareness remain critical. Overall, the ablations
confirm that while LLM/MLLM agents can partially compensate for missing components, they still
derive distinct benefits from Mem4Nav’s explicit memory and hierarchical spatial representations.

5 CONCLUSION AND DISCUSSION

In this work, we introduced Mem4Nav, a hierarchical long-short memory system designed to enhance
VLN agents in complex urban environments. By integrating a dual-component spatial map with a
reversible Transformer-based memory, Mem4Nav achieves both efficient, lossless long-term recall
and rapid local adaptation. Our experiments empirically demonstrate that Mem4Nav substantially
improves navigation success and path fidelity across diverse backbones, from modular pipelines to
state-of-the-art LLM and MLLM agents. Ablation studies further confirm that each component of
our hierarchical memory architecture is critical to its overall effectiveness.

Furthermore, our work engages with the critical debate on explicit versus implicit knowledge for
embodied AI. The performance gains on powerful MLLM backbones highlight the value of a hybrid
approach, where a structured external memory augments a foundation model’s generalist reasoning.
This aligns with concurrent research demonstrating that explicitly integrating 3D semantic maps is a
highly effective strategy for instruction-guided navigation with large models (Wang et al., 2025). We
view Mem4Nav as a step towards building dynamic, grounded world models for agents. As recent
surveys on spatial intelligence emphasize, the key future challenge is to evolve such memory systems
from single-mission data logs into true lifelong learning frameworks that can adapt to changing
environments (Feng et al., 2025). This advancement would require new mechanisms for memory
consolidation and selective forgetting, ultimately enabling agents to move beyond simple trajectory
following to perform complex, causal reasoning about their actions in a continuously changing world.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The work presented in this paper is methodological in nature, focusing on the development of Vision-
Language Navigation. To the best of our knowledge, our proposed methods do not introduce any new
ethical concerns.

REPRODUCIBILITY STATEMENT

To facilitate the verification of our results, the implementation code for our algorithm and the main
baselines is provided in the anonymous code link and the appendix.

REFERENCES

Dong An, Hanqing Wang, Wenguan Wang, Zun Wang, Yan Huang, Keji He, and Liang Wang. Etpnav:
Evolving topological planning for vision-language navigation in continuous environments. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2024.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3674–3683, 2018.

Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touchdown: Natural
language navigation and spatial reasoning in visual street environments. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 12538–12547, 2019.

Jiasheng Chen, Boran Lin, Renda Xu, Zheyuan Chai, Xiaojun Liang, and Kwan Yee Kenneth Wong.
Mapgpt: map-guided prompting with adaptive path planning for vision-and-language navigation.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 9796–9810, 2024.

Kevin Chen, Junshen K Chen, Jo Chuang, Marynel Vázquez, and Silvio Savarese. Topological
planning with transformers for vision-and-language navigation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11276–11286, 2021.

Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev. Think
global, act local: Dual-scale graph transformer for vision-and-language navigation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16537–16547,
2022.

Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan Laptev. History aware multimodal
transformer for vision-and-language navigation, 2023. URL https://arxiv.org/abs/
2110.13309.

Jialu Cho, Chih-Hui Ho, Tz-Ying Wu, N M Fung, and C-C Jay Kuo. Active repetitive correction
for vision-and-language navigation. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 2826–2835, 2020.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning, 2023. URL https://arxiv.org/abs/2305.06500.

Yi Du, Taimeng Fu, Zhuoqun Chen, Bowen Li, Shaoshu Su, Zhipeng Zhao, and Chen Wang. Vl-nav:
Real-time vision-language navigation with spatial reasoning, 2025. URL https://arxiv.
org/abs/2502.00931.

Jie Feng, Tianhui Liu, Jun Zhang, Xin Zhang, Tianjian Ouyang, Junbo Yan, Yuwei Du, Siqi Guo, and
Yong Li. Citybench: Evaluating the capabilities of large language model as world model. arXiv
preprint arXiv:2406.13945, 2024.

10

https://arxiv.org/abs/2110.13309
https://arxiv.org/abs/2110.13309
https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2502.00931
https://arxiv.org/abs/2502.00931

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jie Feng, Jinwei Zeng, Qingyue Long, Hongyi Chen, Jie Zhao, Yanxin Xi, Zhilun Zhou, Yuan
Yuan, Shengyuan Wang, Qingbin Zeng, et al. A survey of large language model-powered spatial
intelligence across scales: Advances in embodied agents, smart cities, and earth science. arXiv
preprint arXiv:2504.09848, 2025.

Chen Gao, Xingyu Peng, Mi Yan, He Wang, Lirong Yang, Haibing Ren, Hongsheng Li, and Si Liu.
Adaptive zone-aware hierarchical planner for vision-language navigation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14911–14920, 2023.

Yunpeng Gao, Zhigang Wang, Linglin Jing, Dong Wang, Xuelong Li, and Bin Zhao. Aerial vision-
and-language navigation via semantic-topo-metric representation guided llm reasoning. arXiv
preprint arXiv:2410.08500, 2024.

Jing Gu, Eliana Stefani, Qi Wu, Jesse Thomason, and Xin Eric Wang. Vision-and-language navigation:
A survey of tasks, methods, and future directions. arXiv preprint arXiv:2203.12667, 2022.

Pierre-Louis Guhur, Makarand Tapaswi, Shizhe Chen, Ivan Laptev, and Cordelia Schmid. Airbert:
In-domain pretraining for vision-and-language navigation. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 1634–1643, 2021.

Yicong Hong, Zun Wang, Qi Wu, and Stephen Gould. Bridging the gap between learning in discrete
and continuous environments for vision-and-language navigation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 15439–15449, 2022.

Jingyang Huo, Qiang Sun, Boyan Jiang, Haitao Lin, and Yanwei Fu. Geovln: Learning geometry-
enhanced visual representation with slot attention for vision-and-language navigation. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 23212–23221,
2023.

Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee. Beyond the nav-graph:
Vision-and-language navigation in continuous environments. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII 16, pp.
104–120. Springer, 2020.

Shuhei Kurita and Kyunghyun Cho. Generative language-grounded policy in vision-and-language
navigation with bayes’ rule. arXiv preprint arXiv:2009.07783, 2020.

Xiangyang Li, Zihan Wang, Jiahao Yang, Yaowei Wang, and Shuqiang Jiang. Kerm: Knowledge en-
hanced reasoning for vision-and-language navigation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2583–2592, 2023.

Shubo Liu, Hongsheng Zhang, Yuankai Qi, Peng Wang, Yanning Zhang, and Qi Wu. Aerialvln:
Vision-and-language navigation for uavs. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 15384–15394, 2023.

Yang Liu, Xinshuai Song, Kaixuan Jiang, Weixing Chen, Jingzhou Luo, Guanbin Li, and Liang Lin.
Multimodal embodied interactive agent for cafe scene. arXiv e-prints, pp. arXiv–2402, 2024.

Yiman Liu, Cunhong Pan, Kexin He, Yan Jiang, Shuai Lin, Jianfei Zhang, Jing-Teng Weng, and
Wei-Shi Zheng. Object-and-room aware representation learning for vision-and-language navigation.
In European Conference on Computer Vision, pp. 569–587. Springer, 2022.

Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh, and Dhruv Ba-
tra. Vision-and-language navigation with self-supervised auxiliary tasks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 9966–9975, 2021.

Piotr Mirowski, Matthew Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith Anderson,
Denis Teplyashin, Karen Simonyan, Andrew Zisserman, Raia Hadsell, et al. Learning to navigate
in cities without a map. In Advances in neural information processing systems, volume 31, 2018.

Abtin Parvaneh, Ehsan Abbasnejad, Damien Teney, Javen Q Shi, and Anton Van den Hengel.
Counterfactual vision-and-language navigation: Unravelling the unseen. In Advances in Neural
Information Processing Systems, volume 33, pp. 5296–5307, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Luigi Piccinelli, Yung-Hsu Yang, Christos Sakaridis, Mattia Segu, Siyuan Li, Luc Van Gool, and
Fisher Yu. Unidepth: Universal monocular metric depth estimation, 2024. URL https://
arxiv.org/abs/2403.18913.

Yuankai Qi, Zizheng Pan, Yicong Hong, Ming-Hsuan Yang, Anton Van Den Hengel, and Qi Wu. The
road to know-where: An object-and-room informed sequential bert for indoor vision-language
navigation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
1655–1664, 2021.

Yanyuan Qiao, Yuankai Qi, Yicong Hong, Zheng Yu, Peng Wang, and Qi Wu. Hop: History and-
order aware pre-training for vision-and-language navigation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 15418–15427, 2022.

Yanyuan Qiao, Yuankai Qi, Zheng Yu, Jing Liu, and Qi Wu. March in chat: Interactive prompting for
remote embodied referring expression. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 15758–15767, 2023.

Sonia Raychaudhuri, Saim Wani, Shivansh Patel, Unnat Jain, and Angel X Chang. Language-aligned
waypoint (law) supervision for vision-and-language navigation in continuous environments. arXiv
preprint arXiv:2109.15207, 2021.

Raphael Schumann and Stefan Riezler. Generating landmark navigation instructions from maps
as a graph-to-text problem. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 489–502, 2021.

Raphael Schumann and Stefan Riezler. Analyzing generalization of vision and language navigation
to unseen outdoor areas, 2022. URL https://arxiv.org/abs/2203.13838.

Raphael Schumann, Wanrong Zhu, Weixi Feng, Tsu-Jui Fu, Stefan Riezler, and William Yang Wang.
Velma: Verbalization embodiment of llm agents for vision and language navigation in street view.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 18924–18933,
2024.

Dhruv Shah, Błażej Osiński, Sergey Levine, et al. Lm-nav: Robotic navigation with large pre-trained
models of language, vision, and action. In Conference on robot learning, pp. 492–504. PMLR,
2023.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10740–10749, 2020.

Yanjun Sun, Yue Qiu, and Yoshimitsu Aoki. Dynamicvln: Incorporating dynamics into vision-and-
language navigation scenarios. Sensors, 25(2), 2025. ISSN 1424-8220. doi: 10.3390/s25020364.
URL https://www.mdpi.com/1424-8220/25/2/364.

Hong Tian, Jinyu Meng, Wenguan S Zheng, Ya M Li, Jie Yan, and Yichao Zhang. Loc4plan: Locating
before planning for outdoor vision and language navigation. In Proceedings of the 32nd ACM
International Conference on Multimedia, pp. 4073–4081, 2024.

Zehao Wang, Mingxiao Li, Minye Wu, Marie-Francine Moens, and Tinne Tuytelaars. Instruction-
guided path planning with 3d semantic maps for vision-language navigation. Neuro-
computing, 625:129457, 2025. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.
2025.129457. URL https://www.sciencedirect.com/science/article/pii/
S0925231225001298.

Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu, Junjie Hu, Ming Jiang, and Shuqiang Jiang.
Lookahead exploration with neural radiance representation for continuous vision-language naviga-
tion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
13753–13762, 2024a.

12

https://arxiv.org/abs/2403.18913
https://arxiv.org/abs/2403.18913
https://arxiv.org/abs/2203.13838
https://www.mdpi.com/1424-8220/25/2/364
https://www.sciencedirect.com/science/article/pii/S0925231225001298
https://www.sciencedirect.com/science/article/pii/S0925231225001298

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu, and Shuqiang Jiang. Sim-to-real transfer via 3d
feature fields for vision-and-language navigation, 2024b. URL https://arxiv.org/abs/
2406.09798.

Yunzhe Xu, Yiyuan Pan, Zhe Liu, and Hesheng Wang. Flame: Learning to navigate with multimodal
llm in urban environments, 2025. URL https://arxiv.org/abs/2408.11051.

Tatiana Zemskova and Dmitry Yudin. 3dgraphllm: Combining semantic graphs and large language
models for 3d scene understanding, 2024. URL https://arxiv.org/abs/2412.18450.

Qingbin Zeng, Qinglong Yang, Shunan Dong, Heming Du, Liang Zheng, Fengli Xu, and Yong
Li. Perceive, reflect, and plan: Designing llm agent for goal-directed city navigation without
instructions, 2024. URL https://arxiv.org/abs/2408.04168.

Jiaming Zhang, Kun Wang, Renda Xu, Guangyao Zhou, Yuxuan Hong, Xi Fang, Qi Wu, Zhong Zhang,
and Wei He. Navid: Video-based vlm plans the next step for vision-and-language navigation.
arXiv preprint arXiv:2403.06323, 2024a.

Jiaming Zhang, Kun Wang, Renda Xu, Guangyao Zhou, Yuxuan Hong, Xi Fang, Qi Wu, Zhong
Zhang, and Wei He. Learning panoptic-aware representations for vision-and-language navigation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13580–13590, 2024b.

Duo Zheng, Shijia Huang, Lin Zhao, Yiwu Zhong, and Liwei Wang. Towards learning a generalist
model for embodied navigation, 2024a. URL https://arxiv.org/abs/2312.02010.

Duo Zheng, Shijia Huang, Lin Zhao, Yiwu Zhong, and Liwei Wang. Towards learning a generalist
model for embodied navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13624–13634, 2024b.

Guangyao Zhou, Yuxuan Hong, Zheyuan Wang, Xin Eric Wang, and Qi Wu. Navgpt-2: Unleashing
navigational reasoning capability for large vision-language models. In European Conference on
Computer Vision, pp. 260–278. Springer, 2024a.

Guangyao Zhou, Yuxuan Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language
navigation with large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 7641–7649, 2024b.

13

https://arxiv.org/abs/2406.09798
https://arxiv.org/abs/2406.09798
https://arxiv.org/abs/2408.11051
https://arxiv.org/abs/2412.18450
https://arxiv.org/abs/2408.04168
https://arxiv.org/abs/2312.02010

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

USE OF LARGE LANGUAGE MODELS

We utilized a large language model to enhance the language and clarity of our manuscript. Specifically,
we employed Gemini 2.5 flash with the following prompt to refine the initial draft: I am writing an
academic paper in English. Please polish the following draft so that it adheres to the conventions of
academic writing.

A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

We utilized a large language model to enhance the language and clarity of our manuscript. Specifically,
we employed Gemini 2.5 flash with the following prompt to refine the initial draft: I am writing an
academic paper in English. Please polish the following draft so that it adheres to the conventions of
academic writing.

A.2 ALGORITHM IN DETAIL

A.2.1 SPARSE OCTREE LEAF INSERTION AND UPDATE

We discretize 3D world coordinates into a hierarchical octree of maximum depth Λ. Each node at
level ℓ ∈ {0, . . . ,Λ} represents an axis–aligned cube of side length L/2ℓ. Only leaves that have been
visited or contain relevant observations are instantiated and stored in a hash table for O(1) lookup.

Morton Key Computation. Given a continuous agent position pt = (xt, yt, zt), we quantize to
integer coordinates p̄t = (⌊xt 2

Λ/L⌋, . . .) ∈ {0, . . . , 2Λ − 1}3, then interleave bits to form a Morton
code (Z-order curve)

κ(pt) = InterleaveBits(x̄t, ȳt, z̄t) ∈ {0, . . . , 23Λ − 1}.

This single integer κ uniquely identifies the leaf voxel at depth Λ.

Octree Leaf Update. On each visit to pt:

• Compute leaf key κt.
• If κt not in hash table H, create new leaf entry Oκt

= {θrκt
, θwκt

, Bκt
}, where Bκt

stores the
cube bounds.

• Retrieve θr ← θrκt
.

• Fuse current embedding vt into memory via reversible update:

θwκt
← R

(
θr; vt

)
, θrκt

← θwκt
.

All operations (hash lookup, token update) cost O(1) average time; the Morton code computation
and bit interleaving cost O(Λ).

Monocular Depth Estimation with UniDepth

To recover metric depth from single RGB panoramas, we adopt UniDepth, a universal monocular
metric depth estimator that directly predicts dense 3D points without requiring known camera
intrinsics at test time. UniDepth incorporates a self-promptable camera module that outputs a
dense spherical embedding of azimuth and elevation angles, which conditions a depth module
via cross-attention, and uses a pseudo-spherical (θ, ϕ, zlog) output representation to disentangle
camera pose from depth prediction :contentReference[oaicite:0]index=0. A geometric-invariance
loss further enforces consistency between depth features under different geometric augmentations
:contentReference[oaicite:1]index=1:contentReference[oaicite:2]index=2.

Integration into Mem4Nav. At each time step t, given the current panorama It, we run UniDepth to
obtain a dense depth map Dt and the camera embedding Ct. We then unproject each pixel (u, v, id)
via the predicted pseudo-spherical outputs to form a local point cloud

Pt =
{
(xi, yi, zi)

∣∣ (ui, vi, zi) ∈ Dt

}
,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

which supplies the z-coordinate for Morton code quantization in the sparse octree. We augment the
visual feature vector vRGB

t (from the perception backbone) with a depth feature vector vDepth
t =

MLP
(
CA(Ft, Ct)

)
—the cross-attention output of the depth module—to form the fused embedding

vt =
[
vRGB
t ; vDepth

t

]
.

This fused embedding is then written into both (i) the octree leaf at key κ(pt) and (ii) any semantic
graph node created or updated at position pt, via the reversible token write operator . By integrating
metric depth in this way, Mem4Nav’s hierarchical spatial structures gain true 3D scale awareness,
improving both the precision of voxel indexing and the semantic graph’s landmark localization.

[H] [1] Input: position pt, embedding vt, hash tableH p̄← Quantize(pt) κ← InterleaveBits(p̄)
κ /∈ H initialize θr, θw ∼ N (0, Id) H[κ] ← (θr, θw, Bκ) (θ

r, θw, B) ← H[κ] θw ← R(θr; vt)
Reversible write θr ← θw H[κ].θr ← θr, H[κ].θw ← θw

A.2.2 SEMANTIC NODE & EDGE UPDATE

While the octree captures raw geometry, many navigation cues come from salient landmarks or
decision points (e.g. intersections, points of interest). We maintain a dynamic graph G = (V, E)
whose nodes u ∈ V correspond to important locations and whose edges (ui, uj) ∈ E record
traversability and cost.

Node Creation and Token Fusion. Whenever the agent’s VLM detects a trigger phrase (e.g. turn
left at the statue) or a high semantic change in embedding:

∃u′ ∈ V : ∥vt − ϕ(u′)∥ ≤ δ

where ϕ(u) is the aggregate descriptor of node u. If no existing node is within threshold δ, we create
a new node:

unew. p← pt, (θru, θ
w
u) ∼ N (0, Id),

and add unew to V . Then we fuse the embedding:

θwu ← R(θru; vt), θru ← θwu .

Edge Addition and Weighting. Each time the agent moves from node ut−1 to ut, we add or update
edge (ut−1, ut) with weight

wt−1,t = α ∥pt−1 − pt∥2 + β cinstr,

where α, β balance Euclidean distance and instruction cost cinstr (e.g. number of turns). If the edge
already exists, we average weights to smooth noise.

[H] [1] Input: embedding vt, position pt, graph G found ← argminu∈V∥vt − ϕ(u)∥ ∥vt −
ϕ(found)∥ > δ create new node u with u.p← pt, random tokens V∪{u} u← found (θru, θ

w
u)←

u.tokens θwu ← R(θru; vt), θru ← θwu u.tokens ← (θru, θ
w
u) previous node uprev exists compute

w ← α∥pt − uprev.p∥+ β cinstr add/update edge (uprev, u) with weight w

A.2.3 LONG–TERM MEMORY WRITE AND RETRIEVAL

The long-term memory module stores and retrieves spatially anchored observations in a lossless,
compressed form. When writing, each spatial element’s existing memory tokens are updated by
fusing in the new observation embedding via a reversible transform, replacing the old token. For
retrieval, the current observation and position are projected into a query vector, which is used to
perform an approximate nearest-neighbor search over all stored tokens. The top matches are then
inverted through the reversible transform to reconstruct their original embeddings and associated
spatial information, which are returned for downstream reasoning.

[H] [1] LTM Writeelement s, embedding vt (θ
r, θw) ← Tokens(s) θw ← R(θr∥ vt) θr ← θw

Tokens(s)← (θr, θw) LTM Retrievequery (vt, pt) q ← Proj([vt; pt]) {si} ← HNSW NN(q) each
si v̂i ← R−1(θrsi) p̂i ← πp(v̂i), d̂i ← πd(v̂i) {(p̂i, d̂i)}
HNSW Index Configuration and Usage

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We use the Hierarchical Navigable Small World (HNSW) algorithm to index and query our
collection of read-tokens {θrs} ∈ Rd. HNSW organizes vectors into a multi-layer graph where each
layer is a small-world proximity graph, enabling logarithmic-scale search complexity and high
recall in practice.

Index Construction. HNSW incrementally inserts tokens one by one. Each new token θr is assigned
a maximum layer L drawn from a geometric distribution (probability p = 1/M), so higher layers are
sparser. For each layer ℓ ≤ L:

• Starting from an entry point at the topmost nonempty level, perform a greedy search: move to the
neighbor closest (by cosine distance) to θr until no closer neighbor is found.

• Maintain a candidate list of size efConstruction to explore additional connections beyond the
greedy path.

• Select up to M closest neighbors from the candidate list and bidirectionally link them with θr.

This builds a nested hierarchy of proximity graphs: the top layer provides long-range jumps, while
lower layers refine locality.

Querying (Search). To find the k nearest tokens to a query q:

• Entry-point jump: Begin at the top layer’s entry point; greedily traverse neighbors to approach
q.

• Layer descent: At each lower layer, use the best candidate from the previous layer as the starting
point, repeating the greedy step.

• Beam search at base layer: At layer 0, perform a best–first search with a dynamic queue of size
efSearch. Expand the closest candidate by examining its neighbors, inserting unseen neighbors
into the queue, and retaining the top efSearch candidates.

• Result selection: Once no closer candidates remain or budget is exhausted, output the top k
tokens from the queue.

Hyperparameters and Complexity.

• M: maximum number of neighbors per node (e.g. 64).
• efConstruction: candidate list size during insertion (e.g. 500), trading off build time vs. graph

quality.
• efSearch: candidate list size during queries (e.g. 200), controlling recall vs. search latency.

A.2.4 SHORT–TERM MEMORY INSERT & RETRIEVE

The short-term memory module maintains a compact, fixed-size buffer of the most recent observations
relative to the agent’s current position. Whenever the agent perceives a new object, the module
computes its position with respect to the current node and checks if an entry for that object already
exists. If it does, the entry is refreshed with the latest embedding and timestamp and its access count
is increased. If the object is new and there is still room in the buffer, a new entry is appended. Once
the buffer is full, the least valuable entry—determined by a balance of how often and how recently it
has been used—is removed to make space for the new observation. When the agent needs to recall
local context, the module filters entries within a small spatial neighborhood of the agent’s position
and returns those whose stored embeddings best match the current observation. This mechanism
ensures fast, spatially anchored retrieval without unbounded memory growth.

Insertion and Update.

• Compute relative position prel.
• If an entry with same object o exists, update its v, τ , and increment freq.
• Else if |STM| < K, append new entry with freq = 1.
• Otherwise, evict eevict and insert new entry.

[H] [1] STM Insert(o, pt, vt) prel ← pt − puc exists ei.o = o ei.v ← vt, ei.τ ← t, ei.freq+ = 1
|STM| < K append e = (o, prel, vt, t, freq = 1) evict argmini

[
λ freqi − (1 − λ)(t − τi)

]
insert

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

new e STM Retrievevt, pt qrel ← pt− puc
C ← {ei : ∥ei.prel− qrel∥ ≤ ϵ} compute si = cos(vt, vi)

for ei ∈ C top–k entries by si

A.3 MORE DETAILS ON IMPLEMENTATION AND BACKBONES

This appendix provides the full implementation details for all three backbone agents and the shared
training regimen. Readers are referred to the main text (Section 3.2) for a concise summary; here we
enumerate every architectural choice, hyperparameter, and integration point.

A.3.1 HIERARCHICAL MODULAR PIPELINE

Open-Vocabulary Perception Module We preprocess each panoramic observation by extracting five
overlapping 90◦ crops at headings spaced by 45◦. Each crop is passed through GPT-4V to generate a
free-form scene description, then through GroundingDINO (confidence threshold 0.4) and Segment
Anything to obtain open-vocabulary object detections with fine-grained masks. Simultaneously, the
RGB–D image (512×512, 90° FOV) is projected into a local point cloud using known camera intrinsics
and the agent’s pose. The resulting captions, object labels, and local 3D points are concatenated into
semantic vectors (512 d) that serve as the perception output.

Hierarchical Semantic Planning From the perception vectors, we prompt GPT-4V with a structured
JSON template to extract an ordered list of landmarks mentioned in the instruction. For each landmark,
we group the relevant 3D points and object detections to form a semantic region proposal. Once
the landmark sequence is obtained, we decompose each segment into a series of waypoint goals:
first selecting the nearest graph node or region centroid, then planning a grid-based path using A
on a 0.5 m resolution lattice and motion primitives of forward or ±15◦ turns. This three-tiered
planning—landmark ordering, region centroids, and primitive-level path—ensures both high-level
coherence and low-level feasibility in outdoor environments.

Reasoning and Decision Integration At each step, the current perception embedding, the next
waypoint from the semantic planner, and any retrieved memory summaries are combined into a
single context vector. We first attempt to retrieve from the short-term cache (capacity 128, FLFU
policy with equal weight on frequency and recency, spatial radius 3 m); on cache miss we fall back
to an HNSW-based long-term lookup (index size 10 K, retrieve top 3). Retrieved summaries are
rendered as concise natural-language bullets under Past memory: in the GPT-4V prompt. The final
prompt (capped at 512 tokens) is fed into GPT-4V with a greedy decoding setting (temperature 0.0)
and a constrained vocabulary mask allowing only {forward,left,right,stop}. This unified
prompt-based decision ensures that modular perception, planning, and memory seamlessly inform
each navigation action.

Integration of Mem4Nav At each time step, the current visual embedding is written into both
the sparse octree and the semantic topology graph via reversible memory tokens, and the same
embedding is inserted into the short-term cache (evicting entries according to the replacement policy
when full). When the hierarchical planner emits the next waypoint, we first query the STM for any
recent observations . If fewer than two relevant entries are found, we fall back to an HNSW-based
LTM lookup over all read-tokens in the octree and graph (index size 10 K), decode the selected tokens
back into spatial and descriptor information, and render them as concise Past memory: bullets. These
memory summaries, together with the next waypoint and the perception output, are concatenated
into the GPT-4V prompt (capped at 512 tokens) before decoding. By injecting both fine-grained
local context and lossless long-range recalls into the decision prompt—while still respecting our
constrained action vocabulary—Mem4Nav seamlessly augments the modular pipeline with structured,
multi-scale memory.

A.3.2 VELMA BACKBONE (DETAILED)

In this section we provide the full implementation details for the VELMA backbone used in our
experiments, so that readers can exactly reproduce the behavior and performance reported in the main
text.

Model Checkpoint and Dependencies We use the CLIP-ViT/L14 vision encoder and the LLaMA-7B
language model decoder. All weights are frozen except where noted below.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 5: Overview of VELMA

Visual Preprocessing

• Input panoramas: we sample four 90°-FOV crops from each 360° panorama at headings
{0, 90, 180, 270}.

• Resize & normalize: each crop is resized to 224 × 224 pixels, normalized with ImageNet
mean/std.

• Patch tokenization: the CLIP-ViT/L14 splits the 224× 224 input into 14× 14 patches (total
196 tokens), each mapped to a 768-dim embedding.

Memory Integration

• STM retrieval: we compute cosine similarity between the current CLIP-ViT embedding for
each detected object and each STM entry’s 256-dim vector. We select up to k = 4 entries with
similarity > 0.5.

• LTM retrieval: if fewer than 2 STM entries pass the threshold, we query the HNSW index
built over all read-tokens (d = 256, M=16, ef=200), retrieve the top 3, and run the reversible
Transformer inverse to decode their stored embeddings back into (p, desc, state) triples.

• Natural-language summarization: each retrieved entry is rendered as a one-line bullet under
Past memory: using the template:

at (xj , yj): saw oj , status sj .

with xj , yj rounded to one decimal.

Decoding and Action Selection

• The full prompt (up to 512 tokens) is fed into the LLaMA-7B decoder with a temperature of 0.0
(greedy).

• We apply a constrained vocabulary mask so that only the four actions {forward, left, right,
stop} can be generated.

• The single generated token is mapped directly to the discrete action.

A.3.3 FLAME BACKBONE (DETAILED)

The FLAME backbone is built upon the Otter architecture (CLIP-ResNet50 encoder + LLaMA-
7B decoder) with strided cross-attention. Below we describe every component and training detail
necessary for exact reproduction.

MODEL ARCHITECTURE

The vision frontend is a CLIP ResNet-50 network, taking each pano crop of size 224 × 224 and
extracting a 7× 7× 2048 feature map. A linear projection reduces each spatial vector to 512 d:

ft,i = Wproj

(
ResNet50(I rgb

t,i)
)
+ bproj, i = 1, . . . , 49.

These 49 patch embeddings ft,1:49 ∈ R512 form the visual token sequence Ot.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The language backbone is a 7 B LLaMA model (32 layers, dmodel = 4096, 32 heads). We interleave
four cross-attention modules into layers 8, 12, 16, and 20. Each cross-attention takes as queries the
LLaMA hidden states hℓ ∈ Rd and as keys/values the concatenation of:[

Ot−K+1, Ot−K+1+2, . . . , Ot

]
∈ RK×512,

with K = 5 and temporal stride 2. This strided attention allows the model to attend past panoramas
at intervals, reducing quadratic cost while preserving longer-range context.

Figure 6: Overview of FLAME

MEMORY INTEGRATION

After obtaining the visual token sequence Ot, we perform memory retrieval:

• Long-Term Memory (LTM): Query with the current merged embedding qt = MLP([ht−1; f t])
against the HNSW index of all stored read-tokens {θrj}. Retrieve the top m = 3 tokens
θrj1 , θ

r
j2
, θrj3 ∈ R256.

• Short-Term Memory (STM): Filter cache entries by relative coordinate proximity ∥pt− puj
∥ <

ϵ, compute cosine similarity with qt, and select the top k = 2 vectors st,1, st,2 ∈ R256.

We then augment the cross-attention key/value inputs by concatenating these memory vectors along
the spatial axis:

KVt =
[
ft,1:49; θ

r
j1:3 ; st,1:2

]
∈ R(49+5)×512,

with learnable linear mappings applied to project θr and s into 512 d.

A.4 FAILURE CASES

Despite the substantial gains of Mem4Nav, our Touchdown and Map2Seq evaluations reveal three
dominant failure modes:

Depth-induced mapping errors. Monocular depth estimates from UniDepth can be highly inaccurate
in low-texture regions (e.g. blank building façades) or under extreme lighting, causing voxels in the
sparse octree to be misplaced by several meters. These misregistrations propagate into both LTM
writes and spatial lookups, leading the agent to misjudge its surroundings and execute incorrect turn
or stop actions.

• Scenario: In the panorama shown in the case, the agent faces a long stretch of repetitive, uniform
window façades with minimal texture.

• Voxel Misregistration: This bias shifts the corresponding octree leaves by 2–3 voxels (leaf size
= 1 m), causing building-edge voxels to be placed several meters into the adjacent roadway.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 7: Representative Failure Cases of Mem4Nav. Despite substantial overall gains, we identify
four dominant error modes: (a) Depth-induced mapping errors arise when monocular depth estimates
misplace voxels on low-texture façades, corrupting both octree writes and lookups; (b) Memory
retrieval misses for far-away references occur because distant landmarks lie outside instantiated
spatial bins and yield no sufficiently similar tokens; (c) Semantic graph sparsity or ambiguity results
when subtle or partially occluded landmarks (e.g. crosswalk markings) fail node creation, breaking
planned routes; and (d) Memory retrieval misses under severe occlusion happen when landmarks
hidden by overhead structures cannot be matched by either STM filtering or LTM HNSW search.

• Graph and Memory Impact:

– The semantic graph creates the next intersection node 4 m too far ahead, so the agent believes
it must walk past the actual corner.

– The STM cache retrieves recent building edge observations at the wrong relative coordinates,
confusing the local planner.

– Long-term recall of the corner store landmark is falsely triggered before the real intersection,
leading to a premature turn.

Semantic graph sparsity or ambiguity. Our threshold-based node creation occasionally fails to
instantiate graph nodes for subtle or partially occluded landmarks (e.g. crosswalk markings, small
storefront signs). When a required intersection node is missing, the planner cannot recover the
intended route sequence, resulting in the agent overshooting turns or taking suboptimal detours.

• Scenario: In the panorama of a complex intersection with multiple crosswalk markings , the
agent’s landmark detector labels each zebra-stripe segment as a distinct crosswalk object.

• Graph Node Explosion: Our descriptor-distance threshold δ causes each segmented stripe to
spawn a separate node, resulting in 12 crosswalk nodes clustered around the same intersection
rather than a single intersection node.

• Missing Intersection Node: Because no single node accumulates enough repeated visits (all
crosswalk nodes receive only one write), the true intersection landmark is never consolidated,
leaving a gap in the semantic graph at that decision point.

• Routing Consequence:

– The global planner fails to include the intended turn at crosswalk step, treating the next valid
node as two blocks ahead.

– The local planner, flooded with near-duplicate crosswalk STM entries at slightly different
offsets, cannot decide when to pivot, causing the agent to overshoot the turn by an average of
5.2 m.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Memory retrieval misses. The STM cache sometimes fails to match recently observed landmarks
when the agent’s viewpoint shifts rapidly. Likewise, under heavy index loads, the HNSW ANN
search can return suboptimal long-term tokens, causing the policy to fall back on stale or irrelevant
memories.

Landmarks partially or fully blocked by passing vehicles, pedestrian crowds, or temporary structures
(e.g. scaffolding) reduce feature visibility, causing both STM spatial filters and LTM similarity search
to miss the stored tokens. For instance, the target landmark (archway under the bridge) is largely
hidden by the overhead girders. The visual detector only extracts low-contrast fragments, producing
an embedding that differs significantly from the original octree and graph tokens. During STM spatial
filtering the relative positions match, but the cosine similarity falls below threshold. Likewise, the
HNSW search in LTM does not return the hidden archway token. Consequently, the agent cannot
recall the landmark and incorrectly continues past the underpass, deviating from the instructed path.
Furthermore, instructions that refer to distant landmarks beyond the STM radius and whose tokens
in LTM are too sparsely distributed in the octree or graph layers, so even HNSW search returns no
sufficiently close vectors. Both issues lead to degraded local decisions and trajectory drift.

A.5 REAL-WORLD DEPLOYMENT

Deployment Setup. We ported Mem4Nav onto a robotic dog under ROS Melodic with a RGB
camera. The onboard RGB camera captures 125◦ field-of- view images at 10 Hz, which are processed
by UniDepth for per-pixel monocular depth estimation. For trialing, we manually designed the
following six-step navigation protocol through a mixed urban block:

1. Proceed eastbound through the cross-type intersection.

2. Maintain eastbound traversal at the T-junction adjacent to the grasslands.

3. Execute a left turn (southward) at the T-junction located at the northeastern vertex of the Sports
Instructors Training Base.

4. Just before the next intersection, observe a blue bike on the right in front of a stadium.

5. Initiate a left turn (southward) at the T-junction at the northwestern quadrant of a brown building,
where a tall man is leaning on a tree.

6. Terminate navigation at the designated coordinates: a playground with an orange safety light.

Figure 8: Route of a campus real world trial of MemNav.

Experimental Results. We conducted 30 real-world trials across varying times of day and pedestrian
densities. Mem4Nav achieved a success rate of 70% (21/30 runs) defined by stopping within 3 m of
the goal.

Failure Cases. Among the nine failures, two predominant modes emerged: (1) Depth-induced map-
ping drift: uniform asphalt and large blank façades caused UniDepth errors, leading to misregistered
octree voxels and missed turn decisions; (2) Dynamic occlusions: clusters of pedestrians and parked
vehicles intermittently blocked key landmarks, resulting in STM cache misses and incorrect semantic
graph traversals. These highlight the need for robust depth correction and dynamic-object filtering in
future real-world deployments.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 9: Failure Cases. (a) The agent came to a halt at a busy uncontrolled intersection, where
the substantial volume of vehicular and pedestrian traffic rendered it incapable of determining an
opportune moment to proceed. (b) The lights from high-velocity oncoming vehicles compromised
the agent’s semantic information processing capabilities, requiring experimenter assistance for safe
roadside repositioning.

A.6 LIMITATIONS

Despite the strong empirical gains demonstrated by Mem4Nav, our approach has several important
limitations:

Limited Evaluation Scope We evaluate exclusively on two street-view VLN benchmarks (Touch-
down, Map2Seq) and three backbone agents. While these cover a range of urban panoramas, they do
not reflect other outdoor settings (e.g. suburban roads, rural paths) or indoor scenarios.

Hyperparameter Sensitivity Mem4Nav introduces several thresholds and capacities—semantic
distance δ, STM size K, HNSW parameters (M, efSearch). Performance can vary significantly if
these are not carefully tuned for the target environment. Automating their selection or adapting them
online is left to future work.

Dependence on Monocular Depth Quality We rely on UniDepth to recover metric depth from
single RGB panoramas. In practice, monocular depth estimators can fail in low-texture regions (e.g.
blank walls), extreme lighting (glare or shadows), reflective surfaces (glass, water), or dynamic scenes
(moving vehicles, pedestrians). Depth errors propagate directly into our sparse octree—misplaced
voxels can degrade memory write and retrieval—and into the semantic graph via incorrect landmark
geolocations. Robustness to such failures remains an open challenge.

Computational and Memory Overheads Although our retrieval latency (≈25 ms) is compatible
with a 200–500 ms action loop, both octree indexing and HNSW search scale with the number of
visited voxels and tokens. In large-scale or continuous operation, memory footprint and GPU load
may become prohibitive.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Addressing these limitations will be essential to deploy Mem4Nav in real-world robotic or assistive
applications, where sensor noise, environmental dynamics, and computational constraints are more
severe than in our controlled benchmarks.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B ADDITIONAL EXPERIMENTAL ANALYSIS

B.1 ZERO-SHOT TRANSFER TO INDOOR ENVIRONMENTS

To investigate if the architectural principles of Mem4Nav generalize beyond its intended outdoor
domain, we conducted a new experiment testing Mem4Nav’s transfer capability to the standard indoor
VLN benchmark, R2R. We integrated our pre-trained Mem4Nav module with two backbones (our
Hierarchical Modular Pipeline and the powerful NavGPT2 model) and evaluated performance on the
R2R ”Val Unseen” split.

Table 4: Zero-shot transfer performance on the indoor R2R benchmark (Val Unseen split).

Method NE↓ SR↑ SPL↑

NavGPT (Zhou et al., 2024b) 6.53 34.8 29.0
MapGPT (Chen et al., 2024) 5.63 37.3 28.8
HOP (Qiao et al., 2022) 3.86 64.5 57.2
NaviLLM (Zheng et al., 2024b) 3.76 67.8 60.1

Hierarchical Modular Pipeline 4.35 56.3 48.2
Hierarchical Modular Pipeline + Mem4Nav (Ours) 4.10 61.8 55.5
NavGPT2 (Zhou et al., 2024a) 3.20 70.3 59.8
NavGPT2 + Mem4Nav (Ours) 3.20 72.2 63.5

In-depth Analysis: When added to the simpler Hierarchical Modular Pipeline, Mem4Nav provides
substantial performance gains across all metrics, demonstrating its fundamental power to provide
robust memory and planning capabilities even in an off-target domain. The results with the powerful
NavGPT2 baseline are also insightful. We observe that Navigation Error (NE) remains unchanged,
Success Rate (SR) improves modestly (+1.9%), but Success weighted by Path Length (SPL) sees
a significant boost (+3.7%). NavGPT2 already possesses a strong implicit memory sufficient for
reaching the correct destination in most indoor cases. However, Mem4Nav’s hierarchical memory
allows the agent to make more fine-grained decisions, reducing unnecessary exploration. This leads
to more direct, efficient paths, which is what the significant improvement in the SPL metric captures.
This new experiment demonstrates that Mem4Nav possesses valuable generalization capabilities,
successfully transferring to a new indoor environment.

B.2 SCALABILITY OF THE SEMANTIC TOPOLOGICAL GRAPH

To complement the long-horizon analysis in the main text, we also tracked the growth of the Semantic
Topological Graph.

Table 5: Growth of Semantic Graph nodes during long-horizon navigation.

Navigation Steps Total LTM Tokens Number of Graph Nodes
1,000 ∼950 ∼80
10,000 ∼7,800 ∼620
50,000 ∼29,000 ∼2,500

Analysis: The number of nodes in the Semantic Graph grows much more slowly than the number of
fine-grained octree tokens. This is by design, as graph nodes are only created for semantically distinct
landmarks, rather than for every single observation. This result demonstrates that the semantic graph
component of our hierarchical representation is also highly scalable and does not become a bottleneck
during long-duration tasks.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.3 RETRIEVAL LATENCY: IMPLEMENTATION AND IMPACT ON NAVIGATION

To assess both the efficiency and practical effect of Mem4Nav’s memory subsystem, we implemented
the following:

• STM Lookup: Spatial filtering via a custom CUDA kernel that maintains an array of relative
positions and applies a boolean mask. Cosine-similarity ranking using cuBLAS batched GEMM for
maximum throughput.

• LTM Retrieval: HNSW index built with the GPU-accelerated hnswlib, parameters M = 16,
efConstruction = 200, efSearch = 200.

We measure the average wall-clock time of both short-term and long-term memory components on
an NVIDIA A100 GPU over 1,000 consecutive retrieval operations.

Table 6: Memory retrieval latency for STM and LTM components

Component Parameter Avg. Latency (ms)

STM Lookup
Cache size K = 64 0.9

Cache size K = 128 1.2
Cache size K = 256 2.2

LTM Retrieval (total)
Index size N = 5,000 21.7

Index size N = 10,000 24.0
Index size N = 20,000 31.7

STM lookup remains below 2 ms for cache sizes up to 128 entries and only doubles at 256 entries,
indicating very fast local context filtering. LTM retrieval, which includes HNSW nearest-neighbor
search plus reversible decoding, stays under 32 ms even with 20 000 tokens indexed. Together,
these results confirm that Mem4Nav’s two-tier memory can be queried in under 35 ms per decision
step—well within the 200–500 ms action interval typical of real-time street-view navigation.

Table 7: Average retrieval latency (ms) for STM and LTM components

Component Parameter Latency

STM lookup Cache size K = 128 1.2
LTM HNSW search Index size N = 10,000 11.0
LTM decoding — 13.0

STM + LTM (total) — 25.2

Retrieval remains under 30 ms per decision step, dominated roughly equally by the ANN search and
reversible decoding.

Impact on Navigation Performance. To quantify how retrieval latency translates into end-to-end
performance, we ran the Hierarchical Modular Pipeline on Touchdown Dev under three retrieval
strategies (all with identical memory contents, differing only in retrieval implementation and speed).
We measured Task Completion (TC) and normalized DTW (nDTW):

Table 8: Navigation performance vs. retrieval method on Touchdown Dev

Method Latency TC (%) nDTW (%)

Linear scan (10K entries) 120.0 ms 33.1 49.2
KD-tree (10K entries) 30.5 ms 40.3 53.1
Mem4Nav (STM + LTM) 25.2 ms 45.2 59.0

Faster retrieval not only reduces decision-step latency (enabling real-time operation) but also yields
higher navigation accuracy, since slower methods force the agent to skip or delay memory lookups,
degrading its ability to ground decisions in past context.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Overall, these experiments demonstrate that Mem4Nav’s optimized two-tier memory retrieval is both
efficient (under 30 ms) and crucial for maximizing end-to-end VLN performance in large-scale urban
environments.

B.4 ROBUSTNESS TO DEPTH-ESTIMATION NOISE

We evaluate how errors in the UniDepth predictions affect Mem4Nav’s performance on the Touch-
down Dev and Map2Seq Dev splits, using the FLAME + Mem4Nav pipeline under three depth-
degradation conditions. All other components and hyperparameters are identical to the main experi-
ments.

Experimental Setup.

• Baseline (Clean): full-precision UniDepth depth maps (no corruption).
• Gaussian Noise: Depth pixel D(u, v) is perturbed by N (0, 0.5m), simulating sensor noise.
• Dropout Mask: randomly zero out 20% of depth pixels per frame, simulating missing or invalid

depth.

For each condition, we back-project the corrupted depth maps into point clouds for octree construction,
then run the standard Mem4Nav write/retrieve and FLAME action loop.

Results.

Table 9: Depth-Noise Ablation on Touchdown and Map2Seq Dev (FLAME + Mem4Nav).

Touchdown Dev Map2Seq Dev
TC↑ SPD↓ nDTW↑ TC↑ SPD↓ nDTW↑

Baseline (Clean) 50.10% 9.01 m 65.05% 61.03% 5.87 m 80.40%
Gaussian Noise 46.02% 9.42 m 61.12% 57.15% 6.13 m 75.47%
Dropout Mask 44.56% 9.80 m 58.97% 55.04% 6.42 m 73.05%

Analysis.

Adding Gaussian noise (σ=0.5 m) to UniDepth outputs causes a 4.08 pp drop in TC and 3.93 pp drop
in nDTW on Touchdown, and similar degradations on Map2Seq, showing Mem4Nav’s sensitivity
to depth precision. Randomly dropping 20% of depth further reduces performance (5.54 pp TC,
6.08 pp nDTW on Touchdown). These results underscore the need for robust depth estimation or
uncertainty-aware fusion in future Mem4Nav extensions.

26

	Introduction
	Related Work
	Methodology
	Hierarchical Spatial Representation
	Semantic Topological Graph

	Long–Term Memory with Reversible Tokens
	Short–Term Memory Cache
	Multi–Level Memory Retrieval and Decision Making

	Experiments
	Experimental Setup
	Main Results
	Further Analysis and Parameter Studies
	Ablation Studies

	Conclusion and Discussion
	Appendix
	Use of Large Language Models
	Algorithm in Detail
	Sparse Octree Leaf Insertion and Update
	Semantic Node & Edge Update
	Long–Term Memory Write and Retrieval
	Short–Term Memory Insert & Retrieve

	More Details on Implementation and Backbones
	Hierarchical Modular Pipeline
	VELMA Backbone (Detailed)
	FLAME Backbone (Detailed)

	Failure Cases
	Real‐World Deployment
	Limitations

	Additional Experimental Analysis
	Zero-Shot Transfer to Indoor Environments
	Scalability of the Semantic Topological Graph
	Retrieval Latency: Implementation and Impact on Navigation
	Robustness to Depth‐Estimation Noise

