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ABSTRACT

Vision Transformers (ViTs) have become a standard architecture in computer vi-
sion. However, because of their modeling of long-range dependencies through
self-attention mechanisms, the explainability of these models remains a challenge.
To address this, we propose LeGrad, an explainability method specifically de-
signed for ViTs. LeGrad computes the gradient with respect to the attention maps
of single ViT layers, considering the gradient itself as the explainability signal. We
aggregate the signal over all layers, combining the activations of the last as well
as intermediate tokens to produce the merged explainability map. This makes
LeGrad a conceptually simple and an easy-to-implement method to enhance the
transparency of ViTs. We evaluate LeGrad in various setups, including segmenta-
tion, perturbation, and open-vocabulary settings, showcasing its improved spatial
fidelity as well as its versatility compared to other SotA explainability methods.

1 INTRODUCTION
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Figure 1: LeGrad explainability maps: For a given vision-language model and a textual prompt,
LeGrad generates a heatmap indicating the part of the image that is most sensitive to that prompt.
Examples shown for OpenCLIP ViT-B/16(150M params.) and ViT-bigG/14(2B params.).

Vision Transformers (ViTs)(Dosovitskiy et al., 2020) have significantly influcened the field of com-
puter vision with their ability to model long-range dependencies through self-attention mechanisms.
But explanability methods designed for convolutional or feed-forward neural networks are not di-
rectly applicable to ViTs due to their architectural requirements, like GradCAM’s (Selvaraju et al.,
2017) reliance on convolutional layers and Layer-wise Relevance Propagation’s (LRP) (Bach et al.,
2015) specific layer-wise propagation rules. While ViT-specific explainability techniques exist, in-
cluding adaptations of traditional methods (Chefer et al., 2020; Selvaraju et al., 2017; Chefer et al.,
2021), attention-based techniques (Abnar & Zuidema, 2020; Voita et al., 2019; Chefer et al., 2020;
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2021), and text-based explanations (Hernandez et al., 2021; Goh et al., 2021; Abnar & Zuidema,
2020), the explainability those architectures remains a challenge.

To address this problem, we propose LeGrad, a Layerwise Explainability method that considers the
Gradient with respect to the attention maps. LeGrad is specifically designed for ViTs as it leverages
the self-attention mechanism to generate relevancy maps highlighting the most influential parts of
an image for the model’s prediction. Compared to other methods, LeGrad uses the gradient with
respect to the attention maps as the explanatory signal, as e.g. opposed to CheferCam (Chefer et al.,
2020; 2021), which uses the gradient to weight the attention maps. This is done independently for
each layer. The final explainability signal is then pooled over all layers of the ViT. Note that using a
layerwise gradient, compared to other signals, allows to sum up over different layers without further
need for normalization. To further improve the signal, the gradient is clipped by a ReLU function
preventing negative gradients to impact positive activations (see Figure 2 for details). The approach
is conceptually simple and versatile, as it only requires the gradient w.r.t. to the ViT’s attention maps.
This facilitates its adoption across various applications and architecture, including larger ViTs such
as ViT-BigG as well as attention pooling architectures (Lee et al., 2019; Zhai et al., 2023).

We evaluate the proposed method for various ViT backbones on four challenging tasks, seg-
mentation, open-vocabulary detection, perturbation, and audio localization, spanning over various
datasets, incl. ImageNet (Russakovsky et al., 2015; Gao et al., 2022), OpenImagesV7 (Benenson &
Ferrari, 2022), and ADE20KSound/SpeechPrompted (Hamilton et al., 2024) . It shows that while
current methods struggle especially with the diverse object categories in OpenImagesV7, LeGrad
reaches a score of 48.4 p-mIoU on OpenImagesV7 using OpenCLIP-ViT-B/16. Furthermore, we
demonstrate the applicability of LeGrad to very large models, such as the ViT-BigG/14 (Cherti et al.,
2023) with 2.5 billion parameters while also adapting well to different feature aggregation strate-
gies employed e.g. by SigLIP (Zhai et al., 2023). Finally, LeGrad also establishes a new SoTA on
zero-shot sound localization on ADE20KSoundPrompted scoring +14mIoU over previous SoTA.

We summarize the contributions as follows: (1) We propose LeGrad as a layerwise explainability
method based on the gradient with respect to ViTs attention maps. (2) As the layerwise explainability
allows to easily pool over many layers, LeGrad scales to large architectures such as ViT-BigG/14
and is applicable to various feature aggregation methods. (3) We evaluate LeGrad on various tasks
and benchmarks, showing its improvement compared to other state-of-the-art explainability methods
especially for large-scale open vocabulary settings.

2 RELATED WORK

Gradient-Based Explanation Methods Feature-attribution methods are a commonly used expla-
nation technique that explains model decisions by assigning a score to each image pixel, represent-
ing its importance to the model’s output. Generally, these methods can be categorized into two
groups (Molnar, 2019) — gradient-based methods that compute explanations based on the gradient
of the prediction of the model with respect to each input pixel (Simonyan et al., 2014; Erhan et al.,
2009; Sundararajan et al., 2017; Springenberg et al., 2015; Smilkov et al., 2017; Kapishnikov et al.,
2019; Selvaraju et al., 2017) and perturbation-based methods that measure pixel importance by suc-
cessively perturbing the input images and measuring the impact on the model output (Lundberg &
Lee, 2017; Ribeiro et al., 2016; Petsiuk et al., 2018; Carter et al., 2019; Zeiler & Fergus, 2014).
While both types of methods have been used successfully to identify correlations and trustworthi-
ness in traditional computer vision models (Boggust et al., 2022; Carter et al., 2021), gradient-based
methods are often more computationally efficient since they only require a single backwards pass.
Further, they are easy to interpret since they are a direct function of the model’s parameters and
do not rely on additional models or image modifications. However, many existing gradient-based
methods were designed for convolutional and feed-forward model architectures, so it is non-trivial
to directly apply them to ViTs since ViTs do not contain spatial feature maps and include com-
plex interactions between patches induced by the self-attention mechanism. As most gradient-based
methods were designed prior to the widespread use of ViTs, researchers have recently made ef-
forts to adapt existing methods and to develop new ones specifically for transformers. Chefer et
al. (Chefer et al., 2020) extend LRP (Bach et al., 2015) to transformers by integrating gradients
within the self-attention layers. However, this approach is computationally heavy and is inflexible
to architecture changes as it requires specific implementation for each module of the network. To
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Figure 2: Overview of LeGrad: Given a text prompt or a classifier C, an activation sl is computed
for each layer l. The activation sl is then used to compute the explainability map of that layer. The
layerwise explainability maps are then merged to produce LeGrad’s output.
circumvent that complexity, CheferCAM (Chefer et al., 2021) weights the attention by their gradient
and aggregates it through the layer via matrix multiplication. However, the use of gradients to weigh
the attention heads’ importance makes this method class-specific.

Explanability Methods for ViT A separate line of research has proposed using ViT attention maps,
as opposed to gradients, as a way to explain for transformers’ decisions (Abnar & Zuidema, 2020;
Voita et al., 2019). One attention-based method, rollout (Abnar & Zuidema, 2020), traces the flow
of importance through the transformer’s layers by linearly combining the attention maps via matrix
multiplication. Attention flow (Abnar & Zuidema, 2020) contextualizes the attention mechanism
as a max-flow problem; however, it is computationally demanding and has not been extensively
evaluated for vision tasks. While these methods offer insights into the attention mechanism, they
often neglect the non-linear interactions between attention heads and the subsequent layers. More-
over, they may not adequately distinguish between positive and negative contributions to the final
decision, leading to potentially misleading interpretations, as found in Chefer et al. (Chefer et al.,
2020). Compared to that LeGrad uses the gradient w.r.t. to the attention maps, thereby assessing the
sensitivity of the attention maps to a change in the patch tokens.

Vision-Language Explainability Methods Research has also explored vision-langauge models
for interpreting representations in vision models. For instance, leveraging CLIP’s language-image
space, researchers have provided text descriptions for active neuron regions (Hernandez et al., 2021;
Goh et al., 2021) and projected model features into text-based concept banks (Gandelsman et al.,
2023). In particular, TEXTSPAN (Gandelsman et al., 2023) focuses on the explainability of CLIP-
like models. It refrains from using gradient computation by aggregating the intermediate features’
similarities along a given text direction, creating a relevancy map for a text query. LeGrad advances
this line of work by focusing on the sensitivity of feature representations within ViTs to generate
relevancy maps that can be adapted to various feature aggregation strategies.

3 METHOD

In this section, we first introduce ViT’s mechanics and the different feature aggregation mechanisms
used for this architecture. We then explain the details of LeGrad, starting by a single layer and then
extending it to multiple layers.

3.1 BACKGROUND: FEATURE FORMATION IN VITS

The ViT architecture is a sequence-based model that processes images by dividing them into a grid of
n patches. These patches are linearly embedded and concatenated with a class token z00 = z0[CLS] ∈
Rd, which is designed to capture the global image representation for classification tasks. The input
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image I is thus represented as a sequence of n+1 tokens Z0 = {z00 , z01 , . . . , z0n}, each of dimension
d, with positional encodings added to retain spatial information.

The transformation of the initial sequence Z0 ∈ R(n+1)×d through the ViT involves L layers, each
performing a series of operations. Specifically, each layer l applies multi-head self-attention (MSA)
followed by a multilayer perceptron (MLP) block, both with residual connections:

Ẑl = MSAl(Zl−1) + Zl−1, Zl = MLPl(Ẑl) + Ẑl. (1)

After L layers, the image representation can be obtained via various strategies:

[CLS] token: The class token approach, as introduced in ViT (Dosovitskiy et al., 2020), uses the
processed class token as the image embedding z̄[CLS] = zL0 . This method relies on the transformer’s
ability to aggregate information from the patch tokens into the class token during training.

Attentional Pooler: Attention Pooling, as e.g. used in SigLIP (Zhai et al., 2023) employs an multi-
head attention layer (Lee et al., 2019; Yu et al., 2022) with a learnable query token qpool ∈ Rd. This
token interacts with the final layer patch tokens to produce the pooled representation z̄AttnPool:

z̄AttnPool = softmax
(
qpool · (WKZL)T√

d

)
(WV Z

L), (2)

where WK ,WV ∈ Rd×d are learnable projection matrices.

Independent of the feature aggregation strategy, it is important for an explainability method to ac-
count for the iterative nature of feature formation in ViTs and to capture the contributions of all
layers for the final representation. LeGrad addresses this by fusing information from each layer,
allowing for both, a granular as well as a joint, holistic interpretation of the model’s predictions.

3.2 EXPLAINABILITY METHOD: LEGRAD

We denote the output tokens of each block l of the ViT as Zl = {zl0, zl1, . . . , zln} ∈ R(n+1)×d, where
d is the dimensionality of each token, and z̄l is the average over the tokens of the respective layer l,
defined as z̄l = 1

n+1

∑n
i=0 z

l
i .

Consider a mapping model C ∈ Rd×C , that maps the token dimension d to C logits. This classifier
can be learned during training for a supervised classification task (e.g., ImageNet) and in that case
C is the number of classes. Or it can be formed from text embeddings of some prompts in the case
of zero-shot classifier, e.g., vision-language models like CLIP, then C is the number of prompts. For
a given layer l, the mapping model C then generates a prediction ȳl, which can be the output of the
classifier or, in case of vision-language models, the vector of results of dot products of the text and
image embeddings. This prediction ȳl is obtained by passing the aggregated feature representation
of the ViT, noted z̄l, through the mapping C:

ȳl = z̄l · C ∈ RC . (3)
Note that most explainability methods only use the final outputs of the model. We argue that also
leveraging intermediate representations is beneficial (see Section 4.7). The following we first de-
scribe how to obtain the explainability map for a single layer, using an arbitrary layer l as an example
and then generalize it to multiple layers. The overall method is visualized Figure 2.

Attention
Block

MLP

𝑠!

heads

⋯

𝜕𝑠!

𝜕𝐴!
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ℎ	× 𝑛 + 1 ×(𝑛 + 1)
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Reshape

𝑍!
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Figure 3: LeGrad for a single layer.

Process for a Single Layer: To compute a 2D
map that highlights the image regions most in-
fluential for the model’s prediction of a partic-
ular class, we focus on the activation with re-
spect to the target class/prompt ĉ, denoted by
sl = ȳl[ĉ]. The attention operation within a
ViT is key to information sharing, and thus our
method concentrates on this process.

We compute the gradient of the activation sl

with respect to the attention map of layer l, as
shown in Figure 3, denoted as Al ∈ Rh×n×n:

∇Al =
∂s

∂Al
∈ Rh×(n+1)×(n+1), (4)
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where h is the number of heads in the self-attention operation. Negative gradients are discarded by
a ReLU function (noted (.)+), and the gradient is averaged across the patch and head dimensions:

Êl(s) =
1

h · (n+ 1)

∑
h

∑
i

(
∇Al

h,i,.

)+ ∈ Rn+1. (5)

To obtain the final explainability map, the column corresponding to the [CLS] token is removed,
only considering the patch tokens, reshaped into a 2D map, and a min-max normalization is applied:

El(s) = norm(reshape(Êl(s)1:)) ∈ RW×H . (6)

Process for Multiple Layers: Recognizing that information aggregation occurs over several layers,
we extend the process to all layers. For each layer l, we calculate the activation score sl using the
intermediate tokens Zl and derive the explainability map accordingly:

Êl(sl) =
1

h · (n+ 1)

∑
h

∑
i

(
∇Al

h,i,.

)+ ∈ Rn+1. (7)

We then average the explainability maps from each layer:

Ē =
1

L

∑
l

Êl(sl)1: (8)

And finally we reshape to the original image size and apply min-max normalization:

E = norm(reshape(Ē)) ∈ RW×H . (9)

This queries each patch token at a given layer about its influence on the prediction at that stage.

Adaptation to Attentional Pooler: For ViTs using an attentional pooler (e.g. SigLIP (Zhai et al.,
2023)), a slight modification is made to compute the activation sl at each layer. We apply the
attentional pooler module Attnpool to each intermediate representation Zl to obtain a pooled query
ql ∈ Rd. The activation sl with respect to the desired class c is then computed as sl = ql · C:,c ∈ R.
Instead of considering the self-attention map, we use the attention map of the attentional pooler,
denoted Apool ∈ Rh×1×n. Thus, for every layer l, ∇Al = ∂sl

∂Al
pool

.

4 EXPERIMENTS

4.1 OBJECT SEGMENTATION

Following standard benchmarks (Chefer et al., 2020; 2021; Gandelsman et al., 2023) we evaluate
the ability of explainability methods to accurately localize an object in the image. ♢Task: To do
so, we generate image heatmaps based on the activation of the groundtruth class for models trained
with a classifier or based on the the class descriptions ”A photo of a [class]” for vision-language
models. Subsequently, we apply a threshold to binarize these heatmaps (using a threshold of 0.5),
thereby obtaining a foreground/background segmentation.♢Metric: We assess the quality of this
segmentation by computing the mIoU (mean Intersection over Union), pixel accuracy and the mAP
(mean Average Precision) zero-shot segmentations produced by different explainability methods.
This benchmark serves as a testbed for evaluating the spatial fidelity of the explainability method.
♢Dataset: In our evaluation of heatmap-based explainability methods, we adhere to a standardized
protocol and use the ImageNet-Segmentation dataset (Gao et al., 2022), with 4, 276 images that
provide segmentation annotations.

Table 1 compares LeGrad as well as other methods in the context of image segmentation using
the ImageNet-segmentation dataset. LeGrad achieved a mIoU of 58.7%, surpassing other SOTA
explainability methods. Notably, it outperformed CheferCAM as a gradient-based method for ViTs,
and TextSpan as a non-gradient-based method, indicating its robustness in capturing relevant image
features for classification tasks.
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Method Pixel Acc.↑ mIoU↑ mAP↑
LRP 52.81 33.57 54.37
Partial-LRP 61.49 40.71 72.29
rollout 60.63 40.64 74.47
Raw attention 65.67 43.83 76.05
GradCAM 70.27 44.50 70.30
CheferCAM 69.21 47.47 78.29
TextSpan 73.01 40.26 81.4

LeGrad 77.52 58.66 82.49

Table 1: Object Segmentation: method
comparison on ImageNet-S using an
OpenCLIP(ViT-B/16) model trained on
Laion2B.

p-mIoU ↑
Method B/16 L/14 H/14

rollout 8.75 6.85 5.82
Raw attention 0.94 1.60 0.85
GradCAM 8.72 2.80 2.46
AttentionCAM 5.87 4.74 1.20
CheferCAM 5.87 2.51 9.49
TextSpan 9.44 21.73 23.74

LeGrad 48.38 47.69 46.51

Table 2: Open-Vocabulary Segmentation:
methods comparison on OpenImagesV7 us-
ing different OpenCLIP model sizes.

Method Speech Seg. Sound Seg.
mAP↑ mIoU↑ mAP↑ mIoU↑

DAVENet 32.2 26.3 16.8 17.0
CAVMAE 27.2 19.9 26.0 20.5
ImageBind 20.2 19.7 18.3 18.1
ImageBind + LeGrad 23.3 21.8 48.0 38.9
DenseAV* 48.7 36.8 32.7 24.2

Table 3: Speech and Sound prompted semantic segmentation:
Comparison of the sound localization methods on ADE20K Speech
& Sound Prompted dataset (Hamilton et al., 2024).

Method fps

AttentionCAM 103
GradCAM 108
CheferCAM 21
LRP 4.0
TextSpan 3.8
LeGrad 96

Table 4: Speed compari-
son for ViT-B/16

4.2 OPEN-VOCABULARY LOCALIZATION

For vision-language models, we extend our evaluation to encompass open-vocabulary scenarios by
generating explainability maps for arbitrary text descriptions. This allows us to assess the quality
of explainability methods beyond the common classes found in ImageNet. ♢Task: We generate a
heatmap for each class object present in the image, binarize them (using a threshold of 0.5) and as-
sess the localization accuracy. ♢Dataset/Metric: We employ the OpenImageV7 dataset (Benenson
& Ferrari, 2022), which offers annotations for a diverse array of images depicting a broad spectrum
of objects and scenarios. Following (Bousselham et al., 2023), our evaluation utilizes the point-wise
annotations of the validation set, which contains 36,702 images labeled with 5,827 unique class
labels. Each image is associated with both positive and negative point annotations for the objects
present. In our analysis, we focus exclusively on the classes that are actually depicted in each image.

Table 2 evaluates the performance on the OpenImagesV7 dataset testing the capabilities of all meth-
ods in handling diverse object categories. Note that for GradCAM we searched over the layers and
took the one that was performing the best. LeGrad outperforms all other SOTA methods, with per-
formance gains ranging from 2× to 5× compared to the second-best performing method. This can
be seen as an indicator for LeGrad’s capacity for fine-grained recognition.

4.3 AUDIO LOCALIZATION

To further validate LeGrad versatility, we measure its ability to be used with audio-visual mod-
els. We use ImageBind(Girdhar et al., 2023), a model trained to align several modality with
the same image encoder, in particular the audio modality. We choose this model as it is widely
used and the image encoder is a vanilla ViT, hence compatible with LeGrad. ♢Task: Given
an audio prompt, we generate a heatmap that localize the part of the image that correspond
to that audio. ♢Dataset/Metric: We use the recently proposed ADE20kSoundPrompted and
ADE20kSpeechPrompted(Hamilton et al., 2024) to measure the audio localization of ImageBind
+ LeGrad. Following (Hamilton et al., 2024), we report the mean Average Precision (mAP) and the
mean Intersection over Union (mIoU) computed using the ground truth masks.

Table 3 compares the sound localization performance of different state-of-the-art methods. We ob-
serve that when applied to the ImageBind model (Girdhar et al., 2023), LeGrad leads to a significant

6
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increase in sound segmentation performance, hence establishing a new SOTA on that benchmark
by outperforming DAVENet (Harwath et al., 2018), CAVMAE (Gong et al., 2023) and the previ-
ous SOTA DenseAV (Hamilton et al., 2024). The less pronounced improvement of LeGrad over
ImageBind on speech segmentation is due to the fact that ImageBind was not trained with speech
data (only sound). Therefore, since ImageBind performs poorly on speech, LeGrad does not further
improve the localization.

4.4 PERTURBATION-BASED EVALUATION

Next, to measure LeGrad’s ability to faithfully identify features important to the model, we employ
a perturbation-based methodology. ♢Task: Given a classification dataset, we begin by generating
explainability maps for every image using the different explainability methods. The analysis then
consists of two complementary perturbation tests: positive and negative. In the positive perturbation
test, image regions are occluded in descending order of their attributed relevance, as indicated by
the explainability maps. Conversely, the negative perturbation test occludes regions in ascending
order of relevance (see the Annex for more details and visualizations of positive/negative perturba-
tions). ♢Metric: For both perturbation scenarios, we quantify the impact on the model’s accuracy
by computing the area under the curve (AUC) for pixel erasure, which ranges from 0% to 90%.
This metric provides insight into the relationship between the relevance of image regions and the
model’s performance. The tests are applicable to both the predicted and ground-truth classes, with
the expectation that class-specific methods will show improved performance in the latter. This dual
perturbation approach enables a comprehensive evaluation of the network’s explainability by high-
lighting the importance of specific image regions in the context of the model’s classification accu-
racy. ♢Dataset: Following common practices, we use the ImageNet validation set, which contains
50K images and covers 1, 000 classes.

As detailed in Table 5, LeGrad’s performance is here comparable to TextSpan for positive perturba-
tions and slightly superior for negative perturbations. For all other methods, LeGrad outperformes
both attention-based (e.g., ”rollout” and ”raw attention”) and gradient-based methods (e.g., Grad-
CAM, AttentionCAM, and CheferCAM) across various model sizes and for both predicted and
ground truth classes, emphasizing its ability to identify and preserve critical image regions for accu-
rate classification.

4.5 SPEED COMPARISON

Table 4 compares the inference speed for different methods averaged over 1, 000 images. Generally,
gradient-based methods are faster than methods like LRP and TextSpan. More specifically, despite
using several layers for its prediction, LeGrads speed only drops slightly compared to GradCAM
and AttentionCAM, which both use a single layer and are significantly faster than CheferCAM.
The observed speed difference stems from summing the contribution of each layer rather than using
complex matrix multiplication as in CheferCAM.

4.6 PERFORMANCE ON SIGLIP

We also evaluate the adaptability regarding the performance on SigLIP-B/16, a Vision-Language
model employing an attentional pooler as shown in Table 6. The results underscore the meth-
ods performance across both negative and positive perturbation-based benchmarks. Notably, in the
open-vocabulary benchmark on OpenImagesV7, LeGrad achieved a p-mIoU of 25.4, significantly
surpassing GradCAM’s 7.0 p-mIoU, the next best method. These findings affirm the versatility of
LeGrad, demonstrating its robust applicability to various pooling mechanisms within Vision Trans-
formers. Further details on the methodological adaptations of LeGrad and other evaluated methods
for compatibility with SigLIP are provided in the annex.

4.7 ABLATION STUDIES

Layer Accumulation.To further understand the impact of the number of layers considered in the
computation of LeGrad’s explainability maps, we investigate this aspect across two distinct bench-
marks: a perturbation-based evaluation using the ImageNet validation set and an open-vocabulary

7
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Negative Positive
Method Pred. ↑ Targ. ↑ Pred. ↓ Targ. ↓

V
iT

-B
/1

6

rollout 44.36 44.36 23.03 23.03
Raw attention 46.97 46.97 20.23 20.23
GradCAM 32.01 45.26 36.52 22.86
AttentionCAM 39.56 39.68 34.28 34.12
CheferCAM 47.91 49.28 18.66 17.70
TextSpan 50.92 52.81 15.10 14.26
LeGrad 50.24 52.27 15.06 13.97

V
iT

-L
/1

4

rollout 40.46 40.46 29.46 29.46
Raw attention 47.14 47.14 23.49 23.49
GradCAM 45.24 47.08 23.81 22.68
AttentionCAM 45.81 45.84 31.18 31.03
CheferCAM 49.69 50.37 20.67 20.14
TextSpan 53.17 54.42 16.77 16.12
LeGrad 53.11 54.48 15.98 15.23

Negative Positive
Method Pred. ↑ Targ. ↑ Pred. ↓ Targ. ↓

V
iT

-H
/1

4

rollout 49.37 49.37 32.91 32.91
Raw attention 54.42 54.42 29.25 29.25
GradCAM 45.26 45.48 40.98 40.91
AttentionCAM 51.62 51.65 36.72 36.56
CheferCAM 56.55 56.56 26.17 26.16
TextSpan 60.14 61.91 20.07 19.14
LeGrad 60.02 61.72 19.30 18.26

V
iT

-B
ig

G
/1

4

rollout 38.44 38.44 48.72 48.72
Raw attention 56.56 56.56 31.25 31.25
GradCAM 40.06 40.98 57.53 56.31
AttentionCAM 54.68 54.74 39.28 39.27
CheferCAM 57.95 58.27 29.21 28.45
TextSpan 63.32 64.95 21.96 21.06
LeGrad 62.62 64.67 21.33 20.28

Table 5: SOTA Perturbation Performance: Comparison of explainability methods on the
ImageNet-val using a different model size.

ImageNet OpenImagesV7
Negative Positive

Method Predicted ↑ Target ↑ Predicted ↓ Target ↓ p-mIoU ↑
rollout 47.81 47.81 25.74 25.74 0.07
Raw attention 44.42 44.42 25.85 25.85 0.09
GradCAM 41.25 44.42 35.10 33.50 6.97
AttentionCAM 45.62 45.71 45.01 44.92 0.19
CheferCAM 47.12 49.13 22.35 21.15 1.94
LeGrad 50.08 51.67 18.48 17.55 25.40

Table 6: SOTA comparison on SigLIP-B/16: Comparison of explainability methods on
perturbation-based tasks on ImageNet-val and open-vocabulary localization on OpenImagesV7.

segmentation task on the OpenImagesV7 dataset. The experiments are performed on various model
sizes from the OpenCLIP library, including ViT-B/16, ViT-L/14, and ViT-H/14.

♢ Perturbation-Based Evaluation: In the perturbation-based evaluation (Figure 4 left) we employ
a negative perturbation test as described in Section 4.4, using the ground-truth class for reference.
The results indicate that the ViT-B/16 model’s performance is optimal when fewer layers are in-
cluded in the explainability map computation. Conversely, larger models such as ViT-L/14 and ViT-
H/14 show improved performance with the inclusion of more layers. This suggests that in larger
models, the aggregation of information into the [CLS] token is distributed across a greater number
of layers, necessitating a more comprehensive layer-wise analysis for accurate explainability.

♢ Open-Vocabulary Segmentation: For the open-vocabulary segmentation task (Figure 4 right)
all models demonstrate enhanced performance with the inclusion of additional layers in the explain-
ability map computation. The optimal number of layers varies with the size of the model, with
larger models requiring a larger number of layers. This finding is consistent with existing litera-
ture (Gandelsman et al., 2023), suggesting that the information aggregation process in ViTs is more
distributed in larger architectures. However, it is also observed that beyond a certain number of
layers, the performance plateaus, indicating that the inclusion of additional layers does not further
enhance the explainability map’s quality.

To further analyze those effects, we provide a qualitative visualization of the per-layer heatmaps
produced by LeGrad in Figure 5. It shows that the localization of the prompt is not confined to a
single layer but is distributed across multiple layers. This observation is consistent with the findings
from the above ablations, which underscore the necessity of incorporating multiple layers into the
explainability framework to capture the full scope of the model’s decision-making process.

This observation not only corroborates the utility of incorporating multiple layers into the explain-
ability analysis but also suggests a more distributed information aggregation process into the [CLS]
token in larger models, as posited in the literature (Gandelsman et al., 2023).

8
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Figure 4: Ablation on the number of layers used in LeGrad for different architecture sizes. Left:
AUC for Negative perturbation on ImageNet-val for different layers used for LeGrad. Right: point-
mIoU on OpenImagesV7 for different layers used for LeGrad.
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Figure 5: Qualitative analysis of the impact of each layer for different model sizes using ”a photo
of a cat” as prompt. In smaller models the explainability signal predominantly emanates from the
final layers while in larger models lower layers also contribute to the explainability map.

Gradient Distribution Analysis. To better understand the inner workings of the proposed LeGrad
method, we further analyse the gradient intensity distribution across the layers of ViT-L/14 models
from OpenCLIP based on Laion400M, OpenAI CLIP, and MetaCLIP. This analysis was performed
using the PascalVOC dataset. The explainability maps for each layer were computed in accordance
with Equation 9. Subsequently, the associated segmentation mask was utilized to compute the aver-
age gradient within the mask for each layer. This process yielded a single value per layer. To account
for the impact of the mask size, we apply min-max normalization across all layers. This normaliza-
tion process ensured that the layer contributing the most to the final explainability map was assigned
a value of one, while the least contributing layer was assigned a value of zero. Figure 6 depicts
the gradient distribution over the layers for different sets of pretrained ViT-L/14 models. First, we
observe that for most models, the layers contributing the most are typically located towards the end
of the ViT. Second, despite all sharing the exact same model architecture and being trained with the
same loss, we observe significant difference in layer importance. For Laion400M and OpenAI the
most important layer is the last one whereas for MetaCLIP it is rather the penultimate. Interestingly,
for the Laion400M variant, the middle layers have a more pronounced influence. Overall, this pro-
vides a generalized view of the model’s behavior, serving as a sort of “fingerprint” for the model.
Annex D provides an analysis for more model sizes and weights, as well as a visualization of the
gradient distribution over all layers independently for each class in PascalVOC.

4.8 QUALITATIVE COMPARISON TO SOTA

Here, we present a qualitative analysis of the explainability maps generated by LeGrad in compar-
ison to other state-of-the-art (SOTA) methods. The visual results are depicted in Figure 7, which
includes a diverse set of explainability approaches such as gradient-based methods (e.g., Chefer-
CAM, GradCAM), attention-based methods (e.g., Raw Attention weights visualization, Rollout),
and methods that integrate intermediate visual representations with text prompts (e.g., TextSpan).

9
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Figure 6: Gradient distribution over layers on PascalVOC for different pretrained ViT-L/14.
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Figure 7: SOTA Qualitative Comparison: visual comparison of different explainability methods
on images from OpenImagesV7.

Our observations indicate that raw attention visualizations tend to highlight a few specific pixels
with high intensity, often associated with the background rather than the object of interest. This
pattern, consistent with findings in the literature (Bousselham et al., 2023; Darcet et al., 2023), sug-
gests that certain tokens disproportionately capture attention weights. Consequently, methods that
rely on raw attention weights to construct explainability maps, such as CheferCAM, exhibit similar
artifacts. For instance, in the localization of ”Basket” (Figure 7, row 1), the basket is marginally ac-
centuated amidst a predominance of noisy, irrelevant locations. In contrast, for LeGrad, the presence
of uniform noisy activations across different prompts results in minimal gradients for these regions,
effectively filtering them out from the final heatmaps. This characteristic enables LeGrad to produce
more focused and relevant visual explanations.

5 CONCLUSION

In this work, we proposed LeGrad as an explainability method that highlights the decision-making
process of Vision Transformers (ViTs) across all layers various feature aggregation strategies. We
validated the method’s effectiveness in generating interpretable visual explanations that align with
the model’s reasoning. Our approach offers a granular view of feature formation sensitivity, pro-
viding insights into the contribution of individual layers and attention mechanisms. The evaluation
across object segmentation, perturbation-based metrics, and open-vocabulary scenarios underscores
LeGrad’s versatility and fidelity in different contexts. By facilitating a deeper understanding of ViTs
LeGrad paves the way for more transparent and interpretable foundation models.
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A OVERVIEW

In this supplementary material, we first provide in section B detailed information regarding the
implementation, including pre-trained weights, baseline methodologies, and necessary adaptations
for applying GradCAM to Vision Transformers (ViT). An expanded evaluation of LeGrad’s per-
formance, specifically on Vision Transformers trained with the ImageNet dataset, is documented
in section C. Section C.2 offers a visual representation of the perturbation benchmarks utilized to
assess the efficacy of various explainability approaches, along with additional qualitative examples
in section C.3 to further illustrate the capabilities of our method. Section D further explores the gra-
dient distribution across layers for different models and datasets. Furthermore, section ?? conducts
a sanity check using the FunnyBirds Co-12 setup to evaluate the robustness of our explainability
method. Lastly, section F includes a disclaimer addressing the use of personal and human subject
data within our research.

B IMPLEMENTATION DETAILS

B.1 PRETRAINED WEIGHTS

The experiments conducted in our study leverage a suite of models with varying capacities, in-
cluding ViT-B/16, ViT-L/14, ViT-H/14, and ViT-bigG/14. These models are initialized with pre-
trained weights from the OpenCLIP library respectively identified by: "laion2b s34b b88k",
"laion2b s32b b82k", "laion2b s32b b79k", and "laion2b s39b b160k". For the
SigLIP method, we utilize the ViT-B/16 model equipped with the "webl" weights. For the ”gra-
dient distribution over layers” graphs, Figure 6, we also used the pretrained weights from Ope-
nAI (Radford et al., 2021) and MetaCLIP (Xu et al., 2023).

B.2 DETAILED DESCRIPTION OF BASELINES

In this section, we provide a concise overview of the baseline methods against which our proposed
approach is compared.

GradCAM: While originally designed for convolutional neural networks (CNNs), GradCAM can
be adapted for Vision Transformers (ViTs) by treating the tokens as activations. To compute
the GradCAM explainability map for a given activation s, we calculate the gradient of s with
respect to the token dimensions. The gradients are aggregated across all tokens and serve as
weights to quantify the contribution of each token dimension. Formally, for intermediate tokens
Zl = {zl0, zl1, . . . , zln} ∈ R(n+1)×d, the GradCAM map EGradCAM is defined as:

w =
1

n

n∑
i=0

∂s

∂zli
∈ Rd×1×1

ÊGradCAM =

(
1

d

d∑
k=1

wd ∗ Zl
1:,d

)+

∈ Rn

EGradCAM = norm(resize(ÊGradCAM )) ∈ RW×H ,

(10)

with d representing the token dimension, ∗ denoting element-wise multiplication, and the superscript
+ indicating the ReLU operation. We empirically determined that applying GradCAM to layer 8 of
ViT-B/16 yields optimal results.

AttentionCAM: This method extends the principles of GradCAM to ViTs by utilizing the attention
mechanism within the transformer’s architecture. AttentionCAM leverages the gradient signal to
weight the attention maps in the self-attention layers. Specifically, for the last block’s self-attention
maps AL, the AttentionCAM map EAttnCAM is computed as:
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∇AL =
∂s

∂AL
∈ Rh×(n+1)×(n+1)

w =
1

n2

∑
i,j

∇AL
:,i,j ∈ Rh

ÊAttnCAM =

h∑
p

(
wp ∗AL

p,:,:

)
∈ R(n+1)×(n+1)

EAttnCAM = norm(resize(ÊAttnCAM )0,1:)

, (11)

where h denotes the number of heads in the self-attention mechanism.

Raw Attention: This baseline considers the attention maps from the last layer, focusing on the
weights associated with the [CLS] token. The attention heads are averaged and the resulting ex-
plainability map is normalized. The Raw Attention map EAttn is formalized as:

ÊAttn = AL
:,0,1: ∈ Rh×1×n

EAttn = norm(resize(
1

h

h∑
k=1

(ÊAttn)k)) ∈ RW×H
(12)

These baselines provide a comprehensive set of comparative measures to evaluate the efficacy of our
proposed method in the context of explainability for ViTs.

B.3 DETAILS ON ADAPTING GRADCAM TO VIT

As GradCAM was designed for CNNs without [CLS] tokens, we tried both alternatives, i.e. in-
cluding/excluding [CLS] token, Tab. 7 showcases a comparison of including/excluding the [CLS]
token in the gradient computation on ViT-B. We observe that including the [CLS] token result in a
marginal improvement. Overall, we would consider both options valid.

GradCAM was originally designed for CNNs, therefore needs some adaptation to work for ViT. In
an effort to consolidate the baselines used in this paper, we tried different configurations. One of
which is whether or not include the [CLS] token in the gradient computation or not. We note that
both alternatives are aligned with the original design of the GradCAM and that this choice is a matter
of implementation.

We found that including the [CLS] token was producing better numbers, we therefore used that
choice. Indeed, Table 7 shows the results on all the benchmark for GradCAM w/ and w/o the [CLS]
token included in the gradient computation and shows that not including it translate in a slight
decrease.

Moreover, including the [CLS] token in the gradient computation is the option that makes more
sense, as it is the [CLS] that is used to compute the similarity with the text query.

We also tried to use the layer aggregation used in LeGrad for GradCAM and provide an evaluation
in Table 7. We apply the same layer aggregation as in LeGrad (see 9) showing a slight improvement
on the V7 benchmark. We attribute the only modest improvement to the fact that layers in ViT have
different activation value ranges. LeGrad uses only gradients to produce layer-wise explainability
maps, thereby avoiding this issue.

B.4 ADAPTATION OF BASELINE METHODS TO ATTENTIONAL POOLER

In the main manuscript, we introduced our novel method, LeGrad, and its application to Vision
Transformers (ViTs) with attentional poolers. Here, we provide supplementary details on how
LeGrad and other baseline methods were adapted ViTs employing attentional poolers:

CheferCAM: Following the original paper (Chefer et al., 2021) that introduces CheferCAM, we
considered the attentional pooler as an instance of a ”decoder transformer” and applied the rel-
evancy update rules described in equation (10) of that paper (Chefer et al., 2021), (following the
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mIoU(V7) Neg ↑(INet) Pos ↓(INet)
GradCAM w/ [CLS] 8.72 45.26 22.86
GradCAM w/o [CLS] 8.18 41.29 24.20
Multi-layer w/ [CLS] 9.51 45.31 22.54

LeGrad 48.38 52.27 13.97

Table 7: Evaluation of GradCAM with and without [CLS] token as well as with layer aggregation
as proposed in eqaution 9 on ViT-B/16 for open-vocabulary detection(V7) and perturbation (Ima-
geNet).

example of DETR). Since the attentional pooler has no skip connection we adapted the relevancy
update rule not to consider the skip connection.

AttentionCAM: For AttentionCAM, instead of using the attention maps of the last layer, we use
the attention maps of the attentional pooler. We found this variant to work better.

Raw Attention: Similarly, the Raw Attention baseline was adjusted by substituting the attention
maps from the last self-attention layer with those from the attentional pooler.

Other Baselines: For the remaining baseline methods, no alterations were necessary. These meth-
ods were inherently compatible with the attentional pooler, and thus could be applied directly with-
out any further adaptation.

The adaptations described above ensure that each baseline method is appropriately tailored to the
ViTs with attentional poolers, allowing for a fair comparison with our proposed LeGrad method.

B.5 MITIGATION OF SENSITIVITY TO IRRELEVANT REGIONS:

We observe that for all evaluated explainability methods, SigLIP displays high activations in image
regions corresponding to the background. These activations appeared to be invariant to the input,
regardless of the gradient computation’s basis, these regions were consistently highlighted. To ad-
dress this issue, we computed the explainability map for a non-informative prompt, specifically
"a photo of". We then leveraged this map to suppress the irrelevant activations.

Namely, for an activation s under examination, we nullify any location where the activation ex-
ceeds a predefined threshold (set at 0.8) in the map generated for the dummy prompt. Formally,
let Es denote the explainability map for activation s, and Eempty represent the map for the prompt
"a photo of". The correction procedure is defined as follows:

Es
Eempty>th = 0, (13)

where th = 0.8. This method effectively addresses the issue without resorting to external data
regarding the image content.

C ADDITIONAL RESULTS

C.1 IMAGE CLASSIFICATION

In this section, we extend our evaluation of the proposed LeGrad method to Vision Transformers
(ViTs) that have been trained on the ImageNet dataset for the task of image classification. The
results of this evaluation are presented in Table 8, also providing a comparison with other state-of-
the-art explainability methods.

It shows that LeGrad achieves superior performance on the perturbation-based benchmark, particu-
larly in scenarios involving positive perturbations.

Another observation is that even elementary explainability approaches, such as examining the raw
attention maps from the final attention layer of the ViT, demonstrate competitive results. In fact,
these basic methods surpass more complex ones like GradCAM (achieving an AUC of 53.1 versus
43.0 for negative perturbations).
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Negative Positive
Method Predicted ↑ Target ↑ Predicted ↓ Target ↓
rollout (Abnar & Zuidema, 2020) 53.10 53.10 20.06 20.06
Raw attention 45.55 45.55 24.01 24.01
GradCAM (Selvaraju et al., 2017) 43.17 42.97 26.89 26.99
AttentionCAM (Chefer et al., 2021) 41.53 42.03 33.54 34.05
Trans. Attrib. (Chefer et al., 2020) 54.19 55.09 17.01 16.36
Partial-LRP (Voita et al., 2019) 50.28 50.29 19.82 19.80
CheferCAM (Chefer et al., 2021) 54.68 55.70 17.30 16.75
LeGrad 54.72 56.43 15.20 14.13

Table 8: SOTA comparison on ViT-B/16: Comparison of explainability methods on perturbation-
based tasks on ImageNet-val for a ViT trained on ImageNet.

10	% 20	% 30	% 40	% 50	% 60	% 70	% 80	% 90	%Image

Explainability	map

Negative	Perturbations

Positive	Perturbations

Figure 8: Example of positive/negative perturbations: illustration of positive and negative pertur-
bations used in the perturbation-based benchmark. (Top row): positive perturbation. Bottom row:
negative perturbations

C.2 PERTUBATION EXAMPLE

Figure 8 illustrates the perturbation-based benchmark of Section 4.1 in the main paper. Given the
explainability map generated by the explainability method, for the negative (respectively positive)
we progressively remove the most important (respectively the least important) part of the image. We
then look at the decline in the model accuracy.

C.3 QUALITATIVE EXAMPLES

Finally, Figure 11 provides additional qualitative comparisons with state-of-the-art explainability
methods, illustrating the efficacy of the proposed approach.

C.3.1 ABLATIONS OF RELU AND LAYER AGGREGATION

We finally scrutinize the design choices underpinning LeGrad in Table 9. Specifically, we investi-
gate the effect of discarding negative gradients before aggregating layer-specific explainability maps
vai ReLU, as well as the implications of leveraging intermediate feature tokens Zl to compute gra-
dients for each respective layer. We use the framework of the perturbation benchmark delineated in
Section ?? and both ViT-L/14 and ViT-H/14 models. The results indicate that the omission of either
component induces decline in performance, thereby affirming the role these elements play in the
architecture of the method.

D GRADIENT DISTRIBUTION OVER LAYERS

Figures 9 & 10 extend the ”gradient distribution over Layers” analysis conducted Section 4.7 to
more backbone size and more set of weights .
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L/14 H/14
ReLU All Layers Negative↑ Positive↓ Negative↑ Positive↓

✗ ✗ 47.81 20.80 57.57 21.73
✓ ✗ 49.32 19.95 59.55 19.50
✗ ✓ 52.01 16.80 60.28 18.26
✓ ✓ 54.48 15.23 61.72 18.26

Table 9: Ablation study: ”ReLU” corresponds to whether or not negative gradients are set to 0.
”All layers” corresponds to whether or not the intermediate tokens are used to compute the gradient
for every layer or if only the features from the last layer are used. Numbers are the AUC score for
the perturbation base benchmark using the target class to compute the explainability map.

Figure 9: Gradient distribution over layers on Pas-
calVOC for different pretrained ViT-L/14.

Figure 10: Gradient distribution over layers on
PascalVOC for different pretrained ViT-B/16.

In Figures 12 & 13 & 14 & 15 & 16 & 17 & 18 provide the gradient distribution over layer in-
dependetly for each class in PascalVOC. We observe that for most models and classes, the layers
contributing the most were typically located towards the end of the ViT. An interesting exception
to this trend was observed for the ’person’ class, which exhibited a higher sensitivity to the middle
layers across all model sizes and weight sets. We hypothesize that this is due to the high frequency
of the ’person’ class in the training data, enabling the ViT to identify the object early in the layer
sequence, thereby triggering the activation in the middle layers.

Furthermore, we note that the most activated layer varied significantly depending on the class and
the model. This variability was observed even between two models of the same size, such as
ViT-L(openai) and ViT-L(metaclip). This observation underscores the rationale behind the LeGrad
method’s approach of utilizing multiple layers, hence alleviating the need to select a specific layer,
as the optimal choice would differ from model to model.

Method CSDC PC DC D SD TS
GradCAM 0.75 0.67 0.68 0.91 0.7 0.48

Rollout 0.86 0.8 0.82 0.8 0.76 0.
Chefer LRP 0.91 0.92 0.89 0.9 0.74 0.95

LeGrad 0.90 0.83 0.92 1. 0.77 0.97
Table 10: Evaluation of ViT-B/16 on the FunnyBirds Co-12 setup

E SANITY CHECK

The Co-12 recipe(Nauta et al., 2023) is a set of 12 properties for evaluating the explanation quality
of explainability method for machine learing models. These properties provide a comprehensive
framework for assessing how well one can explain the decision-making process of a model. In
Hesse et al. (2023) proposed a dataset, called FunnyBirds, to evaluate explainability methods for
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visual models. As a sanity check for the proposed LeGrad method, we follow the authors guidelines
and evaluate on the provided ViT-B/161 using LeGrad, showing improvement over gradient-based
methods while being on par with LRP.

LeGrad TextSpan CheferCAM GradCAM Rollout Raw	Attention

Do
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Figure 11: Qualitative Comparison to SOTA: visual comparison of different explainability meth-
ods on images from OpenImagesV7

F PERSONAL AND HUMAN SUBJECTS DATA

We acknowledge the use of datasets such as ImageNet and OpenImagesV7, which contain images
sourced from the internet, potentially without the consent of the individuals depicted. We recognize
that the VL models used in this study were trained on the LAION-2B dataset, which may include
sensitive content. We emphasize the importance of ethical considerations in the use of such data.

1
https://github.com/visinf/funnybirds-framework

19

https://github.com/visinf/funnybirds-framework


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 12: Gradient Distributlion over Layers for different classes dataset for Laion2B-ViT-B/16.

Figure 13: Gradient Distributlion over Layers for different classes dataset for OpenAI-ViT-B/16.
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Figure 14: Gradient Distributlion over Layers for different classes dataset for Laion400M-ViT-B/16.

Figure 15: Gradient Distributlion over Layers for different classes dataset for MetaCLIP-ViT-B/16.
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Figure 16: Gradient Distributlion over Layers for different classes dataset for OpenAI-ViT-L/14.

Figure 17: Gradient Distributlion over Layers for different classes dataset for Laion400M-ViT-L/14.
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Figure 18: Gradient Distributlion over Layers for different classes dataset for Laion2B-ViT-H/14.
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