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ABSTRACT

While deep neural networks for classification have shown impressive predictive
performance, e.g. in image classification, they generally tend to be overconfident.
We start from the observation that popular methods for reducing overconfidence
by regularizing the distribution of outputs or intermediate variables achieve better
calibration by sacrificing the separability of correct and incorrect predictions,
another important facet of uncertainty estimation. To circumvent this, we propose
a novel method that builds upon the distributional alignment of the variational
information bottleneck and encourages assigning lower confidence to samples from
the latent prior. Our experiments show that this simultaneously improves prediction
accuracy and calibration compared to a multitude of output regularization methods
without impacting the uncertainty-based separability in multiple classification
settings, including under distributional shift.

1 INTRODUCTION
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Figure 1: Ability to separate correct and
incorrect predictions based on the pre-
dictive entropy on CIFAR-10: misclassi-
fication rate under rejection of uncertain
high-entropy examples and the area un-
der the resulting curve. Models trained
with explicit output distribution regular-
ization perform substantially worse than
a deterministic network. Plain varia-
tional information bottleneck networks
(VIBN) show a similar tendency.

Deep neural networks (DNNs) have become the standard
tool for challenging classification tasks, e.g. image classi-
fication or semantic segmentation, due to their excellent
predictive accuracy. However, predictions of DNNs often
tend to be overconfident, leading to miscalibration (Guo
et al., 2017). This problem is amplified in the presence
of distributional shift in the test data, such as from image
corruptions (Ovadia et al., 2019). Multiple methods to
regularize the output distribution of DNNs during train-
ing have been proposed (Joo & Chung, 2020; Joo et al.,
2020; Pereyra et al., 2017; Szegedy et al., 2016) to obtain
well-calibrated models. We note, however, that evaluating
in-domain uncertainty quantification in terms of model
calibration is not sufficient, as it does not indicate how
well correct and incorrect predictions can be discerned
based on the predictive uncertainty (Ding et al., 2020). As
Fig. 1 shows, methods that indiscriminately regularize the
confidence to improve calibration perform significantly
worse at separating correct from incorrect predictions.

To address this, we turn to deep variational information
bottleneck networks (VIBN; Alemi et al., 2017). Similarly
to output regularization methods, they benefit generaliza-
tion and calibration (Alemi et al., 2018) but, as we show
empirically, suffer from the same separability problem. However, unlike these methods, VIBNs allow
us to utilize the distribution matching of the variational approximation to define a noise-contrastive
loss term, which can overcome the problem of insufficient separation of correct and incorrect predic-
tions based on the uncertainty while retaining the benefits of the VIBN in terms of generalization
and calibration. To this end, we propose a novel model, the noise-contrastive variational information
bottleneck network (NC-VIBN), which builds upon the VIBN to improve uncertainty estimation.
Instead of using distribution matching as the primary source of regularization, our model utilizes
it to define a loss term that explicitly encourages high predictive entropy only for uninformative
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samples from the latent prior. Additionally, we account for weight uncertainties in the decoder and
use L2-normalization before computing the latent embeddings to further alleviate the described
problems while improving the calibration and generalization capabilities of the model.

We make the following contributions: (i) We empirically show that models that explicitly regularize
the prediction confidence make it harder to distinguish between correct and incorrect predictions
based on the estimated uncertainty. (ii) We link the VIBN to these methods and find that it suffers
from the same behavior due to the implicit L2-regularization through the latent KL-divergence term.
(iii) We circumvent these ill effects regarding separability of correct and incorrect predictions by
proposing a noise-contrastive loss term that utilizes distribution matching in the latent space and,
combined with architectural refinements, leads to improved separability, calibration, and accuracy.
(iv) Our results show that our proposed model also leads to improved accuracy and calibration in the
presence of distributional shift introduced by image corruptions.

2 RELATED WORK

Information Bottleneck. The information bottleneck principle has been proposed by Tishby et al.
(1999) as means to analyze generalization for deep neural networks (Tishby & Zaslavsky, 2015) and
relies on computing the mutual information of input, output, and intermediate variables. Since these
quantities are in general intractable, variational approximations of the mutual information terms have
been introduced (Alemi et al., 2017; Achille & Soatto, 2018). These variational approximations are
also able to overcome problems of the information bottleneck objective for deterministic represen-
tations (Amjad & Geiger, 2019) and share some of the benefits of Bayesian models (Alemi et al.,
2020). Further, as shown by Alemi et al. (2018), variational information bottleneck networks can
improve calibration, which we want to further improve with our method.

Noise-contrastive estimation. Noise-contrastive estimation (Gutmann & Hyvärinen, 2010) is an
estimation method for parameterized densities, which is based on discriminating between real and
artificial data by logistic regression using the log-density functions. Inspired by noise-contrastive
estimation, Hafner et al. (2020) propose noise-contrastive priors as data space priors that encourage
uncertain predictions at the boundary of the training data for regression tasks by minimizing the
KL-divergence between a high-variance Gaussian and the predicted output distribution for perturbed
training data points. We focus on classification instead.

Uncertainty estimation. Bayesian neural networks (BNNs) are a popular and theoretically well-
founded tool for uncertainty estimation. A multitude of methods have been proposed to approximate
the intractable weight posterior, including variational inference (Blundell et al., 2015; Graves, 2011),
Markov chain Monte Carlo methods (Welling & Teh, 2011), Laplace approximation (MacKay, 1992;
Ritter et al., 2018), and assumed density filtering (Hernández-Lobato & Adams, 2015), as well as
approximate variational inference methods based on the dropout (Srivastava et al., 2014) regularization
scheme (Gal & Ghahramani, 2016). In the last years, these methods have been successfully scaled to
larger models (Dusenberry et al., 2020; Heek & Kalchbrenner, 2019; Maddox et al., 2019; Osawa
et al., 2019; Zhang et al., 2020). Deep ensembles (Lakshminarayanan et al., 2017) have also been
used for uncertainty estimation and can be interpreted as Bayesian model averaging. Since model
averaging with respect to the approximate posterior requires multiple forward passes, BNNs incur
a substantial computational overhead. To lighten this, there has been an interest in Bayesian last
layer approaches (van Amersfoort et al., 2021; Kristiadi et al., 2020; Liu et al., 2020; Riquelme et al.,
2018; Snoek et al., 2015; Wilson et al., 2016). Our approach similarly employs a Bayesian treatment
only for the last (few) layers, however combining it with the information bottleneck principle and a
noise-contrastive loss. An alternative approach for estimating uncertainty in classification networks
is parameterizing the more expressive Dirichlet distribution (Gast & Roth, 2018; Joo et al., 2020;
Malinin & Gales, 2018; Sensoy et al., 2018) instead of the categorical distribution at the output layer.
We instead gain additional expressiveness by modelling the latent space distributions.

Related methods in out-of-distribution detection. Lee et al. (2018) proposed to train confidence-
calibrated classifiers by using a generative adversarial network (GAN) that learns to generate samples
at the data boundary. The generator is trained to generate data points, which are hard to separate from
in-distribution data by the discriminator while given an almost uniform labeling by the classifier. In
contrast, Sricharan & Srivastava (2018) train the generator to produce low-entropy in-distribution
samples while requiring the classifier to maximize the entropy of those samples.
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3 VARIATIONAL APPROXIMATION OF THE INFORMATION BOTTLENECK

We begin by recapitulating two variational approximations of the information bottleneck, the deep
variational information bottleneck (Alemi et al., 2017) and information dropout (Achille & Soatto,
2018), which we will use to explain the behavior of such models and to build our own model upon.

Deep variational information bottleneck. The information bottleneck was first introduced (Tishby
et al., 1999; Tishby & Zaslavsky, 2015) to find a low-complexity representation Z depending on a
feature vector X that maximizes the mutual information with a target variable Y . To constrain the
complexity of Z, the mutual information between X and Z is bounded, resulting in a maximization
problem with inequality constraints. Alemi et al. (2017) proposed to use a variational approximation
of the mutual information terms of the Lagrangian with Lagrange multiplier β, resulting in the
objective

min
ϕ,ψ

1

N

N∑
n=1

Epϕ(z|xn)

[
− log qψ(yn|z)

]
+ βDKL

[
pϕ(z|xn)

∥∥r(z)], (1)

where the stochastic encoder pϕ(z|x) and decoder qψ(y|z) are modeled by neural networks, parame-
terized by ϕ and ψ respectively, and r(z) is a variational approximation of the marginal distribution
p(z) =

∫
pϕ(z|x)p(x) dx of z. To draw a parallel to the variational inference literature (Kingma &

Welling, 2014), r(z) is also referred to as the latent prior. Alemi et al. (2017) assume r(z) to be a
standard Gaussian and model the distribution of the latent encodings as Gaussians with diagonal
covariance, resulting in

DKL

[
pϕ(z|xn)

∥∥r(z)] = 1

2

∑
i

[
− log σ2

zi|xn
+ σ2

zi|xn
+ µ2

zi|xn
− 1
]
, (2)

where µzi|xn
and σ2

zi|xn
are the component-wise mean and variance of the latent embedding pϕ(z|xn)

of xn, estimated by the encoder network. The decoder is a softmax classification network hψ,
predicting class probability vectors from z, i.e. qψ(y|z) = Cat(y|hψ(z)).
Information dropout (IDO). Achille & Soatto (2018) proposed an alternative approach, where the
encoder network gϕ predicts a non-negative vector µx as well as αx, parameterizing the log-normal
distribution logN (0, α2

x). The distribution of the latent encodings is modeled as z ∼ µx ⊙ ϵ with
ϵ ∼ logN (0, α2

x). They show that if µx is the output of ReLU units and the latent prior r(z) is chosen
to be a mixture of the delta distribution at 0 and a log-uniform distribution, i.e. r(z) ∝ qδ0(z) + c/z,
the KL-divergence is given as

DKL

[
pϕ(z|x)

∥∥r(z)]={− log q µx = 0

−H
[
pαx

(log ϵ)
]
+ log c µx > 0,

(3)

where the entropy term H[pαx(log ϵ)] is given by logαx for ϵ ∼ logN (0, α2
x) up to an additive

constant. In the original formulation of Achille & Soatto (2018), the mean of ϵ grows with αx,
resulting in a higher level of saturation of the softmax outputs, hence in overconfidence. Note that if
ϵ is log-normal distributed, log ϵ is normal distributed and the entropy does not depend on its mean.
Therefore, we here instead employ the mean-corrected log-normal distribution logN (− 1

2α
2
x, α

2
x) so

that Epαx (ϵ)
[µx ⊙ ϵ] = µx without changes to the KL-divergence.

4 UNCERTAINTY QUANTIFICATION UNDER OUTPUT DISTRIBUTION
REGULARIZATION

A frequently used metric to assess uncertainty estimation is the expected calibration error (Guo et al.,
2017) or related calibration metrics, which measure how well the prediction confidence coincides with
the prediction accuracy. Methods that achieve better calibration by output distribution regularization
include label smoothing (Müller et al., 2019; Szegedy et al., 2016), regularization of the predictive
entropy (Pereyra et al., 2017) for the categorical distribution, or evidential deep learning (Sensoy
et al., 2018) and belief matching (Joo et al., 2020) for the Dirichlet distribution. Alternatively, the
model can be regularized in function or distribution spaces prior to the final softmax layer (Joo et al.,
2020), and in the simplest case results in norm penalties for the predicted logits.
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Figure 2: Embeddings and samples from the latent prior (a) and assigned predictive entropy (b) for
a NC-VIBN model with a two-dimensional information bottleneck trained on CIFAR-10. Darker
areas correspond to lower entropy. By employing the proposed noise-contrastive loss, embeddings of
incorrectly classified examples, which are harder to distinguish from samples of the latent prior, are
assigned higher entropy, allowing for a better separability of correct and incorrect predictions based
on the predictive entropy.

However, these calibration metrics actually do not indicate how well correct predictions can be
separated from incorrect ones based on some uncertainty estimate like the predictive entropy. In
fact, a model predicting with a confidence equal to the expected accuracy on in-domain data for both
correct classifications and misclassifications would be perfectly calibrated according to the expected
calibration error, but the confidence of a prediction would give us no information about an example
being correctly or incorrectly classified (Ding et al., 2020). A suitable method to examine how easily
correct and incorrect predictions can be discriminated, is to analyze how the predictive performance
behaves under the rejection of uncertain predictions (Ding et al., 2020; Nadeem et al., 2009). As can
be seen in Fig. 1, models that are trained with an objective that regularizes the output distribution
perform significantly worse at assigning incorrect predictions a comparatively higher uncertainty
and rejecting them early than the deterministic model. We argue that this is because these methods
indiscriminately regularize the confidence of correct and incorrect predictions. More experimental
evidence is presented in Sec. 6.1.

5 NC-VIBN – NOISE-CONTRASTIVE VARIATIONAL INFORMATION
BOTTLENECK NETWORKS

We can observe in Fig. 1 that, similarly to the regularization methods described in the previous section,
standard VIBN models also suffer from worse separability of correct and incorrect predictions.
However, we can make use of distribution matching in the latent space to remedy this problem while
still benefiting from the improved generalization and calibration of VIBNs. To improve uncertainty
estimation with variational bottleneck networks, we here propose a noise-contrastive loss term that
encourages the decoder network to assign high predictive entropy to samples that are closely aligned
to the latent prior. We further propose to use instance-level L2-regularization before computing the
parameters of the latent distribution to reduce the sensitivity to the magnitude of input variables and
also learn the uncertainty of the decoder parameters using variational inference.

5.1 LEARNING WEIGHT UNCERTAINTIES FOR THE CLASSIFIER

To improve the ability of VIBNs to quantify uncertainty, we first propose to learn a weight distribution
q(ψ|θ) for the decoder via mean field variational inference. A similar approach for variational
autoencoders has been explored by Daxberger & Hernández-Lobato (2019), who learn an ensemble
of generative models by approximating the decoder posterior with Markov chain Monte Carlo
methods. We assume that we have a dataset D = (zn, yn) such that

− log p(yn|zn, ψ) = Epϕ(z|xn)[− log qψ(yn|z)] + const (4)
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and a weight prior p(ψ) = N (ψ|0, τ−1I). Now, minimizing the KL-divergence between the mean
field Gaussian variational approximation and the true posterior is equivalent to solving

min
θ

1

N

N∑
n=1

Eq(ψ|θ)
[
Epϕ(z|xn)

[
− log qψ(yn|z)

]]
+

1

N
DKL

[
q(ψ|θ)

∥∥p(ψ)]. (5)

This loss function will substitute the first term in the VIBN objective in equation 1.

5.2 THE NOISE-CONTRASTIVE LOSS TERM

Next, we will utilize the distributional alignment of the variational information bottleneck to formulate
a noise-constrastive loss in the latent space. This has multiple benefits as opposed to formulating the
noise-contrastive loss in the input space: We do not have to approximate the complex distribution of
images in the high-dimensional input space and only have to evaluate the smaller decoder network to
obtain predictions for samples from this distribution.

To motivate how we can improve the separability of correct and incorrect examples by the predictive
entropy, consider Fig. 2a. We can observe distinct clusters for the latent embeddings of correctly
classified examples, while incorrectly classified examples for the most part are embedded in-between
these clusters, resembling samples from the latent prior. Moreover, we note that embeddings of
hard examples tend to be aligned with the latent prior, since the KL-term of the VIBN objective
(equation 1), which regularizes the distance of the latent embedding from the prior, is class-agnostic
and thus easier to minimize than the negative log-likelihood term for such hard examples. To now
prevent overconfident predictions of the decoder network in these regions of the latent space, we
propose a noise-contrastive loss that maximizes the predictive entropy for samples generated from
the latent prior, resulting in the objective

max
θ

Eq(ψ|θ)
[
Er(z)

[
H[qψ(y|z)]

]]
, (6)

where the predictive entropy of the categorical distribution estimated by the classifier is given by
H(qψ(y|z)) = −

∑C
c=1 qψ(y = c|z) log qψ(y = c|z).

Note that embeddings for easier examples, in contrast, are mapped into regions of the latent space
away from the high-density regions of the latent prior in order to enable the decoder to separate them
from prior samples, yet prior samples are assigned low confidence due to the entropy maximizing
noise-contrastive loss. This separation helps the decoder to assign high confidence to the embeddings
of easier examples, so that the expected negative log-likelihood term of the VIBN objective can be
minimized. The effect of the interplay of the VIBN objective and the noise-contrastive loss can be
seen in Fig. 2b, where high entropy is assigned to the regions of the latent space that are populated
with embeddings of incorrectly classified examples, while regions where the embeddings of correctly
assigned examples are located are assigned lower entropy (see appendix B.1 for a comparison with
the latent space of a standard VIBN). As a result, we can preserve the separability of correct and
incorrect examples by entropy-based uncertainty estimates while still benefiting from the improved
calibration and regularization of VIBN networks.

Putting everything together and approximating expectations via sampling, we obtain the following
loss function:

L(ϕ, θ) =
1

N

N∑
n=1

(
1

S

S∑
s=1

− log qψs(yn|zsxn
) + βDKL

[
pϕ(z|xn)

∥∥r(z)])

+
1

N
DKL

[
q(ψ|θ)

∥∥p(ψ)]− 1

S

S∑
s=1

H
[
qψs(y|zs)

]
,

(7)

where S samples zsxn
are drawn from p(z|xn) and ψs are drawn from q(ψ|θ). The first loss term

maximizes an empirical approximation of the expected log-likelihood, while the second loss term
aligns the distribution of the latent embeddings with the latent prior. Further, the third loss term is a
result of the variational approximation of the classifier’s weight posterior distribution and penalizes
divergence from the weight prior. Finally, the last loss term is our noise-contrastive loss, encouraging
high entropy for noisy latent prior samples.
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5.3 TEST-TIME NORMALIZATION

Hein et al. (2019) describe how the linear extrapolation behavior of ReLU networks can lead to
overconfidence for data points that differ from the training data in terms of magnitude or, in case
of image data, in pixel intensity. Similarly, for our encoder network this behavior can result in
embeddings into regions that are far away from the latent prior and assigned high certainty by
the decoder network for these data points. To prevent this and decouple the predicted distribution
parameters from the intensity of pixel values, we add a test-time normalization step to the intermediate
variables before computing the latent embeddings. Specifically, we apply L2-normalization to the
input x̃ of the last residual block of the encoder network, mapping

x̃ 7→ x̃/
√∑M

j=1 x̃
2
j+ϵ, (8)

where ϵ > 0 is a small constant added for numerical stability and M is the dimension of x̃.

5.4 IMPLEMENTATION DETAILS

Encoder and classifier architecture. We adjust the ResNet architecture (He et al., 2016) for our
model by using the last residual block, consisting of two convolutional layers for smaller ResNets
and three convolutional layers for larger ResNets, and the fully connected layer as the classifier
(decoder) network; the remaining layers form the encoder network. The channels of the last layer
of the encoder are split to predict µx and σ2

x or αx for the VIBN or IDO models, respectively. The
width of the classifier network is accordingly reduced by half, resulting in a lower total number
of parameters compared to the respective (deterministic) ResNet baseline, even though additional
parameters representing the weight variances of the decoder are required.

Parameterizing the latent distribution. For the VIBN, we predict log σ2
x and map it to σ2

x using the
exponential function. For IDO, we follow Achille & Soatto (2018) and constrain αx to be smaller
than αmax. For simplicity, we chose αmax = 1. Instead of predicting αx directly, the unrestricted
variable α̂x is predicted and mapped to αx = αmax · σ(α̂x), where σ(·) is the sigmoid function.

Sampling from the latent distribution and prior. To sample from the latent distribution in case
of the VIBN, we use zx = µx + σx ⊙ ϵ, where ϵ ∼ N (0, I). Samples from the latent prior can be
directly generated from N (0, I). For IDO, we again generate samples ϵ from N (0, I) and map them
to µx ⊙ exp(αx ⊙ ϵ − α2

x/2) to sample from the corresponding latent distribution. We generate
samples from a truncation of the latent prior by sampling u from a uniform distribution on [−2, 2]
and b from a Bernoulli distribution with parameter q = 0.1 and computing z = b⊙ exp(u).

Weight uncertainties for the classifier. We initialize the weight variances to ρ times the prior
variance; more details can be found in appendix A. We use the local reparameterization trick (Kingma
et al., 2015) to sample from the classifier weight distributions.

Rescaling the loss terms. We do not introduce any additional hyperparameters for rescaling the
loss terms except for the latent KL-divergence inherited from VIBN. Further, we apply a linear
warm-up schedule to all loss terms except the expected negative log-likelihood to emulate training of
a deterministic network in the early stages.

6 EXPERIMENTS

We begin by comparing the proposed noise-contrastive variational information bottleneck networks
with fixed standard Gaussian prior (NC-VIBN) and learnable Gaussian mixture prior (NC-VIBN-MP)
as well as information dropout networks (NC-IDO) to their counterparts VIBN (Alemi et al., 2017),
VIBN-MP, and IDO (Achille & Soatto, 2018), as well as to a deterministic network and a BNN using
MC Dropout (Gal & Ghahramani, 2016) as baselines. For fair comparison in terms of inference
time, we apply dropout only to layers that need to be resampled multiple times for the information
bottleneck networks. For the mixture prior experiments, we consider a mixture of 32 Gaussian
components with diagonal covariance matrices and allow learning the means, variances, and mixture
weights for every component. During evaluation, we use the same number of samples (S = 16) for
MC Dropout and all information bottleneck networks. We train models based on ResNet18 (He et al.,
2016) on CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), and Tiny ImageNet, a downsampled
version of ImageNet (Deng et al., 2009) containing 200 classes. The results can be found in Tab. 1.
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Table 1: Evaluation on CIFAR-10, CIFAR-100, and Tiny ImageNet. We report the misclassification
rate (MCR), negative log-likelihood (NLLH), expected calibration error (ECE), the area under the
misclassification-rejection curve (AUMRC), the misclassification rate (MR) at different rejection
levels as well as the mean confidence (MC) for correct and incorrect predictions. All values but
NLLH are given as percentages.

MCR NLLH ECE AUMRC MR5% MR10% MR25% MC Corr. MC Incorr.

CIFAR-10 Deterministic 5.37±0.17 0.237±0.012 3.22±0.19 0.53±0.02 3.11±0.16 1.83±0.11 0.33±0.07 98.57±0.34 82.11±0.55

MC Dropout 5.67±0.22 0.243±0.006 3.52±0.13 0.56±0.01 3.37±0.06 1.94±0.03 0.47±0.06 98.75±0.04 82.11±0.89

IDO 5.67±0.08 0.238±0.004 3.30±0.08 0.59±0.04 3.42±0.05 1.99±0.05 0.41±0.07 98.41±0.23 81.15±0.67

VIBN 5.11±0.12 0.206±0.004 2.03±0.16 0.92±0.06 2.94±0.17 1.76±0.08 0.89±0.03 97.97±0.05 76.48±1.47

VIBN-MP 5.13±0.24 0.180±0.006 1.08±0.09 0.88±0.18 3.09±0.23 1.78±0.11 0.73±0.11 97.03±0.15 73.45±0.87

NC-IDO (ours) 5.09±0.19 0.174±0.006 1.90±0.12 0.53±0.05 2.92±0.17 1.58±0.12 0.41±0.04 97.93±0.05 75.11±0.95

NC-VIBN (ours) 4.93±0.12 0.165±0.003 1.28±0.21 0.57±0.06 2.83±0.15 1.52±0.10 0.45±0.06 97.48±0.11 71.99±1.08

NC-VIBN-MP (ours) 4.74±0.10 0.164±0.003 1.16±0.15 0.56±0.04 2.76±0.06 1.49±0.09 0.45±0.04 97.55±0.12 72.00±0.75

CIFAR-100 Deterministic 26.22±1.15 1.146±0.0123 10.92±0.23 7.73±0.14 23.32±0.28 20.73±0.28 13.40±0.25 92.28±0.10 63.39±0.42

MC Dropout 25.75±0.12 1.358±0.0283 15.35±0.30 7.35±0.11 22.83±0.20 20.17±0.20 12.58±0.26 95.36±0.08 72.97±0.84

IDO 26.10±0.29 1.387±0.016 13.55±0.16 7.63±0.05 23.18±0.34 20.43±0.33 12.93±0.35 93.94±0.12 69.26±0.25

VIBN 26.19±0.49 1.310±0.033 8.50±0.78 8.29±0.26 23.62±0.46 21.17±0.67 14.10±0.58 90.24±0.28 59.50±1.32

VIBN-MP 26.37±0.24 1.118±0.011 4.93±0.45 8.91±0.05 23.93±0.26 21.59±0.13 14.99±0.25 83.87±1.13 45.57±1.94

NC-IDO (ours) 25.35±0.22 1.117±0.035 9.06±0.43 7.38±0.10 22.47±0.31 20.01±0.10 12.84±0.25 91.30±0.23 61.28±0.63

NC-VIBN (ours) 25.16±0.25 1.009±0.022 5.58±0.26 7.97±0.18 22.58±0.26 20.27±0.32 13.98±0.22 87.30±0.60 51.33±2.04

NC-VIBN-MP (ours) 25.07±0.38 1.044±0.01 6.72±0.38 7.83±0.14 22.45±0.36 20.56±1.05 13.67±0.45 88.00±0.33 51.19±0.70

Tiny Deterministic 43.09±0.25 2.184±0.118 18.26±2.23 17.93±0.24 40.64±0.27 38.20±0.32 30.63±0.17 87.64±1.52 58.70±3.42

ImageNet MC Dropout 41.13±0.48 1.838±0.029 10.05±0.49 16.44±0.27 38.66±0.66 35.94±0.23 28.35±0.42 86.04±1.39 77.51±0.76

IDO 43.40±0.21 2.081±0.10 16.14±2.47 18.32±0.18 41.02±0.21 38.76±0.23 31.10±0.46 85.73±1.84 55.78±3.49

VIBN 43.23±0.28 2.092±0.008 11.99±0.18 18.49±0.22 40.84±0.30 38.46±0.23 31.27±0.26 82.26±0.14 51.03±0.21

VIBN-MP 42.83±0.39 1.843±0.008 6.67±0.44 18.11±0.23 40.47±0.39 38.10±0.45 30.78±0.32 78.50±0.35 44.23±0.71

NC-IDO (ours) 42.09±0.51 1.784±0.033 4.90±0.64 17.62±0.51 39.65±0.53 37.01±0.57 30.01±0.58 77.78±1.02 42.10±0.76

NC-VIBN (ours) 41.82±0.12 1.756±0.040 6.60±2.06 17.57±0.21 39.45±0.14 37.15±0.17 29.85±0.23 79.61±1.61 44.01±2.82

NC-VIBN-MP (ours) 41.46±0.20 1.781±0.008 9.35±0.52 16.91±0.16 39.08±0.23 36.76±0.33 29.26±0.27 82.39±0.58 47.36±0.81

Table 2: Comparison to output regularization methods and DUE (van Amersfoort et al., 2021) on
CIFAR-10. Regularization methods are more accurate and better calibrated than the deterministic
model, but perform worse at separating correct and incorrect predictions via their predictive entropy,
resulting in a higher AUMRC. Our NC-VIBN clearly outperforms these previous methods.

MCR NLLH ECE AUMRC MR5% MR10% MR25% MC Corr. MC Incorr.

Deterministic 5.37±0.17 0.237±0.012 3.22±0.19 0.53±0.02 3.11±0.16 1.83±0.11 0.33±0.07 98.57±0.34 82.11±0.55

Entropy Regularization 5.20±0.17 0.201±0.004 2.01±0.24 1.49±0.12 3.11±0.19 1.97±0.18 1.39±0.20 94.84±0.19 73.13±0.90

Logit L2-Regularization 5.33±0.30 0.208±0.006 1.74±0.23 1.35±0.03 3.11±0.22 1.85±0.04 0.98±0.05 97.40±0.04 78.45±0.84

Label Smoothing 5.15±0.14 0.209±0.005 1.28±0.18 1.57±0.18 3.16±0.17 1.97±0.09 1.14±0.13 96.73±0.13 78.10±0.16

Dirichlet Belief Matching 5.15±0.11 0.197±0.004 1.47±0.15 1.07±0.19 3.03±0.17 1.76±0.04 0.88±0.11 96.73±0.37 77.71±0.85

DUE 5.27±0.28 0.195±0.007 2.24±0.21 0.76±0.03 3.06±0.19 1.83±0.11 0.68±0.07 97.92±0.16 78.79±0.77

NC-VIBN (ours) 4.93±0.12 0.165±0.003 1.28±0.21 0.57±0.06 2.83±0.15 1.52±0.10 0.45±0.06 97.48±0.11 71.99±1.08

Next, we compare against several baseline approaches for regularizing the output distribution of
DNNs in Tab. 2. We report the average performance and standard deviation of four training runs.

We use the misclassification rate (MCR) to assess how well a method works as a regularizer and
improves generalization. To evaluate the uncertainty quantification, we report the negative log-
likelihood (NLLH), the expected calibration error (ECE; Guo et al., 2017), the area under the
misclassification-rejection curve (AUMRC; Nadeem et al., 2009), and the misclassfication rate at
certain rejection rates. Training details, a detailed description of the evaluation metrics (Sec. A), as
well as further experiments (Sec. B) can be found in the appendix.

6.1 IN-DISTRIBUTION CLASSIFICATION ACCURACY AND UNCERTAINTY QUANTIFICATION

Regularization of the output distribution and intermediate variables. We first look in detail at
methods that regularize the categorical distribution, such as entropy regularization (Pereyra et al.,
2017) and label smoothing (Müller et al., 2019; Szegedy et al., 2016), or the Dirichlet output
distribution, in particular Dirichlet belief matching (Joo et al., 2020), as well as methods that
regularize the intermediate variables, such as logit L2-regularization (Joo & Chung, 2020). Note that
the KL-divergence term of the VIBN also implicitly regularizes the L2-norm of the latent variables.
From Tab. 2 we observe higher accuracy compared to the deterministic baseline, which shows that
these baselines indeed work well as regularization and improve generalization. By controlling the
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regularization of the output distribution or intermediate variables, calibration can be improved and
the confidence for incorrect predictions is reduced. However, the confidence of correct predictions
is decreased as well. Hence differentiating between correct and incorrect predictions based on the
predictive entropy becomes harder, as indicated by the MR-curve (Fig. 1). While this effect is
more pronounced at higher rejection rates, it still significantly impacts the area under the MR-curve,
increasing it from 0.005 for the deterministic baseline on CIFAR-10 to above 0.010 for these models.
The benefits of our NC-VIBN become apparent when comparing the mean confidence on correct and
incorrect predictions to output regularization methods (Tab. 2). Even though these methods using
explicit regularization can reduce the confidence of incorrect predictions as desired, our NC-VIBN
still shows lower confidence on incorrect predictions while not impacting the confidence of correct
predictions as much. As a consequence, it is better calibrated than output regularization methods
without the increase in AUMRC, while being more accurate at the same time.

Next, we compare our results with DUE (van Amersfoort et al., 2021). There has been a recent interest
in uncertainty estimation methods that use Gaussian processes and RBF kernels on the network output,
for example SNGP (Liu et al., 2020), DUQ (van Amersfoort et al., 2020), and the aforementioned
and most recent DUE. These methods enforce Lipschitz constraints on the neural network to ensure
that the feature distance in the output space contains information about feature distance in the input
space, avoid feature collapse, and improve the ability to detect out-of-distribution data points. For
in-distribution data, as can be seen in Tab. 2, DUE offers benefits regarding the misclassification rate,
NLLH, and ECE, although not as significant as our NC-VIBN models. Moreover, the ability of DUE
to detect misclassifications based on the uncertainty assigned using information about the output
space distance as measured by the AUMRC appears to be considerably worse when compared to the
deterministic baseline. Our proposed NC-VIBN outperforms the recent DUE across all metrics.

Comparison of different latent priors. We compare three different variational approximations of
the information bottleneck objective, IDO, VIBN, and VIBN-MP, in Tab. 1 to understand which of
the observed effects are specific to the variational distributions. We find that IDO provides only
minor benefits to classification accuracy and no significant benefits to uncertainty quantification as
indicated by NLLH and ECE. Yet, we do not see the same rise in AUMRC for IDO as we see for
VIBN or VIBN-MP. Since for the variational approximation by IDO these effects are not present, we
can conclude that the information bottleneck does not inherently benefit model calibration or harm
separability of correct and incorrect predictions. This suggests that the observed behaviour of the
VIBN and VIBN-MP arises from the chosen variational distribution and the implicit L2-regularization
in the latent KL-divergence term, see equation 2. Note, that the adaptable L2-regularization present
for VIBN-MP, while consistently improving calibration, does not avoid the separability problem, only
slightly reducing the AUMRC on CIFAR-10 and Tiny ImageNet while increasing it on CIFAR-100.
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Figure 3: Calibration curves for the deter-
ministic, VIBN, and NC-VIBN networks on
CIFAR-10. For our NC-VIBN, confidence
and accuracy are better aligned.

Benefits of the NC-VIBN. As can be seen in Tab. 1,
our NC-VIBN improves generalization but also offers
a whole number of benefits regarding the uncertainty
evaluation metrics, including a significantly better
description of the data, as can be seen by lower neg-
ative log-likelihood. On CIFAR-10, our proposed
model reduces the NLLH of 0.24 for the baseline and
0.21 for VIBN to 0.17. Similar improvements can
be obtained on Tiny ImageNet, where the NLLH is
decreased from 2.19 and 2.09, respectively, to 1.76.
We further see significant improvements regarding
calibration (cf. also Fig. 3), lowering the ECE on
CIFAR-10 from 0.032 for the deterministic baseline
and 0.020 for VIBN to only 0.013, while on Tiny Im-
ageNet the ECE is decreased from 0.183 and 0.120,
respectively, to 0.066. Only VIBN-MP with a more
complex learnable mixture prior offers slightly better
calibration on CIFAR-10 and -100, while our NC-IDO achieves the best calibration on Tiny ImageNet.
Further, we almost recover the AUMRC of the deterministic network on CIFAR-10 and -100, with
the misclassification rate only lagging behind at high rejection levels (Fig. 1) while improving it on
Tiny ImageNet, achieving the 2nd lowest AUMRC. The same modifications can also be applied to
IDO to obtain significant improvements across all metrics.
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Table 4: Image corruptions on CIFAR-10 (top) and CIFAR-100 (bottom) with three different levels of
severity. The NC-VIBN model is consistently more robust to corruptions and offers better uncertainty
estimates compared to the deterministic and VIBN baselines.

Corruption Level 1 Corruption Level 3 Corruption Level 5

MCR NLLH ECE MCR NLLH ECE MCR NLLH ECE

Deterministic 17.03±0.39 0.941±0.063 11.76±0.49 31.90±0.55 2.232±0.143 23.12±0.70 49.98±0.74 4.049±0.249 38.05±1.21

VIBN 16.02±0.54 0.790±0.035 8.84±0.38 30.32±0.77 1.791±0.072 18.73±0.68 48.62±0.70 3.193±0.118 32.18±0.68

NC-VIBN 15.03±0.46 0.545±0.027 6.44±0.56 29.31±0.75 1.219±0.084 15.54±1.16 48.16±0.74 2.266±0.091 29.45±1.71

Deterministic 40.65±0.26 2.047±0.014 18.33±0.10 55.74±0.39 3.336±0.038 27.76±0.25 71.31±0.42 4.955±0.096 38.73±0.70

VIBN 41.64±0.17 2.571±0.074 16.39±0.89 56.52±0.32 4.103±0.154 25.14±0.82 72.07±0.31 6.025±0.244 35.77±0.81

NC-VIBN 39.37±0.17 1.768±0.025 10.24±0.69 54.39±0.10 2.764±0.0971 17.51±1.77 70.23±0.18 4.000±0.269 27.02±2.91

Table 3: Ablations for the NC-VIBN on CIFAR-
10. We compare the effect of L2-normalization
and learning weight uncertainties for the last
layers via variational inference with the noise-
contrastive loss and the full NC-VIBN setup.

MCR NLLH ECE AUMRC

Deterministic 5.37 0.237 3.22 0.53
Det. + LL VI & L2-norm. 5.03 0.170 1.61 0.56

VIBN 5.11 0.206 2.03 0.92
VIBN + Noise-contrastive loss 5.23 0.187 1.41 0.74
VIBN + Dec. VI & L2-norm. 4.95 0.179 1.55 0.87

NC-VIBN 4.93 0.165 1.28 0.57

The ablation study in Tab. 3 shows that both the
deterministic and VIBN baseline models bene-
fit from last-layer variational inference and L2-
normalization with respect to classification accu-
racy and calibration but that they do not substan-
tially improve the separability of correct and incor-
rect examples as measured by the AUMRC. The
noise-contrastive entropy maximization term on its
own leads to a far more pronounced reduction in
AUMRC while also benefiting the calibration at the
cost of a minor drop in accuracy. However, when
combined with the other two components the drop
in accuracy can be avoided and further significant
improvements regarding all metrics can be gained.

6.2 ESTIMATION QUALITY UNDER DISTRIBUTION SHIFT THROUGH IMAGE CORRUPTIONS

To evaluate robustness and uncertainty quantification in the presence of distributional shift, we use the
CIFAR-10-C and CIFAR-100-C datasets (Hendrycks & Dietterich, 2019), which feature 15 different
types of common image corruptions at five levels of severity. Since distributional shift will likely
cause the latent embeddings to be less aligned with those computed on the clean training data, they
may be less distinguishable from samples from the latent prior. In this case, the noise-contrastive
entropy loss helps assigning higher entropy to examples misclassified due to distributional shift.
The results in Tab. 4 confirm that our proposed NC-VIBN performs better under distributional
shift than deterministic and VIBN baselines. It is more robust to these image corruptions, with
lower misclassification rates across all levels of corruption severity. Even stronger benefits can be
observed for the metrics evaluating uncertainty quantification. The lower NLLH at 2.27 for NC-VIBN
compared to 4.95 for the deterministic and 3.19 for the VIBN baseline on the most severe corruptions
on CIFAR-10, with similar reductions for other corruption levels for both CIFAR-10 and CIFAR-100,
show that our NC-VIBN offers a better explanation for hold-out image data even when corruptions
are present. Further, the improved model calibration is retained as the corruption severity increases,
e.g. resulting in a significant decrease of the calibration error from above 0.350 for the most severe
corruptions on CIFAR-100 to 0.270.

7 CONCLUSION

We propose to improve uncertainty estimation in classification models by building upon the distribu-
tional alignment of deep variational information bottleneck networks. Our experiments identify a
problem of prior work, being significantly worse at separating correct and incorrect predictions based
on the prediction uncertainty, a behavior that can be found in VIBNs as well as other models that
regularize the distribution of output or intermediate variables. We address this specifically using a
noise-contrastive entropy maximization term, as well as L2-normalization and weight uncertainty in
the decoder. Experiments show that our NC-VIBN model can improve generalization and uncertainty
estimation at the same time, both on in-domain data and under domain shift by image corruptions.
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ETHICS STATEMENT

While our approach can empirically improve the reliability of deep learning systems, failure cases
may still arise. However, this is consistent with other black-box uncertainty estimation methods in
deep learning. We, therefore, believe that it is important to inform possible users of our as well as
other models predicting uncertainty that uncertainty estimates cannot be blindly trusted so that their
availability does not induce a false sense of security.

REPRODUCIBILITY STATEMENT

We include training and evaluation code for the noise-contrastive information bottleneck models and
baseline models in the supplementary material. Details on hyperparameter selection can be found in
appendix A.
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A TRAINING AND EVALUATION DETAILS

A.1 EVALUATION METRICS

For our experiments, we compare the uncertainty estimates of different models with regard to the
following metrics:

Negative log-likelihood. A low negative log-likelihood (NLLH) indicates that the model of p(y|x)
assigns high probability (density) to the correct labels. The metric encourages high confidence for
correct classifications but also penalizes assigning high confidence to the incorrect predictions.

Expected calibration error. The expected calibration error (ECE) (Guo et al., 2017) is a measure for
model calibration, i.e. how well the estimated confidence agrees with the accuracy of predictions of a
similar confidence level. We divide the interval [0, 1] into M = 20 bins and assign the N predictions
into these bins based on their confidence value. Within each bin Bj , we compute the prediction
accuracy acc(j) and the average confidence conf(j). The expected calibration error is then given by∑M
j=1

|Bj |
N |acc(j)− conf(j)|.

Area under the misclassification-rejection curve. To evaluate how well a model is able to re-
duce the misclassification rate by rejecting uncertain predictions, we compute the area under the
misclassification-rejection curve (AUMRC) (Nadeem et al., 2009), which is the step function obtained
by sequentially excluding the example with the highest predictive entropy and adding a point to
the curve where the x-coordinate is the fraction of rejected examples and the y-coordinate is the
misclassification rate among the remaining examples. We also report the misclassification rate at
certain rejection thresholds. We chose this metric for evaluating if incorrect predictions are assigned
higher uncertainty than correct predictions instead of using the AUROC or AUPR for misclassification
detection, because latter metrics are not suited for comparing models with different levels of accuracy
(Ding et al., 2020).

A.2 DATASETS

For CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009), we split 5 000 images from the training
set, which consists of 50 000 images, to use for validation; we report results on the 10 000 test images.
For ImageNet (cf. Sec. B.4), we use the ILSVRC2012 (Russakovsky et al., 2015) training split,
containing 1.3 million images, to train the networks and evaluate on the 50 000 validation images.
Similarly, we use the 100 000 training images from the Tiny ImageNet dataset for training and report
the results on the 10 000 validation images.

A.3 DATA AUGMENTATION

We normalize the RGB values of the images for all datasets. For CIFAR-10 and CIFAR-100, we
apply random shifts by up to 16 and 8 pixels, respectively, in addition to random horizontal flips. For
Tiny ImageNet, we randomly rescale the images by a factor between 0.8 and 1.0 as well as changing
the aspect ratio by a factor between 0.75 and 1.33 (both uniformly distributed in the given range) and
randomly crop the image to the original size. For ImageNet (Sec. B.4), we first rescale the images
such that the smaller dimension measures 256 pixels. Before randomly cropping 224 × 224 pixel
patches from the images, we apply random rescaling by a factor between 0.1 and 1.2 and changes
to the aspect ratio by a factor between 0.75 and 1.33. During evaluation, a 224× 224 pixel patch is
cropped from the center of the image.

A.4 TRAINING SETUP

For the experiments on CIFAR-10, CIFAR-100, and Tiny ImageNet, we use a single Nvidia GTX
1080 Ti GPU. Our method results in a minimal computational overhead. On CIFAR-10, for example,
the training time per epoch of 38 seconds for the deterministic baseline is increased to 40 seconds for
the NC-VIBN. We use four Nvidia GTX TITAN X for the ImageNet experiments in Sec. B.4. The
last layer setup adds no computational overhead, resulting in a training tine of 56 minutes per epoch
for the deterministic baseline and the NC-VIBN.
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Table 5: Overview of additional hyperparameters introduced by different methods.

Method Required hyperparameters

MC Dropout Dropout rate p
Label-smoothing Label-smoothing rate α
Output regularization Weight of the regularization term β
Variational approximations of the IBN objective Lagrange multiplier β
Noise-contrastive entropy regularization No additional hyperparameters required
Decoder variational inference Prior precision τ and initial dampening factor ρ

A.5 ARCHITECTURAL DIFFERENCES

On ImageNet (see Sec. B.4), we use the original ResNet50 architecture (He et al., 2016), i.e. the first
convolutional layer has stride 2 and max-pooling is applied to its output. For all other datasets, we use
architectures based on ResNet18. Due to the differing image resolutions, the initial feature extraction
layer of the ResNets varies for these datasets. The stride of the first layer is reduced to 1 for Tiny
ImageNet, where the input resolution is 64× 64 pixels. For CIFAR-10 and CIFAR-100, where the
input resolution is 32 × 32 pixels, the first convolutional layer has stride 1 and no max-pooling is
applied.

A.6 HYPERPARAMETER SETTINGS

We use SGD with Nesterov momentum with a momentum parameter of 0.9 for all experiments.
Further, we apply gradient clipping if the ∞-norm of the gradient is greater than 0.1. We tune the
optimizer hyperparameters on the deterministic baseline and apply the same settings to all other
models, only adjusting the model hyperparameters specific to them (see below). L2-regularization
with a weight of 10−4 is applied to the network’s parameters for all experiments. For all information
bottleneck and noise-contrastive information bottleneck models, the additional loss terms are scaled
up linearly starting from 0.0 to 1.0× (i.e. their reported value, see below) until the first learning rate
drop. For the variational information bottleneck networks with learnable Gaussian mixture priors, we
set the number of mixture components to 32, sample the initial means from a centered Gaussian with
variance 0.01 and initialize the variance of the mixture distributions to 1. This choice for the number
of mixture components leads to a consistent improvement in negative log-likelihood for the VIBN
models across all datasets. We tried to increase the number of mixture components further, but were
not able to gain any additional benefits.

To select the hyperparameter β for VIBN and NC-VIBN as well as for the baseline models with latent
priors, we use a simple search over β ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6}, choosing the value
with the highest validation accuracy, respectively. If two β values have similar accuracy, the one with
lower validation NLLH is preferred. The β found for NC-VIBN tends to be lower than that for VIBN
as the noise-contrastive entropy loss term offers an additional source of regularization. For learning
the weight uncertainties of the decoder via variational inference, we examine possible prior precision
values τ ∈ {10−1, 100, 101, 102} with an initial dampening factor ρ = 1, see Sec. 5.4, and scale ρ
down by 10−1 if training is not stable during the first few iterations. We tune τ and ρ after fixing
the Lagrange multiplier β to the value found as described above, because the effect of the stochastic
decoder settings is less than that of the weighting of the latent KL-term. Since over-regularization for
many of these settings becomes apparent during the first few training epochs, effectively only a small
subset of these hyperparameter settings has to be validated.

To similarly tune the remaining baseline methods we compare to, we search for the weight of the
regularization term for Dirichlet Belief Matching (Joo et al., 2020) and logit L2-regularization (Joo
& Chung, 2020) in {10−1, 10−2, 10−3, 10−4, 10−5, 10−6}, for the dropout rate (Gal & Ghahramani,
2016) and entropy regularization weight (Pereyra et al., 2017) in {0.05, 0.1, 0.2, 0.5}, and for label
smoothing (Szegedy et al., 2016) in {0.01, 0.02, 0.05, 0.1}.

An overview summarizing which hyperparameters are required by different methods can be found
in Tab. 5. Our NC-VIBN approach uses a variational approximation of the information bottleneck
objective, noise-contrastive entropy regularization, and decoder variational inference. We detail the
hyperparameters determined this way in the following sections.
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Correctly classified
Misclassified
Prior samples

(a) (b)

Figure 4: Embeddings and samples from the latent prior (a) and assigned predictive entropy (b) for
a VIBN model with a two-dimensional information bottleneck trained on CIFAR-10. Darker areas
correspond to lower entropy.

CIFAR-10. The networks are trained for 200 epochs with a batch size of 128. The learning rate of the
optimizer is set to 0.1 and reduced by a factor of 0.2 at epochs 60, 120, and 160. For MC dropout, the
parameter search yielded a suitable dropout rate of 0.2. The Lagrange multiplier β scaling the latent
KL-divergence term was identified (see above) as 10−3 for VIBN (Alemi et al., 2017), IDO (Achille
& Soatto, 2018), and NC-IDO, while the search yielded 10−4 for NC-VIBN. The prior’s precision τ
for the decoder weights was determined as 10−1 for NC-VIBN and NC-IDO. For dampening, the
initial variance is scaled down by a dampening factor of ρ = 10−2.
In the learnable mixture prior experiments, the parameter search yielded β = 10−3 for the VIBN-MP
and β = 10−4, τ = 1, and ρ = 10−1 for the NC-VIBN-MP network.
In the baseline experiments with output regularization methods, the parameter search yielded a
label smoothing of 0.02 (Szegedy et al., 2016) and scales for the regularization term of Entropy
Regularization (Pereyra et al., 2017) given as 0.2, for Dirichlet Belief Matching (Joo et al., 2020) as
10−4, and for L2-regularization of the logits (Joo & Chung, 2020) as 10−3, respectively. For DUE,
we tried to vary the number of inducing points to see if we can improve the in-distribution uncertainty
estimation performance, and found that in the set {10, 20, 50, 100} the models using 10 inducing
points performed best.

CIFAR-100. For CIFAR-100, the parameter search yielded the same hyperparameter settings as for
CIFAR-10.

Tiny ImageNet. We train the models for 60 epochs with a batch size of 64, reducing the initial
learning rate of 0.1 by a factor of 0.1 at epochs 30, 40, and 50. For the MC Dropout baseline model,
the parameter search yielded a dropout rate of 0.1. The weight β of the latent KL-divergence term
was identified as 10−3 for VIBN and 10−6 for NC-VIBN, while the prior precision τ of the decoder
weights was determined by the search as 102. The initial variance dampening parameter ρ was
identified as 10−1. For IDO we found β = 10−3. Similarly, for NC-IDO we found β = 10−3,
τ = 101, and ρ = 10−1

For the mixture prior experiments, we determined parameters β = 10−3 for VIBN-MP and β = 10−5,
τ = 1, and ρ = 10−1 for NC-VIBN-MP.

B ADDITIONAL RESULTS

B.1 LATENT SPACE OF A VIBN MODEL

Similarly to Fig. 2, we show the predicted embeddings and assigned predictive entropy of a VIBN
network trained on CIFAR-10 with a two-dimensional bottleneck in Fig. 4. While the embeddings of
correctly classified data points still form clusters, which can be separated from the embeddings of
incorrect examples that are closer to the latent prior, this effect is far less pronounced compared to
our NC-VIBN network. Further, without the noise-contrastive loss the high-entropy regions are much
more condensed, and many embeddings of incorrectly classified examples fall within regions with
lower entropy, leading to poor separability .
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Table 6: Additional results for a modified last layer setup on CIFAR-10, CIFAR-100, Tiny ImageNet,
and ImageNet.

MCR NLLH ECE AUMRC MR5% MR10% MR25% MC Corr. MC Incorr.

CIFAR-10 VIBN 5.12 0.203 2.71 1.08 2.85 1.61 0.83 98.50 80.27
NC-VIBN (ours) 4.94 0.176 1.59 0.76 2.69 1.42 0.65 97.63 76.56

CIFAR-100 VIBN 26.01 1.155 8.71 7.92 23.44 20.95 13.60 90.96 58.72
NC-VIBN (ours) 24.26 1.098 5.92 7.30 21.50 28.97 12.28 87.00 46.44

Tiny VIBN 43.41 2.031 11.73 18.10 41.00 38.57 31.07 83.26 48.86
ImageNet NC-VIBN (ours) 42.74 1.910 9.99 18.03 40.38 38.11 30.73 82.56 46.78

ImageNet Deterministic 24.35 0.971 3.74 7.38 21.53 19.08 12.50 87.48 58.31
NC-VIBN (ours) 24.34 0.974 2.28 7.56 21.59 19.22 12.87 86.13 51.79

Table 7: Ensembling results on CIFAR-10, CIFAR-100, and Tiny ImageNet.

MCR NLLH ECE AUMRC MR5% MR10% MR25% MC Corr. MC Incorr.

CIFAR-10 Deterministic 5.37 0.237 3.22 0.53 3.11 1.83 0.33 98.57 82.11
NC-VIBN 4.93 0.165 1.28 0.57 2.83 1.52 0.45 97.48 71.99
Ensemble 4.10 0.141 0.76 0.33 2.06 1.03 0.59 97.18 67.75
NC-VIBN Ensemble 3.73 0.125 1.32 0.29 2.05 0.79 0.15 96.17 63.37

CIFAR-100 Deterministic 26.22 1.146 10.92 7.73 23.32 20.73 13.40 92.28 63.39
NC-VIBN 26.19 1.310 8.50 8.29 23.62 21.17 14.10 90.24 59.50
Ensemble 22.29 0.850 1.96 6.00 19.28 16.75 10.42 87.19 50.76
NC-VIBN Ensemble 21.31 0.793 4.56 6.06 18.66 16.37 10.76 83.08 43.49

Tiny Deterministic 43.09 2.184 18.26 17.93 40.64 38.20 30.63 87.64 58.70
ImageNet NC-VIBN 41.82 1.756 6.60 17.57 39.45 37.15 29.85 79.61 44.01

Ensemble 37.93 1.675 4.07 14.38 35.26 32.58 24.81 79.65 43.99
NC-VIBN Ensemble 37.32 1.517 3.39 14.48 34.76 32.26 24.96 73.76 35.99

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Entropy

Deterministic
Correct
Incorrect

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Entropy

VIBN
Correct
Incorrect

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Entropy

NC-VIBN
Correct
Incorrect

Figure 5: Relative densities of the empirical predictive entropy distribution of correct and incorrect
predictions for a deterministic, VIBN, and NC-VIBN network on CIFAR-10.

B.2 EMPIRICAL DISTRIBUTION OF PREDICTIVE ENTROPY VALUES

We show the empirical distribution deterministic, VIBN, and NC-VIBN networks on CIFAR-10 in
Fig. 5. For all networks, the predictive entropy of correct predictions is close to zero. The distribution
of the predictive entropy of the misclassifications exhibits also a peak near zero for the deterministic
and VIBN network. This peak is far less pronounced for our NC-VIBN network, showing a more
uniform distribution of predictive entropies for incorrect classifications. The NC-VIBN network is
therefore less likely to assign low entropy to incorrect predictions.

B.3 INFLUENCE OF THE LAGRANGE MULTIPLIER β

Table 8: Influence of the Lagrange multiplier
β for our full NC-VIBN model from the main
paper trained on CIFAR-10.

β 5 · 10−4 2 · 10−4 1 · 10−4 5 · 10−5 2 · 10−5

MCR 4.90 4.89 4.93 5.02 5.03
NLLH 0.172 0.173 0.165 0.167 0.170
ECE 1.43 0.74 1.28 1.64 1.89
AUMRC 0.62 0.59 0.57 0.55 0.56

To study the impact of the Lagrange multiplier β
controlling the weight of the latent KL-divergence
term on the NC-VIBN models, we vary β over a
range from 5 · 10−4 to 2 · 10−5, see Tab 8. For all
choices of β, NC-VIBN performs better than VIBN
(cf. Tab. 1) with respect to all evaluation metrics,
showing that the improvements achieved by our
NC-VIBN are robust regarding the choice of β.
Further, we can observe a trade-off between the
ECE and AUMRC. Increasing β to 2 · 10−4 reduces the calibration error but increases the AUMRC
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and NLLH. Setting the value of β even higher to 5 · 10−4 overregularizes the confidence of the model
and results in a higher ECE as well as NLLH and AUMRC. On the other hand, decreasing β to
5 · 10−5 slightly decreases the AUMRC while increasing the ECE.

B.4 LAST-LAYER NC-VIBN

We additionally report results for a modified setup, where the information bottleneck is placed before
the last layer and the variance of the latent embeddings is fixed, see Tab. 6. This simplification allows
us to easily scale our approach to large-scale tasks, here ImageNet object classification.

Hyperparameter settings. For CIFAR-10, the hyperparameter search (as above) for this additional
last-layer setup identified a suitable β as 10−4 for VIBN and 10−6 for NC-VIBN and found 10−1

suitable for the decoder prior precision τ . On CIFAR-100, the β parameter was found as 10−4 for
VIBN and the prior precision for NC-VIBN is changed to 10−2. For TinyImageNet, β was found as
10−4 and the NC-VIBN decoder’s prior precision as 101.

ImageNet. The ImageNet models for this additional experiment are trained for 90 epochs with a
batch size of 256 and a learning rate of 0.1, which is reduced by a factor of 0.1 at epochs 30, 60, and
80. The last layer NC-VIBN model scales the latent KL-divergence term with β = 10−5, applies a
weight prior with precision 101 to the decoder’s weights, and dampens the initial variance by a factor
of 10−3. To account for the higher sampling variance caused by the larger latent space dimension,
samples are rescaled by a factor of 0.75.

Results. The last layer setup of NC-VIBN matches the deterministic baseline on ImageNet regarding
MCR, ECE, and AUMRC, while substantially improving the calibration by reducing the ECE from
0.037 to 0.023. For CIFAR-10, CIFAR-100, and Tiny ImageNet, we test both the baseline last-layer
VIBN as well as our proprosed noise-contrastive VIBN. For this setup again, our NC-VIBN models
consistently perform significantly better than the respective VIBN models on all datasets with respect
to all evaluation metrics.

Comparing this additional last-layer setup to the full setup in the main paper, see Tab. 1, we find that
the last-layer setup tends to be already competitive in terms of accuracy, but that our full setup has
clear benefits in terms of uncertainty estimation, where it performs strictly better regarding the ECE
and NLLH. The benefit of the last-layer setup is that it easily scales to large-scale datasets such as
ImageNet.

B.5 ENSEMBLING

We compare our NC-VIBN models with deep ensembles (Lakshminarayanan et al., 2017) on CIFAR-
10, CIFAR-100, and Tiny ImageNet, see Tab. 7. While an ensemble of four deterministic networks
performs better than a single NC-VIBN network, it constitutes an almost fourfold increase of
parameters and computation. A more appropriate comparison in terms of computational effort and
memory requirements is thus to compare an ensemble of deterministic networks to an ensemble of
NC-VIBN networks. Here, the NC-VIBN ensembles are significantly more accurate, achieve lower
NLLH and comparable AUMRC for all datasets. However, ensembles of NC-VIBN networks are not
calibrated as well as deterministic ensembles. This is because our NC-VIBN models are designed to
achieve good calibration with a single model and averaging the predictions of multiple NC-VIBN
models leads to underconfidence.
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