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ABSTRACT

Multiphysics simulation, which models the interactions between multiple phys-
ical processes, and multi-component simulation of complex structures are criti-
cal in fields like nuclear and aerospace engineering. Previous studies often rely
on numerical solvers or machine learning-based surrogate models to solve or
accelerate these simulations. However, multiphysics simulations typically re-
quire integrating multiple specialized solvers—each responsible for evolving a
specific physical process—into a coupled program, which introduces significant
development challenges. Furthermore, no universal algorithm exists for multi-
component simulations, which adds to the complexity. Here we propose com-
positional Multiphysics and Multi-component Simulation with Diffusion mod-
els (MultiSimDiff) to overcome these challenges. During diffusion-based train-
ing, MultiSimDiff learns energy functions modeling the conditional probability
of one physical process/component conditioned on other processes/components.
In inference, MultiSimDiff generates coupled multiphysics solutions and multi-
component structures by sampling from the joint probability distribution, achieved
by composing the learned energy functions in a structured way. We test our
method in three tasks. In the reaction-diffusion and nuclear thermal coupling prob-
lems, MultiSimDiff successfully predicts the coupling solution using decoupled
data, while the surrogate model fails in the more complex second problem. For
the thermal and mechanical analysis of the prismatic fuel element, MultiSimDiff
trained for single component prediction accurately predicts a larger structure with
64 components, reducing the relative error by 40.3% compared to the surrogate
model.

1 INTRODUCTION

Multiphysics simulation involves the concurrent modeling of multiple physical processes—such
as heat conduction, fluid flow, and structural mechanics—within a single simulation framework
to accurately capture the coupling effects between different physical processes. Similarly, multi-
component simulation focuses on simulating complex structures composed of multiple similar com-
ponents. Component is defined as: a repeatable basic unit that makes up a complete structure. For
example, the reactor core typically consists of hundreds or thousands of fuel elements arranged in
a square or hexagonal pattern. These simulations are essential across various scientific and engi-
neering disciplines, including nuclear engineering (Ma et al., 2022} |Chen et al., |2021)), aerospace
engineering (Candeo et al., 2011} Wang et al, 2023a), civil engineering (Sun et al.l 2017; Meyer,
et al} [2022), and automotive industry (Ragone et al [2021)). Despite their significance, both multi-
physics and multi-component simulations share a common challenge: while simulating individual
components or physical processes is relatively straightforward, modeling the entire system with all
its interactions is vastly more complex.

Numerous numerical algorithms have been developed for multiphysics simulation, which are
broadly categorized into loose coupling and tight coupling (Hales et al., [2015). Loose coupling in-
volves solving each physical process independently while treating the others as constant. Solutions
for one physical process are iteratively transferred to related physical processes until convergence
is achieved, often using techniques like operator splitting (MacNamara & Strang, |2016) and Picard
iteration (Terlizzi & Kotlyar} [2022). Tight coupling, on the other hand, assembles equations of all
physical processes into a large system, solving them simultaneously (Knoll & Keyes| 2004). While
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Figure 1: MultiSimDiff schematic. Our proposed algorithm can use models trained with decoupled
data to predict coupled solutions (top) and use models trained with small structure simulation data
to predict solutions for large structures (here 64 components)(bottom).

this method can potentially yield more accurate results, it encounters challenges such as high com-
putational costs, varying spatial and temporal resolutions, and differing numerical methods across
physical processes, leading to a more common use of loose coupling in engineering applications. In
multi-component simulation, directly simulating the overall structure requires high computational
cost and may encounter difficulties in convergence due to the increase in degrees of freedom. Sub-
structure methods have been used in fields like nuclear engineering (Chen et all, [2021)) and civil

engineering (Sun et al.l 2017)) to reduce modeling and computational costs for repetitive compo-
nents.

Despite advances in numerical algorithms, several significant challenges remain. In multiphysics
simulations, considerable time and effort are required to develop programs that couple different
specialized solvers. Furthermore, the complexity of the system increases due to coupling, requiring
more computing resources. While some studies employ machine learning-based surrogate models to
accelerate multiphysics simulations (Sobes et al.}, 2021}, [Park et al.,[2021)), these models still depend
on coupled data for training, which necessitates the prior development of coupled numerical solution
programs. In the case of multi-component simulations, the substructure method has primarily been
applied to mechanical problems, with no widely applicable general method for multi-component
systems. Consequently, current approaches often rely on selecting representative units or imple-
menting simplifications for the analysis of complex structures, which can compromise the accuracy
and scope of the simulation.

To address these challenges, we propose compositional Multiphysics and Multi-component
Simulation with Diffusion models (MultiSimDiff). The core innovation of MultiSimDiff is its treat-
ment of multiphysics and multi-component simulations as generative probabilistic modeling, where
interactions between multiple physical processes or components are captured through composing
learned energy functions conditioned on others in a structured way. In multiphysics simulation,
MultiSimDiff generates coupled solutions (accounting for interactions between different physical
processes) from decoupled data (assuming other fields are known and focused on solving a single
field) by modeling the solutions of physical processes as a joint probability distribution. The solu-
tion for each individual process is treated as a conditional probability distribution, based on Bayes’
theorem. By training diffusion models on decoupled data, we capture these condi-
tional distributions. During inference, the model combines these distributions and performs reverse
diffusion to produce the coupled solution. For multi-component simulations, MultiSimDiff models
each component’s solution as a conditional probability distribution using the local Markov property,
conditioned on neighboring components. By training diffusion models on small structures, we create
conditional models for individual components. During inference, reverse diffusion is applied itera-
tively across all components, yielding the solution for the entire structure. We have mathematically
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derived the principles why MultiSimDiff can obtain coupled solutions and large structure solutions
in Sections[3.1]and[3.2] A schematic of MultiSimDiff is provided in Fig.

We illustrate the promise of this approach through three challenging tasks. First, we demonstrate
its capability for multiphysics simulation by applying it to coupled reaction-diffusion equations and
nuclear thermal coupling combined with conjugate heat transfer. Second, we verify its capability in
multi-component simulation through thermal and mechanical analysis of prismatic fuel elements.

Concretely, our contributions are threefold: (1) We introduce a novel approach, MultiSimDiff, for
multiphysics and multi-component simulations, framing the problem in terms of joint probabilis-
tic modeling. By training on decoupled (small structure) training data, MultiSimDiff can gen-
erate coupled (large structure) solutions. (2) We create and open-source benchmark datasets for
both multiphysics and multi-component simulations, providing a valuable resource for future re-
search. (3) Our method demonstrates success in both domains. For multiphysics simulation, Mul-
tiSimDiff accurately predicts coupled solutions in complex problems where surrogate models fail.
In multi-component simulations, MultiSimDiff, trained on single components, accurately predicts
larger structures with up to 64 components, reducing relative error by 40.3% compared to surrogate
models.

2 RELATED WORK

Multiphysics simulation. Most existing studies develop unified surrogate models for all physical
processes by coupling solutions(Tang et al. [2024; |[Ren et al., 2020; Park et al.l [2021; [Wang et al.|
2023b). For complex problems, programs for each physical process are typically independent. It
is often feasible to establish a surrogate model for one specific physical process and then integrate
it with other numerical programs (EI Haber et al.l |2022; Han et al 2019). Alternatively, surrogate
models can be constructed separately for each physical processes and iteratively converged through
an iterative process (Sobes et al.| [2021)). Because the purpose of our algorithm is to infer coupled
solutions through models trained with decoupled data, and establishing the surrogate model for all
physical processes requires coupling solution training models, we adopt the method of establish-
ing surrogate models for each physical process separately as the baseline to validate the proposed
algorithm.

Multi-component simulation. To our knowledge, there do not exist utilized machine learning meth-
ods specifically designed for multi-component simulation. A relevant study is the CoAE-MLSim
algorithm (Ranade et al., [2021). This algorithm combines neural networks with numerical itera-
tion. It first partitions the computational domain into multiple subdomains, and then trains a neural
network to learn the flux conversation between subdomains. During inference, the neural network
with flux conservation is applied sequentially in each subdomain, looping until convergence. We
further extend this algorithm to multi-component simulation and use it as a baseline. Besides, graph
neural network (GNN) (Wu et al., [2020) can learn on small graphs and inference on larger graphs
(Xu et al.,|2019); Graph Transformer (Kreuzer et al.}|2021) employs the Laplacian matrix of a graph
to characterize its structure, and by leveraging the Transformer architecture, it achieves learning on
graphs. We also compare MultiSimDiff with GNN and Graph Transformer.

Compositional models. Recent research has extensively explored the compositional combination of
generative models for various applications, including 2D image synthesis (Du et al.,2020; |L1iu et al.}
20215 Nie et al.| 2021} [Liu et al., 2022; [Wu et al., 2022; Du et al.| [2023} Wang et al.| [2023c), 3D
synthesis (Po & Wetzstein, [2024), video synthesis (Yang et al.| [2023a)), multimodal perception (Li
et al., [2022), trajectory planning (Du et al., 2019; [Urain et al., [2023} |Gkanatsios et al., 2024; |Yang
et al.l |2023b), inverse design (Wu et al.| 2024b), and hierarchical decision making (Ajay et al.,
2024). A particularly effective approach for combining predictive distributions from local experts is
the product of experts framework (Hinton, 2002; (Cohen et al., 2020; Kant et al., 2024; Tautvaisas &
Zilinskas, [2023). Their focus is on how a single object is influenced by multiple factors, such as
generating images that meet various requirements in image generation (Du et al.}[2023)) or enhancing
the lift-to-drag ratio under the influence of two wings in inverse design (Wu et al.| [2024b)). How-
ever, our problem involves multiple objects, such as multiple physical processes and components,
requiring the capture of interactions between these fields or components. Existing research is not
applicable to multiphysics and multi-component simulation. To the best of our knowledge, we are
the first to introduce a compositional generative approach to multiphysics and multi-component sim-



Under review as a conference paper at ICLR 2025

ulations, demonstrating how this framework enables generalization to far more complex simulation
tasks than those encountered during training.

3 METHOD

In this section, we introduce the principle of MultiSimDiff solving multiphysics and multi-
component simulation in section [3.1]and section [3.2] respectively.

3.1 MULTIPHYSICS SIMULATION

Consider a complex multiphysics simulation problem that consists of multiple physical processes
: z = (21,29,...,2,), Where each z; may contain one or more fields. For example, the mechan-
ics contains the stress and strain fields in three directions. Each process z; has its own governing
equation which depends on other processes , and solving equations for other processes also requires
that process. Therefore, all equations must be solved simultaneously to achieve the most accurate
representation of the physical system.

Simulating all the processes z together can be challenging, while it will be simple if we simulate a
single process z;. By specifying the other processes z; = (21, ..., Zi—1, Zi4+1, ---, 2n) and the given
outer input:

zi = f(22:,C) )
where f is a numerical solver. Omitting the given condition C, then: z; = f(z;). Now we consider
the results of multiple physical processes as a joint probability distribution:

(2«'1,227...7271) Np(217227"'7z’n) (2)

For each process, we consider it as a conditional distribution: z; ~ p(z;|2x;), which relates to the
joint distribution via:

p(21, 22, o 2n) = P(il22i)P(2i) 3)
Writing the probability distribution in the form of (learnable) energy functions E(z) (Du et al.,
2023}; LeCun et al., [2006), the energy functions relates to the joint probability of z, the conditional
probability of z;, and the marginal distribution of z.; respectively by:

1 — z
p(z) = e E®

1 Bz
e [t 4
Z(25:) @

1
p(zzi) = Z?ge E(zi)

where Z, Z_; are normalization coefficients (constants). Note that for p z,|z;,£7 ), since 2 1s the
condition, the normalization Z(z;) depends on z.;. Substituting Eq. [4]into Eq. |3| then taking
logarithms of both sides, we have:

E(2) +1ogZ = [E(2 | 2:) +108Z(2:)] + [E(22:) + logZ4i] (5)
Taking the derivative w.r.t. z; on both sides, we have:

V. E(z1, 22, .. 2n) = V5, E(2i]2;) (6)

p(2i | 221) =

which uses the fact that logZ, logZ;, logZ(zx;), and E(zx;) are all independent of z;.

Eq. [fis the foundation of our compositional multiphysics simulation method. We see that when
sampling the joint distribution p(z1, 22, ..., 2, ), we can simply use the learned conditional diffusion
model to sample each z;, while using the estimated zZ; of other physical processes as conditions.
This means that to learn the multiphysics simulation of multiple physical processes 21, 2o, ..., Zn,
we no longer need to develop a coupled algorithm that simultaneously solves all physical processes.
Instead, we can simply use decoupled solvers (each physical process is solved independently while

! In this paper, “outer inputs” refers to the inputs of the physical system.
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Algorithm 1 Algorithm for multiphysics simulation by MultiSimDiff.

Require: Compositional set of diffusion model €} (z; 5, C, s),i = 1,2, ..., N, outer inputs C, diffu-
sion step S, number of external loops K, number of physical processes N.
1: z¢ ~N(0,I) //initialize estimated fields z{
// add an external loop to improve the estimated fields z{:
2: fork=1,..., K do
3: 27 < z7 // update previous estimated fields £
4:  z£ ~ N(0,I) // initialize current estimated fields z¢
50 2.5 ~N(0,I) //initialize physical fields z;
/I denoising cycle of diffusion model:

6: fors=25,...,1do
7: A=1-—Zifk > lelse 1 // define the weights of 7" and
/' loops for each physical process:
8: fori=1,...,N do
9: w ~ N(0,1)
/I use weighted estimated fields as conditions for single step denoising:
10 Zis—1 = \/%Ts(zzs - \}%eg(zw | A2%; + (1= A)2%;,Cs)) +osw
/I'update the estimation of current field:
11: 28 = \/%(z” — VI —asey(zis | A2 + (1= N)2%,, 0, 8))
12: end for
13:  end for
14: end for

15: return z;o

treating the other physical processes as known) to generate data, learn the conditional distributions
p(2i|z2i) o< e”PGil2#) and in the inference time, sample from the joint distribution via Eq. EI,
achieving multiphysics simulation. During training, the energy F/(z;|2.;) is implicitly learned via
the diffusion objective below, which learns the gradient of the energy:

Lyvsg = ||€ - 69(\/ 1—Bsz + 556%2#,5)”%7 € N(O,I) (7

where the denoising network €y(+) corresponds to the gradient of the energy function V. Ey(-) (Du
et al.,[2023). During inference, we sample from the joint distribution p(z1, 22, ...z, ) via (Ho et al.
2020):

1 1« )
Zis—1 = \/7073 (Zi,s - T;SGZQ(Zi,S | z;i,s)> +osw, w~N(0,I) ¥

1 .
28 = VA (21,5 — VI —seh(2is | 254, s)) )
fors =5,5—1,..1and i = 1,2,...n. Here, 2{ represents the estimated value for the ith field z;,
25, = (21, -2{_1,2{_1,...2;,), and 0 is the noise level.

This iterative method is similar to the Expectation-Maximization (EM) algorithm (Moon, |1996),
refining each variable’s estimation based on current estimates of others. An external loop can be
added to repeat the diffusion model’s inference, using the previous step’s physical fields to improve
the initial estimate. The ablation study about hyperparameters K, A and the estimation method are
discussed in Appendix [F] The algorithm is shown in Algorithm[I] Line 2 is the external loop, while
lines 6 to 11 represent the denoising cycle of the diffusion model. In each diffusion step, the physical
physical processes are updated sequentially, with z; using the estimated physical processes that
have already been updated at this diffusion step.

3.2 MULTI-COMPONENT SIMULATION

Consider a complex structure that is composed of many components: V' = v; UvaU. . .Uw,, and the
solution in each component v; is z,,. It should be noted that v; represents an entity here, and if there
are multiple physical processes on this entity, it is also a multiphysics problem. Each component
shares similarities and is arranged in a specific pattern, like an array, to compose this complex struc-
ture. Simulating the entire structure V' can be challenging while simulating an individual component
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v, is easier. By specifying the boundary condition zs,,,, the given outer inputs C, and the geometry
v; of component v;, we can compute z,,,:

Zvi = f(Zavi7C7 Ui) (10)

where f is a numerical solver. The outer inputs C' and geometry v, are given conditions, 2g,, is
boundary conditions. Omitting the given condition, then: z,, = f(za,,). Then we divide the whole
geometry V to three parts: V' = v; Udv; Uv,,, Where v;, represents other parts of V' except v; U dv;.
The solution of the whole geometry V' can be written as the following probability distribution:

(ZU1 ) Z’Uz) ceey Z’Un) = (Zvi b) Zavi b) Zv,io) ~ p(zv1 ) Z@’Ui b) ZU’io) (1 1)

Consider the complex structure as an undirected graph G = (V, E), and the random variable z,,
is the property of component v;. The graph G satisfies the local Markov property: A variable is
conditionally independent of all other variables given its neighbors. Thus, z,,, satisfies

(z0; L 2v\Nwi))|200; (12)

Here Ow; is the set of neighbors of v;, N[v;] = v; Udv;, and V'\ N[v;] = v;,. By using this property
of Markov random field, p(zy,, 2oy, , 2v,, ) can be written as:

290, )P(20v;) (13)

Writing the probability distribution in the form of energy, and through the same derivation as in
Section [3.1] we obtain:

p(zvi ) 2O ZU’io) = p<zi|’zavi )p(zvio

vzui E(Zv'i ) ROV, ZUio) = vzv,; E(Zvi |28Ui) (14)

Therefore, when sampling the joint distribution p(zy,,, Zyy, ---s Zv,, ), We can simply use the learned
conditional diffusion model to sample each z,,, while using the estimated z§,, as conditions. The
multi-component simulation can be achieved using an algorithm similar to multiphysics simulation.
Since each z,, is inferred with the same model, it can be processed together, improving inference
efficiency by eliminating the need for additional loops for each physical process. We provide Alg.
[2in Appendix [A]for multi-component simulation. Additionally, we use the assumption of Markov
random fields in the derivation. The rationality of this assumption and the application scenarios of
the algorithm are discussed in Appendix [J]

Our proposed framework of multiphysics simulation in Section [3.1] and multi-component simula-
tion in Section constitute our full method of compositional MultiPhysics and Multi-component
Simulation with Diffusion models (MultiSimDiff). It circumvents the development of coupled pro-
grams that requires huge development efforts, and achieves multiphysics and multi-component sim-
ulation by composing the learned conditional energy functions according to the variable dependen-
cies. Below, we test our method’s capability in challenging engineering problems.

4 EXPERIMENTS

In the experiments, we aim to answer the following questions: (1) Can MultiSimDiff predict coupled
solutions (accounting for interactions between different physical processes) from models trained in
decoupled data (assuming other processes are known and focus on solving a single process)? (2)
Can MultiSimDiff predict large structure solutions from a model trained in small structure data?
(3) Can MultiSimDiff outperform surrogate modeﬂ in both tasks? To answer these questions, we
conduct experiments to assess our algorithm’s performance on two problems across three scenar-
ios. In Section we solve the reaction-diffusion equation. While it’s not a classic multiphysics
coupling issue since both quantities are part of concentration fields, we consider them as separate
physical processes to validate the capability of MultiSimDiff for multiphysics simulation. Section
4.2)examines a more complex scenario involving various types of coupling: region, interface, strong,
weak, unidirectional, and bidirectional to further test the algorithm’s capacity to handle multiphysics
simulation. Section[4.3]simplifies actual engineering problems to evaluate the algorithm’s effective-
ness with multi-component simulation. Each experiment uses two network architectures, training

The surrogate model mentioned in this article involves inputting the system’s input into a neural network
to directly predict the output in one step, distinguishing it from the diffusion model, which uses the input as a
condition to step-by-step generate the output through denoising.
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both with their respective diffusion and surrogate models for comparison, employing consistent hy-
perparameters and settings to ensure fairness. The computational domains of experiment 1 and
experiment 2 are on regular meshes, using Fourier neural operator (FNO) (L1 et al.|[2021;|Lim et al.,
2023)) and U-Net (Ronneberger et al., 2015)) as network architectures. The computational domain of
experiment 3 is on a finite element mesh, using Geo-FNO (Li et al.,2023) and Transolver (Wu et al.,
2024a)) as the network architecture. Additionally, in experiment 3, we also compare MultiSimDiff
with graph neural networks GIN (Xu et al.,|2019) and Graph transformer SAN (Kreuzer et al.|[2021).
To highlight the difference between training and testing data, Appendix|[G]calculates the Wasserstein
distances between decoupled and coupled data in multiphysics problems, as well as between small
and large structural data in multi-component problem, and visualizes them. The code is available
at the anonymous repository. As another contribution to the community, we will also open-source
the data to facilitate future method development of multiphysics and multi-component simulations.
In Appendix [K] we conduct a comparison of our dataset with existing scientific datasets (Takamoto
et al., [2022).

4.1 REACTION-DIFFUSION

Reaction-diffusion (RD) equations have found wide applications in the analysis of pattern formation,
including chemical reactions. This experiment uses the 1D FitzHugh-Nagumo reaction-diffusion
equation (Rao et al.l [2023), it has two concentration fields: u,v. The objective is to predict the
system’s evolution under different initial conditions. We use surrogate models that iteratively in-
teract as a baseline. The training data consists of decoupled data, where other physical processes
are assumed and treated as inputs to solve the equations governing the current physical process . In
this experiment, a Gaussian random field (Bardeen et al., [1986) is employed to generate the other
physical processes and initial conditions, and numerical algorithms are used to compute the solution
of the current physical process. The validation data similarly consists of decoupled data not used
during training. For the test data, initial conditions for both physical processes are generated using
a Gaussian random field, and the ground-truth coupled solution is obtained using a fully coupled
algorithm. Further details on the datasets, equation, network architecture, and training process are
provided in Appendix

Table 1: Relative L2 norm of error on reaction-diffusion equation for multiphysics simulation.

U v
method decoupled coupled decoupled coupled
surrogate + FNO 0.0669 0.0600 0.0080 0.0320
MultiSimDiff (ours) + FNO 0.0270 0.0290 0.0102 0.0264
surrogate + U-Net 0.0152 0.0184 0.0039 0.0174

MultiSimDiff (ours) + U-Net 0.0119 0.0141 0.0046 0.0174

Table[T|presents the relative L2 norm (L2 norm of prediction error divided by L2 norm of the ground-
truth) in predictions made by surrogate model and MultiSimDiff on a validation set of decoupled
data and a test set of coupled data. For FNO, the prediction error for u is comparable between
MultiSimDiff and surrogate models on decoupled data; however, MultiSimDiff shows a significantly
larger error in predicting v, which is four times that of the surrogate model. As a result, the error in
predicting the coupled solution for v is greater than that of the surrogate model, while the error for u
is lower. For U-Net, the prediction errors for v and v are similar between MultiSimDiff and surrogate
models on decoupled data, but MultiSimDiff achieves a lower error for the coupled solution.

This straightforward experiment tests the correctness of MultiSimDiff but shows no significant ad-
vantages over the surrogate model. However, the surrogate model fails in solving more complex
problems, which will be discussed in the next section.

4.2 NUCLEAR THERMAL COUPLING

This experiment tests the performance of MultiSimDiff in more physical processes and coupling
modes, including both regional and interface coupling, strong coupling and weak coupling, unidi-
rectional and bidirectional coupling. We focus on nuclear thermal coupling in transient conditions
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Figure 2: Problem description of nuclear thermal coupling.

for plate fuel elements. To simplify, a typical pin cell is analyzed (as shown in Fig. 2a)), and the
transient disturbance is modeled as a change in neutron flux density at the boundary. We aim to
solve the neutron physics equation across the entire domain, the heat conduction equation in solid,
and the flow heat transfer equations in fluid. This problem involves conjugate heat transfer between
solid and fluid phases, presenting an interface coupling issue. Additionally, the negative feedback
between the neutron physics field and the temperatures of the fluid and solid introduces a regional
coupling. Aside from the unidirectional coupling from the fluid fields to the neutron physics field,
all other interactions are bidirectional. The neutron physics field is weakly coupled with the tem-
perature fields of solid and fluid, while the coupling effect at the interface between solid and fluid is
strong. The objective is to predict the evolution of the entire physical system under different neutron
boundary conditions. The coupling relationship between different physical processes are shown in
Fig. [2b]

Generating estimated physical fields in this two-dimensional time series problem with three physical
processes is challenging using Gaussian random fields. To address this, we employ a pre-iteration
method for data generation. The validation dataset consists of decoupled data not used during train-
ing, while the test dataset comprises coupled data. Coupled data is computed using the operator
splitting iterative algorithm (MacNamara & Strang, 2016), which exchanges information between
physical processes at each time step. Additional details on the datasets, governing equations, net-
work architecture, and training process can be found in Appendix [C]
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Figure 3: Comparison of prediction results between MultiSimDiff and surrogate model. The surro-
gate model fails on the test set of the coupled scenario.

Table 2] displays the relative prediction errors of surrogate models and MultiSimDiff on a validation
set of decoupled data and a test set of coupled data. In single physical process prediction (decoupled
data), surrogate models outperform MultiSimDiff. However, in predicting the coupled solution, all
surrogate models fail except for the neutron physics field, with the predicted solid and fluid temper-
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Table 2: Relative L2 norm of prediction error on nuclear thermal coupling for multiphysics simula-
tion. The unitis 1 x 1072,

neutron solid fluid
method decoupled coupled decoupled coupled decoupled coupled
surrogate + FNO 0.251 22.1 0.0445 31.8 0.106 10.2
MultiSimDiff (ours) + FNO 0.738 8.42 0.175 9.72 0.615 7.31
surrogate + U-Net 0.181 445 0.0800 18.2 0.0927 8.03
MultiSimDiff (ours) + U-Net 0.487 1.97 0.108 2.87 0.303 3.91

ature fields shown in Fig. [3| (for more visualizations, see Fig. [5). The neutron physics field remains
relatively accurate because the feedback from solid and fluid temperatures is weak and primarily
driven by external input boundary conditions. In contrast, solid temperature and fluid fields are
significantly influenced by other physical processes , leading to non-physical predictions due to the
lack of iterative process data during training. In comparison, MultiSimDiff more accurately captures
the morphology of coupled solutions and demonstrates higher accuracy. In addition, we further use
DDIM to accelerate sampling and compare the operational efficiency of different
methods. MultiSimDiff achieves an acceleration of up to 29 times, with detailed information in
Appendices[Hand[l]

4.3 PRISMATIC FUEL ELEMENT

Heat pipe boundary

Fuel boundary

Matrix

(a) The structure used to generate training data. (b) Larger structure for testing.

Figure 4: Problem setup of the prismatic fuel element. In (a), the left figure shows the entire reactor,
with the purple section representing the reactor core, which mainly contains fuel elements, a matrix,
and heat pipes. The right figure illustrates a portion of the reactor core, displaying only the matrix
while omitting the heat pipes and fuel elements. This structure composed of 16 fuel elements is used
to generate training data. (b) is a large structure composed of 64 elements used for testing.

This experiment tests the ability of MultiSimDiff to solve multi-component simulation problems,
focusing on the thermal and mechanical analysis of prismatic fuel elements for a new type of reactor
2022), as shown in Fig. ] The reactor core consists of three components: fuel, matrix,
and heat pipe. Since engineering focuses mainly on the matrix, we consider the fuel and fluid as
boundary conditions for analysis. Different heat fluxes will be assigned to the fuel boundary to
simulate various heat release behaviors of the fuel rods. The aim is to train a model that predicts its
temperature 7" and strain €, €, based on the solutions of its three neighbors and its heat flux, and
then use this basic model to predict larger structure as shown in Fig. 4|

The training data originate from a medium structure simulation that includes 16 fuel elements, as
shown in Fig. [a} hence, a single simulation data point can generate 16 training data. The well-
trained model will be tested on two structures: one is the medium structure used for data generation,
and the other is a large structure containing 64 fuel elements. Further details on the datasets, network
architecture, and training process are provided in Appendix [D]

Table [3] presents the prediction relative errors of surrogate model and MultiSimDiff across three
tasks: a single fuel element, a medium structure of 16 fuel elements, and a large structure of 64 fuel
elements. The average relative error of strain €., €, is denoted as . GIN and SAN learn on small
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Table 3: Relative L2 norm of prediction error on prismatic fuel element experiment, for
single-component and multi-component simulation. The multi-component includes 16-component
(medium) and 64-component (large) simulations. The unit is 1 x 1072,

single 16-component 64-component
method T € T € T €
GIN - - 1.96 3.18 4.63 7.02
SAN - - 0.114 165 1.00x10* 1.18x10%
surrogate + Geo-FNO 0.0883 0.195 0.337 259  divergent divergent
MultiSimDiff (ours) + Geo-FNO  0.139  0.459 0.338 242 0.950 3.52
surrogate + Transolver 0.0764 0.251 0.314 1.13 1.25 3.31
MultiSimDiff (ours) + Transolver 0.107 0.303 0.213  1.03 0.759 1.94

graphs with 16 components and test on large graphs with 64 components. Due to the uniformity
of graph structures in all training data and the fact that SAN learns a global relationship, SAN fails
to predict larger structures. In contrast, GIN, capable of learning a local relationship, succeeds in
handling larger structures. However, when compared to the surrogate model and MultiSimDiff, GIN
has a larger error.

Subsequently, a comparative analysis between the surrogate model and MultiSimDiff has been con-
ducted. The surrogate model performs better in predicting a single component, but for medium
structure, MultiSimDiff outperforms it. It’s important to note that the surrogate model’s predictions
occasionally diverge, necessitating adjustments to the relaxation factor to maintain stability. For the
large structure, U-Net in the surrogate model demonstrates better stability, while the FNO model
continues to diverge even after relaxation factor adjustments. MultiSimDiff is very stable and ac-
curate, and no divergence phenomenon has been observed. Compared with the surrogate model,
the relative error of MultiSimDiff has been reduced by 40.3% on average, demonstrating its ability
to generalize to much larger multi-component simulations while trained on single components. In
addition, we further use DDIM to accelerate sampling and compare the operational efficiency of dif-
ferent methods.MultiSimDiff achieves an acceleration of up to 41 times, with detailed information
in Appendices [H|and[l]

5 LIMITATION AND FUTURE WORK

There are also several limitations of our proposed MultiSimDiff that provide exciting opportunities
for future work. Firstly, in multiphysics simulation, although the MultiSimDiff trained on decoupled
data can predict coupled solutions more accurately than baseline surrogate models, the prediction er-
rors are still higher compared to single physical processes predictions. In addition, there is a certain
gap in accuracy compared to models trained through coupled data, as shown in Appendix |El Fu-
ture efforts can focus on improving dataset generation, training methods, and incorporating physical
information to boost accuracy. Secondly, we plan to explore additional accelerated sampling algo-
rithms, aiming to significantly improve efficiency while maintaining prediction accuracy. Lastly, the
experiments in this paper simplify many aspects compared to real engineering problems, and future
work will aim to validate the algorithm in more complex real-world scenarios.

6 CONCLUSION

This work presents MultiSimDiff as a novel method for multiphysics and multi-component simula-
tions. In multiphysics scenarios, models trained on decoupled data can predict coupled solutions,
while in multi-component simulations, models trained on small structures can extrapolate to larger
ones. We develop three datasets to validate MultiSimDiff and compare it to the surrogate model
method. Results show that MultiSimDiff effectively predicts coupled solutions in multiphysics sim-
ulations where surrogate models fail, and exhibits greater accuracy in predicting larger structures in
multi-component simulations. We believe this approach provides a new approach to address multi-
physics and multi-component simulations, important across science and engineering.

10
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A ALGORITHM FOR MULTI-COMPONENT SIMULATION.

Multi-component simulation first requires training a diffusion model to predict the solution of the
current component based on the solutions of its neighboring components. Additionally, it is nec-
essary to define the connectivity of all components and the function f to update the surrounding
components’ solutions for each component. The multi-component simulation algorithm is presented
in Algorithm[2] Lines 6 to 11 are the denoising cycle of the diffusion model, in each diffusion step,
the solutions of each component are updated together.
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Algorithm 2 Algorithm for multi-component simulation by MultiSimDiff

Require: A diffusion model €y (za,,,C, s), outer inputs C, diffusion step S, number of exter-
nal loops K, number of component N, connectivity of all components adj, update function
F(Zoyy ooy 20, , adj) Of 2gy.

1: 25 ~ N(0,I)//initialize estimated solution for each component v;
/I Add an external loop to improve z :
fork=1,..., K do
2y, < 2, [/ update previous estimated solutions for each component Z7,

zf} ~ N(0,I) // initialize current estimated solutions for each component z¢

Zv;,5 ~ N(0,T) // initialize solutions for each component z,,

/I denoising cycle of diffusion model:

fors=5,...,1do

A=1-Zif k> lelse 1 //define the weights of 2 and z¢
Zow = f(25,, -, 25 adj) // update the solutions of surrounding components for each z,,
w ~ N(0,1I)
/I use weighted estimated solutions as conditions for single step denoising,
// update all components together:
10: Zyys—1 = \/%fs(zvi’s — \}%ee(zvm | Azg,. + (1- A)égvi,C)) + osw
/l update the estimated solutions of all components together

11: 28 = \/%(zvi,s — VT —aseg(20,,s | Az, + (1= N)25,.,C))

12:  end for

13: end for

14: return z,, o

LoD

B ADDITIONAL DETAILS FOR REACTION-DIFFUSION

This section provides additional details for Section[d.1]

Problem description. The 1D FitzHugh Nagumo reaction diffusion equation takes the form:

0

%:MuAu+u—u3—v+a7x€ [0,1],¢ € [0, 5]

0

8—1; = pyAv+ (u—v)B,2 € [0,1], € [0, 5] (15

[u,v] = [ug,vo, = € [0,1],t =0
The coefficients ji,,, 11y, @, and § are set to 0.01, 0.05, 0.1, and 0.25, respectively.

Dataset. We employed the solve_ivp function in Python to solve the reaction-diffusion equations.
The spatial mesh consisted of n,, = 20 points, the time step is adaptively controlled by the algorithm,
but only outputs the results of 10 time steps. To train the data for a single physical process, it was
necessary to assume the initial conditions of the other physical processes and the current field. For
instance, training u required assumptions about ug and v. The dimension of wg is [n,], which was
generated using a one-dimensional Gaussian random field, and v has dimensions [n:, n,], and was
generated by sampling a one-dimensional Gaussian random field n; times.

Model structure. The 2D U-Net and 2D FNO serve as both the surrogate and MultiSimDiff. U-
Net consists of modules: a downsampling encoder, a middle module, and an upsampling decoder.
The encoder and decoder comprise four layers, each with three residual modules and downsam-
pling/upsampling convolutions, with the third module incorporating attention mechanisms. The
middle module also contains three residual modules, with attention mechanisms included in the
second module. The input data is encoded into a hidden dimension before undergoing sequential
downsampling and upsampling. FNO consists of three modules: a lift-up encoder, n FNO layers,
and a projector decoder. Each FNO layer includes a spectral convolution, a spatial convolution, and
a layer normalization. The surrogate model predicts the evolution of the current physical process
using its initial conditions and those of other physical processes. Its input dimension is [b, 1, 10,
20] and output dimension is [b, 1, 10, 20]. The diffusion model has an input dimension of [b, 2,
10, 20] and an output dimension of [b, 1, 10, 20], with b representing the batch size. The shape of
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Algorithm 3 Surrogate model combination algorithm.

Require: Compositional set of surrogate model €}(z;, C),i = 1,2, ..., N, outer inputs C, maxi-
mum number of iterations M, tolerance ¢,,,,., relaxation factor .
Initialize constant fields z;, m =0
while m < M and € > €4, do

m=m-++1
21‘ = Z;
fori=1,..,Ndo
zi = aey(z4,C) + (1 — )z
end for
€ = Ll(zi — 2:’L)
end while
return z;

initial condition of [b, 1, 1, 20] and will repeat to align the required shape. The diffusion step of the
diffusion model is set to 250. More details are shown in Table [

Training. The surrogate model and MultiSimDiff are trained similarly, with further details in Table

Inference. The hyperparameter K is set to 2. The surrogate models’ combination algorithm in
experiments 1 and 2 is identical, as demonstrated in Algorithm 3] The relaxation factor « is set to
0.5.

Table 4: Hyperparameters of model architecture for reaction-diffusion task.

Hyperparameter name u [ v
Hyperparameters for U-Net architecture:

Channel expansion factor (1,2) (1,2)
Number of downsampling layers 2 2
Number of upsampling layers 2 2
Number of residual blocks for each layer | 3 3
Hidden dimension 24 24
Hyperparameters for FNO architecture:

FNO width 24 24
number of FNO layer 4 4
FNO mode [6,12] | [6,12]
padding [8,8] [8,8]

Table 5: Hyperparameters of training for reaction-diffusion task.

Hyperparameters for U-Net and FNO training u&v

Loss function MSE
Number of examples for training dataset 10*

Total number of training steps (surrogate; diffusion) | 10%;2 x 105
Gradient accumulate every per epoch 2

learning rate 1074

Batch size 256

C ADDITIONAL DETAILS FOR NUCLEAR THERMAL COUPLING

This section provides additional details for Section

Problem description. The goal of this problem is to predict the performance of plate-type fuel
assembly under transient conditions. A typical pin cell in JRR-3M fuel assembly (Gong et al., 2015)
is adopted as the computational domain, as shown in Fig. For simplicity, the cladding in the
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fuel plate is omitted here without losing the representativeness of its multiphysics coupling feature.
U-Zr alloy and lead-bismuth fluid are adopted as fuel and coolant materials, respectively. Their
physical property parameters can be found in the anonymous repository. We consider a single-
group diffusion equation for the neutron physics process and employ an incompressible fluid model
for coolant modeling. Temperature fields in solid and fluid can influence the macroscopic absorption
cross-section in the neutron physics equation, while neutron flux affects the heat source in the fuel
domain. Conjugate heat transfer occurs at the interface between the fluid and solid domains. While
the feedback of temperature on neutrons is inherently complex, a linear negative feedback is assumed
for simplicity. The governing equations are presented in Eq.[I6] Eq. and Eq.[I§]

10 t
;% = DA¢ + (3¢ — a(T))p,x € [0, Ly + Lyl y € [0, L], ¢ € [0,5]
16
5(0,1,1) = [(31) (10
QS(LS‘ +Lf7y7t) = ¢(‘T7O7t) = ¢(I7Ly7t) =0
Ts(x,y,t
% = Vk VT, + Ady,z € [0, L],y € [0,L,],t € [0,5]
0Ts(z,0,t)  OTs(z, Ly,t) (17)
= :O
oy dy
T3<L5,y,t) :Tf(LSay>t)
V-@=0,z€[Ls,Ls+ Lfl,y €[0,L,],t € [0,5]
oil .
p (81; + - Vﬂ’) = -Vp+uV?i+ f,x €[Ls,Ls+ Ly],y € [0,L,],t € [0,5]
oT (18)
PCp <8tf + - VTf) = kaQT,:c € [Ls, L +Lf],y S [O,Ly],t € [0, 5]
k an(Ls’yvt) —k 8TS(Ls,y,t)
s Ox o Ox

Here v is neutrons / per fission, D is the diffusion coefficient of the neutron, >, 3, are the fission
and absorption cross-section, respectively, and we only consider the feedback of temperature on the
absorption cross-section X, here. kg, ky are the conductivity of solid and fluid, respectively, both
being functions of 7.

Dataset. We utilize the open-source finite element software MOOSE (Multiphysics Object-Oriented
Simulation Environment) (Icenhour et al., [2018) to tackle the nuclear thermal coupling problem.
The solid temperature field uses a mesh of [64,8], the fluid fields have a mesh of [64,12], and the
neutron physics field employs a mesh of [64,20]. The neutron physics and solid temperature fields
are calculated using the finite element method at mesh points, while the fluid domain uses the finite
volume method at mesh centers. Interpolation is applied to align the neutron physics and solid
temperature values with the fluid fields. The time step is adaptively controlled by the algorithm,
but only outputs the results of 16 time steps. So the input dimensions for the surrogate models of
neutron physics field, solid temperature field, and fluid fields are [b,2,16,64,20], [b,2,16,64,8], and
[b,1,16,64,12], respectively. The input dimensions for the diffusion model of the three fields are
[b,3,16,64,20], [b,3,16,64,8], and [b,5,16,64,12], respectively. The output dimensions of the three
fields are [b,1,16,64,20], [b,1,16,64,8], and [b,4,16,64,12], respectively.

As noted, assuming the distribution of physical field data in high-dimensional problems is chal-
lenging. We recommend a pre-iteration method for data generation. Initially, we assume constant
values for all other physical fields and calculate the current field. This process repeats until all
fields are computed. If there are n physical fields, pre-iteration requires n - 1 calculations plus one
iteration for data generation, totaling 2n - 1 calculations. To accelerate data generation, the most
time-consuming field can be excluded from pre-iteration. In this problem, the fluid fields’ compu-
tation time is approximately three times that of the other fields, so it is excluded from pre-iteration.
The process begins by assuming constant fluid fields and solid temperatures to calculate the neutron
physics field, followed by using the resulting neutron physics field and assumed fluid fields’ temper-
ature to calculate the solid temperature. The data generation proceeds sequentially with calculations
for the fluid fields, neutron physics field, and solid temperature field.
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Model structure. The 3D U-Net and 3D FNO serve as both the surrogate model and MultiSimDiff,
using a layer design identical to the 2D. For regional coupling, concatenation is directly applied to
the channel dimension using the concat function. In contrast, for interface coupling, dimensions
must be replicated to align spatially before concatenation. The conditioning of the diffusion step
for FNO is operating in spectrum space (Gupta & Brandstetter, [2023)), which is better than in the
original space for this problem. The diffusion step of the diffusion model is set to 250. More details
are shown in Table[6l

Training. The surrogate model and MultiSimDiff are trained similarly, but training neutron physics
fields using MultiSimDiff requires more time to converge, with further details in Table

Inference. The hyperparameter K is set to 2. The relaxation factor for surrogate model « is set to
0.5.

Detailed results. Fig. [5] presents the results of predicting various physical fields using the last time
step surrogate model and MultiSimDiff + U-Net on the final test data. The neutron physics field
and solid temperature field are represented by ¢ and T, respectively. The fluid fields include four
physical quantities: T, P, ug, uy, totaling six quantities. Since the neutron physics field and the u,
component of the fluid fields are less influenced by other physical processes, the surrogate model can
still make predictions, but the accuracy is lower than that of the MultiSimDiff. Besides, the surrogate
model has failed to predict the other physical processes. In contrast, MultiSimDiff continues to
provide relatively accurate predictions, although some distortions are observed in certain regions.

Table 6: Hyperparameters of model architecture for nuclear thermal coupling task.

Hyperparameter name neutron [ solid | fluid
Hyperparameters for U-Net architecture

Channel Expansion Factor (1,2,4) (1,2,4) (1,2,4)
Number of downsampling layers 3 3 3
Number of upsampling layers 3 3 3
Number of residual blocks for each layer | 3 3 3
Hidden dimension 8 8 16
Hyperparameters for FNO architecture

FNO width 8 8 16
number of FNO layer 3 3 3
FNO mode [6,16,8] | [6,16,4] | [6,16,6]
padding [8.,8,8] [8.,8,8] [8,8,8]

Table 7: Hyperparameters of training for nuclear thermal coupling task.

Hyperparameters for U-Net and FNO training neutron&solid&fluid
Loss function MSE

Number of examples for training dataset 5x 103

Total number of training steps (surrogate; diffusion) | 10%;2 x 105
Gradient accumulate every per epoch 2

learning rate 10~*

Batch size 32

D ADDITIONAL DETAILS FOR PRISMATIC FUEL ELEMENT

This section provides additional details for Section[4.3]

Problem description. This problem aims to predict the thermal and mechanical performance of
prismatic fuel elements in heat pipe reactor Ma et al.| (2022) at different source power. The reactor
core is stacked up using a hexagonal prism SiC matrix, with multiple holes dispersed in the matrix
for containing fuel elements and heat pipes as shown in Fig. [f] The SiC matrix plays a role in
locating the fuel and heat pipes at expected positions in the core. The entire structure consists of two
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Figure 5: Comparison of surrogate model and MultiSimDiff for predicting all physical fields.

basic components, one oriented upwards and the other downwards, as illustrated in Fig. [7] Fission
energy released in fuel elements is dissipated using heat pipes. Both the fuel elements and heat
pipes are considered as boundaries here, and only the more concerned matrix behavior is analyzed
in the demonstration. Only strain is predicted here since stress can be derived from the mechanical
constitutive equation, and displacement is obtained through strain integration. The analysis uses the
plane strain assumption (¢, = 0) and excludes irradiation effects, simplifying it to a steady-state
problem.

Dateset. We use MOOSE to calculate the thermal and mechanical problems. The training data
comes from a medium structure simulation with 16 fuel elements, allowing each simulation to gen-
erate 16 training data, as shown in Fig. @ This structure is chosen because a fundamental com-
ponent, along with its neighboring components, is entirely contained within the interior, which is
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O
O Heat pipe y '

A
O

Figure 6: Schematic of heat pipe reactor core structure. The left figure shows a partial structure
of the entire reactor, with multiple holes dispersed in the matrix for containing fuel elements and
heat pipes. The right figure shows how to select a medium structure for analysis from the overall
structure.

Figure 7: Two basic components: one facing upwards (left) and the other facing downwards (right).

where most components that need to be predicted in large structures are located. When generating
data, the heat flux density is uniformly sampled from the range [10,105] W/m. A free boundary
condition is randomly assigned to one edge, while symmetric boundary conditions are applied to
the remaining two edges. Each fundamental component is uniformly meshed with 804 points, each
requiring the prediction of three physical quantities. To predict the central component, the heat flux
density of this component and the coordinates of each mesh point are concatenated with data from its
three neighboring components, yielding an input dimension of [b, 804, 15] for the diffusion model
and [b, 804, 12] for the surrogate model, where b is the batch size. The output dimension is [b, 804,
3]. The sequence of neighboring elements is consistent, with the downward-facing center element
being the upward-facing center element rotated by 180 degrees. This arrangement is illustrated in
Fig. [7} Boundary conditions are considered only for symmetric and free types, represented as [0, 1,
1] and [0, 0O, 0], respectively, and are replicated to a dimension of [804, 3].

Model structure. The Geo-FNO and Transolver serve as both the surrogate model and MultiSimD-
iff. Geo-FNO enhances FNO for irregular meshes using three modules: a geometry encoder that
converts physical fields from irregular to latent uniform meshes, FNO functioning in latent space,
and a geometry decoder that transforms physical fields from the uniform mesh back to the original
irregular mesh. We utilize a 2D Geo-FNO that transforms into a 2D uniform mesh. Transolver
is designed to tackle complex structural simulation problems involving numerous mesh points by
learning the intrinsic physical states of the discretized domain. Given a mesh set with /V points and
C features per point, the network first assigns each mesh point to M potential slices, transforming
the shape from N x C to M x N x C. It then applies spatially weighted aggregation, resulting
in a shape of M x C. Self-attention is used to capture intricate correlations among different slices,
after which the data is transformed back to the mesh points. The conditioning of diffusion step for
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Geo-FNO is also operating in spectrum space (Gupta & Brandstetter, [2023)). More details about the
network can be found in (Wu et al.l 2024a). The setting of hyperparameters is shown in Table @
The diffusion step of the diffusion model is set to 250.

Training. The surrogate model and MultiSimDiff are trained similarly, but training MultiSimDiff
requires more time to converge, with further details in Table 9}

Inference. This problem uses the same neural network to predict the performance of all elements,
allowing for simultaneous updates of the physical fields and enhancing inference speed. This method
applies to both diffusion and surrogate models. The hyperparameter K is set to 3.

Detailed results. Fig. [8]and Fig. [0 compares the results of predicting the large structure using the
surrogate model and MultiSimDiff + U-Net. Because the surrogate model of FNO fails in predicting
large structures, only the results of MultiSimDiff + FNO are provided in Fig. [I0] The strain is only
displayed in the x-direction due to its similarity in both  and y. The error graph indicates that
MultiSimDiff offers more accurate predictions.

Graph neural network and Graph Transformer configuration. For GIN and SAN, each compo-
nent is treated as a node in the graph, with training conducted on a small graph of 16-component,
and ultimately tested on a larger graph of 64-component. Compared with the surrogate model and
MultiSimDiff, they use only the system’s input as input features. In contrast, the surrogate model
and MultiSimDiff enrich its input by incorporating the solutions from the surrounding component,
thereby improving accuracy, as demonstrated in Table [3] The input to the GIN and SAN is the heat
flux density and boundary conditions of each component, and the output is the physical quantities at
all grid points on the component. GIN updates the nodes on the graph through the graph structure,
whereas SAN captures graph structural information by inputting the eigenvalues and eigenvectors of
the graph Laplacian matrix into a transformer. The training settings of GIN and SAN are consistent
with the MultiSimDiff. We have adjusted the number of network layers and the size of hidden layers
to obtain the model with optimal performance.

Table 8: Hyperparameters of model architecture for prismatic fuel element task.

Hyperparameter name
Hyperparameters for Transolver

Number of layers 5
Number of head 8
Number of slice 16
Hidden dim 64
Hyperparameters for Geo-FNO

Uniform grid size [64, 64]
FNO width 5

FNO mode (8.8]
Number of FNO layer 3
Hidden dim 64

Table 9: Hyperparameters of training for prismatic fuel element task.

Hyperparameters for Transolver and Geo-FNO training

Loss function MSE
Number of examples for training dataset 16000

Total number of training steps(surrogate;diffusion) 10%;2 x 10°
Gradient accumulate every per epoch 2

learning rate 1074

Batch size 256
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Figure 8: Comparison of surrogate models and MultiSimDiff + U-Net for predicting the temperature
of large structures.
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Figure 9: Comparison of surrogate models and MultiSimDiff + U-Net for predicting the strain of
large structures.
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Figure 10: The results of MultiSimDiff + FNO for predicting large structure.
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E COMPARISON OF MODELS TRAINED USING COUPLED AND DECOUPLED
DATA.

To further investigate the model’s boundaries for multiphysics simulation, we utilize coupled data to
train diffusion models and compare them to models trained on decoupled data in experiments 1 and
2. The input of the diffusion model is the external input of the physical system, while the output is the
solution of the coupled physical fields. In experiment 1, the input consists of the initial conditions of
u and v, with the output being their trajectories. Since u and v are defined on the same grid, a single
network can be employed to predict v and v together. In experiment 2, the input is the variation of
neutron boundaries over time, and the output is the trajectories of the neutron field, solid temperature
, and fluid fields. Since that the three fields are defined in different computational domains, three
separate networks are trained. Aside from the differences in input and output dimensions, all other
parameters remained consistent with those used in the decoupled scenario. The coupled datasets
for experiments 1 and 2 consist of 10,000 and 5,000 samples, respectively, which is consistent with
decoupled datasets. The model is evaluated using unseen coupling data during training.

The result is shown in Table[T0} the accuracy of the model trained with decoupled data decreased by
about 1 order of magnitude.

Table 10: Comparison of models trained on coupled and decoupled data.

Coupled data model [ Decoupled data model

Reaction-diffusion

U 0.00151 0.0141

v 0.00185 0.0174

Nuclear thermal coupling

neutron 0.00512 0.0197

solid 0.00098 0.0287

fluid 0.00302 0.0391

F ABLATION STUDY

F.1 METHOD FOR CALCULATING THE ESTIMATED PHYSICAL FIELDS
We compare two methods for estimating physical fields: one using z; from Eq. [0]and the other

using the current physical field z; ; with noise. As shown in Table [TT} 2f provides significantly
better results than z; 4, indicating that the estimate from z{ is more accurate.

Table 11: Comparison of methods for estimating physical fields.

zis | 2 (Eql9)
Reaction-diffusion
U 0.0525 | 0.0141
v 0.0355 | 0.0174
Nuclear thermal coupling
neutron 0.0184 | 0.0197
solid 0.0913 | 0.0287
fluid 0.1000 | 0.0391
Prismatic fuel element
T 0.0289 | 0.0076
€ 0.0083 | 0.0194

F.2 SELECTION OF HYPERPARAMETER K

This section examines how hyperparameter K affects the predictive performance of multiphysics
and multi-component problems in experiments 2 and 3. As shown in Tables[I2]and[I3] setting K to 2
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for multiphysics problems and K to 3 for multi-component problems is adequate. The multiphysics
algorithm updates physical fields at each diffusion time step, leading to faster convergence. In
contrast, the multi-component problem relies on the field estimated in the previous time step for
each diffusion iteration, resulting in slower convergence. Additionally, increasing K further has a
negligible effect on model performance.

Table 12: Hyperparameters of K for multiphysics simulation.

K | neutron | solid fluid

1 0.0199 | 0.0304 | 0.0524
2 | 0.0206 | 0.0287 | 0.0391
3 0.0203 | 0.0288 | 0.0395

Table 13: Hyperparameters of K for multi-component simulation.

T €

0.00907 | 0.0236
0.00833 | 0.0222
0.00785 | 0.0206
0.00772 | 0.0207
0.00750 | 0.0203

UI-PMI\)HN

F.3 SELECTION OF HYPERPARAMETER OF A\

The hyperparameters A determine the weight of the current physical field, theoretically requiring a
reliable estimate of O at the beginning and gradually increasing to 1 as diffusion progresses to pro-
vide better estimates of the current results in the later stage. We demonstrate this with experiment 3,
which involves solving 64 components with slow convergence, making it sensitive to hyperparame-
ter \. We set the values to 0, 1, 0.5, and a linear increase. When K is too large, result differences are
minor, except when A\ is 1; thus, K is set to 2. As shown in Table[T4] employing a linearly increasing
setting yields superior performance, which is consistent with the analysis.

Table 14: Hyperparameters of A for multi-component simulation.

A T €

0 0.00878 | 0.0228
1 0.00913 | 0.0237
0.5 0.00895 | 0.0233
linear increase | 0.00816 | 0.0217

G THE DIFFERENCE BETWEEN TRAINING DATASET AND TESTING DATASET.

For multiphysics simulation, we train models for each physical process using decoupled data and
combine them during testing to predict coupled solutions; for multi-component simulation, we train
a model to predict individual component, then combine it during testing to predict the large structure
composed of multiple components. To quantify the difference between the model’s training and
testing data, we calculate the Wasserstein distance (Feydy et al.l 2019) between the training and
validation data, as well as between the training and testing data, with the training and validation
data originating from the same distribution. In addition, we also used the t-SNE (Van der Maaten &
Hinton, |2008)) algorithm to visualize this difference.

The results are presented in Table[I3] In experiment 1, there is a significant difference between the
training and testing data, as can be seen from Fig. [TT] where only a small fraction of decoupled data
points fall within the range of coupled data. In experiment 2, the difference between the training

26



Under review as a conference paper at ICLR 2025

and testing data for the neutron physics field is relatively small, likely due to the weak coupling
effect of other physical processes on the neutron physics field. For the solid temperature field and
fluid field, the difference between the training and testing data is also very pronounced, with almost
no overlapping points in the Fig. [I2] In experiment 3, since the range of training data has been
expanded during data generation to cover as many potential scenarios of large structures as possi-
ble, the difference between the training and testing data is not as significant as in the multiphysics
problem, and the testing data are also within the range of the training data, as shown in the Fig. [[3]

Table 15: Wasserstein distance of datasets.

Training and validation | Training and testing
Reaction-diffusion
U 0.343 52.7
v 0.0435 20.3
Nuclear thermal coupling
neutron 42.4 31.3
solid 1.35 56.3
fluid 1.22 986
Prismatic fuel element
T 0.233 9.05
€ 0.625 12.5

(@) u. (b) v.

(a) Neutron. (b) Solid. (¢) Fluid.

Figure 12: Visualization of experiment 2 Dataset.

(a) T. (b) e.

Figure 13: Visualization of experiment 3 Dataset.
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H SAMPLING ACCELERATION.

By employing the DDIM algorithm to expedite the sampling process of diffusion models, we have
successfully enhanced the efficiency of model inference. The DDIM algorithm encompasses two
parameters: the number of time steps S and the parameter 7, which controls the noise (Song et al.|
2021):

11—
o= (19)

where 1) € [0, 1]. We conduct tests across various parameter combinations, including S = 10, 25, 50,
and n = 0, 0.5, 1, with a particular focus on the model’s performance in coupled and large structure
prediction. These three experiments all use the most accurate model, which is: U-Net, U-Net,
Transolver. Table[T6|indicates that in experiment 1, the setting of S = 25 closely mirrors the results
of S = 50, with n having a relatively minor impact. Table|17|indicates that in experiment 2, the
setting of S = 25 also approximates the outcome of S = 50 but is more sensitive to 7, with n =1
yielding the best performance. Table[I8]indicates that in experiment 3, S = 50 is the optimal setting,
and 1 = 0 provides the best results.

During the training of diffusion models, we uniformly set the number of time steps to 250. By
employing accelerated sampling techniques, we achieved a 10-fold acceleration for multiphysics
problems and a 5-fold acceleration for multi-component problem while ensuring the maintenance of
predictive accuracy.

Table 16: Relative L2 norm of error on reaction-diffusion equation for DDIM sampling.

U v
method decoupled coupled decoupled coupled

Original DDPM 0.0119 0.0141 0.0046 0.0174

S=10,n=0 0.0143 0.0170 0.0117 0.0215
S=25,n1=0 0.0123 0.0151 0.0082 0.0190

S =50,n= 0.0123 0.0147 0.0059 0.0179
S=25n=05 0.0123 0.0152 0.0082 0.0191
S=25n= 0.0119 0.0151 0.0081 0.0192

Table 17: Relative L2 norm of prediction error on nuclear thermal coupling for DDIM sampling.
The unitis 1 x 1072,

neutron solid fluid
method decoupled coupled decoupled coupled decoupled coupled
Original DDPM 0.487 1.97 0.108 2.87 0.303 3.91
S=10,n=1 0.638 1.89 0.261 4.45 0.478 442
S=25n=1 0.552 2.03 0.142 3.64 0.343 4.08
S=50,n=1 0.533 1.96 0.138 3.21 0.346 4.02
S=25n=05 2.82 2.78 0.793 5.28 0.970 4.70
S=25,n=0 10.9 10.3 2.99 14.4 1.82 8.20
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Table 18: Relative L2 norm of prediction error on prismatic fuel element experiment for DDIM
sampling. The unitis 1 x 1072,

single 16-component  64-component
method T € T € T €
Original DDPM  0.107 0.303 0.213 1.03 0.759 194
S=10,n= 0.207 0425 1.69 3.81 1.89 4.13
S=25n= 0.166 0353 0952 2.55 1.30 3.26

S =50,n= 0.158 0337 0.669 1.87 0.865 231
S=50,n=05 0150 0352 058 1.69 0954 2.1
S=50,n=1 0.130 0322 0.553 1.62 1.05 2.80

I EFFICIENCY ANALYSIS.

This section compares the computational efficiency of MultiSimDiff, surrogate model, and numeri-
cal programs. The time unit for each experiment is defined as the time required for a single neural
network inference. These three experiments all use the most accurate model. Since the surrogate
model and MultiSimDiff both use the same network architecture and have consistent network pa-
rameters, it is assumed that the time for a single inference using these two methods is equal. The
numerical programs are run on the CPU and have all been optimized to the best parallel count.

Let the number of physical processes be denoted by [V, the number of iterations for the surrogate
model by M, the number of diffusion steps by S, and the number of outer loop iterations for the
diffusion model by K. The computation time for the surrogate model is M x N, while the diffusion
model is K x .S x N. The specific choices of N, M, S, K for each experiment are presented in Table
1

The results are presented in Table 20| In experiment 1, the problem is relatively simple, and the
numerical algorithm achieves efficient solutions through explicit time stepping, while the introduc-
tion of MultiSimDiff actually reduces efficiency. However, in experiment 2, which addresses more
complex problems, MultiSimDiff achieves a 29-fold acceleration compared to numerical programs.
In experiment 3, comparing the results of 16 components with 64 components, it is observed that as
the computational scale increases, the acceleration effect of MultiSimDiff becomes increasingly sig-
nificant. Furthermore, when dealing with multi-component problems, the surrogate model requires
iteration to ensure the convergence of solutions across all components. Due to the large number
of components, the number of iterations needed significantly increases compared to multiphysics
problems, resulting in higher efficiency for MultiSimDiff. In addition, we have only compared the
efficiency of single computations for all experiments. When dealing with multiple problems si-
multaneously, the acceleration provided by MultiSimDiff will be even more pronounced due to the
parallel nature of GPU computing.

In general, the more complex the problem, the more pronounced the acceleration effect of Multi-
SimDiff becomes. In fact, the problems in experiment 2 and experiment 3 have been simplified to
a certain extent, and the actual situations are even more complex. Therefore, MultiSimDiff holds
significant value in solving real-world complex engineering problems.

Table 19: Values of K, N, M, and S for the three experiments.

experiment N M S K

Reaction-diffusion 2 27 25
Nuclear thermal coupling 3 21 25
1
1

Prismatic fuel element (16-component) 309 50
Prismatic fuel element (64-component) 324 50

W W NN
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Table 20: Comparison of running time.

Experiment Unit (s) Numerical program  Surrogate model ~MultiSimDiff ~ Speedup
Reaction-diffusion 0.0115 6 54 100 0.064
Nuclear thermal coupling 0.0242 4368 63 150 29
Prismatic fuel element (16-component)  0.0067 834 309 150 5.6
Prismatic fuel element (64-component)  0.0256 6170 324 150 41

J APPLICATION SCENARIOS FOR MULTI-COMPONENT SIMULATION.

In this section, we discuss the application scenarios of MultiSimDiff for multi-component simulation
from both theoretical and practical perspectives.

From a theoretical perspective, in the derivation of Section 3.2} we make an assumption: the solu-
tion on a multi-component structure is an undirected graph that satisfies the local Markov property,
meaning that any two non-adjacent variables are conditionally independent given all other variables.
Using this property, we derived Eq. [T4] We believe this assumption is applicable to most problems
because physical fields are continuous in space, and the information exchange between any two
points must be transmitted through the points in between. However, there is a class of problems
to which current methods cannot be directly applied, which is the partial differential equation that
requires determining eigenvalues:

M¢ = A¢ (20)

Here M is the operator, A is the eigenvalue, ¢ is the physical field to be solved. The A varies
with different systems, and the relationships we learn on small structures may not be applicable to
large structures. Solutions to these problems may be similar to numerical algorithms, requiring the
addition of an eigenvalue search process, which will be undertaken in future work.

From a practical implementation perspective, for a complex structure, it is necessary to clearly de-
termine its basic components and the relationships between these components and their surrounding
components, so that we can understand how the components are affected by their surrounding com-
ponents. In addition, training data must encompass all possible scenarios that each component in a
large structure might encounter, such as all possible boundary conditions and the relationships with
surrounding components.

K DATASETS DESCRIPTION.

This section provides a concise description of the datasets utilized in the three experiments, with
their detailed backgrounds introduced in Appendix [B] [C] [D] We outline the principal characteristics
of these datasets and compare them with the standard scientific datasets PDEbench
. Comparison is shown in Table @ where Vg is the spatial dimension, NNy is the number of
physical processes, and NN is the number of components. Table 2T]only lists some of the datasets in
PDEBench, but all of its datasets have Ny and N, values of 1. The dataset of Experiment 1 in this
paper exists in the benchmark, but Experiments 2 and 3 are completely new datasets.

Table 21: Datasets Description.

PDE Ng Time Computational domain Ny N,
Burgers’ 1 yes Line 1 1
compressible Navier-Stokes 3 yes Cube 1 1
incompressible Navier-Stokes 2 yes Rectangle 1 1
shallow-water 2 yes Rectangle 1 1
reaction-diffusion (Exp1) 1 yes Line 1 1
heat conduction + neutron diffusion + ) 3 Rectanel 3 |
incompressible Navier-Stokes (Exp2) yes cctangle

heat conduction + mechanics (Exp3) 2 no Irregular domain 2 16,64
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