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ABSTRACT

Humans learn by interacting with their environments and perceiving the outcomes
of their actions. A landmark in artificial intelligence has been the development of
deep reinforcement learning (dRL) algorithms capable of doing the same in video
games, on par with or better than humans. However, it remains unclear whether
the successes of dRL models reflect advances in visual representation learning, the
effectiveness of reinforcement learning algorithms at discovering better policies,
or both. To address this question, we introduce the Learning Challenge Diagnos-
ticator (LCD), a tool that separately measures the perceptual and reinforcement
learning demands of a task. We use LCD to discover a novel taxonomy of chal-
lenges in the Procgen benchmark, and demonstrate that these predictions are both
highly reliable and can instruct algorithmic development. More broadly, the LCD
reveals multiple failure cases that can occur when optimizing dRL algorithms over
entire video game benchmarks like Procgen, and provides a pathway towards more
efficient progress.

1 INTRODUCTION

Gibson famously argued that “The function of vision is not to solve the inverse problem and re-
construct a veridical description of the physical world. [... It] is to keep perceivers in contact with
behaviorally relevant properties of the world they inhabit” (reviewed in Warren 2021). The field of
deep reinforcement learning (dRL) has followed Gibson’s tenet since the seminal introduction of
deep Q-networks (DQN) (Mnih et al., 2015). DQNs rely on reward feedback to train their policies
and perceptual systems at the same time to learn to play games from a tabula rasa. This end-to-end
approach of training on individual environments and tasks has supported steady progress in the field
of dRL, and newer reinforcement learning algorithms have yielded agents that achieve human or
super-human performance in a variety of challenges – from Chess to Go and from Atari games to
Starcraft (Mnih et al., 2015; Silver et al., 2017; 2018; Vinyals et al., 2019). But Gibson also argued
that the ecological niche of animals allows them to exploit task-agnostic mechanisms to simplify the
perceptual or behavioral demands of important tasks, like how humans rely on optic flow for nav-
igation (Warren, 2021). In the decades since Gibson’s writings, it has been found that humans can
efficiently find or learn bespoke perceptual features that aid performance on a single task (Li et al.,
2004; Scott et al., 2007; Roelfsema et al., 2010; Emberson, 2017), or they can exploit previously
learned generalist representations and task abstractions that are useful across multiple tasks and en-
vironments (Wiesel & Hubel, 1963; Watanabe et al., 2001; Emberson, 2017; Lehnert et al., 2020;
O’Reilly, 2001). While there have been attempts at building similarly flexible dRL agents through
meta-reinforcement learning (Frans et al., 2018; Xu et al., 2018; 2020; Houthooft et al., 2018; Gupta
et al., 2018; Chelu et al., 2020; Pong et al., 2021), these approaches ignore the complexities of per-
ceptual learning and carry large computational burdens that limit them to simplistic scenarios. There
is a pressing need for approaches to training dRL agents that can meet the computational demands
of a wide variety of environments and tasks.

One way to build generalist agents is to first reliably diagnose where the computational challenges of
a given environment and task lie and adjust the agent to those demands. Is the perceptual challenge
onerous? Is the reward signal for credit assignment especially sparse? Even partial answers to these
questions are instructive for improving an agent, for instance, by pre-determining the extent to which
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Figure 1: The Learning Challenge Diagnosticator (LCD) separately measures the reinforce-
ment learning or the perceptual challenge of an environment and task. (a) We use LCD to
compute perceptual and reinforcement learning challenges in each game of the Procgen Benchmark.
(b) Perceptual challenges are assessed by comparing the total reward accrued by agents that learn
over visual representations with different amounts of structure: pixels, figure/ground segmentation
masks, and semantic segmentation masks (see Appendix. A.6). (c) Reinforcement learning chal-
lenges are computed by feeding agents perceptually organized scenes (i.e., semantically segmented;
second and third rows), and then comparing the total reward accrued by one agent playing in an
environment with stochastic manipulations of reward (randomly masked and modulated; third row)
to another agent playing in the normal environment (second row). (d) The taxonomy of Procgen
reveals each game’s relative perceptual and reinforcement learning challenge.

it relies on feedback from the world to tune its policy and perception versus drawing from previously
learned representations and task abstractions. The introduction of diverse video game challenges for
dRL, such as the Procgen Benchmark (Cobbe et al., 2020), can serve as a starting point for this
investigation. For example, take the game “Plunder” from Procgen (Figure 1a). Plunder has simple
gameplay rules but poses a visual challenge: an agent is asked to shoot all objects that look like
a provided cue. The difficulty here lies in assessing whether each object in the environment is the
same or different than the cue; a visual routine that is difficult to learn for neural networks (Vaishnav
et al., 2022; Kim et al., 2018). For this reason, an agent that can draw from prior experience in
learning relevant perceptual routines may perform better than one with a perceptual system tuned
for this specific task from scratch. In contrast, the objects and environments of a game like “Leaper”
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(Figure 1a) can be identified by color. The game asks agents to use those objects to get from one
side of the screen to the other, a task that can likely be learned from reward feedback.

Contributions. The ability to systematically, autonomously, and reliably identify an appropriate
strategy for learning a task in a given environment would enable the design of generalist dRL agents
that can flexibly adapt to challenges as humans do. To make progress towards this goal, we introduce
the Learning Challenge Diagnosticator (LCD), a novel tool that identifies the specific computational
challenges of an environment and task. When applied to video games, like those in Procgen, the
LCD measures the difficulty of encoding task-relevant perceptual properties versus the difficulty of
optimal policy discovery (i.e., determining which actions lead to rewarding outcomes).

• We develop a modified, parameterizable version of Procgen, to systematically manipulate the
perceptual and reinforcement learning challenges presented to agents in each individual game. We
provide our version of Procgen and all experimental code at https://anonymous.4open.
science/r/lcd-procgen/.

• The LCD reveals a novel taxonomy of computational challenges in the games of our modified
Procgen. Some are more visually complex, some are more challenging from the point of view
of reinforcement learning, and others strain agents across both of these axes. This taxonomy is
preserved across different dRL algorithms and the heterogeneity of the challenges associated with
the Procgen games suggests that adopting a single “one size fits all” approach to learning, as is
standard in dRL, is suboptimal.

• To address the visual challenges of Procgen games, we adopt a self-supervised visual front-end,
which learns perceptual groups from motion cues in games without reward feedback. To test if
reinforcement learning challenges can, in principle, be alleviated, we develop a proof-of-concept
approach with reward shaping (Skinner, 1938).

• We exploit the computational taxonomy of Procgen revealed by the LCD to shape the design of
agents for each game. These agents learn more efficiently and perform significantly better than
one-size-fits-all dRL agents, suggesting the potential for “adaptive” agents.

2 RELATED WORK

Representation learning in dRL Perhaps the main contribution of DQNs was to demonstrate that
it is possible to jointly learn visual representations and policies through reward maximization from
a tabula rasa to achieve high scores on Atari games (Mnih et al., 2015). Despite this extraordinary
achievement, the extrinsic rewards available to algorithms like DQNs have been found to yield poor
sample complexity, limit model scale, and cap maximum performance (Jaderberg et al., 2016; Laskin
et al., 2020). For this reason, there has been a growing number of accounts showing that standard
reward learning can be augmented with auxiliary learning objectives and/or pre-training via self-
supervision to take steps towards ameliorating limitations of reward-based learning (Jaderberg et al.,
2016; Shelhamer et al., 2017; Stooke et al., 2021; Laskin et al., 2020; Dittadi et al., 2021; Zhang
et al., 2020; Radosavovic et al.; Xiao et al.). Relatedly, it has been shown that initializing agents with
structured visual representations can lead to faster learning and better performance in reinforcement
learning (Tassa et al., 2018; Davidson & Lake, 2020; Laskin et al., 2020; Stooke et al., 2021).

Measuring visual challenges in artificial intelligence An essential contribution that the cognitive
sciences have made to artificial intelligence over the past decade has been the introduction of com-
putational challenges that are easy for humans to solve but strain the capabilities of neural networks.
These challenges have identified deficiencies in the solutions deep neural networks (DNNs) tend
to learn for contour tracing (Linsley et al., 2018b; Kim et al., 2020; Tay et al., 2021), segmenta-
tion (Kim et al., 2020), object tracking (Linsley et al., 2021), object recognition (Geirhos et al.,
2021; 2018), and visual reasoning problems (Fleuret et al., 2011; Kim et al., 2018; Vaishnav et al.,
2022). The essential lesson from these studies is that measuring model performance on data sampled
from the same distribution that training data came from is not sufficient for establishing challenges
and measuring progress on them (Funke et al., 2021). Instead, it is critical to test models on out-of-
distribution samples to find and evaluate challenges (Geirhos et al., 2021; 2018; Linsley et al., 2021;
2020). We adopt this strategy to measure dRL agent performance in this work.
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Figure 2: A DNN that is self-supervised to predict future frames also learns a concomitant
representation of object-ness that is useful for reinforcement learning. (a) Our routine for self-
supervising perceptual representations that can solve challenges identified by the LCD utilizes three
networks: a ResNet18 (He et al., 2015) for predicting the optic flow between frame t to frame t+ 1
(Flow encoder), a ResNet18 feature pyramid network (FPN) with a 16-channel recurrent neural
network (Linsley et al., 2018a) to encode the content of frame t (Object encoder), and an FPN-
ResNet18 decoder that receives the two encoder’s outputs to transform frame t to frame t + 1 via
a differentiable warping module. After optimizing for next-frame prediction, the Object encoder
learns object-like representations that can be used for reinforcement learning without additional
training. This approach generates reasonable segmentations of the important objects in Procgen
games, including Bigfish, Starpilot (b), and Bossfight (c).

Biologically inspired mechanisms for improving neural networks There are multiple examples
of the DNN challenges being resolved by the introduction of biologically inspired mechanisms.
Mechanisms for attention have made significant contributions by enabling DNNs to limit noise and
clutter, amplify task-relevant features, and subsequently achieve better performance and sample
efficiency during learning (Linsley et al., 2019). Others have found that horizontal connections,
inspired by those in the early visual cortex of primates, can resolve DNN limitations in solving
contour tracing tasks (Linsley et al., 2018a). There is also evidence that forcing dRL agents to
acquire compositional abstractions, inspired by those described in the cognitive sciences, helps them
learn policies that generalize to novel environments (Lehnert et al., 2020). The mechanisms we
propose to solve the computational challenges revealed by the LCD in Procgen are similarly inspired
by solutions to those problems adopted by primates and humans.

Metrics for measuring progress in dRL Progress in dRL has been classically measured by the
aggregate rewards and sample efficiency of models in games (Taylor & Stone, 2009; Agarwal et al.,
2021; Kirk et al., 2021). The Procgen benchmark took a major step forward beyond what is stan-
dard in the field by measuring agent performance on game parameterizations that fell outside of
the distribution used for training. While current metrics can adjudicate between different algo-
rithms based on performance in a game, they do not offer insights into the specific computational
challenges that agents face. Our LCD therefore represents a major conceptual leap beyond current
approaches to measuring progress in dRL, by quantifying the specific perceptual and reinforcement
learning challenges found in a given game, and enabling dRL researchers to more precisely resolve
the deficiencies of agents.

3 THE LEARNING CHALLENGE DIAGNOSTICATOR

The ability to identify and measure the computational challenges a dRL agent faces is an important
step toward designing better algorithms for reinforcement learning. However, to the best of our
knowledge, this problem has not yet been addressed in the field. The LCD achieves this goal through
a three-step procedure, which reveals the computational challenges facing an agent. By revealing
the computational demands of every game, the LCD enables more efficient algorithm development
and insights into how these demands may interact – or not – during learning (see Section 4).
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Here, we focus on identifying the perceptual versus reinforcement learning challenges offered by
any specific game, yielding the following steps: (i) We begin by modifying a game to put its percep-
tual representations and reinforcement learning problem under experimental control. (ii) Next, a set
of agents learn to play different versions of a game. In each version, either the perceptual challenge
is perturbed while the reinforcement learning challenge is held constant, or vice versa. These per-
turbations are implemented by sampling either a different perceptual representation of the game or
reward scheme. (iii) Finally, we measure the integrated reward trajectories of agents in response to
each type of perturbation. By separately averaging the scores of agents facing perceptual perturba-
tions and reward perturbations, we compute scores describing the perceptual challenge (ϕ) and the
reinforcement learning challenge (ψ) of each game (Fig. 1b and c).

Procgen benchmark. We applied the LCD to Procgen (Cobbe et al., 2020), a challenging dRL
benchmark consisting of 16 games, each with distinct graphics and gameplay. Procgen is open-
source and implemented in Python and C++, which made it possible to customize a variety of game
parameters for implementing the LCD. The parameters we manipulated were game assets (sprites
and backgrounds) and reward functions.

Procgen generates game levels procedurally, enabling precise control over the levels used for train-
ing versus testing and as a result, proper tests of generalization. We followed the training and testing
protocol outlined in (Cobbe et al., 2020) in each of our experiments. In brief, all agents were trained
for 200M steps across 500 training levels and evaluated on Procgen’s held-out games to measure
generalization.

dRL algorithms. We apply the LCD to agents trained with either the standard and popular prox-
imal policy optimization (Schulman et al., 2017) (PPO) or phasic policy gradient (PPG) (Cobbe
et al., 2021), a more recent algorithm that attained state-of-the-art performance in Procgen. PPO
hyperparameters were selected to match those used in (Cobbe et al., 2020) for Procgen’s hard mode.
Similarly, for PPG we used the hyperparameters from (Cobbe et al., 2021). The walltime for a single
training run of one of these agents averaged 24 hours per game on a standard 16-core Intel Xeon
Gold 6242 CPU with a 24G Titan RTX GPU. We ran ∼ 450 experiments across 32 GPUs, which
took over 10K GPU hours of computing time. Agent performance at test time was computed using
the interquartile mean (IQM) of the final returns (Agarwal et al., 2021).

LCD: Perceptual challenge. To perturb the perceptual complexity in a game and measure its
perceptual challenge, we varied the visual input provided to an agent when learning to play the game.
Motivated by decades of cognitive science work on the visual representations that humans rely on
for efficiently learning to interact with their environments (Ullman, 1984; Roelfsema et al., 2000;
Roelfsema, 2006b), we tested how well agents could learn to play games when given three different
types of visual inputs with varying structure: the original frame, figure-ground segmentations of each
frame, or semantic segmentations of each frame (Fig. 1b,c). Figure-ground segmentations labeled
background and object pixels differently, whereas semantic segmentations labeled each element of
the frame differently, with consistent labels across frames (see Appendix. A.6).

We measured the perceptual challenge of each game by comparing the performance of three agents
trained to solve it, where each agent learned a policy over one of the three different types of vi-
sual inputs (Appendix Fig. 6). In this condition, rewards and the reinforcement learning challenge
in games were kept as normal. We began by computing performance for each agent as the area
under the cumulative reward curves (AUC) achieved by agents during generalization (Appendix
Fig. 8), which implicitly captured both maximum performance and the sample efficiency needed to
get there. Next, we computed the relative change in AUC from the original frame to figure-ground
and semantic AUCs, and took the average of these ratios as our final score ϕ (Fig. 1b). The percep-
tual challenge score ϕ of each game was then normalized to the range [0, 1] according to the min and
max ϕ across all games (Appendix A.2). A game with a ϕ approaching 1 indicates that it presents a
greater perceptual challenge for reward-based learning, whereas a small ϕ means that reward-based
discovery of task-relevant features is sufficient to perform well on that task.

LCD: Reinforcement learning challenge. To perturb reinforcement learning in a game, we ma-
nipulated the sparsity of rewards available to an agent. By manipulating reward sparsity, we were
able to degrade “learning signal” available to an agent while also preserving the optimal policy,
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Figure 3: Self-supervised pre-training for learning object-ness addresses perceptual challenges
in Procgen identified by the LCD. (a) We measured the impact of our self-supervised perceptual
front-end for learning games classified as having perceptual challenges (Hard ϕ) or not (Easy ϕ).
The game which is helped the least by the front-end, “Leaper”, requires agents to recognize colors
– a feature that is not preserved in the front-end. (b) When looking at aggregate performance across
the entirety of Procgen, the benefit of pre-training is only seen on those games that the LCD deems
as perceptually challenging (Hard ϕ), indicating that the current state of progress in dRL is being
slowed by an inability to find benchmarks (or subsets of benchmarks) which are aligned with the
algorithmic solutions being tested. One-tailed t−tests assessing the effect of learning from the
perceptual front-end versus pixels are denoted by lines, * = p < 0.05.

across all perturbations (Appendix A.3). We did this by decreasing the probability p of receiving a
reward at every rewarding event, while also scaling reward magnitudes by 1/p to preserve the ex-
pected magnitude of rewards. We used reward perturbations of p ∈ {1, 0.75, 0.50, 0.25} (Appendix
Fig. 7). All agents were given semantic segmentations as inputs, which minimized the perceptual
challenge of games and controlled for potential perceptual confounds, such as how the perceptual
complexity of the pixel inputs of a given game may non-linearly interact with this reinforcement
learning perturbation.

We measured the reinforcement learning challenge of each game by comparing the performance of
agents trained to solve each of the reward perturbations (Appendix Fig. 9). First, we again computed
AUCs of the generalization reward curves for each agent, as above, but here for different values of
p. Next, we computed the absolute AUC change from an agent trained on one p to the next and
averaged across all changes, yielding the score ψ (Appendix A.4), which was normalized to [0, 1]
in the same way as ϕ. A ψ close to 1 means that it presents a significant reinforcement learning
challenge. Conversely, a game with a small ψ indicates that reward sparsity is not the primary
challenge.

Diagnosing the computational challenges of the Procgen benchmark. We began by applying
the LCD to PPO agents trained to solve each game in Procgen. Doing so revealed a clear taxonomy
of the computational challenges of each game (Fig. 1d): Fruitbot, Jumper, Miner, Heist, Chaser,
and Bossfight are, in relative terms, perceptually easy and have easy reinforcement learning. Cave-
flyer, Dodgeball, Plunder, Coinrun, Ninja, Climber, and Starpilot are perceptually hard and have
easy reinforcement learning. Bigfish and Leaper are perceptually easy and have hard reinforcement
learning, and Maze is challenging for perception and reinforcement learning. The challenges of
Maze, in particular, are likely driven by the need to trace and plan paths through a maze; routines
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Figure 4: LCD measurements of the perceptual and reinforcement learning challenges in Proc-
gen translate across dRL algorithms. Measurements of visual challenges ϕ (left) and reinforce-
ment learning challenges ψ (right) faced by PPO agents were significantly correlated with the chal-
lenges of PPG agents, indicating that results derived from applying the LCD to simpler and lower-
overhead algorithms can guide the development of agents pushing the state-of-the-art.

which are known to be challenging for neural networks and draw upon feedback mechanisms in
humans (Linsley et al., 2018a; Roelfsema et al., 2000; Roelfsema, 2006a; Ullman, 1984).

4 VALIDATING LCD TAXONOMIES BY BUILDING BETTER AGENTS

Our general approach for validating the computational taxonomy of the LCD is to demonstrate that
the gains of targeted solutions to the challenges coincide with the LCD’s predictions. We develop
separate solutions for perceptual challenges and reinforcement learning challenges and describe
those methods and results here.

Developing solutions to perceptual challenges. We began by constructing a new perceptual
front-end that we believed could address the perceptual challenges of Procgen games. Inspired
by the reliance of humans and other animals on optic flow to effectively and efficiently navigate
through their environments (Warren et al., 2001; Warren, 2021), we turned to motion perception as
the base inductive bias for our agents. Specifically, we rely on the motion of objects in the world to
extract perceptual groups that could instruct appropriate behavior.

It has been found that training DNNs to predict the optic flow between successive frames of video
can induce the ability to segment object-like superpixels from complex scenes (Liu et al., 2021).
Here, we build off this prior work to develop a self-supervised pre-training strategy for solving per-
ceptual challenges in Procgen. Our architecture consists of three separate DNNs: (i) a ResNet18 (He
et al., 2015) feature pyramid network (FPN) (Lin et al., 2016) for predicting the optic flow (Flow
encoder) between two frames from successive timepoints of a sequence, frame t and frame t + 1,
(ii) a biologically inspired recurrent neural network (Linsley et al., 2018a) (Object encoder) for en-
coding the contents of frame t, and (iii) a fully convolutional (Long et al., 2015) decoder that learns
how to use the two encoders’ outputs to match frame t to frame t + 1 via a differentiable warping
module.

This model was pre-trained to learn visual representations in a purely self-supervised manner, by
minimizing the mean squared error between two successive frames sampled from the seven games
of Procgen which had consistent motion (Chaser, Leaper, Dodgeball, Climber, Bossfight, Starpilot,
and Bigfish). We sampled frames for training from 14,000 videos (2,000 per game) in batches of 4
for 50k iterations using the Adam optimizer (Kingma & Ba, 2014) and a learning rate of 1e− 4. As
an alternative to our approach for self-supervision, we also evaluated the effectiveness of state-of-
the-art features for one-shot recognition from a clip-ViT-B-32 model pre-trained on 400M natural
images and captions (Radford et al., 2021).
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Perceptual challenge evaluations. We evaluated the LCD predictions of the perceptual challenges
ϕ in each game by testing if preprocessing frames with our self-supervised front-end improved agent
performance more for games with higher values of ϕ (i.e., the front-end was fixed and not trained
with reward). Because our self-supervised front-end relied on the game motion to extract perceptual
groups, we focused our analysis on the same seven games with dynamic elements that it was pre-
trained on. As predicted by the LCD, our front-end improved performance significantly more for
perceptually challenging games (hard ϕ) than perceptually simple games (easy ϕ; Fig. 3b). Overall,
the benefit of this front-end correlated significantly with the ϕ predicted for each game (Spearman’s
ρ = 0.79 between ϕ and the AUC of performance curves, p < .05). To understand the extent
that our results merely demonstrate the value of pre-trained visual representations, we repeated our
analysis while using a pre-trained CLIP as the perceptual front-end for agents. But while CLIP
embeddings yield state-of-the-art performance in one-shot classification (Radford et al., 2021), they
did not help agents learn more effective policies, faster (Appendix Fig. 12). In other words, LCD’s
perceptual challenges are more readily addressed by algorithmic solutions that induce object-like
representations.

Figure 5: A subset of games in Procgen see
a synergistic benefit from co-training percep-
tion and action/policies end-to-end. We com-
pared the magnitude of improvement over base-
line (PPO/pixels) agents experienced when they
were given an ideal reinforcement learning algo-
rithm (PPG) and perceptual representations (se-
mantic segmentation) to the additive improve-
ment of an agent given PPG over pixels and an
agent given PPO and semantic segmentation in-
puts. Only 6/16 games benefit from co-training.

Guiding algorithmic development with
the LCD. Given the success of our self-
supervised perceptual front-end, an obvious
approach towards building better agents is
to simply use this front-end on every game.
However, the impact of our front-end on
performance was significantly blunted when
measured on all games (the difference between
green bars in Hard ϕ versus All Games,
Fig. 3b). This finding points to a larger
problem in algorithmic development for RL:
without a reliable approach for diagnosing the
specific computational challenges in a game,
the effectiveness of reasonable solutions can be
blunted or even appear to hurt agents, as our
front end nominally does here.

Reward shaping for resolving reinforce-
ment learning challenges. The reinforce-
ment learning challenges revealed by the LCD
are due to the sparsity of rewards available
to agents. As a partial solution to this prob-
lem, we investigated the impact of “reward
shaping” (Skinner, 1938) on performance. Re-
ward shaping is a technique from animal train-
ing where supplemental rewards are provided
to make the learning problem easier Wiewiora
(2010). We adopted this for three games amenable to reward shaping: Heist, Leaper, and Maze; the
latter two LCD identified as having significant reinforcement learning challenges.

In Heist, agents must collect three keys and unlock their matching doors before they can reach the
rewarding gem. We provided agents with additional rewards when they collected a key or opened
a door. In Leaper, agents must safely get across several lanes of roads followed by several rows of
rivers. Lanes have moving cars agents must avoid, while rivers have moving logs agents must stay
on. We gave agents additional rewards whenever they reached a new lane or river.

In Maze, agents must wander through a complex maze to get to a reward of cheese; however, the
topological complexity of the mazes can deem rewards difficult to discover. To address this problem,
we encourage exploration of novel locations through intermediate rewards Bellemare et al. (2016);
Ecoffet et al. (2021). In all of these cases, agents did not get these auxiliary rewards during test time.

Reinforcement learning challenge evaluations. Agents trained with reward shaping on Heist
(t = 1.69, p < .05), Leaper (t = 41.03, p < .001), and Maze (t = 2.69, p < .01) performed signifi-
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cantly better than those trained on the normal versions of each game (all tests are one-tailed t-tests;
Appendix Fig. 13). Moreover, the improvements in performance from reward shaping significantly
correlated with the ψ values of each game tested here (Spearman’s ρ = 0.92, p < .001).

The LCD-derived taxonomy translates across dRL algorithms. Our findings thus far indicate
that an LCD calibrated with PPO agents makes reliable predictions about the challenges of individual
games in Procgen. But despite the popularity of PPO, it has been surpassed by more recent dRL
algorithms, like PPG, which achieved state-of-the-art performance on Procgen. To what extent
does the LCD taxonomy derived from PPO translate to more effective dRL algorithms? We tested
this question by applying the LCD to agents trained with PPG (Appendix Figs. 10, 11) and found
that its predictions were significantly correlated with those from an LCD calibrated on PPO agents
(Fig. 4). This means that our PPO-derived taxonomy can be relied on prospectively for algorithmic
development on Procgen.

The whole is only sometimes greater than the sum of the parts in dRL. Training perception-
for-action, end-to-end, is the standard approach to dRL ever since the introduction of DQNs. Here,
we tested whether agents trained on Procgen experienced a superlinear benefit of co-training per-
ception and action or not. We did this by computing two performance differentials. In both cases,
the baseline was a PPO agent trained on pixels. (i) the performance of a PPG agent trained on
semantic segmentation inputs minus baseline, and (ii) the performance of a PPG agent trained on
pixels minus baseline plus the performance of a PPO agent trained on semantic segmentation inputs
minus baseline (Fig. 5).

Co-training perception for action helped performance in 6 of 16 games: Leaper, Maze, Chaser,
Jumper, Starpilot, and Bigfish. Co-training did not help in 10 of 16 games: Heist, Dodgeball,
Fruitbot, Miner, Coinrun, Bossfight, Plunder, Ninja, Caveflyer, and Climber. This finding poses
an intriguing prospect. It suggests the existence of different “minibenchmarks” within Procgen
that researchers should tap into, depending on whether they wish to quantify “improvements” to an
agent’s policy learning algorithm, its representation learning system, or synergies between the two.

5 DISCUSSION

Ever since the introduction of the DQN, the field of dRL has consistently succeeded in reaching
and exceeding human performance on defined tasks: beating grand masters at the game of Go, or
exceeding the average performance of humans on the Atari benchmark. However, even in these
successes, it was clear that certain games presented different challenges than others. Take “Mon-
tezuma’s Revenge”, which the original DQN could not solve. Subsequent analysis of Montezuma’s
Revenge led to the conclusion that the failures of the DQN were because of its long time horizon
and sparse rewards; challenges which, these days, have positioned it as a critical test for dRL algo-
rithms (Ecoffet et al., 2019; Roderick et al., 2018; Salimans & Chen, 2018). We believe that the field
of dRL can benefit from a systematic approach to diagnosing such computational challenges in any
benchmark. Our LCD tool is a major step towards this goal.

By applying our LCD to the Procgen benchmark, we discover a novel taxonomy of those games,
organized according to the relative perceptual and reinforcement learning challenges of each. This
taxonomy delivers two prescriptions for algorithmic development in dRL. First, because the com-
putational challenges of games in benchmarks like Procgen are not i.i.d., there will be low signal
for adjudicating between algorithms designed to improve a problem that is not over-represented in
the benchmark. Second, although humans are capable of learning perception-for-action, and dRL
agents generally learn in this way, not all games in benchmarks like Procgen benefit from doing so.
In the short-term, these problems can be addressed by using the LCD to select games in a benchmark
that are aligned with the algorithmic design goals of researchers. In the long-term, there is a need in
the field for new benchmarks that can tap into a wider range of computational challenges with less
bias than is found in Procgen. We believe that our LCD is an important tool for advancing the pace
of progress in dRL, and we release our experimental code to support this goal.
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6 ETHICS STATEMENT

Our work is a contribution to deep reinforcement learning and so inherits the concerns already
inherent in dRL applications. Currently, our work has been applied to harmless toy videogame
tasks, but improper application of dRL to real world applications can have negative externalities on
society, especially when algorithms make poor decisions. Depending on the domain of application,
these can include discriminatory decisions against marginalized groups or serious injury and fatality
if control of vehicles or critical systems are involved. Advancing agents’ ability to make better
decisions would help mitigate this issue and eventually broaden the domains in which dRL can help,
and our contribution of identifying limitations in current dRL agents will help in that regard.

7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. We have made all code for
our modified Procgen environment and the self-supervised model for perceptual grouping avail-
able at https://anonymous.4open.science/r/lcd-procgen/. For PPO, we have
used the code available at https://github.com/openai/train-procgen along with
the hyperparameters found in Cobbe et al. (2020). For PPG, we have used the code at https:
//github.com/openai/phasic-policy-gradient and the hyperparameters in Cobbe
et al. (2021). Finally, we have reported the computing resources used and the number of experi-
ments run under “dRL algorithms” of Section 3.
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A APPENDIX

A.1 NETWORK ARCHITECTURE

Following Cobbe et al. (2020), we used the convolutional actor-critic IMPALA architecture de-
scribed in Espeholt et al. (2018). This is a deeper network than what has been used previously,
consisting of 15 convolutional layers, 16 residual blocks, and 1.6M parameters. We refer the reader
to (Espeholt et al., 2018) for details. For raw pixel, semantic segmentation, and figure-ground seg-
mentation, the number of input channels was fixed to three. This controls the model architecture to
be identical regardless of input. For semantic or figure-ground masks, we replicated the masked in-
put three times and fed that into each of the three convolutional input channels. Our self-supervised
visual model outputs 16 channel perceptual masks (at the same spatial resolution of the inputs) which
are concatenated with the RGB values and fed into the actor-critic network for policy learning.

A.2 REWARD NORMALIZATION

Given that each task involves varying reward magnitudes, episode rewards r were normalized to
facilitate comparison across tasks. Normalized rewards r′ were computed as r−Rmin

Rmax−Rmin
, where

Rmax is the theoretical maximum score attainable in an episode while Rmin is the average score a
random agent would attain.
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A.3 STOCHASTIC REWARD FEEDBACK

Here, we prove that the expected return under policy π does not change under our manipulation of
reward probability. We proceed in two parts. First, we show that the expected reward received from
a rewarding event remains unchanged. Then we show that the action-value function Qπ(s, a) for
policy π remains unchanged. By implication, this means the optimal policy does not change either.

Let R(s, a) denote the original reward function at state s and action a. In our manipulation, rewards
are generated stochastically with probability p(s, a), but reward magnitudes are rescaled by 1

p(s,a) .

Definition A.1 (Modified reward function). The modified reward function R̃(s, a) is given by

R̃(s, a) ≜
R(s, a)

p(s, a)
η(s, a),

where η(s, a) ∼ Bern[p(s, a)].

Lemma A.1. The expected value of R̃(s, a) is R(s, a).

Proof.

Eη

[
R̃(s, a)

]
≜ Eη

[
R(s, a)

p(s, a)
η(s, a)

]
=
R(s, a)

p(s, a)
Eη [η(s, a)]

= R(s, a),

since Eη [η(s, a)] = p(s, a).

Using this lemma, we now prove our main result. Let Qπ(s, a) denote the action-value function
induced by the original reward function R(s, a) while following policy π, and let Q̃π(s, a) denote
the action-value function induced by R̃(s, a) while following the same policy.

Theorem A.2. The action-value function Q̃π(s, a) is given by Qπ(s, a).

Proof. As is common practice in RL, we shall discount future rewards by γ ∈ [0, 1] on each future
time step. Before beginning, we shall introduce some notation. We shall denote the current time
step by t. We shall denote the state and action at any time τ by sτ and aτ . Finally, by an abuse of
notation, we shall use Eπ[·] to denote expectations over state-action trajectories generated by both
the policy π and the state-transition probability p(s′|s, a), where s′ is the successor state.

We now proceed to the proof.

Q̃π(s, a) ≜ Eπ,η

[ ∞∑
k=0

γkR̃(st+k+1, at+k+1)

∣∣∣∣∣ st = s, at = a

]

= Eπ

[ ∞∑
k=0

γk Eη

[
R̃(s̃, ã)

∣∣∣ s̃ = st+k+1, ã = at+k+1

]∣∣∣∣∣ st = s, at = a

]
(law of total expectation)

= Eπ

[ ∞∑
k=0

γkR(st+k+1, at+k+1)

∣∣∣∣∣ st = s, at = a

]
(Lemma A.1)

= Qπ(s, a)

Note that in our experimental manipulations, we used a single reward probability p that was inde-
pendent of s and a.
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A.4 PERFORMANCE CHANGE WITH INCREASING CREDIT ASSIGNMENT DIFFICULTY

To quantify the average change with increasing credit assignment difficulty, we first computed the
reward curve AUC AUC(p) for p = 0.25, 0.5, 0.75, 1.0. We next computed the absolute change
in AUC between successive values of p; that is, |AUC(p = 1.0) − AUC(p = 0.75)|, |AUC(p =
0.75)−AUC(p = 0.5)|, and |AUC(p = 0.5)−AUC(p = 0.25)|. Finally, we averaged over these
measures to get our final measure of average change.

A.5 SUPPLEMENTARY FIGURES

Figure 6: Normalized reward curves while systematically varying perceptual complexity. X-
axis denotes the number of “interactions” an agent performs with its environment during training
and Y-axis denotes normalized rewards. We trained all these agents for a total of 200M steps.

16



Under review as a conference paper at ICLR 2023

Figure 7: Normalized reward curves while systematically varying reward stochasticity. X-axis
denotes the number of “interactions” an agent performs with its environment during training and
Y-axis denotes normalized rewards. We trained all these agents for a total of 200M steps. The
perceptual input to these agents were semantic representations. While performing evaluations, the
reward mechanisms were set to the original configuration thus effectively only testing the impact of
these perturbations on policy learning.
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Figure 8: Normalized reward curves, on i.i.d. generalization levels, while systematically varying
perceptual complexity. X-axis denotes the number of “interactions” an agent performs with its
environment during training and Y-axis denotes normalized rewards. We trained all these agents for
a total of 200M steps. Agents were evaluated approximately every 60K steps.
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Figure 9: Normalized reward curves, on i.i.d. generalization levels, while systematically vary-
ing reward stochasticity. X-axis denotes the number of “interactions” an agent performs with its
environment during training and Y-axis denotes normalized rewards. We trained all these agents
for a total of 200M steps. The perceptual input to these agents were semantic representations.
Agents were evaluated approximately every 60K steps. While performing evaluations, the reward
mechanisms were set to the original configuration thus effectively only testing the impact of these
perturbations on policy learning.
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Figure 10: Training dRL agents with varying levels of perceptual complexity using the prox-
imal policy gradient algorithm. X-axis denotes the number of “interactions” an agent performs
with its environment during training and Y-axis denotes rewards on training levels. We trained these
agents for a total of 100M steps.
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Figure 11: Training dRL agents with varying levels of stochastic feedback using the proximal
policy gradient algorithm. X-axis denotes the number of “interactions” an agent performs with its
environment during training and Y-axis denotes rewards on training levels. We trained these agents
for a total of 100M steps. The perceptual inputs to these agents were semantic representations.
While performing evaluations, the reward mechanisms were set to the original configuration thus
effectively only testing the impact of these perturbations on policy learning.
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Figure 12: Policy learning experiments in dRL agents operating on visual representations
learned from natural language supervision. We test the extent to which generalist visual represen-
tations support policy learning. We find that while CLIP Radford et al. (2021), a transformer-based
architecture, is state-of-the-art on zero-shot image classification, its representations do not support
policy learning adeptly. We train agents on both the “easy” and “hard” versions of Procgen. While
our agent was able to learn certain tasks in the “easy” mode, they predominantly struggled in the
“hard” mode. X-axis denotes the number of “interactions” an agent performs with its environment
during training and Y-axis denotes rewards. We trained these agents for a total of 200M steps.
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Figure 13: The effect of “reward shaping” on Leaper – a high ψ task as predicted by our
taxonomy. In the traditionally challenging reinforcement learning problem we find that encouraging
agents to discover sub-goals significantly improved both the sample efficiency and generalization
capacity (t = 41.03, p < .001). X-axis denotes the number of “interactions” an agent performs
with its environment during training and Y-axis denotes normalized rewards. We trained both these
agents on semantic representations for a total of 200M steps. While performing evaluations, we
revert to the original reward scheme to remain compatible for comparing to the “naive” model.

A.6 SPECIFICS OF OUR PERCEPTUAL PARAMETERIZATIONS OF THE Procgen BENCHMARK
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Image Game Mask Details

bigfish There are two entity IDs: (1) the player, and (2) all other fish.

bossfight
There are seven entity IDs: (1) the player, (2) player projectiles, (3) the
enemy, (4) enemy projectiles, (5) the enemy’s shield, (6) meteors, and (7)
explosions.

caveflyer
There are eight entity IDs: (1) the player, (2) enemy ships, (3) player pro-
jectiles, (4) targets, (5) the goal landing pad, (6) meteors, (7) explosions,
and (8) the surrounding terrain.

chaser
There are seven entity IDs: (1) the player, (2) enemies, (3) enemies in their
weakened state, (4) enemy eggs, (5) small collectible squares, (6) large
collectible stars, and (7) the walls.

climber
There are four entity IDs: (1) the player, (2) enemies, (3) the star rewards,
and (4) the surrounding walls, ground, and platforms.

coinrun
There are eight entity IDs: (1) the player, (2) enemies, (3) enemy barriers,
(4) saw obstacles, (5) lava obstacles, (6) the goal star, (7) crates, and (8) the
surrounding walls and ground.

dodgeball
There are seven entity IDs: (1) the player, (2) player projectiles, (3) the
enemies, (4) enemy projectiles, (5) the locked exit, (6) the unlocked exit,
and (7) the walls.

fruitbot

There are eight entity IDs: (1) the player, (2) player projectiles, (3) reward-
ing objects, (4) penalizing objects, (5) locks, (6) locked doors, (7) the goal,
and (8) barriers and the terrain below and above the beginning and end of
each episode, respectively.

Table 1: Outlining the “Semantic” organization of each environment in the Procgen benchmark.
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Image Game Mask Implementation

heist
There are six entity IDs: (1) the player, (2-4) up to three unique keys and
their corresponding locks, (5) the goal crystal, and (6) the walls.

jumper
There are six entity IDs: (1) the player, (2) spikes, (3) the goal, (4) the
needle of the compass and the bar indicating the distance to the goal, (5)
the circle of the compass, and (6) the surrounding terrain.

leaper There are six entity IDs: (1) the player, (2) cars, (3) the road, (4) log plat-
forms, (5) the water, and (6) the finish line.

maze There are three entity IDs: (1) the player, (2) the goal cheese, and (3) the
walls.

miner There are five entity IDs: (1) the player, (2) boulders, (3) crystals, (4) the
exit, and (5) dirt.

ninja
There are seven entity IDs: (1) the player, (2) player projectiles, (3) the goal
mushroom, (4) bombs, (5) explosions, (6) the bar indicating jump charge,
and (7) the surrounding walls, ground, and platforms.

plunder

There are eight entity IDs: (1) the player and ally ships, (2) player projec-
tiles, (3) enemy ships, including the cue ship, (4) the circle behind the cue
ship, (5) barriers, (6) explosions, (7) the time-countdown status bar, and (8)
the points-accrued status bar.

starpilot

There are eleven entity IDs: (1) the player, (2) player projectiles, (3) slow
enemies flyers, (4) fast enemies flyers, (5) enemy flyer projectiles, (6) en-
emy turrets, (7) enemy turret projectiles, (8) meteors, (9) clouds, (10) the
finish line, and (11) explosions.

Table 2: Outlining the “Semantic” organization of each environment in the Procgen benchmark.
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Image Game Mask Details

bigfish All entities share the same ID.

bossfight All entities share the same ID.

caveflyer All entities share the same ID.

chaser All entities share the same ID.

climber All entities share the same ID.

coinrun All entities share the same ID.

dodgeball All entities share the same ID.

fruitbot All entities share the same ID.

Table 3: Outlining the “Figure/Ground” organization of each environment in the Procgen benchmark.
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Image Game Mask Implementation

heist
There are four entity IDs: (1-3) up to three unique keys and their corre-
sponding locks, and (4) all other entities.

jumper
There are three entity IDs: (1) the needle of the compass and the bar in-
dicating the distance to the goal, (2) the circle of the compass, and (3) all
other entities.

leaper There are two entity IDs: (1) the road and water, and (2) all other entities.

maze All entities share the same ID.

miner All entities share the same ID.

ninja There are two entity IDs: (1) the bar indicating jump charge, and (2) all
other entities.

plunder
There are five entity IDs: (1) the player and friendly ships, (2) enemy ships,
including the cue ship, (3) the time-countdown status bar, (4) the points-
accrued status bar, and (5) all other entities.

starpilot All entities share the same ID.

Table 4: Outlining the “Figure/Ground” organization of each environment in the Procgen benchmark.
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A.7 IMPROVEMENTS IN GENERALIZATION PERFORMANCE ACROSS EASY AND HARD ϕ
TASKS

Easy (ϕ) % improvement Chaser 7.5% Leaper −117.6% Bigfish 37.9% Bossfight −39.8%

Hard (ϕ) % improvement Starpilot 28.7% Dodgeball 71.4% Climber 3364.6% –
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