

# Q1FOLD: A QUBIT-EFFICIENT HYBRID QUANTUM-CLASSICAL CONVOLUTIONAL NEURAL NETWORK FOR RNA SECONDARY STRUCTURE PREDICTION

006 **Anonymous authors**

007 Paper under double-blind review

## ABSTRACT

013 RNA 2D structure prediction remains a critical challenge in computational biology, with existing thermodynamic and deep learning approaches facing limitations  
 014 in modeling complex interactions and data requirements. We introduce Q1Fold,  
 015 a hybrid quantum-classical convolutional network for RNA secondary structure  
 016 prediction. The model integrates a compact variational quantum circuit with a  
 017 classical 2D ResNet architecture, where the quantum circuit generates expressive  
 018 features from local sequence windows using minimal qubits. This design avoids  
 019 barren plateaus and is compatible with current Noisy Intermediate-Scale Quantum  
 020 Computers. Despite using significantly fewer parameters, Q1Fold achieves com-  
 021 petitive performance on standard benchmarks compared to state-of-the-art meth-  
 022 ods. The extracted quantum features also demonstrate superior capability in rep-  
 023 resenting local structural motifs such as hairpins. Our work establishes a practical  
 024 route toward quantum-enhanced computational RNA biology.

## 1 INTRODUCTION

026 Ribonucleic acid (RNA) plays fundamental roles in numerous cellular processes, including protein  
 027 synthesis, gene regulation, catalytic reactions, and sensing of molecular signals (Sahin et al., 2014;  
 028 Pardi et al., 2018). The secondary (2D) structure of RNA is crucial for understanding its biological  
 029 function and serves as a foundation for tertiary structure formation (Tinoco Jr & Bustamante, 1999;  
 030 Budnik et al., 2023). The accurate prediction of RNA 2D structure from primary sequence alone re-  
 031 mains one of the most important and challenging problems in computational biology, with significant  
 032 implications for drug discovery, vaccine development, and synthetic biology applications (Chaud-  
 033 haray et al., 2021). Traditional approaches to RNA 2D structure prediction have relied primarily  
 034 on thermodynamic models that minimize free energy based on nearest-neighbor parameters (Zuker,  
 035 2003). Methods such as ViennaRNA (Lorenz et al., 2011) and MXfold2 (Sato et al., 2021) have  
 036 achieved considerable success, but face inherent limitations when dealing with complex structural  
 037 motifs, particularly pseudoknots and long-range base pairs (Lyngsø & Pedersen, 2000). Early ma-  
 038 chine learning models marked a significant shift in RNA structure prediction by learning directly  
 039 from data, bypassing explicit energy calculations (Singh et al., 2019). Methods like E2Efold (Chen  
 040 et al., 2020), UFold (Fu et al., 2022) and sincFold (Bugnon et al., 2024) demonstrated that deep  
 041 learning architectures, particularly convolutional neural networks, could successfully model spatial  
 042 relationships between nucleotides. Despite their improvements over thermodynamic approaches,  
 043 these models remain limited by their sequence embedding strategies and feature representation ca-  
 044 pabilities, often struggling to capture the full complexity of RNA structural patterns and long-range  
 045 dependencies (Chen et al., 2022). More recently, the field has witnessed the emergence of large  
 046 language model (LLM) and foundation model (FM) based approaches that leverage pre-trained se-  
 047 quence representations to enhance RNA structure prediction (Wu et al., 2025). Models such as  
 048 RNAErnie (Wang et al., 2023) and Depfold (WANG & Cohen, 2025) utilize transformer architec-  
 049 tures and self-attention mechanisms to capture complex sequence-structure relationships. Although  
 050 these models have shown promising results, their enormous parameter requirements, often in the  
 051 hundreds of millions to billions, pose a significant risk of overfitting given the currently limited size  
 052 of available RNA structure datasets, representing a fundamental bottleneck in achieving robust and  
 053 generalizable predictions of RNA structure (Wu et al., 2025). Quantum computing offers a fun-  
 054 damentally different pathway for addressing these computational challenges through entanglement

054 and superposition (Biamonte et al., 2017). The exponential scaling of quantum Hilbert spaces and  
 055 the ability of quantum circuits to generate complex entangled states present unique advantages for  
 056 capturing intricate patterns in RNA folding (Fox et al., 2022). However, purely quantum-based RNA  
 057 folding models remain in their infancy, with existing implementations suffering from issues such as  
 058 barren plateaus, limited qubit availability, and performance that have yet to match state-of-the-art  
 059 (SOTA) machine learning models (Alevras et al., 2024; Kumar et al., 2025).

060 In this work, we introduce Q1Fold, a novel hybrid quantum-classical convolutional neural network  
 061 (HQC-CNN) that addresses the limitations of both classical and quantum approaches to RNA 2D  
 062 structure prediction. Our method leverages quantum convolutional layers for enhanced feature ex-  
 063 traction while maintaining compatibility with current Noisy Intermediate-Scale Quantum (NISQ)  
 064 devices. By integrating quantum convolution with classical CNN architectures, Q1Fold achieves  
 065 competitive performance while requiring only a small number of qubits proportional to the local  
 066 window size rather than the full sequence length. The contributions of our work are summarized  
 067 below:

- 068 • We propose Q1Fold, the first HQC-CNN model specifically designed for RNA 2D structure pre-  
 069 diction. Unlike existing quantum approaches that primarily use Quantum Approximate Opti-  
 070 mization Algorithm (QAOA) or Variational Quantum Eigensolver (VQE) frameworks, Q1Fold  
 071 integrates quantum circuits directly into CNN architectures, achieving significant parameter re-  
 072 duction while maintaining competitive performance compared to SOTA classical methods.
- 073 • We design a qubit-efficient variational quantum circuit (VQC) with learnable data embedding for  
 074 1D feature extraction of RNA sequences. McClean et al. (2018) demonstrated barren plateau  
 075 effects scale exponentially with the number of qubits, our qubit-efficient design circumvents this  
 076 fundamental limitation.
- 077 • We introduce a position-, context- and balance-aware quantum entanglement scheme that en-  
 078 codes positional, C/G vs A/U contextual and purine-pyrimidine balanced information in dedi-  
 079 cated qubits, producing quantum features with significantly enhanced expressivity. This quantum  
 080 feature richness enables accelerated learning dynamics, achieving improved validation in early  
 081 epochs and competitive overall performances.

## 082 2 BACKGROUND

### 083 2.1 RNA 2D STRUCTURE PREDICTION

084 RNA 2D structure prediction aims to determine the pattern of base pairings in an RNA molecule  
 085 given only its primary sequence. The 2D structure can be represented as a contact matrix where en-  
 086 try  $(i,j)$  indicates whether nucleotides at positions  $i$  and  $j$  form a base pair. Valid 2D structures must  
 087 satisfy several biological constraints: only Watson-Crick (A-U, G-C) and wobble (G-U) base pairs  
 088 are allowed, no sharp loops with fewer than 4 unpaired nucleotides can form, and each nucleotide can  
 089 participate in at most one base pair (Huang et al., 2019). The computational complexity of this prob-  
 090 lem stems from the exponential search space of possible base-pairing configurations for sequences  
 091 of length  $n$ , making exhaustive enumeration intractable (Tinoco Jr & Bustamante, 1999). Addition-  
 092 ally, the presence of pseudoknots—non-nested base pairs that cross each other—significantly in-  
 093 creases the difficulty, as standard dynamic programming approaches cannot handle these structures  
 094 efficiently (Lyngsø & Pedersen, 2000). The limited availability of experimentally validated RNA  
 095 structures further constrains the development and evaluation of prediction methods, with existing  
 096 databases containing only tens of thousand of high-quality annotations compared to the millions of  
 097 known RNA sequences.

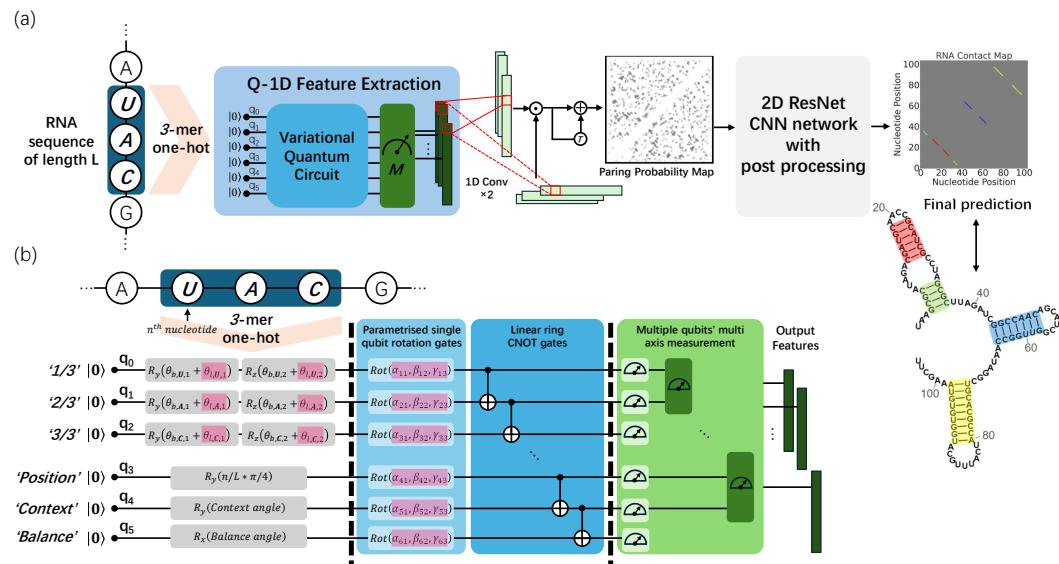
### 098 2.2 HYBRID QUANTUM-CLASSICAL CNN

101 Hybrid quantum-classical convolutional neural networks (HQC-CNNs) represent an emerging  
 102 paradigm that combines quantum circuit feature extraction with classical neural network scalabil-  
 103 ity (Henderson et al., 2020; Cong et al., 2019). The core innovation lies in replacing classical  
 104 convolutional filters with parametric quantum circuits that process data in exponentially large Hilbert  
 105 spaces, exploiting superposition and entanglement to generate complex, non-linear feature represen-  
 106 tations (Liu et al., 2021). HQC-CNNs have demonstrated competitive performance on image clas-  
 107 sification benchmarks like MNIST and Fashion-MNIST using significantly fewer parameters than

108 classical CNNs (Henderson et al., 2020). More recently, quantum convolution has shown particular  
 109 promise for time series data, where quantum circuits’ ability to capture temporal correlations through  
 110 entanglement aligns well with long-range dependencies and complex periodic patterns (Orka et al.,  
 111 2025). The study by Orka et al. demonstrated that fully quanvolutional networks could outperform  
 112 classical methods on 20 UEA and UCR time series datasets while using 6.5 times fewer parameters  
 113 on average, suggesting quantum effects provide representational advantages even in the NISQ era.  
 114 The application to biological sequences presents unique opportunities, as the exponential feature  
 115 space of quantum circuits could capture combinatorial sequence-structure relationships more effi-  
 116 ciently than classical approaches (Chen et al., 2023). The parameter efficiency of quantum circuits  
 117 directly addresses RNA structure prediction’s fundamental challenge: the scarcity of high-quality  
 118 training data relative to model complexity, potentially reducing overfitting risks compared to foun-  
 119 dation models with hundreds of millions of parameters.  
 120

### 3 Q1FOLD MODEL

122 As illustrated in Figure 1(a), our model consists of two main modules: the 1D feature extraction  
 123 module and the 2D pairing prediction module. First of all, the input RNA sequence of length L is  
 124 one hot encoded. Then it is processed by our quantum 1D (Q1D) feature extraction layer, which  
 125 employs VQC for feature representation. The resulting 1D features are then processed with two 1D  
 126 convolutional layers and matrix product operations to generate a 2D pairing probability map. This  
 127 2D map is subsequently processed through a classical 2D ResNet CNN network with postprocessing  
 128 to produce the final RNA contact map prediction.  
 129



152 Figure 1: Q1Fold model architecture. (a) Overall pipeline: RNA sequence (length L) is one-hot  
 153 encoded, processed through a Q1D feature extraction layer using 3-mer sliding windows, followed  
 154 by 1D convolutions and matrix products to generate a 2D pairing probability map. A 2D ResNet  
 155 CNN with post-processing produces the final LxL contact map. (b) 6-qubit variational quantum  
 156 circuit with three stages: (i) Data encoding using learnable rotation gates for nucleotide triplets  
 157 (q0-q2) and biology-aware qubits for position (q3), context (q4), and balance (q5); (ii) Entanglement  
 158 via linear ring CNOT gates and parametrized rotations; (iii) Multi-axis measurements to extract  
 159 quantum features.  
 160  
 161

162  
163

## 3.1 QUANTUM 1D FEATURE EXTRACTION CIRCUIT

164  
165  
166

As illustrated in Figure 1(b), the Q1D feature extraction layer implements a 6-qubit VQC that processes 3-nucleotide sliding windows from RNA sequences. The overall circuit architecture consists of three distinct stages: data encoding, parametrized entanglement, and measurement.

167  
168  
169  
170  
171  
172  
173  
174

**Data Encoding Stage** The encoding stage maps classical RNA sequence information into quantum states using a 6-qubit scheme. The first three qubits ( $q_0, q_1, q_2$ ) encode individual nucleotides using biochemically motivated base angles ( $A=[0,0]$ ,  $G=[\pi/2,0]$ ,  $C=[0,\pi/2]$ ,  $U=[\pi/2,\pi/2]$ ) augmented with learned angles as rotation angles for RY and RZ gates. Qubit  $q_3$  encodes positional information through position dependent rotations normalized to  $(0, \pi/4)$ . The qubit  $q_4$  encodes the sequence context, within the 3-mer window, via the context angle, which were calculated with energy-aware weighted nucleotide composition. The balance qubit  $q_5$  encodes the purine-pyrimidine balance by calculating the angle dependent on the A/G to C/U ratio.

175  
176  
177  
178  
179  
180

**Parametrized Entanglement Stage** The entanglement stage creates quantum correlations between encoded qubits through parametrized variational structure. After data encoding, parametrized  $\text{Rot}(\alpha, \beta, \gamma)$  gates are applied to all qubits with learnable parameters  $\theta \in \mathbb{R}^{1 \times 6 \times 3}$  followed with linear ring entanglement through CNOT gates between adjacent qubits. This hierarchical entanglement structure enables the circuit to model complicated local nucleotide characteristics and enables high expressivity of the quantum circuit.

181  
182  
183  
184  
185  
186  
187  
188

**Measurement stage** The measurement stage extracts features through a comprehensive set of quantum observables. Single-qubit measurements apply Pauli-X, Y, and Z operators to all six qubits, yielding 18 expectation values that capture individual qubit states. Two-qubit correlation measurements employ tensor products of Pauli operators (ZZ, XX, YY) on 11 strategically selected qubit pairs, producing 33 correlation features that encode pairwise quantum relationships. A single three-qubit measurement ZZZ on the nucleotide qubits ( $q_0$  to  $q_2$ ) captures higher-order correlations within the 3-mer window. As the result, we produced 52 channels of Q1D features for the subsequent layers via informative quantum measurements.

189  
190  
191  
192  
193  
194  
195

Overall, the 6-qubit design maintains a minimal qubit count that scales with the local window size rather than sequence length, effectively circumventing the barren plateau problem that severely limits larger VQCs. Specifically, due to the exponential suppression of gradients in variational quantum algorithms scales with the number of qubits McClean et al. (2018), our qubit-efficient approach is crucial for practical trainability. Combined with the biochemically-informed initialization with learnable embedding weights, this provides a good starting point for training, while preserving biology intuition about nucleotide properties.

196  
197

Following Q1D feature extraction, the model employs a classical deep learning architecture similar to sincFold (Bugnon et al., 2024) to refine and produce final RNA contact predictions.

200  
201  
202  
203  
204

**2D Map Construction** The 52-channel Q1D features undergo dimensionality reduction through two parallel 1D convolutional layers with rank  $r = 64$ . These are combined via outer product and symmetrized to enforce bidirectional base pairing:  $Y_{final} = (Y + Y^T)/2$ , generating an initial  $L \times L$  pairing probability matrix.

205  
206  
207  
208  
209  
210  
211

**2D ResNet Architecture** The refinement network consists of an initial  $7 \times 7$  convolutional layer (256 filters) followed by two ResNet blocks with bottleneck architectures. Each block implements: BatchNorm2D  $\rightarrow$  ReLU  $\rightarrow$  Conv2D (bottleneck)  $\rightarrow$  BatchNorm2D  $\rightarrow$  ReLU  $\rightarrow$  Conv2D (expansion) with skip connections. The blocks use 256 and 128 bottleneck channels respectively, employing  $5 \times 5$  kernels with dilation factor 3 to capture long-range dependencies. A final  $5 \times 5$  convolutional layer produces the single-channel contact map.

212  
213

**Loss Function and Training** The model employs a multi-component loss function:

$$\mathcal{L}_{total} = \mathcal{L}_{CE} + \beta \mathcal{L}_{aux} + \lambda_1 \mathcal{L}_{L1} + \lambda_2 \mathcal{L}_{reg} \quad (1)$$

214  
215

where  $\mathcal{L}_{CE}$  is the cross-entropy loss of the final prediction,  $\mathcal{L}_{aux}$  is an auxiliary loss from the intermediate 2D map with  $\beta = 0.15$ ,  $\mathcal{L}_{L1}$  encourages sparsity with  $\lambda_1 = 0.0005$ , and  $\mathcal{L}_{reg}$  is adaptive L2 regularization on quantum parameters. Separate optimizers are used: AdamW for quantum

parameters ( $2 \times 10^{-4}$ ) and Adam for classical parameters ( $1 \times 10^{-4}$ ), with ReduceLROnPlateau scheduling.

**Postprocessing** Raw predictions undergo postprocessing to ensure biological validity: canonical base pairing enforcement, symmetrization, binarization (threshold 0.5), minimum hairpin loop constraints (3 nt), and conflict resolution for overlapping pairs. This pipeline improves F1 scores by 2–3% on benchmark datasets.

The combination of quantum feature extraction with classical deep learning refinement enables Q1Fold to capture both local sequence patterns through quantum entanglement and global structural constraints through the 2D ResNet architecture, achieving competitive performance while maintaining parameter efficiency.

## 4 EXPERIMENTAL SETUP

### 4.1 DATASET

We evaluated Q1Fold on four well-known RNA structure prediction benchmark datasets, as well as a hairpin dataset built by ourselves.

**RNAStrAlign** (Tan et al., 2017) contains 37,149 RNA sequences from 8 RNA families. Following E2Efold (Chen et al., 2020) and MXfold2 (Sato et al., 2021), we first filter out the redundancies, retaining 30,879 unique structures. After that, we further filter away sequences longer than 512 nucleotides due to hardware limitation, leaving 19,966 sequences for experiments in our work.

**ArchiveII** (Saman Booy et al., 2022) contains 3,975 sequences from 10 families. After removing duplicates and limiting the sequence length to 512, we retained 3,380 sequences from 9 families. This data set serves as a test benchmark for RNA folding after training with the RNAStrAlign training split. Both RNAStrAlign and ArchiveII includes pseudoknots.

**bpRNA-1m** (Singh et al., 2019) contains 102,318 structures from 2,588 RNA families. Following SPOT-RNA (Singh et al., 2019), we use CD-HIT program (Fu et al., 2012) to remove similar sequences with a cut-off of 80%. For the remaining sequences, we follow the same partition between train, validation and test data that was proposed in SPOT-RNA. The data set was split to TR0 for training, VL0 for validation, TS0 for testing.

**bpRNA-new** (Sato et al., 2021) contains 1,500 structures derived from Rfam 14.4. It is used to assess cross-family generalization after training with TR0. Both bpRNA-1m and bpRNA-new are shorter than 500 nucleotide lengths and free of pseudoknots.

**Hairpin dataset** We extracted RNA hairpin motifs from 2001 sequences in the RNAStrAlign test subset using a simple pipeline. The extraction algorithm first identifies hairpin structures from dot-bracket notation through bracket matching, then validates candidates based on structural constraints: minimum stem length (3 bp), loop length (3–15 nt) and loop unpaired ratio (70%). In addition, thermodynamic stability score or hairpin energy ( $\Delta G$ ) is calculated using the Turner nearest-neighbor energy model, incorporating base pair formation energies, stacking interactions, terminal AU penalties, and loop initiation costs. Overlapping hairpins are resolved by retaining structures with the longest stems or the lowest  $\Delta G$ . This process yielded 5,349 unique hairpins with comprehensive annotations including position, sequence, structure, and stability scores (-86.1 to +5.9 kcal/mol), providing a biologically relevant dataset for evaluating RNA feature extraction methods. Table 1 summarizes the details of all the datasets used in our experiments.

Table 1: Summary of datasets used.

| Dataset     | Subset  | #Seq.  | Len. Range |
|-------------|---------|--------|------------|
| RNAStrAlign | Train   | 15,988 | 31–512     |
|             | Val     | 1,977  | 33–511     |
|             | Test    | 2,001  | 30–510     |
| ArchiveII   | -       | 3,380  | 28–512     |
|             | TR0     | 10,814 | 33–498     |
|             | VL0     | 1,300  | 33–497     |
| bpRNA-new   | TS0     | 1,305  | 22–499     |
|             | -       | 1,500  | 33–489     |
|             | Hairpin | 5,354  | 11–45      |

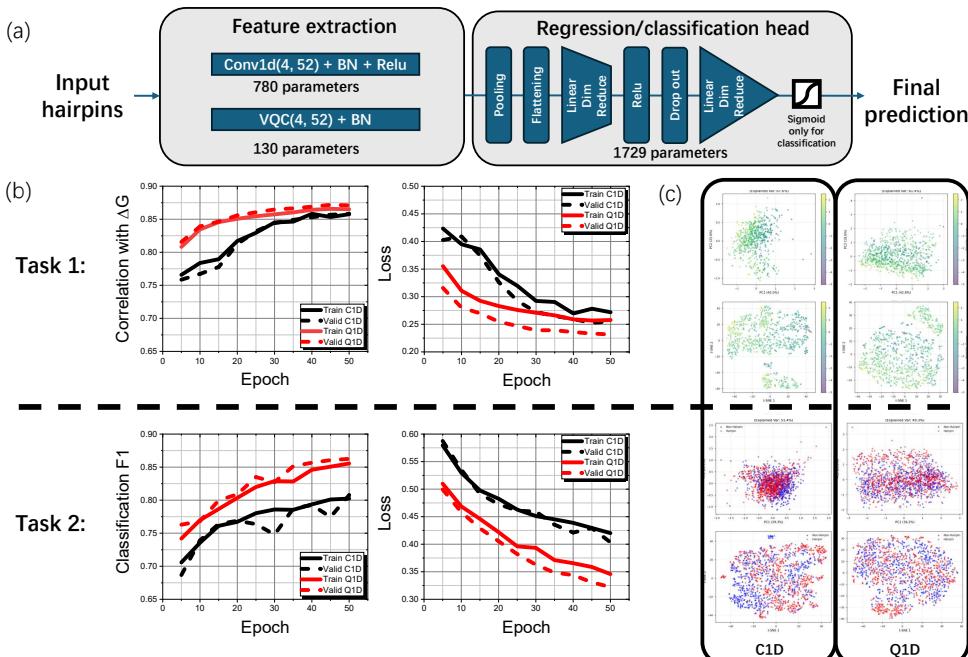
270 4.2 MEASURES AND BASELINE MODELS  
271

272 Following standard practice in RNA 2D structure prediction, we evaluate model performance using  
273 precision, recall, and F1 score metrics based on the correct identification of base pairs compared to  
274 ground truth structures. These metrics are widely adopted in the field and allow for direct compari-  
275 son with existing methods.

276 We compare our proposed Q1Fold with several baseline methods, including: Energy based:  
277 RNAFold from viennaRNA (Lorenz et al., 2011), MXfold2 (Sato et al., 2021). Early learning based:  
278 E2Efold (Chen et al., 2020), UFold (Fu et al., 2022), sincFold (Bugnon et al., 2024). Recent large  
279 language and foundation model based: RNAErnie (Wang et al., 2023), DEPfold (WANG & Cohen,  
280 2025).

281 5 RESULTS  
282284 5.1 QUANTUM FEATURE ANALYSIS FOR HAIRPIN LOCAL MOTIF  
285

286 To examine the capability of quantum feature in capturing local RNA motifs, specifically hairpin,  
287 we designed two downstream tasks.



310 Figure 2: Figure 2: Quantum (Q1D) versus classical (C1D) feature extraction for hairpin motif  
311 recognition. (a) Network architecture with Q1D (130 parameters) and C1D (780 parameters) feature  
312 extractors feeding into similar heads for hairpin energy regression (Task 1) and hairpin classifica-  
313 tion (Task 2). (b) Training curves showing Q1D’s faster convergence and superior performance in both  
314 tasks despite using fewer parameters. (c) PCA and t-SNE visualizations revealing Q1D’s enhanced  
315 non-linear feature representation with better energy correlation and cluster separation.

316 Task 1 is to test whether the features can be better correlated with the hairpin energy. Task 2 is to  
317 test whether the features can better classify if a certain length of nucleotides could be a hairpin, with  
318 additional equal amount of random sequences from the non-hairpin region of different RNAs. Using  
319 the same one-hot encoding, the inputs were fed into both the Q1D and the C1D extraction layer. For  
320 a fair comparison, C1D used a 4 to 52 channel conv1d with batch norm and relu activation, while  
321 Q1D uses quantum circuit with batch norm only. In terms of number of parameters, C1D used 780  
322 parameters and Q1D used 130 parameters. And quantum circuit only used 26 parameters, the addi-  
323 tional 104 parameters were attributed to batch norm layer. For both tasks, as shown in figure 2(a), we

324 used a simple regression head with 1729 parameters. A sigmoid before the classification prediction  
 325 are added for a yes or no output.

327 Figure 2(b) and (c) shows the training dynamics, PCA and t-SNE plots comparison between C1D  
 328 and Q1D respectively. From the training dynamics, it can be seen that Q1D out perform C1D in  
 329 terms of faster convergence speed, better correlation and higher accuracy in both tasks. For task 1,  
 330 hairpin energy correlation in reduced space, C1D shows a PCA of -0.041, t-SNE of 0.121, while  
 331 Q1D shows a PCA of 0.1, t-SNE of 0.331. And also, the first two components PCA explained  
 332 variance are 68.1% for C1D and 61.4% for Q1D. This is a clear evidence of superior non-linear fea-  
 333 ture representation of Q1D. Because Q1D’s lower PCA explained variance indicates it learns more  
 334 complex, non-linear features that can’t be easily compressed linearly, but these complex features are  
 335 much better for stability prediction. For task 2, similar results were observed. The first two compo-  
 336 nents PCA explained variance are 51.4% for C1D and 49.3% for Q1D, which would suggest that for  
 337 this task information is more evenly distributed across all dimensions rather than concentrated in few  
 338 principal components. Q1D shows slightly better separation with more distinct cluster boundaries  
 339 in t-SNE clustering. Overall separation of both methods are poor. This might due to additional non-  
 340 hairpin sequences are similar to hairpin sequences, which makes the classification more challenging.  
 341 In summary, the Q1D features consistently outperformed C1D features across both hairpin classifi-  
 342 cation and energy correlation, demonstrating superior ability to capture biologically relevant RNA  
 343 patterns through entanglement-encoded nucleotide correlations, with significantly reduced par-  
 344 ameters. To evaluate whether these advantages translate to comprehensive RNA secondary structure  
 345 prediction, we next conduct benchmark comparisons with SOTA methods.

## 346 5.2 BENCHMARK COMPARISON WITH EXISTING METHODS

347 We evaluated Q1Fold performance on the RNAs-  
 348 trAlign test set, with results summarized in Ta-  
 349 ble 2. Q1Fold achieved competitive per-  
 350 formance with an F1 score of 0.963, ranking as the  
 351 best among all benchmarked methods. Q1Fold  
 352 demonstrated substantial advantages over tra-  
 353 ditional energy-based approaches such as RNAfold.  
 354 When compared to deep learning models like  
 355 UFold, sincFold, and E2Efold, the performance  
 356 gap with Q1Fold narrows considerably. The sim-  
 357 ilar performance to sincFold and competitive re-  
 358 sults with UFold can be attributed to architectural  
 359 similarities in the second stage of our model, re-  
 360 sulting in comparable performance levels. Notably,  
 361 Q1Fold outperformed the LLM/FM approach,  
 362 such as DEPfold. This superior performance is particularly remarkable from a parameter efficiency  
 363 perspective. Q1Fold requires only 130 parameters for feature generation, while foundation models  
 364 typically demand billions or trillions of parameters. This positions Q1Fold as both a more accurate  
 365 and parameter-efficient alternative for RNA 2D structure prediction tasks, when trained on inter-  
 366 family datasets.

367 To assessed Q1Fold’s generalization ability, we directly test the model trained on the RNAsAlign  
 368 training set on ArchiveII dataset, with results summarized in Table 3. Q1Fold achieved a best F1  
 369 score of 0.886 on this dateset. Similar to RNAsAlign dataset, Q1Fold show clear advantages  
 370 over energy-based models but similar or slightly better performance over deep learning models and  
 371 LLM/FM models. This demonstrates that Q1Fold has the capacity to generalize to wider range of  
 372 RNA sequences.

373 Following prior studies (WANG & Cohen, 2025; Sato et al., 2021), we trained Q1Fold on bpRNA-  
 374 TR0 and evaluated it on bpRNA-TS0, with results summarized in Table 4. Q1Fold demonstrates  
 375 competitive performance, achieving the second-best F1 score. On this dataset, Q1Fold’s per-  
 376 formance fell short of LLM/FM approaches such as DEPfold. This performance gap can be attributed  
 377 to the substantial difference in feature representation capacity: our quantum circuit generates only  
 52 feature channels per nucleotide, whereas DEPfold leverages foundation models to produce up to  
 800 feature channels per nucleotide. Since the bpRNA-1m dataset filters similar structures using an

378 Table 2: Performance comparison on  
 379 RNAsAlign test set.

| Method        | Precision | Recall | F1    |
|---------------|-----------|--------|-------|
| <b>Q1Fold</b> | 0.972     | 0.958  | 0.963 |
| * UFold       | 0.959     | 0.965  | 0.962 |
| DEPfold       | 0.948     | 0.974  | 0.960 |
| sincFold      | 0.942     | 0.959  | 0.950 |
| E2Efold       | 0.649     | 0.789  | 0.705 |
| * RNAfold     | 0.515     | 0.568  | 0.539 |

380 \*: reported from original paper or  
 381 from (WANG & Cohen, 2025)

378 80% sequence identity cutoff, richer feature representations become crucial for cross-family RNA  
 379 2D structure prediction tasks.  
 380

382 Table 3: Performance comparison on ArchiveII  
 383 test set.

| Method        | Precision | Recall | F1    |
|---------------|-----------|--------|-------|
| <b>Q1Fold</b> | 0.915     | 0.871  | 0.886 |
| * UFold       | 0.876     | 0.890  | 0.881 |
| * RNAErnie    | 0.886     | 0.870  | 0.875 |
| DEPfold       | 0.852     | 0.820  | 0.830 |
| sincFold      | 0.851     | 0.869  | 0.825 |
| * MXfold2     | 0.825     | 0.780  | 0.796 |
| * RNAfold     | 0.550     | 0.611  | 0.577 |
| E2Efold       | 0.510     | 0.635  | 0.557 |

393 \*: reported from original paper or  
 394 from (WANG & Cohen, 2025)

395 Table 4: Performance comparison on  
 396 bpRNA-TS0 test set.

| Method        | Precision | Recall | F1    |
|---------------|-----------|--------|-------|
| DEPfold       | 0.686     | 0.636  | 0.644 |
| <b>Q1Fold</b> | 0.643     | 0.667  | 0.635 |
| * UFold       | 0.587     | 0.711  | 0.630 |
| * RNAErnie    | 0.575     | 0.678  | 0.622 |
| sincFold      | 0.576     | 0.695  | 0.612 |
| * MXfold2     | 0.519     | 0.646  | 0.558 |
| * RNAfold     | 0.446     | 0.631  | 0.508 |
| E2Efold       | 0.166     | 0.240  | 0.196 |

397 \*: reported from original paper or  
 398 from (WANG & Cohen, 2025)

399 This feature limitation becomes more pronounced  
 400 on the bpRNA-new dataset, with results summa-  
 401 rized in Table 5. As families in the bpRNA-new  
 402 dataset are not represented in the training set,  
 403 Q1Fold’s performance deteriorates significantly,  
 404 achieving an F1 score of only 0.406, while tra-  
 405 ditional thermodynamic models perform reason-  
 406 ably well. Nevertheless, Q1Fold still substan-  
 407 tially outperforms early methods like E2Efold,  
 408 which fails catastrophically on this dataset with  
 409 an F1 score of 0.051.

### 410 5.3 ABLATION

411 To gain deeper insight into the contribution of dif-  
 412 ferent components of Q1D feature extraction layer, we conducted two ablation experiments using  
 413 bpRNA-TS0 test set. Results summarized in table 6.

414 **Single-qubit vs multi-qubits measurements** At  
 415 the measurement stage, we compare the effective-  
 416 ness of single-qubit measurements only (Q1Fold-  
 417 SMO) versus multi-qubit correlated measure-  
 418 ments only (Q1Fold-MMO). With referring to Ta-  
 419 ble 4, both approaches underperform compared to  
 420 the combined strategy. Q1Fold-MMO achieves  
 421 higher recall but lower precision, while Q1Fold-  
 422 SMO exhibits the opposite pattern—higher precision but lower recall. This indicates that multi-qubit  
 423 correlated measurements excel at identifying potential base pairs (higher sensitivity), while single-  
 424 qubit measurements contribute to prediction accuracy (higher specificity). The combination of both  
 425 measurement strategies achieves optimal recall-precision balance, resulting in superior F1 per-  
 426 formance.

427 **Biology-aware qubits** We evaluate the impact of biology-aware qubits ( $q_3-q_5$ ) by comparing  
 428 Q1Fold with Q1Fold-3qO, which uses only the three sequence-encoding qubits. The absence of  
 429 biology-aware qubits results in a 3.5% F1 score reduction, primarily due to decreased precision  
 430 while recall remains comparable. This demonstrates that encoding positional, contextual, and bal-  
 431 ance information in dedicated qubits enhances prediction specificity, providing a significant ad-  
 432 vantage over purely sequence-based encoding. Including biology-aware information in the quan-  
 433 tum encoding improves the model’s precision without sacrificing recall, demonstrating the value of  
 434 domain-informed feature design.

435 Table 5: Performance comparison on  
 436 bpRNA-new test set.

| Method        | Precision | Recall | F1    |
|---------------|-----------|--------|-------|
| * DEPfold     | 0.650     | 0.624  | 0.621 |
| * RNAfold     | 0.552     | 0.720  | 0.617 |
| <b>Q1Fold</b> | 0.544     | 0.352  | 0.406 |
| E2Efold       | 0.040     | 0.100  | 0.051 |

437 \*: reported from original paper or  
 438 from (WANG & Cohen, 2025)

439 Table 6: Ablation study on bpRNA-TS0.

| Method     | Precision | Recall | F1    |
|------------|-----------|--------|-------|
| Q1Fold-SMO | 0.625     | 0.606  | 0.585 |
| Q1Fold-MMO | 0.506     | 0.711  | 0.572 |
| Q1Fold-3qO | 0.567     | 0.686  | 0.600 |

432  
433

## 5.4 LIMITATIONS

434  
435

Despite the promising results, our approach faces several important limitations that must be acknowledged:

436  
437  
438  
439  
440  
441  
442  
443  
444

**Computational overhead from simulation.** The most significant practical limitation stems from the current state of quantum computing technology. Due to the limited availability of quantum hardware and the constraints of NISQ devices (noise, limited connectivity, and shallow circuit depth), we rely entirely on classical simulation of quantum circuits. This introduces substantial computational overhead, with the simulation complexity scaling exponentially with the number of qubits. Consequently, Q1Fold’s training time is approximately 5–10 times longer than purely classical models when run on GPU-accelerated simulators. This overhead currently negates the theoretical speedup advantages of quantum computing, though this limitation should diminish as quantum hardware becomes more accessible and reliable.

445  
446  
447  
448  
449  
450  
451  
452  
453  
454

**Limited architectural scalability.** While classical convolutional layers can be easily cascaded to create deep architectures with hierarchical feature extraction, VQCs face fundamental challenges in deep stacking. The cascading of VQCs is not straightforward due to several factors: (1) the measurement collapse that occurs between quantum layers destroys quantum coherence, (2) re-encoding classical outputs back into quantum states introduces additional overhead and potential information loss, and (3) deeper quantum circuits suffer from increased noise accumulation and more severe barren plateau effects. This architectural constraint limits our ability to build deeper quantum networks that might capture more complex hierarchical patterns in RNA structures. Currently, Q1Fold employs only a single quantum layer followed by classical processing, which may limit its capacity to fully exploit quantum advantages for feature learning.

455  
456  
457  
458  
459

These limitations highlight that while hybrid quantum-classical approaches show promise for RNA structure prediction, significant technological and theoretical advances are still needed to fully realize their potential. Future work should focus on developing more efficient quantum circuit architectures, exploring methods for effective quantum layer stacking, and leveraging emerging quantum hardware as it becomes available.

460  
461

## 6 CONCLUSION

462  
463  
464  
465  
466  
467  
468

In this work, we presented Q1Fold, a hybrid quantum-classical convolutional network for RNA 2D structure prediction that demonstrates the practical viability of quantum computing in computational biology. Our approach successfully integrates a 6-qubit VQC for local feature extraction with a classical 2D ResNet architecture for global structure refinement. The experimental results demonstrate that Q1Fold achieves performance comparable to state-of-the-art methods including both traditional energy-based approaches and recent deep learning or language models, while using significantly fewer parameters through quantum feature compression.

469  
470  
471  
472  
473  
474  
475

The key contribution of our work lies in demonstrating that quantum feature extraction can effectively capture local RNA structural motifs, particularly in hairpin structures where quantum features showed superior correlation with thermodynamic stability scores compared to classical convolutional features. This suggests that quantum entanglement and superposition provide meaningful representational advantages for encoding the complex correlations present in RNA sequences. Furthermore, our qubit-efficient design successfully circumvents the barren plateau problem that has limited previous quantum approaches, making the model trainable on current hardware simulators.

476  
477  
478  
479  
480  
481  
482

While Q1Fold does not claim superiority over all existing methods, it establishes that hybrid quantum-classical architectures represent a viable and promising direction for RNA structure prediction. The comparable performance achieved with substantially reduced parameter counts suggests potential advantages in scenarios with limited training data, where parameter efficiency becomes crucial for preventing overfitting. As quantum hardware continues to improve, we anticipate that methods like Q1Fold will become increasingly practical and may eventually offer computational advantages beyond parameter efficiency.

483  
484  
485

486 REFERENCES  
487

488 Dimitris Alevras, Mihir Metkar, Takahiro Yamamoto, Vaibhaw Kumar, Triet Friedhoff, Jae-Eun  
489 Park, Mitsuharu Takeori, Mariana LaDue, Wade Davis, and Alexey Galda. mrna secondary  
490 structure prediction using utility-scale quantum computers. In *2024 IEEE International Con-*  
491 *ference on Quantum Computing and Engineering (QCE)*, volume 01, pp. 488–499, 2024. doi:  
492 10.1109/QCE60285.2024.00064.

493 Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.  
494 Quantum machine learning. *Nature*, 549(7671):195–202, 2017.  
495

496 Marcin Budnik, Karol Klamka, et al. Deep dive into rna: a systematic literature review on rna  
497 structure prediction using ml methods. *Briefings in Bioinformatics*, 24(4), 2023.  
498

499 L. A. Bugnon, L. Di Persia, M. Gerard, J. Raad, S. Prochetto, E. Fenoy, U. Chorostecki,  
500 F. Ariel, G. Stegmayer, and D. H. Milone. sincFold: end-to-end learning of short- and long-  
501 range interactions in RNA secondary structure. *Briefings in Bioinformatics*, 25(4):bbae271, 06  
2024. ISSN 1477-4054. doi: 10.1093/bib/bbae271. URL <http://sinc.unl.edu.ar/sinc-publications/2024/BDGRPFASM24>.

502 Namit Chaudhary, Drew Weissman, and Kathryn A Whitehead. mrna vaccines for infectious dis-  
503 eases: principles, delivery and clinical translation. *Nature Reviews Drug Discovery*, 20(11):817–  
504 838, 2021.  
505

506 Chao-Han Huck Chen, Stefanos Liakos, Sofia Stefanou, Matthew McKay, Maximilian Trescher,  
507 Yannic Hellmich, Alexander Engel, Aliza Fanaswala, Claudia Roesch, Deborah Wilhelm-Mauch,  
508 et al. Binding affinity predictions with hybrid quantum-classical convolutional neural networks.  
509 *Scientific Reports*, 13(1):17150, 2023.  
510

511 Jiayang Chen, Zhihang Hu, Siqi Sun, Qingxiong Tan, Yixuan Wang, Qinze Yu, Licheng Zong,  
512 Liang Hong, Jin Xiao, Tao Shen, Irwin King, and Yu Li. Interpretable rna foundation model  
513 from unannotated data for highly accurate rna structure and function predictions, 2022. URL  
514 <https://arxiv.org/abs/2204.00300>.  
515

516 Xinshi Chen, Yu Li, Ramzan Umarov, Xin Gao, and Le Song. Rna secondary structure prediction by  
517 learning unrolled algorithms. In *International Conference on Learning Representations (ICLR)*,  
518 2020. URL [https://iclr.cc/virtual\\_2020/poster\\_S1eALyryDH.html](https://iclr.cc/virtual_2020/poster_S1eALyryDH.html).  
519

520 Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural networks. *Nature*  
521 *Physics*, 15(12):1273–1278, 2019.  
522

523 Dillion M Fox, Christopher M MacDermaid, Andrea MA Schreij, Magdalena Zwierzyna, and  
524 Ross C Walker. Rna folding using quantum computers. *PLOS Computational Biology*, 18(4):  
525 e1010032, 2022.  
526

527 Laiyi Fu, Yingxin Cao, Jie Wu, Qinke Peng, Qing Nie, and Xiaohui Xie. Ufold: fast and accurate  
528 rna secondary structure prediction with deep learning. *Nucleic Acids Research*, 50(3):e14, 2022.  
529

530 Limin Fu, Beifang Niu, Zhengwei Zhu, Sitao Wu, and Weizhong Li. Cd-hit: accelerated for  
531 clustering the next-generation sequencing data. *Bioinformatics*, 28(23):3150–3152, 10 2012.  
532 ISSN 1367-4803. doi: 10.1093/bioinformatics/bts565. URL <https://doi.org/10.1093/bioinformatics/bts565>.  
533

534 Maxwell Henderson, Samriddhi Shakya, Shashindra Pradhan, and Tristan Cook. Quanvolutional  
535 neural networks: powering image recognition with quantum circuits. *Quantum Machine Intelli-*  
536 *gence*, 2(1):1–9, 2020.  
537

538 Liang Huang, He Zhang, Dezhong Deng, Kai Zhao, Kaibo Liu, David A Hendrix, and David H  
539 Mathews. Linearfold: linear-time approximate rna folding by 5-to-3dynamic programming and  
beam search. *Bioinformatics*, 35(14):i295–i304, 2019.

540 Vaibhaw Kumar, Dimitris Alevras, Mihir Metkar, Eline Welling, Chris Cade, Ido Niesen, Triet Fried-  
 541 hoff, Jae-Eun Park, Saurabh Shivpuje, Mariana LaDue, Wade Davis, and Alexey Galda. Towards  
 542 secondary structure prediction of longer mrna sequences using a quantum-centric optimization  
 543 scheme, 2025. URL <https://arxiv.org/abs/2505.05782>.

544 Junhua Liu, Kwan Hui Lim, Kristin L Wood, Wei Huang, Chu Guo, and He-Liang Huang. Hybrid  
 545 quantum-classical convolutional neural networks. *Science China Physics, Mechanics & Astron-  
 546 omy*, 64(9):290311, 2021.

547 Ronny Lorenz, Stephan H Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph  
 548 Flamm, Peter F Stadler, and Ivo L Hofacker. Viennarna package 2.0. *Algorithms for molecu-  
 549 lar biology*, 6(1):26, 2011.

550 Rune B Lyngsø and Christian NS Pedersen. Rna pseudoknot prediction in energy-based models.  
 551 *Journal of Computational Biology*, 7(3-4):409–427, 2000.

552 Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Bar-  
 553 ren plateaus in quantum neural network training landscapes. *Nature Communications*, 9(1):4812,  
 554 2018.

555 Nabil Anan Orka, Ehtashamul Haque, Md. Abdul Awal, and Mohammad Ali Moni. Fully quan-  
 556 tional networks for time series classification. In *Proceedings of the 31st ACM SIGKDD  
 557 Conference on Knowledge Discovery and Data Mining*, pp. 2210–2221. ACM, 2025.

558 Norbert Pardi, Michael J Hogan, Frederick W Porter, and Drew Weissman. mrna vaccines — a new  
 559 era in vaccinology. *Nature Reviews Drug Discovery*, 17(4):261–279, 2018.

560 Ugur Sahin, Katalin Karikó, and Özlem Türeci. mrna-based therapeutics—developing a new class  
 561 of drugs. *Nature Reviews Drug Discovery*, 13(10):759–780, 2014.

562 Mehdi Saman Booy, Alexander Ilin, and Pekka Orponen. RNA secondary structure prediction with  
 563 convolutional neural networks. *BMC Bioinformatics*, 23(1):58, February 2022.

564 Kengo Sato, Miki Akiyama, and Yasubumi Sakakibara. Rna secondary structure prediction  
 565 using deep learning with thermodynamic integration. *Nature Communications*, 12(1):941,  
 566 feb 2021. doi: 10.1038/s41467-021-21194-4. URL <https://doi.org/10.1038/s41467-021-21194-4>. Received: 22 September 2020; Accepted: 15 January 2021; Pub-  
 567 lished: 11 February 2021.

568 Jaswinder Singh, Jack Hanson, Kuldip Paliwal, and Yaoqi Zhou. Rna secondary structure prediction  
 569 using an ensemble of two-dimensional deep neural networks and transfer learning. *Nature Com-  
 570 munications*, 10(1):5407, 11 2019. ISSN 2041-1723. doi: 10.1038/s41467-019-13395-9. URL  
 571 <https://doi.org/10.1038/s41467-019-13395-9>.

572 Zhenjiang Tan, Yinglei Fu, Gaurav Sharma, and David H Mathews. Turbofold ii: Rna structural  
 573 alignment and secondary structure prediction informed by multiple homologs. *Nucleic acids  
 574 research*, 45(20):11570–11581, 2017.

575 Ignacio Tinoco Jr and Carlos Bustamante. How rna folds. *Journal of Molecular Biology*, 293(2):  
 576 271–281, 1999.

577 KE WANG and Shay B Cohen. DEPfold: RNA secondary structure prediction as dependency  
 578 parsing. In *The Thirteenth International Conference on Learning Representations (ICLR)*, 2025.  
 579 URL <https://openreview.net/forum?id=DpLFmc09pC>.

580 Wenkai Wang, Enze Gong, Menghan Dou, Renmin Han, Yiming Zhang, Yang Gao, Qingchun Wang,  
 581 Yu-Chun Wu, and Guo-Ping Guo. Rnaernie: An rna language model with structure-sequence pre-  
 582 training. *arXiv preprint arXiv:2311.09528*, 2023.

583 Kexin Wu, James Y Zou, and Howard Y Chang. Deep learning for rna structure prediction. *Current  
 584 Opinion in Structural Biology*, 90:101076, 2025.

585 Michael Zuker. Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic  
 586 acids research*, 31(13):3406–3415, 2003.

594 **A APPENDIX**  
595596 **LLM USAGE**  
597598 We acknowledge the use of Claude (Anthropic) as a general-purpose assistant tool during the prepa-  
599 ration of this manuscript. The LLM was utilized in the following capacities: (1) Code develop-  
600 ment assistance, where Claude helped with code generation for implementing experimental com-  
601 ponents and data processing scripts, provided debugging suggestions when encountering technical  
602 issues, and offered solutions for optimization problems, though all generated code was thoroughly  
603 reviewed, tested, and validated by the authors before inclusion in our experimental pipeline; (2)  
604 Writing and language polishing, where Claude assisted in improving the clarity and readability of  
605 technical descriptions throughout the manuscript, helped refine grammar and sentence structure in  
606 various sections, suggested better phrasing and technical terminology to enhance precision, and pro-  
607 vided alternatives for complex explanations to improve accessibility for readers; and (3) Quality  
608 assurance throughout the writing process, where all LLM-generated content was critically evaluated  
609 and verified by the authors for technical accuracy and scientific validity through manual review and  
610 cross-checking with relevant literature. We emphasize that the LLM did not contribute to the core  
611 research ideas, hypothesis formulation, experimental design, data analysis decisions, or scientific  
612 conclusions presented in this work, with its role strictly limited to auxiliary support in implemen-  
613 tation and presentation aspects. The authors take full responsibility for all content in this paper,  
614 including any portions that were refined with LLM assistance, and confirm that all scientific claims,  
615 experimental results, and theoretical contributions are the product of the authors' own research ef-  
616 forts, with the LLM serving only as a tool to enhance the technical execution and written presentation  
617 of our original work.  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647