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ABSTRACT

RNA 2D structure prediction remains a critical challenge in computational biol-
ogy, with existing thermodynamic and deep learning approaches facing limitations
in modeling complex interactions and data requirements. We introduce Q1Fold,
a hybrid quantum-classical convolutional network for RNA secondary structure
prediction. The model integrates a compact variational quantum circuit with a
classical 2D ResNet architecture, where the quantum circuit generates expressive
features from local sequence windows using minimal qubits. This design avoids
barren plateaus and is compatible with current Noisy Intermediate-Scale Quantum
Computers. Despite using significantly fewer parameters, Q1Fold achieves com-
petitive performance on standard benchmarks compared to state-of-the-art meth-
ods. The extracted quantum features also demonstrate superior capability in rep-
resenting local structural motifs such as hairpins. Our work establishes a practical
route toward quantum-enhanced computational RNA biology.

1 INTRODUCTION

Ribonucleic acid (RNA) plays fundamental roles in numerous cellular processes, including protein
synthesis, gene regulation, catalytic reactions, and sensing of molecular signals (Sahin et al., 2014;
Pardi et al., 2018). The secondary (2D) structure of RNA is crucial for understanding its biological
function and serves as a foundation for tertiary structure formation (Tinoco Jr & Bustamante, 1999;
Budnik et al., 2023). The accurate prediction of RNA 2D structure from primary sequence alone re-
mains one of the most important and challenging problems in computational biology, with significant
implications for drug discovery, vaccine development, and synthetic biology applications (Chaud-
hary et al., 2021). Traditional approaches to RNA 2D structure prediction have relied primarily
on thermodynamic models that minimize free energy based on nearest-neighbor parameters (Zuker,
2003). Methods such as ViennaRNA (Lorenz et al., 2011) and MXfold2 (Sato et al., 2021) have
achieved considerable success, but face inherent limitations when dealing with complex structural
motifs, particularly pseudoknots and long-range base pairs (Lyngsø & Pedersen, 2000). Early ma-
chine learning models marked a significant shift in RNA structure prediction by learning directly
from data, bypassing explicit energy calculations (Singh et al., 2019). Methods like E2Efold (Chen
et al., 2020), UFold (Fu et al., 2022) and sincFold (Bugnon et al., 2024) demonstrated that deep
learning architectures, particularly convolutional neural networks, could successfully model spatial
relationships between nucleotides. Despite their improvements over thermodynamic approaches,
these models remain limited by their sequence embedding strategies and feature representation ca-
pabilities, often struggling to capture the full complexity of RNA structural patterns and long-range
dependencies (Chen et al., 2022). More recently, the field has witnessed the emergence of large
language model (LLM) and foundation model (FM) based approaches that leverage pre-trained se-
quence representations to enhance RNA structure prediction (Wu et al., 2025). Models such as
RNAErnie (Wang et al., 2023) and Depfold (WANG & Cohen, 2025) utilize transformer architec-
tures and self-attention mechanisms to capture complex sequence-structure relationships. Although
these models have shown promising results, their enormous parameter requirements, often in the
hundreds of millions to billions, pose a significant risk of overfitting given the currently limited size
of available RNA structure datasets, representing a fundamental bottleneck in achieving robust and
generalizable predictions of RNA structure (Wu et al., 2025). Quantum computing offers a fun-
damentally different pathway for addressing these computational challenges through entanglement
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and superposition (Biamonte et al., 2017). The exponential scaling of quantum Hilbert spaces and
the ability of quantum circuits to generate complex entangled states present unique advantages for
capturing intricate patterns in RNA folding (Fox et al., 2022). However, purely quantum-based RNA
folding models remain in their infancy, with existing implementations suffering from issues such as
barren plateaus, limited qubit availability, and performance that have yet to match state-of-the-art
(SOTA) machine learning models (Alevras et al., 2024; Kumar et al., 2025).

In this work, we introduce Q1Fold, a novel hybrid quantum-classical convolutional neural network
(HQC-CNN) that addresses the limitations of both classical and quantum approaches to RNA 2D
structure prediction. Our method leverages quantum convolutional layers for enhanced feature ex-
traction while maintaining compatibility with current Noisy Intermediate-Scale Quantum (NISQ)
devices. By integrating quantum convolution with classical CNN architectures, Q1Fold achieves
competitive performance while requiring only a small number of qubits proportional to the local
window size rather than the full sequence length. The contributions of our work are summarized
below:

• We propose Q1Fold, the first HQC-CNN model specifically designed for RNA 2D structure pre-
diction. Unlike existing quantum approaches that primarily use Quantum Approximate Opti-
mization Algorithm (QAOA) or Variational Quantum Eigensolver (VQE) frameworks, Q1Fold
integrates quantum circuits directly into CNN architectures, achieving significant parameter re-
duction while maintaining competitive performance compared to SOTA classical methods.

• We design a qubit-efficient variational quantum circuit (VQC) with learnable data embedding for
1D feature extraction of RNA sequences. McClean et al. (2018) demonstrated barren plateau
effects scale exponentially with the number of qubits, our qubit-efficient design circumvents this
fundamental limitation.

• We introduce a position-, context- and balance-aware quantum entanglement scheme that en-
codes positional, C/G vs A/U contextual and purine-pyrimidine balanced information in dedi-
cated qubits, producing quantum features with significantly enhanced expressivity. This quantum
feature richness enables accelerated learning dynamics, achieving improved validation in early
epochs and competitive overall performances.

2 BACKGROUND

2.1 RNA 2D STRUCTURE PREDICTION

RNA 2D structure prediction aims to determine the pattern of base pairings in an RNA molecule
given only its primary sequence. The 2D structure can be represented as a contact matrix where en-
try (i,j) indicates whether nucleotides at positions i and j form a base pair. Valid 2D structures must
satisfy several biological constraints: only Watson-Crick (A-U, G-C) and wobble (G-U) base pairs
are allowed, no sharp loops with fewer than 4 unpaired nucleotides can form, and each nucleotide can
participate in at most one base pair (Huang et al., 2019).The computational complexity of this prob-
lem stems from the exponential search space of possible base-pairing configurations for sequences
of length n, making exhaustive enumeration intractable (Tinoco Jr & Bustamante, 1999). Addition-
ally, the presence of pseudoknots—non-nested base pairs that cross each other—significantly in-
creases the difficulty, as standard dynamic programming approaches cannot handle these structures
efficiently (Lyngsø & Pedersen, 2000). The limited availability of experimentally validated RNA
structures further constrains the development and evaluation of prediction methods, with existing
databases containing only tens of thousand of high-quality annotations compared to the millions of
known RNA sequences.

2.2 HYBRID QUANTUM-CLASSICAL CNN

Hybrid quantum-classical convolutional neural networks (HQC-CNNs) represent an emerging
paradigm that combines quantum circuit feature extraction with classical neural network scalabil-
ity (Henderson et al., 2020; Cong et al., 2019). The core innovation lies in replacing classical con-
volutional filters with parametric quantum circuits that process data in exponentially large Hilbert
spaces, exploiting superposition and entanglement to generate complex, non-linear feature represen-
tations (Liu et al., 2021). HQC-CNNs have demonstrated competitive performance on image clas-
sification benchmarks like MNIST and Fashion-MNIST using significantly fewer parameters than
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classical CNNs (Henderson et al., 2020). More recently, quantum convolution has shown particular
promise for time series data, where quantum circuits’ ability to capture temporal correlations through
entanglement aligns well with long-range dependencies and complex periodic patterns (Orka et al.,
2025). The study by Orka et al. demonstrated that fully quanvolutional networks could outperform
classical methods on 20 UEA and UCR time series datasets while using 6.5 times fewer parameters
on average, suggesting quantum effects provide representational advantages even in the NISQ era.
The application to biological sequences presents unique opportunities, as the exponential feature
space of quantum circuits could capture combinatorial sequence-structure relationships more effi-
ciently than classical approaches (Chen et al., 2023). The parameter efficiency of quantum circuits
directly addresses RNA structure prediction’s fundamental challenge: the scarcity of high-quality
training data relative to model complexity, potentially reducing overfitting risks compared to foun-
dation models with hundreds of millions of parameters.

3 Q1FOLD MODEL

As illustrated in Figure 1(a), our model consists of two main modules: the 1D feature extraction
module and the 2D pairing prediction module. First of all, the input RNA sequence of length L is
one hot encoded. Then it is processed by our quantum 1D (Q1D) feature extraction layer, which
employs VQC for feature representation. The resulting 1D features are then processed with two 1D
convolutional layers and matrix product operations to generate a 2D pairing probability map. This
2D map is subsequently processed through a classical 2D ResNet CNN network with postprocessing
to produce the final RNA contact map prediction.
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Figure 1: Q1Fold model architecture. (a) Overall pipeline: RNA sequence (length L) is one-hot
encoded, processed through a Q1D feature extraction layer using 3-mer sliding windows, followed
by 1D convolutions and matrix products to generate a 2D pairing probability map. A 2D ResNet
CNN with post-processing produces the final L×L contact map. (b) 6-qubit variational quantum
circuit with three stages: (i) Data encoding using learnable rotation gates for nucleotide triplets
(q0-q2) and biology-aware qubits for position (q3), context (q4), and balance (q5); (ii) Entanglement
via linear ring CNOT gates and parametrized rotations; (iii) Multi-axis measurements to extract
quantum features.
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3.1 QUANTUM 1D FEATURE EXTRACTION CIRCUIT

As illustrated in Figure 1(b), the Q1D feature extraction layer implements a 6-qubit VQC that pro-
cesses 3-nucleotide sliding windows from RNA sequences. The overall circuit architecture consists
of three distinct stages: data encoding, parametrized entanglement, and measurement.

Data Encoding Stage The encoding stage maps classical RNA sequence information into quantum
states using a 6-qubit scheme. The first three qubits (q0, q1, q2) encode individual nucleotides using
biochemically motivated base angles (A=[0,0], G=[π/2,0], C=[0,π/2], U=[π/2,π/2]) augmented with
learned angles as rotation angles for RY and RZ gates. Qubit q3 encodes positional information
through position dependent rotations normalized to (0, π/4). The qubit q4 encodes the sequence
context, within the 3-mer window, via the context angle, which were calculated with energy-aware
weighted nucleotide composition. The balance qubit q5 encodes the purine-pyrimidine balance by
calculating the angle dependent on the A/G to C/U ratio.

Parametrized Entanglement Stage The entanglement stage creates quantum correlations between
encoded qubits through parametrized variational structure. After data encoding, parametrized
Rot(α, β, γ) gates are applied to all qubits with learnable parameters θ ∈ R1×6×3 followed with
linear ring entanglement through CNOT gates between adjacent qubits. This hierarchical entangle-
ment structure enables the circuit to model complicated local nucleotide characteristics and enables
high expressivity of the quantum circuit.

Measurement stage The measurement stage extracts features through a comprehensive set of quan-
tum observables. Single-qubit measurements apply Pauli-X, Y, and Z operators to all six qubits,
yielding 18 expectation values that capture individual qubit states. Two-qubit correlation measure-
ments employ tensor products of Pauli operators (ZZ, XX, YY) on 11 strategically selected qubit
pairs, producing 33 correlation features that encode pairwise quantum relationships. A single three-
qubit measurement ZZZ on the nucleotide qubits (q0 to q2) captures higher-order correlations within
the 3-mer window. As the result, we produced 52 channels of Q1D features for the subsequent layers
via informative quantum measurements.

Overall, the 6-qubit design maintains a minimal qubit count that scales with the local window size
rather than sequence length, effectively circumventing the barren plateau problem that severely lim-
its larger VQCs. Specifically, due to the exponential suppression of gradients in variational quantum
algorithms scales with the number of qubits McClean et al. (2018), our qubit-efficient approach
is crucial for practical trainability. Combined with the biochemically-informed initialization with
learnable embedding weights, this provides a good starting point for training, while preserving biol-
ogy intuition about nucleotide properties.

3.2 CLASSICAL 2D RESNET CNN NETWORK WITH POSTPROCESSING

Following Q1D feature extraction, the model employs a classical deep learning architecture similar
to sincFold (Bugnon et al., 2024) to refine and produce final RNA contact predictions.

2D Map Construction The 52-channel Q1D features undergo dimensionality reduction through
two parallel 1D convolutional layers with rank r = 64. These are combined via outer product and
symmetrized to enforce bidirectional base pairing: Yfinal = (Y + Y T )/2, generating an initial
L× L pairing probability matrix.

2D ResNet Architecture The refinement network consists of an initial 7 × 7 convolutional layer
(256 filters) followed by two ResNet blocks with bottleneck architectures. Each block implements:
BatchNorm2D → ReLU → Conv2D (bottleneck) → BatchNorm2D → ReLU → Conv2D (expan-
sion) with skip connections. The blocks use 256 and 128 bottleneck channels respectively, em-
ploying 5 × 5 kernels with dilation factor 3 to capture long-range dependencies. A final 5 × 5
convolutional layer produces the single-channel contact map.

Loss Function and Training The model employs a multi-component loss function:

Ltotal = LCE + βLaux + λ1LL1 + λ2Lreg (1)

where LCE is the cross-entropy loss of the final prediction, Laux is an auxiliary loss from the
intermediate 2D map with β = 0.15, LL1 encourages sparsity with λ1 = 0.0005, and Lreg is adap-
tive L2 regularization on quantum parameters. Separate optimizers are used: AdamW for quantum
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parameters (2 × 10−4) and Adam for classical parameters (1 × 10−4), with ReduceLROnPlateau
scheduling.

Postprocessing Raw predictions undergo postprocessing to ensure biological validity: canonical
base pairing enforcement, symmetrization, binarization (threshold 0.5), minimum hairpin loop con-
straints (3 nt), and conflict resolution for overlapping pairs. This pipeline improves F1 scores by
2–3% on benchmark datasets.

The combination of quantum feature extraction with classical deep learning refinement enables
Q1Fold to capture both local sequence patterns through quantum entanglement and global structural
constraints through the 2D ResNet architecture, achieving competitive performance while maintain-
ing parameter efficiency.

4 EXPERIMENTAL SETUP

4.1 DATASET

We evaluated Q1Fold on four well-known RNA structure prediction benchmark datasets, as well as
a hairpin dataset built by ourselves.

RNAStrAlign (Tan et al., 2017) contains 37,149 RNA sequences from 8 RNA families. Following
E2Efold (Chen et al., 2020) and MXfold2 (Sato et al., 2021), we first filter out the redundancies,
retaining 30,879 unique structures. After that, we further filter away sequences longer than 512
nucleotides due to hardware limitation, leaving 19,966 sequences for experiments in our work.

ArchiveII (Saman Booy et al., 2022) contains 3,975 sequences from 10 families. After removing
duplicates and limiting the sequence length to 512, we retained 3,380 sequences from 9 families.
This data set serves as a test benchmark for RNA folding after training with the RNAStrAlign
training split. Both RNAStrAlign and ArchiveII includes pseudoknots.

bpRNA-1m (Singh et al., 2019) contains 102,318 structures from 2,588 RNA families. Following
SPOT-RNA (Singh et al., 2019), we use CD-HIT program (Fu et al., 2012) to remove similar se-
quences with a cut-off of 80%. For the remaining sequences, we follow the same partition between
train, validation and test data that was proposed in SPOT-RNA. The data set was split to TR0 for
training, VL0 for validation, TS0 for testing.

bpRNA-new (Sato et al., 2021) contains 1,500 structures derived from Rfam 14.4. It is used to
assess cross-family generalization after training with TR0. Both bpRNA-1m and bpRNA-new are
shorter than 500 nucleotide lengths and free of pseudoknots.

Table 1: Summary of datasets used.

Dataset Subset #Seq. Len. Range
RNAStrAlign Train 15,988 31–512

Val 1,977 33–511
Test 2,001 30–510

ArchiveII - 3,380 28–512
bpRNA-1m TR0 10,814 33–498

VL0 1,300 33–497
TS0 1,305 22–499

bpRNA-new - 1,500 33–489
Hairpin - 5,354 11–45

Hairpin dataset We extracted RNA hair-
pin motifs from 2001 sequences in the
RNAStrAlign test subset using a sim-
ple pipeline. The extraction algorithm
first identifies hairpin structures from dot-
bracket notation through bracket match-
ing, then validates candidates based on
structural constraints: minimum stem
length (3 bp), loop length (3–15 nt) and
loop unpaired ratio (70%). In addition,
thermodynamic stability score or hair-
pin energy (∆G) is calculated using the
Turner nearest-neighbor energy model, in-
corporating base pair formation energies, stacking interactions, terminal AU penalties, and loop ini-
tiation costs. Overlapping hairpins are resolved by retaining structures with the longest stems or the
lowest ∆G. This process yielded 5,349 unique hairpins with comprehensive annotations including
position, sequence, structure, and stability scores (-86.1 to +5.9 kcal/mol), providing a biologically
relevant dataset for evaluating RNA feature extraction methods. Table 1 summarizes the details of
all the datasets used in our experiments.
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4.2 MEASURES AND BASELINE MODELS

Following standard practice in RNA 2D structure prediction, we evaluate model performance using
precision, recall, and F1 score metrics based on the correct identification of base pairs compared to
ground truth structures. These metrics are widely adopted in the field and allow for direct compari-
son with existing methods.

We compare our proposed Q1Fold with several baseline methods, including: Energy based:
RNAFold from viennaRNA (Lorenz et al., 2011), MXfold2 (Sato et al., 2021). Early learning based:
E2Efold (Chen et al., 2020), UFold (Fu et al., 2022), sincFold (Bugnon et al., 2024). Recent large
language and foundation model based: RNAErnie (Wang et al., 2023), DEPfold (WANG & Cohen,
2025).

5 RESULTS

5.1 QUANTUM FEATURE ANALYSIS FOR HAIRPIN LOCAL MOTIF

To examine the capability of quantum feature in capturing local RNA motifs, specifically hairpin,
we designed two downstream tasks.
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Figure 2: Figure 2: Quantum (Q1D) versus classical (C1D) feature extraction for hairpin motif
recognition. (a) Network architecture with Q1D (130 parameters) and C1D (780 parameters) feature
extractors feeding into similar heads for hairpin energy regression (Task 1) and hairpin classification
(Task 2). (b) Training curves showing Q1D’s faster convergence and superior performance in both
tasks despite using fewer parameters. (c) PCA and t-SNE visualizations revealing Q1D’s enhanced
non-linear feature representation with better energy correlation and cluster separation.

Task 1 is to test whether the features can be better correlated with the hairpin energy. Task 2 is to
test whether the features can better classify if a certain length of nucleotides could be a hairpin, with
additional equal amount of random sequences from the non-hairpin region of different RNAs. Using
the same one-hot encoding, the inputs were fed into both the Q1D and the C1D extraction layer. For
a fair comparison, C1D used a 4 to 52 channel conv1d with batch norm and relu activation, while
Q1D uses quantum circuit with batch norm only. In terms of number of parameters, C1D used 780
parameters and Q1D used 130 parameters. And quantum circuit only used 26 parameters, the addi-
tional 104 parameters were attributed to batch norm layer. For both tasks, as shown in figure 2(a), we
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used a simple regression head with 1729 parameters. A sigmoid before the classification prediction
are added for a yes or no output.

Figure 2(b) and (c) shows the training dynamics, PCA and t-SNE plots comparison between C1D
and Q1D respectively. From the training dynamics, it can be seen that Q1D out perform C1D in
terms of faster convergence speed, better correlation and higher accuracy in both tasks. For task 1,
hairpin energy correlation in reduced space, C1D shows a PCA of -0.041, t-SNE of 0.121, while
Q1D shows a PCA of 0.1, t-SNE of 0.331. And also, the first two components PCA explained
variance are 68.1% for C1D and 61.4% for Q1D. This is a clear evidence of superior non-linear fea-
ture representation of Q1D. Because Q1D’s lower PCA explained variance indicates it learns more
complex, non-linear features that can’t be easily compressed linearly, but these complex features are
much better for stability prediction. For task 2, similar results were observed. The first two compo-
nents PCA explained variance are 51.4% for C1D and 49.3% for Q1D, which would suggest that for
this task information is more evenly distributed across all dimensions rather than concentrated in few
principal components. Q1D shows slightly better separation with more distinct cluster boundaries
in t-SNE clustering. Overall separation of both methods are poor. This might due to additional non-
hairpin sequences are similar to hairpin sequences, which makes the classification more challenging.
In summary, the Q1D features consistently outperformed C1D features across both hairpin classifi-
cation and energy correlation, demonstrating superior ability to capture biologically relevant RNA
patterns through entanglement-encoded nucleotide correlations, with significantly reduced param-
eters. To evaluate whether these advantages translate to comprehensive RNA secondary structure
prediction, we next conduct benchmark comparisons with SOTA methods.

5.2 BENCHMARK COMPARISON WITH EXISTING METHODS

Table 2: Performance comparison on
RNAStrAlign test set.

Method Precision Recall F1
Q1Fold 0.972 0.958 0.963

* UFold 0.959 0.965 0.962
DEPfold 0.948 0.974 0.960
sincFold 0.942 0.959 0.950
E2Efold 0.649 0.789 0.705

* RNAfold 0.515 0.568 0.539

*: reported from original paper or
from (WANG & Cohen, 2025)

We evaluated Q1Fold performance on the RNAS-
trAlign test set, with results summarized in Ta-
ble 2. Q1Fold achieved competitive perfor-
mance with an F1 score of 0.963, ranking as the
best among all benchmarked methods. Q1Fold
demonstrated substantial advantages over tradi-
tional energy-based approaches such as RNAfold.
When compared to deep learning models like
UFold, sincFold, and E2Efold, the performance
gap with Q1Fold narrows considerably. The sim-
ilar performance to sincFold and competitive re-
sults with UFold can be attributed to architectural
similarities in the second stage of our model, re-
sulting in comparable performance levels. Notably, Q1Fold outperformed the LLM/FM approach,
such as DEPfold. This superior performance is particularly remarkable from a parameter efficiency
perspective. Q1Fold requires only 130 parameters for feature generation, while foundation models
typically demand billions or trillions of parameters. This positions Q1Fold as both a more accurate
and parameter-efficient alternative for RNA 2D structure prediction tasks, when trained on inter-
family datasets.

To assessed Q1Fold’s generalization ability, we directly test the model trained on the RNAStrAlign
training set on ArchiveII dataset, with results summarized in Table 3. Q1Fold achieved a best F1
score of 0.886 on this dateset. Similar to RNAStrAlign dataset, Q1Fold show clear advantages
over energy-based models but similar or slightly better performance over deep learning models and
LLM/FM models. This demonstrates that Q1Fold has the capacity to generalize to wider range of
RNA sequences.

Following prior studies (WANG & Cohen, 2025; Sato et al., 2021), we trained Q1Fold on bpRNA-
TR0 and evaluated it on bpRNA-TS0, with results summarized in Table 4. Q1Fold demonstrates
competitive performance, achieving the second-best F1 score. On this dataset, Q1Fold’s perfor-
mance fell short of LLM/FM approaches such as DEPfold. This performance gap can be attributed
to the substantial difference in feature representation capacity: our quantum circuit generates only
52 feature channels per nucleotide, whereas DEPfold leverages foundation models to produce up to
800 feature channels per nucleotide. Since the bpRNA-1m dataset filters similar structures using an
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80% sequence identity cutoff, richer feature representations become crucial for cross-family RNA
2D structure prediction tasks.

Table 3: Performance comparison on ArchiveII
test set.

Method Precision Recall F1
Q1Fold 0.915 0.871 0.886

* UFold 0.876 0.890 0.881
* RNAErnie 0.886 0.870 0.875

DEPfold 0.852 0.820 0.830
sincFold 0.851 0.869 0.825

* MXfold2 0.825 0.780 0.796
* RNAfold 0.550 0.611 0.577

E2Efold 0.510 0.635 0.557
*: reported from original paper or
from (WANG & Cohen, 2025)

Table 4: Performance comparison on
bpRNA-TS0 test set.

Method Precision Recall F1
DEPfold 0.686 0.636 0.644
Q1Fold 0.643 0.667 0.635

* UFold 0.587 0.711 0.630
* RNAErnie 0.575 0.678 0.622

sincFold 0.576 0.695 0.612
* MXfold2 0.519 0.646 0.558
* RNAfold 0.446 0.631 0.508

E2Efold 0.166 0.240 0.196
*: reported from original paper or
from (WANG & Cohen, 2025)

Table 5: Performance comparison on
bpRNA-new test set.

Method Precision Recall F1
* DEPfold 0.650 0.624 0.621
* RNAfold 0.552 0.720 0.617

Q1Fold 0.544 0.352 0.406
E2Efold 0.040 0.100 0.051

*: reported from original paper or
from (WANG & Cohen, 2025)

This feature limitation becomes more pronounced
on the bpRNA-new dataset, with results summa-
rized in Table 5. As families in the bpRNA-new
dataset are not represented in the training set,
Q1Fold’s performance deteriorates significantly,
achieving an F1 score of only 0.406, while tra-
ditional thermodynamic models perform reason-
ably well. Nevertheless, Q1Fold still substan-
tially outperforms early methods like E2Efold,
which fails catastrophically on this dataset with
an F1 score of 0.051.

5.3 ABLATION

To gain deeper insight into the contribution of dif-
ferent components of Q1D feature extraction layer, we conducted two ablation experiments using
bpRNA-TS0 test set. Results summarized in table 6.

Table 6: Ablation study on bpRNA-TS0.

Method Precision Recall F1
Q1Fold-SMO 0.625 0.606 0.585
Q1Fold-MMO 0.506 0.711 0.572
Q1Fold-3qO 0.567 0.686 0.600

Single-qubit vs multi-qubits measurements At
the measurement stage, we compare the effective-
ness of single-qubit measurements only (Q1Fold-
SMO) versus multi-qubit correlated measure-
ments only (Q1Fold-MMO). With referring to Ta-
ble 4, both approaches underperform compared to
the combined strategy. Q1Fold-MMO achieves
higher recall but lower precision, while Q1Fold-
SMO exhibits the opposite pattern—higher precision but lower recall. This indicates that multi-qubit
correlated measurements excel at identifying potential base pairs (higher sensitivity), while single-
qubit measurements contribute to prediction accuracy (higher specificity). The combination of both
measurement strategies achieves optimal recall-precision balance, resulting in superior F1 perfor-
mance.

Biology-aware qubits We evaluate the impact of biology-aware qubits (q3-q5) by comparing
Q1Fold with Q1Fold-3qO, which uses only the three sequence-encoding qubits. The absence of
biology-aware qubits results in a 3.5% F1 score reduction, primarily due to decreased precision
while recall remains comparable. This demonstrates that encoding positional, contextual, and bal-
ance information in dedicated qubits enhances prediction specificity, providing a significant ad-
vantage over purely sequence-based encoding. Including biology-aware information in the quan-
tum encoding improves the model’s precision without sacrificing recall, demonstrating the value of
domain-informed feature design.
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5.4 LIMITATIONS

Despite the promising results, our approach faces several important limitations that must be ac-
knowledged:

Computational overhead from simulation. The most significant practical limitation stems from
the current state of quantum computing technology. Due to the limited availability of quantum hard-
ware and the constraints of NISQ devices (noise, limited connectivity, and shallow circuit depth), we
rely entirely on classical simulation of quantum circuits. This introduces substantial computational
overhead, with the simulation complexity scaling exponentially with the number of qubits. Con-
sequently, Q1Fold’s training time is approximately 5–10 times longer than purely classical models
when run on GPU-accelerated simulators. This overhead currently negates the theoretical speedup
advantages of quantum computing, though this limitation should diminish as quantum hardware
becomes more accessible and reliable.

Limited architectural scalability. While classical convolutional layers can be easily cascaded to
create deep architectures with hierarchical feature extraction, VQCs face fundamental challenges in
deep stacking. The cascading of VQCs is not straightforward due to several factors: (1) the mea-
surement collapse that occurs between quantum layers destroys quantum coherence, (2) re-encoding
classical outputs back into quantum states introduces additional overhead and potential information
loss, and (3) deeper quantum circuits suffer from increased noise accumulation and more severe
barren plateau effects. This architectural constraint limits our ability to build deeper quantum net-
works that might capture more complex hierarchical patterns in RNA structures. Currently, Q1Fold
employs only a single quantum layer followed by classical processing, which may limit its capacity
to fully exploit quantum advantages for feature learning.

These limitations highlight that while hybrid quantum-classical approaches show promise for RNA
structure prediction, significant technological and theoretical advances are still needed to fully re-
alize their potential. Future work should focus on developing more efficient quantum circuit archi-
tectures, exploring methods for effective quantum layer stacking, and leveraging emerging quantum
hardware as it becomes available.

6 CONCLUSION

In this work, we presented Q1Fold, a hybrid quantum-classical convolutional network for RNA 2D
structure prediction that demonstrates the practical viability of quantum computing in computational
biology. Our approach successfully integrates a 6-qubit VQC for local feature extraction with a clas-
sical 2D ResNet architecture for global structure refinement. The experimental results demonstrate
that Q1Fold achieves performance comparable to state-of-the-art methods including both traditional
energy-based approaches and recent deep learning or language models, while using significantly
fewer parameters through quantum feature compression.

The key contribution of our work lies in demonstrating that quantum feature extraction can effec-
tively capture local RNA structural motifs, particularly in hairpin structures where quantum features
showed superior correlation with thermodynamic stability scores compared to classical convolu-
tional features. This suggests that quantum entanglement and superposition provide meaningful
representational advantages for encoding the complex correlations present in RNA sequences. Fur-
thermore, our qubit-efficient design successfully circumvents the barren plateau problem that has
limited previous quantum approaches, making the model trainable on current hardware simulators.

While Q1Fold does not claim superiority over all existing methods, it establishes that hybrid
quantum-classical architectures represent a viable and promising direction for RNA structure predic-
tion. The comparable performance achieved with substantially reduced parameter counts suggests
potential advantages in scenarios with limited training data, where parameter efficiency becomes
crucial for preventing overfitting. As quantum hardware continues to improve, we anticipate that
methods like Q1Fold will become increasingly practical and may eventually offer computational
advantages beyond parameter efficiency.
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A APPENDIX

LLM USAGE

We acknowledge the use of Claude (Anthropic) as a general-purpose assistant tool during the prepa-
ration of this manuscript. The LLM was utilized in the following capacities: (1) Code develop-
ment assistance, where Claude helped with code generation for implementing experimental com-
ponents and data processing scripts, provided debugging suggestions when encountering technical
issues, and offered solutions for optimization problems, though all generated code was thoroughly
reviewed, tested, and validated by the authors before inclusion in our experimental pipeline; (2)
Writing and language polishing, where Claude assisted in improving the clarity and readability of
technical descriptions throughout the manuscript, helped refine grammar and sentence structure in
various sections, suggested better phrasing and technical terminology to enhance precision, and pro-
vided alternatives for complex explanations to improve accessibility for readers; and (3) Quality
assurance throughout the writing process, where all LLM-generated content was critically evaluated
and verified by the authors for technical accuracy and scientific validity through manual review and
cross-checking with relevant literature. We emphasize that the LLM did not contribute to the core
research ideas, hypothesis formulation, experimental design, data analysis decisions, or scientific
conclusions presented in this work, with its role strictly limited to auxiliary support in implemen-
tation and presentation aspects. The authors take full responsibility for all content in this paper,
including any portions that were refined with LLM assistance, and confirm that all scientific claims,
experimental results, and theoretical contributions are the product of the authors’ own research ef-
forts, with the LLM serving only as a tool to enhance the technical execution and written presentation
of our original work.
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