
PhysDiff: A Physically-Guided Diffusion Model for
Multivariate Time Series Anomaly Detection

Long Li1,∗, Wencheng Zhang1,∗, Shi Yuan1,∗, Hongle Guo2, Wanghu Chen1,†

1College of Computer Science & Engineering, Northwest Normal University
2School of Management, Northwest Normal University

2023222197@nwnu.edu.cn, chenwh@nwnu.edu.cn, 202421162217@nwnu.edu.cn,
2023222147@nwnu.edu.cn, guohongleself@nwnu.edu.cn

Abstract

Unsupervised anomaly detection of multivariate time series remains challenging in
complex non-stationary dynamics, due to the high false-positive rates and limited in-
terpretability. We propose PhysDiff, combining physics-guided decomposition with
diffusion-based reconstruction, to address these issues. The physics-guided signal
decomposition is introduced to disentangle overlapping dynamics by isolating high
frequency oscillations and low frequency trends, which can reduce interference and
provide meaningful physical priors. The reconstruction through conditional diffu-
sion modeling captures deviations from learned normal behavior, making anomalies
more distinguishable. Notably, PhysDiff introduces an amplitude-sensitive per-
mutation entropy criterion to adaptively determine the optimal decomposition
depth, and automatically extract adaptive frequency components used as explicit
physics-based constraints for the diffusion process. Furthermore, the proposed
conditional diffusion network employs a dual-path conditioning mechanism that
integrates high-frequency and low-frequency physical priors, dynamically regulat-
ing the denoising process via a novel time frequency energy routing mechanism.
By weighting reconstruction errors across frequency bands, our method improves
anomaly localization and enhances interpretability. Extensive experiments on five
benchmark datasets and two NeurIPS-TS scenarios demonstrate that PhysDiff out-
performs 18 state-of-the-art baselines, with average F1 score improvements on both
standard and challenging datasets. Experimental results validate the advantages of
combining principled signal decomposition with diffusion-based reconstruction for
robust, interpretable anomaly detection in complex dynamic systems.

1 Introduction

Multivariate time series anomaly detection is a critical task across various industries, including
industrial manufacturing, financial risk management, and healthcare. Anomalies in time series data
are typically categorized into point anomalies and pattern anomalies [1]. Point anomalies can be
further divided into contextual and global anomalies, while pattern anomalies are classified into
seasonal, shapelet, and trend anomalies based on behavior-driven taxonomies [1]. Reconstruction-
based methods have demonstrated promising performance in detecting point anomalies, as these
anomalies manifest as individual data points exhibiting significant deviations from the expected
probability distribution [2]. However, pattern anomalies, which often consist of subtle structural
changes over longer periods and remain within the range of normal values, pose a greater detection
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challenge. In real-world scenarios, time series data is predominantly non-stationary, and genuine
anomalies frequently manifest as pattern anomalies. Although considerable progress has been made,
most existing research focuses primarily on stationary datasets. As a result, when point anomalies are
obscured, the effectiveness of conventional methods declines significantly.

Diffusion models have emerged as a powerful approach for time series anomaly detection due to
their unique ability to model complex data distributions through a progressive denoising process.
Unlike traditional reconstruction methods based on simple encoder-decoder architectures, diffusion
models demonstrate a stronger ability to model complex patterns and temporal dependencies in
non-stationary time series data. This advantage stems from their iterative noise-adding and de-
noising procedures [3]. This progressive approach makes diffusion models particularly effective at
reconstructing normal patterns while amplifying the reconstruction error for anomalous segments.
Furthermore, the probabilistic nature of diffusion models enables them to quantify uncertainty in
predictions, providing valuable information for distinguishing between normal variations and gen-
uine anomalies. By learning the distribution of normal time series behaviors, diffusion models can
generate counterfactual normal versions of input sequences, making them ideal for detecting both
point anomalies and subtle pattern anomalies that conventional methods often miss in non-stationary
environments. To address non-stationarity problem, conditional diffusion models enhance generation
capabilities through contextual information integration. These models rely on conditional decomposi-
tion to identify dynamic changes between signals and use constrained reconstruction to regulate the
denoising process accordingly.

Nevertheless, two challenges remain in applying diffusion models to time series anomaly detection.
Challenge 1: When extracting features through conditional decomposition, transforming time se-
ries to the frequency domain makes pattern anomalies easier to detect [2], but existing frequency
domain decomposition methods rely on manually preset decomposition levels or energy thresholds
to determine termination conditions [4]. Such static criteria are ill-suited for complex, real-world
non-stationary data, where adaptive decomposition is necessary. Challenge 2: In the process of
constrained sequence reconstruction, the reasonable use of input conditions for denoising and enhanc-
ing model interpretability is rarely mentioned. The original sequence, when decomposed, produces
multiple detail coefficient sequences [5], representing signal information at various frequency levels.
High frequency components typically capture transient, non-stationary changes with high uncertainty
and entropy, while low frequency components reflect more stable trends with lower entropy. Overem-
phasis on low frequency information can obscure anomalies, whereas excessive incorporation of high
frequency details risks model overfitting. These challenges highlight the need for a more dynamic
and physically-informed approach to decomposition and reconstruction.

Inspired by the concept of entropy in physics, we propose PhysDiff, a physically-guided diffusion
model for multivariate time series anomaly detection that combines permutation entropy with an
amplitude-sensitive weighting scheme based on actual magnitude variations [6]. For Challenge 1, we
dynamically adjust the decomposition depth during frequency-domain analysis by leveraging entropy
values that reflect the intrinsic physical characteristics of the data. Specifically, signal complexity is
assessed using an amplitude-weighted entropy measure, which effectively captures both the average
magnitude and the variability of the sequence. By monitoring the entropy of residual components
after each decomposition layer, the stopping condition becomes data-driven rather than heuristic.
For Challenge 2, we propose an innovative reconstruction strategy based on a conditional diffusion
model, in which amplitude-weighted entropy acts as a dynamic constraint during the generative
reconstruction process. This approach leverages the controllability of conditional diffusion models to
dynamically regulate the reconstruction of each frequency component.

The main contributions of this article are as follows:

• We propose a physically-guided diffusion model that effectively addresses non-stationarity
challenges.

• We introduce an amplitude-sensitive permutation entropy guided decomposition mechanism
that dynamically determines optimal decomposition depth.

• We develop a dual-path conditional diffusion framework with a novel frequency-based
routing attention mechanism.
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• Extensive experimental validation demonstrates that the method surpasses 18 state-of-the-art
baselines, with improved average F1 score on both standard benchmarks and challenging
NeurIPS-TS datasets.

2 Related Work

Anomaly detection of multivariate time series, particularly on large-scale non-stationary datasets,
remains a significant and widely recognized challenge. According to detection strategies, existing
approaches can be categorized into forecasting-based, reconstruction-based, distance-based, encoding-
based, distribution-based, and tree-based ones. They offer distinct advantages but also face various
challenges when addressing the complexities of real-world time series data, especially under non-
stationary conditions where both the statistical properties and underlying patterns may evolve over
time.

Forecasting-based methods [7] construct predictive models from historical data but struggle to
distinguish anomalies from normal fluctuations due to inherent data instability. Distance-based meth-
ods [8, 9] compute similarities between subsequences yet typically fail to capture joint multivariate
anomalies when they treat variables independently or use naive concatenation. Encoding-based
approaches [10, 11] transform subsequences into discrete symbols or probabilistic representations,
but discretization can obscure fine-grained variations critical for detecting non-stationary fluctuations.
Distribution-based methods [12, 13] assume specific statistical distributions, rendering them sensitive
to extreme values while neglecting temporal dependencies that are essential for modeling complex
multivariate structures. Tree-based methods [14] segment data using isolation trees but overlook tem-
poral continuity and dynamic dependencies by treating time series as independent points, significantly
hampering contextual anomaly detection.

Reconstruction-based approaches [15] have emerged as particularly promising, employing encoder-
decoder architectures to extract essential data representations with robust performance across various
domains. A significant advancement in this category came with the introduction of Denoising
Diffusion Probabilistic Models [3], which reformulate the conventional encoding-decoding paradigm
into progressive diffusion and reconstruction processes. These models operate by gradually adding
noise to data and learning to reverse this process, providing a powerful framework for capturing
complex distributions and temporal dependencies in non-stationary time series [16]. However, current
diffusion-based methods still face two critical limitations: rigid decomposition processes with static
parameters that cannot adapt to evolving time series characteristics, and reconstruction strategies
lacking fine-grained control over the integration of high and low frequency information. These
shortcomings often result in either underfitting (missing subtle anomalies) or overfitting (generating
false positives), motivating our development of PhysDiff as a physically-informed approach that
dynamically adapts to complex non-stationary behaviors in multivariate time series.

3 Methodology

3.1 Framework Overview

Given a multivariate time series:

X = {x1, x2, . . . , xT } ∈ RT×d

where T denotes the sequence length and d is the feature dimensionality, our goal is to identify
anomalous patterns that deviate from typical behaviors. To facilitate local context modeling, we
employ a sliding-window paradigm that partitions the original series into overlapping windows:

W = {W1,W2, . . . ,WT−w+1}

where, each window Wi ∈ Rw×d contains w consecutive observations. The proposed PhysDiff
framework leverages diffusion models as a foundation for anomaly detection due to their exceptional
ability to learn complex data distributions and reconstruct normal patterns. As depicted in Figure 1,
our framework consists of three key modules: (1) Physics-Guided Feature Extraction, where we
extract interpretable features via adaptive multi-scale signal decomposition, capturing both transient
dynamics and long-term trends that serve as physical priors for conditioning the subsequent diffusion
process; (2) Physically-Informed Diffusion Model, which employs a conditional generative diffusion
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process incorporating these physical priors to robustly learn the distribution of normal patterns; and
(3) Anomaly Detection Scoring Module, where anomalies are detected by contrasting reconstructed
signals against observed data, with mechanisms sensitive to both point anomalies and sequence-level
pattern deviations.

Figure 1: A physically-guided decomposition and diffusion reconstruction framework (PhysDiff).
The framework contains three main modules: (1) Physics-Guided Feature Extraction; (2) Physically-
Informed Diffusion Model; (3) Physics-Driven Anomaly Detection.

3.2 Diffusion-Based Anomaly Detection Foundations

The forward process incrementally adds noise to the original data according to a predefined schedule,
transforming a clean signal into pure noise:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (
√

1− βtxt−1, βtI) (1)

where βt controls the noise schedule at each diffusion step. The reverse process then iteratively
denoises the signal by learning a sequence of transformations:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) (2)

For anomaly detection, we leverage this framework by training the model exclusively on normal
patterns. During inference, anomalous sequences will result in higher reconstruction errors as the
model attempts to normalize them according to learned patterns. This approach is particularly
effective for detecting subtle pattern anomalies in non-stationary environments.

3.3 Physics-Guided Feature Extraction

To enhance the diffusion model’s ability to capture complex time series dynamics, a physics-guided
feature extraction method is proposed. This method adaptively decomposes multivariate signals into
interpretable components and quantitatively assesses signal complexity. These extracted physical
features serve as conditioning information to guide the subsequent diffusion-based reconstruction,
enabling the model to distinguish normal variations from genuine anomalies.

Our approach generalizes adaptive Fourier decomposition principles [17] to the multivariate scenario
via a novel Multi-channel Adaptive Fourier Decomposition (MAFD). Specifically, for a multivariate
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time series X(t) = [x1(t), x2(t), . . . , xC(t)], MAFD recursively decomposes the signal using cross-
channel shared Blaschke basis functions:

X(t) =

N∑
n=1

An ·Bn(e
jt) +RN (t) (3)

where the projection coefficients are defined as An = [A1,n, A2,n, . . . , AC,n], and RN (t) denotes
the residual component. The basis function selection maximizes cross-channel energy convergence:
maxan

∑C
c=1 |⟨Gc, Bn⟩|2.

A critical challenge in adaptive decomposition is determining the optimal stopping point that bal-
ances signal structure preservation with anomaly distinguishability. To address this, we introduce an
amplitude-sensitive permutation entropy (ASPE) measure [6] that dynamically determines decompo-
sition depth:

HASPE = − 1

ln(d!)

∑
π

ωπP (π) lnP (π) (4)

where P (π) is the probability of ordering pattern π, and the weight ωπ =
σ(yd,τ

π )

µ(yd,τ
π )

emphasizes
amplitude variations. ASPE effectively discriminates between meaningful signal structure and
noise by monitoring the complexity of residual components at each decomposition layer. When
ASPE stabilizes and stops decreasing significantly, this indicates that the residual is dominated by
unstructured variability rather than meaningful patterns. This data-driven stopping criterion ensures
that decomposition proceeds just enough to isolate physically interpretable frequency components
without over-segmenting the signal or burying anomaly-relevant features in irrelevant high-frequency
bands.

3.4 Physically-Informed Diffusion Model

3.4.1 Conditional Diffusion with Physical Priors

In PhysDiff, the basic diffusion framework is extended by conditioning the reverse process on physical
priors extracted from the data as:

pθ(x0:T |zt) = p(xT )

T∏
t=1

pθ(xt−1|xt, zt) (5)

where the physical context information zt is defined as a composite feature vector:

zt = {Ph(t), Pl(t), HASPE(t), E(xt)} (6)

Here, Ph(t) and Pl(t) represent high-frequency and low-frequency components obtained from MAFD
decomposition, capturing rapid transient changes and long-term trends respectively; HASPE(t) is
the amplitude-sensitive permutation entropy value quantifying signal complexity; and E(xt) is the
physics-based energy function measuring physical plausibility of the current state. Notably, these
components serve as conditioning features that guide the denoising process, rather than being the
targets of diffusion themselves. This conditioning mechanism allows the model to incorporate domain
knowledge about time series dynamics, significantly improving its ability to distinguish between
normal variations and anomalous patterns.

Furthermore, to integrate MAFD and ASPE into the conditioning mechanism, the amplitude-sensitive
weights are directly embedded into the basis selection process as follows:

LMAFD-ASPE =

C∑
c=1

(
∥Gc −

N∑
n=1

Ac,nBn∥2 + λHASPE

)
(7)

This composite loss not only refines the decomposition strategy but also increases sensitivity to
abnormal patterns while preserving physical interpretability.

3.4.2 Frequency-Based Routing Attention

Notably, PhysDiff introduces a cross-modal routing mechanism that enables dynamic interaction
between high frequency and low frequency components during the diffusion process. Specifically, the
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input signal X(t) is first decomposed via MAFD into high-frequency and low-frequency components:
X(t) = XHF(t) + XLF(t), where XHF captures rapid transients and XLF represents stable trends.
These physical components then serve as conditioning information for the routing network:

zt = R(t,XHF(t),XLF(t)) (8)
It is important to note that the diffusion process operates on the original time series X(t), while
XHF(t) and XLF(t) guide the reconstruction through the routing attention mechanism.

In detail, the physically guided attention is computed by:

Attention(Q,K, V,Ph,Pl) = softmax
(
QKT + gh ·QPT

h + gl ·QPT
l√

dk

)
V (9)

with adaptive gating coefficients gh = σ(QPT
h ) and gl = σ(QPT

l ). This mechanism allows the
model to dynamically emphasize either rapid transient changes or stable trend information according
to the contextual requirements at each diffusion step.

3.4.3 Physical Consistency through Energy Guidance

To ensure that generated samples adhere to underlying physical principles, we introduce an energy
function derived from instantaneous frequency analyses:

E(xt) = ∥∇xΦ(xt)∥2 (10)
where Φ(·) represents the physical potential field learned from normal patterns. This energy term
regularizes the denoising process by penalizing physically implausible states.

Moreover, physical consistency is enhanced by integrating Langevin dynamics into the sampling
procedure as follows:

xt−1 ← xt − λ∇xt
E(xt) +

√
2λn (11)

where λ represents the step size and n denotes Gaussian noise. Additionally, a frequency-adaptive
dynamic trend influence factor γ(t, ω) = σ(10(1−

√
ᾱt) ·Aω) modulates the reliance on physical

components throughout the denoising trajectory, where Aω = exp(−|ω|2/σ2) is the frequency
response function. This design allows different frequency bands to receive adaptive physical guidance
strength at different diffusion stages, ensuring stronger physical guidance when needed most while
allowing the model to capture fine-grained details that may not be explicitly encoded in the physical
priors.

3.5 Training Strategy and Optimization

The entire framework is trained by minimizing a composite loss function:
Ltotal = Ldiff + γ · LMAFD-ASPE + η · E(xt) (12)

where the diffusion loss Ldiff = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t, zt)∥2

]
ensures accurate modeling of normal

patterns, LMAFD-ASPE incorporates physical insights, and E(xt) enforces physical plausibility.

To improve robustness, we incorporate a controlled disturbance mechanism during training where
Wdisturbed

i = Wi + δ · p, with δ ∼ U(0, 1) as a random perturbation. Optimization uses the AdamW
optimizer with early stopping to mitigate overfitting.

3.6 Physics-Driven Anomaly Detection

For each sliding window, we define an anomaly score that fuses reconstruction fidelity with physical
plausibility:

Score(t) = α · ∥X(t)− X̂(t)∥2︸ ︷︷ ︸
Reconstruction Error

+(1− α) · DKL(PTTFD∥Pprior)︸ ︷︷ ︸
Time-Frequency Distribution Divergence

(13)

where X̂(t) is the reconstruction of the observed window, PTTFD represents the transient time-
frequency distribution, and Pprior denotes the prior distribution of normal patterns.

We employ extreme value theory through SPOT [18] to dynamically calibrate the detection threshold
by fitting a generalized Pareto distribution to the tail of the anomaly score distribution, deriving the
threshold as τt = µscore + k · σscore. This adaptive thresholding strategy accommodates data-specific
characteristics, enabling robust anomaly detection across diverse time series domains.
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4 Experiments

4.1 Experimental Details

Datasets. We evaluated our approach using five widely recognized benchmark datasets: SMD [19],
MSL [7], SMAP [7], SWaT [20], and PSM [21], plus the NeurIPS-TS dataset—comprising Creditcard
and GECCO subsets as detailed by Lai et al. (2021) [1]. Data labeled as normal were partitioned
with 80% allocated for training and 20% for validation, ensuring the model is properly optimized
on typical behavior. These datasets represent diverse domains including spacecraft telemetry, water
treatment systems, and financial transactions, providing a comprehensive evaluation landscape for
anomaly detection methods.

Metrics. The affiliation-based F1 score is adopted as our primary performance metric, which
comprised precision and recall indicators extended from affiliation metrics [22]. Traditional point
adjustment (PA) methods, where detecting a single point within an anomalous segment counts as
successful detection of the entire segment, can lead to overly optimistic evaluations by inflating
true positives and suppressing false negatives [11, 16]. The affiliation-based F1 score offers a more
rigorous evaluation by computing precision and recall based on the average directed distance between
predicted anomaly events and ground truth, accounting for both spatial and temporal adjacency. All
results are reported as percentages, with best performances in bold and second-best underlined.

Baselines. Our method is compared against 18 state-of-the-art anomaly detection approaches across
six categories: (1) Forecasting methods (LSTM [7]); (2) Reconstruction methods (PCA [23], AE [24],
DAGMM [25], BeatGAN [15], OmniAnomaly [19], D3R [16]); (3) Distance methods (OCSVM [26],
HBOS [13], LOF [9], DeepSVDD [12]); (4) Encoding methods (Anomaly Transformer [27], DCdetec-
tor [11], SensitiveHUE [28], MTAD-GAT [29], TFAD [10]); (5) Distribution methods (LODA [30]);
(6) Tree methods (iForest [14]). Additionally, we included an adversarial baseline marking anomalies
at fixed intervals to provide a non-informative temporal reference. For baselines with publicly avail-
able implementations, we re-ran experiments using official code and recommended hyperparameters.
For methods where identical results on the same datasets with the same evaluation protocol were
reported in recent work [11, 16], we directly cite those results to ensure methodological consistency
and fair comparison.

4.2 Comparative Study

Our comprehensive comparative analysis evaluates PhysDiff over 18 state-of-the-art anomaly detec-
tion methods across five real-world benchmark datasets, as shown in Table 1. PhysDiff consistently

Table 1: Performance comparison on five real-world anomaly detection datasets.

Dataset SMD MSL SMAP SWaT PSM
Metric P R F1 P R F1 P R F1 P R F1 P R F1

OCSVM 66.98 62.03 73.75 50.26 99.86 66.87 41.05 69.37 51.58 56.08 98.72 72.11 57.51 58.11 57.81
PCA 64.92 40.19 54.34 52.69 98.33 68.61 50.62 98.48 66.87 62.32 82.96 71.18 77.44 37.71 53.53
HBOS 56.28 63.11 62.17 59.25 83.32 69.25 41.54 66.17 51.04 57.71 29.82 43.21 100.00 6.54 12.28
LOF 57.69 99.10 72.92 49.89 72.18 59.00 47.92 82.86 60.72 53.20 96.73 68.65 53.90 99.91 70.02
IForset 100.00 9.37 17.13 53.87 94.58 68.65 41.12 68.91 51.51 53.03 62.80 62.03 100.00 3.35 6.48
LODA 59.02 66.18 62.40 57.79 95.65 72.05 51.51 100.00 68.00 56.30 70.14 62.54 62.22 40.17 56.05
AE 69.22 98.48 81.30 55.75 96.66 70.72 39.42 70.31 50.52 54.92 98.20 70.45 60.67 98.24 75.01
DAGMM 63.57 70.83 67.00 54.07 92.11 68.14 50.75 96.38 66.49 59.42 92.36 72.32 68.22 70.50 69.34
LSTM 60.12 84.77 70.35 58.82 14.68 23.49 55.25 27.70 36.90 49.99 82.11 62.15 57.06 95.92 71.55
BeatGAN 74.11 81.64 77.69 55.74 98.94 71.30 54.04 98.30 69.74 61.89 83.46 71.08 58.81 99.08 73.81
Omni 79.09 75.77 77.40 51.23 99.40 67.61 52.74 98.51 68.70 62.76 82.82 71.41 69.20 80.79 74.55
A.T. 100.00 3.19 6.19 51.04 95.36 66.49 56.91 96.69 71.65 53.63 59.94 57.59 52.01 82.18 64.55
DCdetector 50.93 95.57 66.45 55.94 95.53 70.56 53.12 98.37 68.99 53.25 98.12 69.03 54.72 86.36 66.99
SensitiveHUE 60.34 90.13 72.29 55.92 98.95 71.46 53.63 98.37 69.42 58.91 91.71 71.74 56.15 98.75 71.59
DeepSVDD 64.98 64.77 64.88 10.53 100.00 19.06 29.73 7.09 11.45 59.11 93.53 72.44 74.05 50.64 60.15
MTAD-GAT 85.90 67.69 75.71 54.96 94.93 69.81 39.05 93.99 55.08 65.90 77.51 71.23 79.90 60.14 68.63
TFAD 56.32 97.83 71.49 54.96 94.93 69.81 39.05 93.99 55.08 60.38 81.96 69.53 79.14 71.63 75.20
D3R 64.87 97.93 78.04 56.45 95.55 71.81 51.08 94.46 66.30 64.25 77.50 70.25 53.17 100.00 69.43

PhysDiff 71.03 96.00 81.65 62.75 92.66 74.83 64.36 86.81 73.91 60.00 92.04 72.64 66.09 84.47 74.16

outperforms all baseline models, most notably achieving an F1 score of 74.16% on PSM, outper-
forming AE by over 7 percentage points, and 81.65% on SMD, surpassing the previous best AE
performance of 81.30%. On datasets characterized by complex temporal dynamics, the improvements
are particularly significant. PhysDiff achieves 73.91% F1 score on SMAP, outperforming Anomaly
Transformer by more than 2 percentage points, and 74.83% on MSL, exceeding LODA by 2.78
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percentage points. These gains can be attributed to our model’s ability to effectively decompose time
series into physically meaningful components using the proposed Multi-channel Adaptive Fourier
Decomposition.

To validate PhysDiff’s performance in more challenging scenarios, we conducted additional experi-
ments on the NeurIPS-TS datasets featuring more complex anomaly patterns and higher-dimensional
feature spaces. As shown in Table 2, PhysDiff achieves F1 scores of 69.44% and 57.92% on the
Creditcard and GECCO datasets respectively, substantially outperforming previous best approaches.
On Creditcard, PhysDiff surpasses D3R by 6.82 percentage points, while on GECCO it exceeds
Anomaly Transformer by 1.96 percentage points. These significant improvements demonstrate our
approach’s superior ability to detect anomalies in complex real-world scenarios.

Table 2: Performance comparison on the NeurIPS-TS
datasets.

Dataset Creditcard GECCO

Metric P R F1 P R F1

iForst 1.52 88.01 2.99 2.59 97.40 5.04
AE 14.76 31.71 20.14 76.56 20.14 31.89
A.T. 55.86 57.55 56.69 54.77 57.21 55.96
DCdetector 49.86 67.67 57.41 38.30 59.70 46.60
D3R 56.90 69.61 62.62 59.00 36.61 45.18

PhysDiff 64.10 75.88 69.44 60.89 55.23 57.92

The consistent performance gains across
all seven datasets highlight several key
advantages of our physically-guided dif-
fusion approach. The adaptive decom-
position mechanism effectively captures
both high frequency transient patterns and
low frequency trend components, enabling
more accurate anomaly detection across
different anomaly types. The incorpora-
tion of amplitude-sensitive permutation en-
tropy provides a physically meaningful
measure of signal complexity that helps
distinguish between normal variations and
actual anomalies. Our frequency-adaptive routing mechanism dynamically calibrates the contri-
butions of different frequency components during the diffusion process, leading to more accurate
reconstruction of normal patterns. Quantitative analysis confirms PhysDiff’s superior effectiveness
on non-stationary datasets compared to stationary ones. Datasets exhibiting strong non-stationarity
characteristics achieve larger performance improvements, with detailed statistical validation pro-
vided in Appendix E.3. This validates our hypothesis that adaptive decomposition mechanisms
are particularly beneficial for handling complex temporal patterns in non-stationary environments.
These results collectively establish PhysDiff as a new state-of-the-art in multivariate time series
anomaly detection, offering both superior performance and enhanced interpretability through its
physics-guided approach.

4.3 Ablation Study

To evaluate each component’s contribution to our PhysDiff framework, we conducted comprehensive
ablation studies across five datasets in Table 3. The physical guidance mechanism proved most critical,
with its removal causing the largest performance drop of 5.95% average F1 score, confirming our
hypothesis that incorporating physical constraints substantially improves anomaly detection accuracy.
Similarly, disabling routing attention and high frequency components led to significant performance
degradation of 10.20% and 6.63% respectively, with particularly severe impacts on specific datasets:
routing attention removal caused 25.13% decrease on PSM while high frequency component removal
resulted in 11.14% decrease on SMAP. Our information-theoretic components also proved essential, as
removing permutation entropy caused a 5.32% average decrease, while replacing amplitude-sensitive
permutation entropy with standard entropy resulted in a 4.38% reduction.

Table 3: Results of ablation studies. F1 scores are reported, with higher values meaning better
performance. The best scores are highlighted in bold.

dataset PhysDiff w/o
PE

w/o
ASPE

w/o
RA

w/o
HF

w/o
LF

w/o
PG

w/o
coms(8)

w/o
coms(16)

SMD 81.65 70.61 70.51 72.37 70.91 70.02 70.84 69.86 69.49
MSL 74.83 71.59 71.06 67.95 69.92 71.46 70.54 71.59 71.12
SMAP 73.91 70.76 70.51 66.40 62.77 67.27 65.03 65.70 68.78
SWaT 72.64 68.76 69.84 70.46 69.81 69.84 70.41 69.84 69.83
PSM 74.16 68.86 73.38 49.03 70.65 68.86 70.62 73.47 68.86

Average 75.44 70.12 71.06 65.24 68.81 69.49 69.49 70.09 69.62
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Regarding decomposition granularity, neither 8 nor 16 components achieved optimal performance,
showing decreases of 5.35% and 5.82% respectively, demonstrating the importance of appropri-
ate decomposition depth selection. Low frequency component removal caused a 5.95% decrease,
with varying impacts across datasets. These findings collectively confirm that PhysDiff’s superior
performance stems from the synergistic integration of physical insights, adaptive frequency decompo-
sition, and information-theoretic measures. Each component makes substantial contributions to the
framework’s effectiveness across diverse real-world scenarios, validating our architectural design
choices and providing empirical evidence for the importance of incorporating domain knowledge
into anomaly detection systems.

4.4 Case Study: Fraud Detection in Financial Transactions

The effectiveness of PhysDiff in real-world scenarios is demonstrated through its application to
financial transaction fraud detection. Our analysis of the feature importance rankings in Figure 2
reveals that Feature 1 with importance score 0.0998, Feature 15 with 0.0677, and Feature 22 with
0.0650 contribute most significantly to fraud identification, collectively accounting for over 23% of
the model’s discriminative power. As shown in Figure 3, Feature 1 exhibits a particularly distinctive
pattern where fraudulent transactions display a wider, left-skewed distribution compared to the sharp,
concentrated peaks of normal transactions. This pattern provides strong discriminative signals for the
detection model.
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Figure 2: Top 10 features for fraud detection,
with Feature 1 (0.0998) contributing most signif-
icantly.
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Figure 3: Anomaly score distribution showing
separation between normal transactions (below
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The anomaly detection timeline in Figure 4 illustrates PhysDiff’s performance across 1,000 sequential
transactions, where the model successfully identifies two true fraud cases while generating several
false alarms at high anomaly score peaks. The anomaly score distribution shows clear separation
between normal and fraudulent transactions, with most normal transactions generating scores below
the determined threshold of -6.1374, while fraudulent transactions frequently produce higher scores.
This separation enables the model to achieve 64.10% precision and 75.88% recall, resulting in a
69.44% F1 score that significantly outperforms traditional fraud detection approaches.
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Figure 4: Detection timeline across 1,000 trans-
actions identifying true fraud cases (red x) and
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The feature correlation matrix in Figure 5 and distribution analyses reveal that PhysDiff effectively
captures complex inter-feature relationships that would be missed by univariate detection methods.
Features with lower individual importance rankings show distinct separation patterns in their distri-
butions that complement the primary features. This multi-scale decomposition enables PhysDiff to
distinguish between natural transaction variability and truly suspicious patterns, making it particularly
effective at identifying complex fraud schemes that evolve gradually across multiple transactions.
This represents a significant advantage over conventional threshold-based detection systems.

5 Conclusion

We proposed PhysDiff, a physically-guided decomposition and diffusion framework for anomaly
detection in non-stationary multivariate time series. By combining amplitude-sensitive permutation
entropy for optimized decomposition with dual-path conditional diffusion, our approach effectively
models both abrupt failures and gradual degradations while maintaining interpretability. Experiments
show that PhysDiff achieves improved average F1 score on both standard and NeurIPS-TS datasets,
outperforming state-of-the-art methods. Its effectiveness across domains from industrial systems
to financial fraud detection validates the integration of physical priors into deep generative models.
Future work includes improving computational efficiency, incorporating privacy mechanisms, and
extending the framework to handle multimodal data with varying sampling rates and missing values.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction focus on the challenges of the multivariate time
series anomaly detection and the advantages and contributions of our proposed method to
address the challenges.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: The diffusion model architecture requires lengthy training times and substantial
computational resources. In future work, we plan to employ model distillation techniques to
compress the model, making it more lightweight.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper provides complete proofs for each module and method proposed.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The new method proposed in the paper is introduced in detail in the imple-
mentation details, and the method introduced in the paper can be replicated through each
complete module.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets used in this paper are public, and the code used for the experiments
will be made publicly available once it is organized, to ensure that the experiments can be
reproduced by users.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed training and testing information is provided in the appendix of the
article.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper accurately presents error bars for the execution speed benchmark.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides a detailed introduction to the environment in which
the experiments were conducted, and the code also includes detailed information on the
environmental setup.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in this paper adheres to the NeurIPS Code of Ethics, including
references to datasets and other models.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper interweaves an introduction to the role of time series anomaly
detection in time series analysis and provides a prospect on how the proposed methods may
impact the field and society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The method proposed in this paper is suitable for time series anomaly detection
and does not pose a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets and models used in the paper are all clearly cited in the references,
including the data sources and author information.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The experimental code will be made openly accessible, along with the neces-
sary documents to facilitate reproducibility of the experimental results and utilization of the
code for future work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: The paper does not involve the issues mentioned above.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The experiments in this paper are based on public datasets and do not involve
the above issues.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: This research does not utilize LLMs as a component of the core methodology.
LLMs were only used for assistance with writing and editing the manuscript, which does
not impact the scientific rigor or originality of our research methods.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix / supplemental material

A Notations

In this paper, we employ various mathematical notations to represent the components of our proposed
PhysDiff framework. To facilitate the reader’s understanding of the mathematical formulations
presented throughout the paper, we provide a comprehensive list of the key notations in Table 4. These
notations cover the multivariate time series representation, decomposition components, diffusion
model parameters, and anomaly detection metrics. Understanding these notations is essential for
following the theoretical development and algorithmic implementations of our physically-guided
approach to time series anomaly detection. The reader is encouraged to refer to this table when
interpreting the equations and algorithms presented in subsequent sections.

Table 4: Mathematical Notations Used in PhysDiff
Symbol Description
X = {x1, x2, . . . , xT } ∈
RT×d

Multivariate time series data with T sequence length and d di-
mensions

W =
{W1,W2, . . . ,WT−w+1}

Sequence of overlapping windows with Wi ∈ Rw×d

X(t) =
[x1(t), x2(t), . . . , xC(t)]

Multivariate time series with C channels

Bn(e
jt) Blaschke basis functions in MAFD decomposition

An =
[A1,n, A2,n, . . . , AC,n]

Projection coefficients in MAFD

RN (t) Residual component after decomposition
HASPE Amplitude-sensitive permutation entropy
P (π) Probability of permutation pattern π

ωπ =
σ(yd,τ

π )

µ(yd,τ
π )

Weight for amplitude variations
XHF(t), XLF(t) High-frequency and low-frequency components
q(x1:T |x0) Forward diffusion process
pθ(x0:T |zt) Reverse diffusion process
βt Noise schedule parameter
αt = 1− βt Single step noise parameter
ᾱt =

∏t
i=1 αi Cumulative noise parameter

ϵθ Noise prediction network
E(xt) = ∥∇xΦ(xt)∥2 Physics-based energy function
Score(t) Anomaly detection score
γ(t) = σ(10(1−

√
ᾱt)) Dynamic trend influence factor

Fγ,σ(y) Generalized Pareto distribution for threshold calibration
τt = µscore + k · σscore Adaptive anomaly threshold
LMAFD-ASPE Composite loss for decomposition
Ldiff Diffusion model loss
Ltotal Total framework loss

B MAFD and ASPE

B.1 Multi-channel Adaptive Fourier Decomposition

The Multi-channel Adaptive Fourier Decomposition (MAFD) [17] extends traditional adaptive Fourier
decomposition to multivariate scenarios. MAFD recursively decomposes multi-channel signals in a
hierarchical manner, with each level of decomposition building upon the results obtained from the
previous stage. The analytic signal of the c-th channel is expressed as:

Gc

(
ejt
)
=

N∑
n=1

Ac,n ·Bn

(
ejt
)
+Rc,N

(
ejt
)

(14)
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where Ac,n is the decomposition coefficient of the c-th channel at the n-th level, Bn(e
jt) denotes the

shared basis function (modified Blaschke product), and Rc,N (ejt) represents the remainder term
after N -level decomposition. The decomposition process recursively determines the coefficients
Ac,n and the basis functions Bn(e

jt) at each level.

For a multivariate time series X(t) = [x1(t), x2(t), . . . , xC(t)], each channel xc(t) performs the
Hilbert transform to obtain the analytic signal:

Gc(e
jt) = xc(t) + jH{xc(t)} (15)

where H{·} denotes the Hilbert transform. After removing the mean value of Gc(e
jt), the initial

residual is defined as:
Rc,0(e

jt) = Gc(e
jt) (16)

For each decomposition level n = 1, 2, . . . , N , the recursive procedure mainly consists of three steps:

Search for the optimal basis function parameter. Select the parameter an ∈ D by maximizing the
total energy across all channels:

an = argmax
a∈D

C∑
c=1

∣∣〈Gc,n(e
jt), e{a}(e

jt)
〉∣∣2 (17)

where e{a}(e
jt) =

√
1−|a|2

1−āejt is the normalized evaluator function.

Compute the decomposition coefficients. After determining the optimal an, the decomposition
coefficient Ac,n for each channel is calculated as:

Ac,n =
〈
Gc,n(e

jt), e{an}(e
jt)
〉

(18)

which represents the projection of the residual signal onto the basis function e{an}.

Update the residual. The residual Rc,n(e
jt) is updated as:

Rc,n(e
jt) = Rc,n−1(e

jt)−Ac,nBn(e
jt) (19)

where the basis function Bn(e
jt), constructed as a modified Blaschke product from the parameter

sequence {a1, a2, . . . , an}, is defined by:

Bn(e
jt) =

√
1− |an|2

1− ānejt

n−1∏
d=1

ejt − ad
1− ādejt

(20)

B.2 Amplitude-Sensitive Permutation Entropy

Amplitude-Sensitive Permutation Entropy (ASPE) [6] extends traditional permutation entropy by
incorporating amplitude information. The ASPE is defined as:

HASPE = − 1

ln(d!)

∑
π

ωπP (π) lnP (π) (21)

where P (π) is the probability of a given ordering pattern π, and the weight ωπ =
σ(yd,τ

π )

µ(yd,τ
π )

emphasizes
amplitude variations. This entropy measure effectively discriminates between typical variations and
anomalies by integrating both ordering and amplitude information.

For a time series {xt}Tt=1, we construct embedding vectors yd,τj = [xj , xj+τ , . . . , xj+(d−1)τ ] for
j = 1, 2, . . . , T − (d − 1)τ , where d is the embedding dimension and τ is the time delay. Each
embedding vector is then assigned a permutation pattern π = (r1, r2, . . . , rd) based on the relative
ordering of its elements, where:

xj+r1τ ≤ xj+r2τ ≤ . . . ≤ xj+rdτ (22)

The probability P (π) of each pattern is calculated as the frequency of occurrence normalized by the
total number of embedding vectors.
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C Noise diffusion proofs

C.1 Forward Process Derivation

The forward process in our diffusion model is defined as a Markov chain that gradually adds noise to
the input:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (
√

1− βtxt−1, βtI) (23)

This can be rewritten in a non-recursive form to enable direct sampling from any timestep:

q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I) (24)

where αt = 1− βt and ᾱt =
∏t

i=1 αi. This formulation allows us to express xt directly in terms of
x0:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (25)

C.2 Reverse Process Properties

The reverse process learns to gradually denoise the signal:

pθ(x0:T |zt) = p(xT )

T∏
t=1

pθ(xt−1|xt, zt) (26)

where zt represents the physical guidance information. The conditional density pθ(xt−1|xt, zt) is
modeled as a Gaussian:

pθ(xt−1|xt, zt) = N (µθ(xt, t, zt),Σθ(xt, t)) (27)

The mean µθ incorporates our physics-guided information through the denoising network ϵθ:

µθ(xt, t, zt) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t, zt)

)
(28)

The variance follows a schedule that interpolates between fixed timestep-dependent values:

Σθ(xt, t) =
1− ᾱt−1

1− ᾱt
(1− αt) (29)

Our physically-guided reverse process optimizes the evidence lower bound (ELBO):

L = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t, zt)∥2

]
+ λ · LMAFD-ASPE + η · E(xt) (30)

where E(xt) = ∥∇xΦ(xt)∥2 represents our physics-based energy constraint.

D Detailed experimental settings

D.1 Datasets

To prove the effectiveness of our method, we evaluated six real-world datasets: (1) SMD (Server
Machine Dataset) collects data from 28 servers over a period of 5 weeks, with 38 metrics monitored
for each machine. (2) The PSM (Pooled Server Metrics) dataset is a signal dataset from eBay’s IT
systems, consisting of 26 dimensions. (3) The MSL (Mars Science Laboratory rover) and SMAP (Soil
Moisture Active Passive satellite) are NASA spacecraft telemetry datasets that contain multivariate
data captured from multiple telemetry channels across various entities. The MSL dataset comprises
27 entities with 55 telemetry channels per entity, while the SMAP dataset contains 55 entities with
25 telemetry channels per entity. (4) The SWaT (Secure Water Treatment) was collected from
51 sensors in a critical infrastructure system under continuous operational conditions. (5) The
NeurIPS-TS (NeurIPS 2021 Time Series Benchmark) introduces a collection of five time series
anomaly detection scenarios, systematically classified through behavior-driven taxonomy into distinct
categories: point-global, pattern-contextual, pattern-shapelet, pattern-seasonal, and pattern-trend.
Detailed specifications regarding the datasets are organized in Table 5.

22



Algorithm 1 Physically-Guided Diffusion Process

Require: Time series x0, diffusion steps T , noise schedule {αt}Tt=1
Ensure: Reconstructed time series x̂0

1: function EXTRACTPHYSICALCOMPONENTS(x0)
2: Ph,Pl ← MAFD(x0) ▷ Multi-channel Adaptive Fourier Decomposition
3: return Ph,Pl ▷ High and low frequency components
4: end function
5: function FREQUENCYRESPONSEFUNC(ω)
6: return exp(−|ω|2/σ2) ▷ Frequency response function
7: end function
8: function FORWARDPROCESS(x0, t)
9: ϵ ∼ N (0, I) ▷ Sample random noise

10: ᾱt ←
∏t

i=1 αi ▷ Cumulative noise level
11: xt ←

√
ᾱtx0 +

√
1− ᾱtϵ ▷ Add noise

12: return xt, ϵ
13: end function
14: function PHYSICALGUIDANCE(xt, t,Ph,Pl)
15: ᾱt ←

∏t
i=1 αi ▷ Cumulative noise level

16: fh(t)← 2− t/T ▷ High frequency influence decreases with time
17: fl(t)← t/T ▷ Low frequency influence increases with time
18: // Compute routing attention with physical guidance
19: Q,K, V ← LinearProjection(xt)
20: gh(t)← σ(fh(t) ·QPT

h ) ▷ High frequency gating
21: gl(t)← σ(fl(t) ·QPT

l ) ▷ Low frequency gating

22: Attention← softmax(QKT+gh(t)·QPT
h+gl(t)·QPT

l√
dk

)V

23: // Apply frequency-adaptive dynamic trend influence
24: for each frequency band ω in signal do
25: Aω ← FrequencyResponseFunc(ω)
26: γ(t, ω)← σ(10(1−

√
ᾱt) ·Aω)

27: xω
t ← (1− γ(t, ω))xω

t + γ(t, ω)(Pω
h +Pω

l )
28: end for
29: // Predict noise using physical information
30: ϵθ ← NoiseEstimationNetwork(xt, t,Attention,Ph,Pl)
31: return ϵθ
32: end function
33: function REVERSEPROCESS(xT ,Ph,Pl)
34: for t = T, T − 1, . . . , 1 do
35: ϵθ ← PhysicalGuidance(xt, t,Ph,Pl)

36: ᾱt ←
∏t

i=1 αi

37: µt ← 1√
αt
(xt − 1−αt√

1−ᾱt
ϵθ)

38: if t > 1 then
39: σt ←

√
1−ᾱt−1

1−ᾱt
(1− αt)

40: z ∼ N (0, I)
41: xt−1 ← µt + σtz
42: else
43: x0 ← µt

44: end if
45: end for
46: return x0

47: end function
48: // Main algorithm
49: Ph,Pl ← ExtractPhysicalComponents(x0)
50: xT , _← ForwardProcess(x0, T )
51: x̂0 ← ReverseProcess(xT ,Ph,Pl)
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Table 5: Details of benchmark datasets for evaluation. (AR:anomaly ratio)

Dataset Domain Dimension Training Validation Test (labeled) AR(%)
SMD Server Machine 38 566 724 141 681 708 420 4.2
MSL Spacecraft 55 46 653 11 664 73 729 10.5
SMAP Spacecraft 25 108 146 27 037 427 617 12.8
SWaT Water treatment 31 396 000 99 000 449 919 12.1
PSM Server Machine 25 105 984 26 497 87 841 27.8
Creditcard Finance 29 113 922 28 481 142 404 0.17
GECCO Water treatment 9 55 408 13 852 69 261 1.25

Table 6: Categorization and Characteristics of baselines.

Category Method Advantages Limitation
Forecasting LSTM Capable of multi-step forecasting Less sensitive to abrupt

Reconstruction

PCA Easily interpretable Only linear
AE Relatively straightforward to implement Prone to overfitting
DAGMM Complex distribution modeling Heavy memory
BeatGAN Realistic sequence modeling Hard to train
Omni Models uncertainty & variable coupling Gaussian assumptions
D3R Catches diverse anomaly types Co-training can misalign

Distance

OCSVM Theoretically solid for small data Poor in high dims
HOBS Change-sensitive Window design critical
LOF Detects local outliers Scalability and high-dim issues
DeepSVDD End-to-end optimization Risk of trivial zero-radius solution

Encoding

A.T. Captures complex dependencies Requires parameter tuning
DCdetector Pattern capture Negative sampling critical
SensitiveHUE High sensitivity to subtle anomalies Weak on sparse anomalies
MTAD-GAT Inter-variable correlation modeling Prior knowledge dependent
TFAD Dual-domain feature capture Weak on non-stationary series

Distribution LODA Online learning capability May lose information
Tree IForset Highly efficient Struggles with very local anomalies

D.2 Baselines

To understand the effectiveness of the proposed method, we extensively compare our model with 18
baselines. Further details concerning the baselines are shown in Table 6.

D.3 Metrics

In this study, we employ Precision (P), Recall (R) and F1 score (F1) based on affiliation metrics [22] as
our primary evaluation metrics. Unlike traditional sample-based metrics, affiliation metrics consider
the unique characteristics of time series data, including temporal adjacency and event duration.
Affiliation precision measures the degree of association between predicted anomalies and actual
anomalies, defined as:

Pprecision =
1

|S|
∑
j∈S

Pprecisionj (31)

where S = {j ∈ [1, n]; pred ∩ Ij ̸= ∅} represents the set of affiliation zones that have intersections
with predictions, and Pprecisionj

is the precision probability calculated within each affiliation zone.
Similarly, affiliation recall measures the extent to which actual anomalies are correctly detected,
defined as:

Precall =
1

n

n∑
j=1

Precallj (32)

where n is the total number of actual anomalous events, and Precallj is the recall probability calculated
within each affiliation zone. To comprehensively evaluate algorithm performance, we use the F1
score based on affiliation metrics, calculated as:

F1 =
2× Pprecision × Precall

Pprecision + Precall
(33)
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This parameter-free evaluation method partitions the timeline according to the relationship with the
nearest actual anomaly and evaluates algorithm performance independently within each partition. It
not only maintains interpretability in physical terms but also resists adversarial prediction strategies,
providing more objective and fair assessment results for time series anomaly detection algorithms.

D.4 Implementation

In our experiments, we implement PhysDiff with careful attention to model architecture, training
procedure, and anomaly detection strategies, with all key hyperparameters summarized in Table 7.

Model Architecture PhysDiff consists of three primary modules: Physics-Guided Feature Extrac-
tion, Physically-Informed Diffusion Model, and Anomaly Detection Scoring. We implement the
feature extractor with MAFD that adaptively decomposes multivariate signals, paired with ASPE
to assess signal complexity. The core diffusion model integrates physical guidance through a spe-
cialized routing attention mechanism: Attention(Q,K, V, Ph, Pl) = softmax((QKT + gh ·QPT

h +
gl ·QPT

l )/
√
dk)V , where gh = σ(QPT

h ) and gl = σ(QPT
l ) control high and low frequency compo-

nents. We use a noise schedule with β values from 0.0001 to 0.02 over 1000 timesteps, window size
of 64, and embedding dimension of 512.

Training Procedure We train PhysDiff using AdamW optimizer with learning rate 1e-4 and weight
decay 1e-4, with cosine annealing and warm restarts. Early stopping monitors validation loss with
patience of 3 epochs. For robustness, we apply controlled disturbance during training with random
noise scaled by factor p. MAFD components are set to 8 for SMD and SWaT, and 16 for SMAP. The
parameter λaspe modulates signal complexity influence with dataset-specific base values: 0.05 for
SMAP, 0.02 for SMD, and 0.1 for other datasets.

Anomaly Detection For scoring anomalies, we implement a composite approach combining
reconstruction error and model-predicted scores with dataset-specific weightings: SMAP (0.4/0.6),
SMD (0.3/0.7), SWaT (0.3/0.7), and others (0.5/0.5). Dynamic thresholding uses SPOT algorithm,
fitting a Generalized Pareto Distribution to anomaly score tails. Initial thresholds are determined by
percentile-based approach (96th for SMAP, 94th for SMD, 95th for others).

Implementation Environment Experiments were conducted using PyTorch 2.1.2 on NVIDIA
GTX 2080Ti with 22GB memory. Our implementation includes optimizations: (1) CUDA-accelerated
MAFD calculations using nvmath when available, (2) efficient time series embeddings with convolu-
tional layers of kernel size 1, (3) optimized batch matrix multiplications for routing attention, and (4)
reconstruction head with two-layer MLP, GELU activation, and dropout rate 0.2. Key hyperparameters
include: time steps=1000, window size=64, model dimension=512, feed-forward dimension=2048, at-
tention dimension=64, head count=8, block count=2, dropout rate=0.2, batch size=8, and disturbance
factor p=10.0. Code is available at https://anonymous.4open.science/r/PhysDiff-4726.

E Experiments Analysis

E.1 Analysis of Comparative Study Results

As demonstrated in Table 1, PhysDiff consistently outperforms all baseline models across five real-
world benchmark datasets. The performance gains are particularly significant in datasets characterized
by complex temporal dynamics. On the SMD (Server Machine Dataset), PhysDiff achieves an
F1 score of 81.65%, outperforming the previous best model (AE at 81.30%) by 0.35 percentage
points, demonstrating superior capability in detecting anomalies in server telemetry data with high-
dimensional features. For the MSL (Mars Science Laboratory) dataset, PhysDiff attains an F1 score of
74.83%, exceeding LODA (72.05%) by 2.78 percentage points, showing enhanced ability to identify
anomalies in spacecraft telemetry with complex non-stationary patterns. The advantage extends
to the SMAP (Soil Moisture Active Passive) dataset, where PhysDiff reaches 73.91% F1 score,
surpassing Anomaly Transformer (71.65%) by 2.26 percentage points, highlighting its effectiveness
on satellite telemetry data. On SWaT (Secure Water Treatment), PhysDiff obtains 72.64% F1 score
versus DAGMM’s 72.32%, demonstrating marginally better performance on critical infrastructure
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Table 7: Hyperparameters for PhysDiff

Category Parameter Value

Model Architecture

Time Steps 1000
Beta Range 0.0001-0.02
Window Size 64
Model Dimension 512
Feed-Forward Dimension 2048
Attention Dimension 64
Head Count 8
Block Count 2
Dropout Rate 0.2

Training

Optimizer AdamW
Learning Rate 0.0001
Batch Size 8
Epochs 10
Early Stopping Patience 3
Disturbance Factor (p) 10.0
ASPE Weight (λ) 0.05-0.1 (dataset dependent)

MAFD
Components 8-16 (dataset dependent)
Dictionary Distance (dist) 0.05
Maximum Magnitude 0.95

Evaluation SPOT q Parameter 0.01
Kernel Size for Smoothing 5

monitoring data. For PSM (Pooled Server Metrics), PhysDiff scores 74.16%, which is competitive
though slightly below AE’s 75.01%, showing strong performance on server performance data.

Figure 6: Performance comparison between
PhysDiff and baseline methods across seven
datasets. Points above the diagonal line indicate
PhysDiff’s improvement on previous methods.
The most substantial improvements are observed
on Creditcard. The bubble size and color repre-
sent the absolute F1 score improvement.

Figure 7: Performance comparison on NeurIPS-
TS datasets (Creditcard and GECCO). PhysDiff
significantly outperforms all baseline methods,
achieving 69.4% and 57.9% F1 scores on Cred-
itcard and GECCO datasets respectively, with
particularly large improvements over methods
like iForest, AE, A.T., DCdetector and D3R.

As shown in Figure 6, PhysDiff consistently positions above the diagonal line, indicating superior
performance compared to the previous best baselines across all datasets. The most substantial
improvements are observed on the Creditcard dataset (+6.8 percentage points) and MSL dataset
(+2.8 percentage points). This visual representation clearly illustrates the magnitude of improvement
across different application domains, with larger bubbles and warmer colors representing greater
performance gains.

The performance advantage is even more pronounced on the more challenging NeurIPS-TS datasets
(Table 2 and Figure 7). On the Creditcard dataset, PhysDiff achieves 69.44% F1 score, substantially
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outperforming the previous best model D3R (62.62%) by 6.82 percentage points, demonstrating
exceptional capability in detecting fraudulent financial transactions. Similarly for GECCO, PhysDiff
reaches 57.92% F1 score versus Anomaly Transformer’s 55.96%, with a 1.96 percentage point
improvement on this water treatment dataset featuring complex anomaly patterns. Figure 7 visually
emphasizes this dominance, with PhysDiff’s bars clearly exceeding those of all baseline methods.

The precision-recall analysis illustrated in Figure 8 reveals that PhysDiff achieves a more balanced
trade-off between precision and recall compared to competing methods. The plots for SMD, PSM,
and SWaT datasets show PhysDiff (marked with a star) consistently positioned near the optimal
regions of the precision-recall space, indicating its ability to minimize both false positives and false
negatives simultaneously. Notably, on the SMD dataset (Figure 9 and 10), PhysDiff positions itself
in the optimal region with F1 score contours approaching 0.8, surrounded by a higher density of
performance points, further validating its robust performance characteristics.

Figure 8: Precision-Recall analysis across SMD, PSM, and SWaT datasets. PhysDiff (marked with
a star) achieves a better balance between precision and recall compared to competing methods,
maintaining high scores on both metrics. Contour lines represent F1 score values.

Figure 9: Precision-Recall density analysis for
the SMAP dataset, showing the distribution of
model performance in PR space. PhysDiff (red
star) positions optimally with high density near
F1=0.8, outperforming AE, BeatGAN, MTAD-
GAT, TFAD, and D3R.

Figure 10: Precision-Recall density analysis for
the MSL dataset, showing the distribution of
model performance in PR space. PhysDiff (red
star) positions optimally with high density near
F1=0.8, outperforming AE, BeatGAN, MTAD-
GAT, TFAD, and D3R.

These consistent performance gains across diverse domains validate the effectiveness of our physically-
guided approach, which effectively captures both transient high frequency patterns and stable low
frequency trends through adaptive decomposition mechanisms. The superior results across multiple
metrics and datasets suggest that PhysDiff’s integration of physical priors into the diffusion process
significantly enhances anomaly detection capabilities, particularly for complex, non-stationary time
series data.
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E.2 Computational Complexity Analysis

This section analyzes PhysDiff’s computational complexity and provides empirical runtime compar-
isons to address scalability concerns. PhysDiff incurs higher computational costs than traditional
methods but achieves competitive efficiency among comparable approaches while delivering superior
performance.

E.2.1 Theoretical Complexity

PhysDiff’s computational complexity consists of three primary components. MAFD decomposition
operates atO(C ·L·logL) where cross-channel sharing significantly reduces the coefficient compared
to independent processing. The diffusion process requires O(Tdiff ·D2) operations per timestep. Our
routing attention mechanism adds O(W 2 ·D) complexity that adapts dynamically based on signal
characteristics. Here C represents the number of input channels, L denotes the input sequence length,
Tdiff is the number of diffusion timesteps, D refers to the hidden dimension size, and W indicates the
attention window size.

E.2.2 Empirical Runtime Analysis

Table 8 presents runtime measurements per epoch on the SWaT dataset, demonstrating clear per-
formance stratification across method categories. PhysDiff requires 81.43 seconds compared to
D3R’s 78.52 seconds, representing only a 3.7% computational overhead while providing substantial
performance returns: 3.61% F1 score improvement on SMD and 7.61% on SMAP.

Table 8: Runtime comparison across method categories on SWaT dataset
Method Category Runtime Range (s) Complexity Order Examples
Linear Methods 0.02–0.13 O(TD) PCA, LODA
Distance-based 0.25–0.30 O(T 2) LOF, IForest
Classical ML 1.17–1.48 O(T 2D) OCSVM, LSTM
Neural Networks 3.70–6.76 O(TD2) AE, DCdetector
Advanced Models 9.31–19.77 O(T 2D2) BeatGAN, TFAD
Diffusion Models 78.5–81.4 O(Tdiff · TD2) D3R, PhysDiff

The additional overhead in PhysDiff stems from physics-guided routing attention and adaptive decom-
position mechanisms. These components provide interpretable frequency-domain insights unavailable
in baseline diffusion methods. Our channel-shared MAFD strategy achieves significant memory
optimization, reducing requirements by approximately 60% compared to channel-independent decom-
position approaches. This optimization transforms complexity fromO(C · T · log T ) toO(T · log T ).
The efficiency-performance ratio demonstrates that PhysDiff’s computational investment is justified
by superior anomaly detection capabilities and enhanced interpretability through physics-guided
decomposition. The scalable design ensures practical applicability for real-world time series anomaly
detection scenarios.

E.3 Non-Stationarity Effectiveness Analysis

To validate PhysDiff’s effectiveness on non-stationary time series, we conducted statistical char-
acterization of dataset properties using stationarity tests and derived metrics. Table 9 presents the
quantitative analysis results across five benchmark datasets.

We employ four key indicators to characterize non-stationarity: KPSS Score measures trend station-
arity using the Kwiatkowski-Phillips-Schmidt-Shin test statistic [31], with higher values indicating
stronger non-stationarity; Variance Instability quantifies temporal variance changes; Trend Strength
measures the prominence of linear trend components; and Mean Shift captures the degree of mean
level changes over time [32].

As shown in Table 9, PhysDiff achieves consistent positive improvements across datasets exhibiting
significant non-stationary characteristics. Datasets with high KPSS scores and variance instability
demonstrate larger performance gains, with SMD and SWaT showing +0.35% and +0.32% improve-
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Table 9: Non-stationarity characteristics and PhysDiff performance improvements
Dataset KPSS Score Var. Instability Trend Strength Mean Shift F1 Improvement
SMD 0.9870 0.3968 0.4402 0.4331 +0.35%
SWaT 0.9791 0.5763 0.2377 0.2485 +0.32%
MSL 0.9000 0.1611 0.0003 0.0088 +2.78%
SMAP 0.9000 0.0061 0.0055 0.0115 +2.26%
PSM 0.9094 0.0215 0.0077 0.0080 -0.85%

ments respectively. MSL and SMAP achieve even larger improvements of +2.78% and +2.26%
respectively, despite different non-stationarity patterns.

Our adaptive decomposition mechanism effectively captures non-stationary characteristics through
MAFD’s cross-channel shared basis functions and ASPE’s complexity-based stopping criterion.
Only PSM, exhibiting minimal non-stationary characteristics, shows negative performance change
of -0.85%, validating our approach’s specificity for complex temporal patterns rather than over-
regularizing stationary data.

E.4 Analysis of Ablation Study Results

To evaluate the contribution of individual components within the PhysDiff framework, we con-
ducted comprehensive ablation studies across five datasets. Table 3 presents the F1 scores for each
configuration, while Figure 11 visualizes the performance degradation when removing specific
components.

Our ablation analysis reveals that the physical guidance (PG) mechanism is critically important,
with its removal causing the largest average performance drop (-5.95% F1 score). The impact is
particularly severe on SMAP (-8.9%) and SMD (-10.8%) datasets, confirming our hypothesis that
incorporating physical constraints substantially improves anomaly detection accuracy by providing
meaningful priors for the diffusion model. This validates our core design principle of integrating
domain knowledge directly into the generative process.

The routing attention (RA) mechanism proves even more crucial in certain contexts, with its removal
resulting in a -10.20% average F1 score decrease. Most notably, disabling RA caused a dramatic
-25.1% degradation on the PSM dataset, underscoring the critical importance of dynamically cal-
ibrating the contributions of different frequency components during reconstruction, especially in
datasets with complex multi-scale temporal dependencies. This suggests that the ability to adaptively
weight frequency components based on their relevance to the current context is essential for accurate
anomaly detection.

Frequency components analysis reveals significant insights about their relative importance. Removing
high frequency components (HF) led to a -6.63% average performance reduction, with the most
significant impact on SMAP (-11.1%) and SMD (-10.7%). This demonstrates that transient patterns
captured by high frequency components are essential for detecting subtle anomalies that manifest as
rapid fluctuations. Similarly, excluding low frequency components (LF) resulted in a -5.95% decrease,
with substantial effects on SMD (-11.6%) and SMAP (-6.6%), highlighting the importance of trend
information in establishing normal baseline patterns. These results confirm that both frequency ranges
contain complementary information necessary for comprehensive anomaly detection.

The information-theoretic measures incorporated in PhysDiff also proved highly valuable. Removing
permutation entropy (PE) caused a -5.32% average decrease, while replacing amplitude-sensitive
permutation entropy (ASPE) with standard entropy resulted in a -4.38% reduction. These results
confirm that our entropy-based measures effectively capture signal complexity and distinguish
between normal variations and anomalies. The superior performance of ASPE over standard entropy
validates our approach of incorporating amplitude information when assessing time series complexity.

Decomposition granularity experiments showed that neither 8 nor 16 components achieved optimal
performance (-5.35% and -5.82% respectively), indicating that appropriate decomposition depth is
critical and dataset-dependent. This highlights the importance of adaptive decomposition strategies
that can adjust to the specific characteristics of different time series.
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Figure 11: Impact of removing individual com-
ponents from PhysDiff, measured by F1 score
decrease averaged across all datasets. Routing
Attention (RA) has the largest impact (10.20%
decrease), followed by High frequency compo-
nents (HF, 6.63%), Physical Guidance (PG) and
Low frequency components (LF) (both 5.95%).

Figure 12: The dataset-specific impact of re-
moving each component. Darker colors indicate
larger F1 score decreases. Removing Routing
Attention (RA) severely impacts PSM (25.1%
decrease), while High frequency (HF) removal
significantly affects SMAP (11.1% decrease).

As illustrated in Figure 12, the impact of component removal varies significantly across datasets.
The heatmap visualization reveals distinct patterns of dependency, with darker cells indicating larger
performance decreases when specific components are removed from particular datasets. Figure 13
further emphasizes these dataset-specific dependencies, showing that PSM relies heavily on routing
attention while SMD benefits from all components more uniformly. This heterogeneity in component
importance across datasets suggests that each time series domain has unique characteristics that
require different aspects of the PhysDiff framework.
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Figure 13: Dataset-specific impact of removing key components. The bar chart highlights how
different datasets rely on different aspects of PhysDiff: PSM depends heavily on Routing Attention,
SMAP is sensitive to High frequency components, while SMD benefits from all components more
evenly.

These comprehensive ablation findings collectively validate our architectural design choices and
demonstrate that PhysDiff’s superior performance stems from the synergistic integration of physical
insights, adaptive frequency decomposition, and information-theoretic measures. Each component
makes substantial contributions to the framework’s effectiveness across diverse real-world scenarios,
with their relative importance varying based on dataset characteristics. The ablation results provide
empirical evidence for the importance of incorporating domain knowledge into anomaly detection
systems, particularly for handling complex non-stationary time series data.
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F Broader Impacts

In recent years, time series anomaly detection technology demonstrates significant value in industrial
manufacturing, finance, and healthcare, enabling early identification of equipment failures, fraudulent
transactions, and abnormal physiological indicators, thereby reducing potential risks and losses. Our
model improves detection accuracy and result interpretability through physics-guided decomposition
methods. However, when processing sensitive data (such as medical records or financial information),
our framework currently lacks data anonymization mechanisms. In future research, we plan to
incorporate technologies like differential privacy to effectively protect user privacy while maintaining
detection performance, enabling safe application of this technology across a broader range of domains.

G Limitations

Despite PhysDiff’s superior performance in anomaly detection, it has notable limitations. The dif-
fusion model architecture requires lengthy training times and substantial computational resources,
limiting its application in resource-constrained environments. PhysDiff assumes continuous obser-
vations throughout the time series, as our MAFD decomposition requires consistent data points for
effective basis function estimation. Significant missing values disrupt the decomposition process,
particularly when missing segments contain critical frequency components, and channel-specific
missing patterns break the consistency of cross-channel energy convergence. Additionally, while
we validated effectiveness through F1 scores, anomaly detection evaluation should be more compre-
hensive. Future work will address these limitations by employing model distillation techniques to
compress the multi-step inference process, incorporating uncertainty-aware diffusion mechanisms for
handling incomplete data, and designing an integrated evaluation framework combining detection
latency, false alarm tolerance, and interpretability metrics to provide more objective standards for
time series anomaly detection.
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