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Abstract

Methods of computational quantum chemistry provide accurate approximations of
molecular properties crucial for computer-aided drug discovery and other areas of
chemical science. However, high computational complexity limits the scalability
of their applications. Neural network potentials (NNPs) are a promising alternative
to quantum chemistry methods, but they require large and diverse datasets for
training. This work presents a new dataset and benchmark called V2DFT that is
based on the nablaDFT. It contains twice as much molecular structures, three times
more conformations, new data types and tasks, and state-of-the-art models. The
dataset includes energies, forces, 17 molecular properties, Hamiltonian and overlap
matrices, and a wavefunction object. All calculations were performed at the DFT
level (wB97X-D/def2-SVP) for each conformation. Moreover, V2DFT is the first
dataset that contains relaxation trajectories for a substantial number of drug-like
molecules. We also introduce a novel benchmark for evaluating NNPs in molecular
property prediction, Hamiltonian prediction, and conformational optimization tasks.
Finally, we propose an extendable framework for training NNPs and implement 10
models within it.

1 Introduction

Solving the many-particle Schrodniger equation (SE) for electrons makes it possible to describe the
electronic structure of matter. This structure determines the equilibrium and transport properties of
matter that are crucial in downstream applications such as computer-aided drug design or material
design [1-8]. However, since an analytic solution to the many-particle SE is unknown, various
approximate solutions are used in practice, leading to a trade-off between accuracy and computational
cost. The most accurate methods, such as Post-Hartree-Fock [9] and quantum Monte Carlo methods
[10] are prohibitively expensive, applicable to systems with at most tens of atoms; for a comprehensive
overview of numerical methods at different levels of accuracy see [11].

Density functional theory (DFT) [12—14] is currently the primary approach for solving the many-
particle SE for electrons. It provides reasonably accurate predictions while being computationally
tractable for systems on a scale of 1000 electrons [15]. However, even a single iteration of this method
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Figure 1: Our comprehensive workflow for dataset and benchmark construction as elaborated
in Sections 3 and 4. First, a diverse set of conformations is generated for molecules from the
MOSES dataset. Second, Quantum Chemistry (QC) properties are computed for these conformations,
accompanied by optimization trajectories. Third, this data is then arranged into training and testing
splits. Finally, ten state-of-the-art models are trained and evaluated based on these splits.

may take several CPU-hours [16], which restricts its use in molecular modeling tasks where a single
method has to be called many times (e.g., more than 10 times for molecular dynamics simulation).
Neural networks have recently emerged as an alternative to the computationally expensive quantum
chemistry (QC) approaches. However, they require substantial amounts of data for training. Since
collecting data at the highest level of theory (such as Post-Hartree-Fock or Quantum Monte Carlo) is
extremely expensive, most existing datasets (see Section 2) use DFT-based methods.

There are multiple ways to parametrize the solution of the SE equation with a neural network (NN).
The most general approach is to directly predict the wavefunction of the atomic system [17-24],
which allows to infer interesting properties of the system quickly. In general, this approach does not
require a dataset to train on and does not depend on a specific method of solving the many-particle
SE, but this family of methods is very resource-demanding [19]. Another approach is to predict
the quantum Hamiltonian matrix [25-30], which fully defines the wavefunction on the Kohn-Sham
density functional and Hartree-Fock levels of theory. This approach is not as general since it can only
operate on certain levels of theory but retains all merits of wavefunction prediction. Finally, the most
popular approach involves training neural network potentials (NNPs) [31-40], i.e., neural networks
designed to predict potential energy and interatomic forces in atomic systems based on the structural
arrangement of the atoms. Their inference time scales at most quadratically in the number of atoms
in the system, which makes NNPs relatively cheap to train and applicable in such important tasks as
molecular dynamics simulations [32, 41-43] and molecular conformation optimization [44—46].

In this work, we aim to aid the training of Hamiltonian-predicting models and NNPs for druglike
molecules by significantly extending and improving the nablaDFT dataset [11]. We double the number
of molecules and conformations to 1,936,929 and 12,676,264, respectively. We call the proposed
dataset V2DFT. For each conformation, we provide various QC properties, including energy, forces,
Hamiltonian and overlap matrices, and the wavefunction object that allows to either directly infer or
calculate additional QC properties. All calculations were performed at the wB97X-D/def2-SVP DFT
level.

Although estimating QC properties in any given conformation is important, it is even more important
to estimate them in low-energy conformations (conformers), traditionally obtained with an iterative
optimization process that utilizes a computational method at every optimization step. This process
is called conformational (geometry) optimization or relaxation. Multiple calls to the computational
method make geometry optimization extremely expensive in terms of computations, but it can be
sped up by using an NNP instead [44—47]. GOLF paper [46] emphasizes that training such neural
networks requires a large amount of data comprised of geometry optimization trajectories. To
facilitate research on NN-based conformational optimization of druglike molecules, we extend our
dataset with geometry optimization trajectories for 60,226 conformations of 16,974 molecules from
the V2DFT. Together with these trajectories, the dataset contains 15,716,667 conformations in total.
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Figure 2: The figure illustrates the structure of V2DFT, which includes 12 predefined training and
test splits designed for agile experimental design. Conformational test splits contain molecules that
are also in the training splits, testing the models’ ability to generalize to unseen molecular geometries.
In contrast, Scaffold and Structure test sets are entirely independent of the training splits, evaluating
the models’ ability to generalize to completely new molecules.

A complete set of properties provided for each conformation, together with a unique dataset of
relaxation trajectories for druglike molecules, make the V2DFT dataset universal.

In addition to the dataset, we propose a benchmark to evaluate the performance of NN-based models
for QC and a framework that contains adaptations of 10 models, including the current state of the
art. The framework is designed to be extendable and easy to use. The benchmark covers three
important tasks in QC: Hamiltonian prediction (see Section 4.1), potential energy and atomic forces
prediction (Section 4.2), and conformational optimization (Section 4.3). We implement Hamiltonian
prediction models and NNPs within the proposed framework and carefully evaluate them on these
three tasks. Models that directly predict wavefunctions, while promising, do not currently scale to
large atomic systems and have generalization issues (see Section 2), so we leave their implementation
and evaluation for future work. We highlight the contributions of this paper as follows: (1) a
universal dataset that includes more than 30 QC properties such as energies, forces, Hamiltonians
and overlap matrices, wavefunction objects, and optimization trajectories for druglike molecules;
(2) a comprehensive benchmark for evaluating quantum chemistry models, encompassing tasks
such as Hamiltonian prediction, energy and force prediction, and conformational optimization, with
12 predefined training and test splits for agile experimental design to assess how model performance
depends on the available data and generalization to unseen geometries and novel molecules (see
Figure 2); (3) an extendable framework' that contains adaptations of 10 quantum chemistry models
together with reported benchmark metrics and checkpoints.

2 Related work

We begin with related datasets, grouped below according to the source of the original chemical
information; detailed information is summarized in Table 1 and Table 9 in the Appendix.

GDB-11/GDB-13/GDB-17. QM7 [48], QM7b [49], QM8 [50], and QM9 [51] comprise one of
the first families of datasets for ML research in computational chemistry. QM9 is the largest, with
130,000 small molecules in 5 atom types. However, QM9 includes only one low-energy conformation
(conformer) per molecule, does not provide atomic forces, and only contains 5 atom types. QH9 [52]
is a version of the QM9 dataset that provides Hamiltonians. MultiXC-QM9 [53] is a version of
QMO that provides energies calculated with several basis sets and exchange-correlation functionals.
QM?7-X [54] provides forces and contains several conformations per molecule, but it is limited to 7
heavy atoms and has ~7000 unique molecules. QM 1B [55] contains larger molecules and provides
1 billion conformations but does not provide forces. The ANI-1 [56], ANI-1x, ANI-lcxx [57]
family exceeds QM9 both in the number of conformations and size of molecules: ANI-1x has ~20M
conformations for 57,000 molecules, and provides forces; but the ANI-XX family only has 4 atom
types. GEOM [58] is a dataset of conformers for 450K molecules with ~37M conformations, but
most computations were performed at a less accurate semi-empirical level of theory.

'V2DFT is available at https://github.com/AIRI- Institute/nablaDFT
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Table 1: Summary of quantum chemistry datasets; * — not provided directly but can be derived.

MultiXC-

V2DFT (our) VDFT QM7 QM7b QM7-X QM9 QM9 QM1B QH9
. MOSES, MOSES,
chem' inf. ZINC21 (Zinc ZINC21 (Zinc GDB-13 GDB-13 GDB-13 GDB-17 GDB-17 GDB-11 85113_13!
source Clean Leads) Clean Leads)
# molecules M M 7K 7K 7K 134K 134K M 130K
# conformers  16M M 7K 7K 4M 134K 134K 1B 130K
# atoms 8-62 8-62 1-23 1-23 1-23 3-29 3-29 9-11 3-29
# heavy atoms  8-27 8-27 1-7 1-7 1-7 1-9 1-9 — 1-9
H,C,N,0.,S, H,C,N,O, H,C,N,0,
Atoms CLEBr CLEBr H,C,N,0,S H,C,N,O,S s.cl H,C,N,O,F H,C,N,O,F H.C,N,O,F H,C,N,O,F
Forces v X* X X v X X X X
Hamiltonians v v X X X X X X v
Optim. traj. v X X X X X X X X
Basis set and  2B97X- D/ QB97X- D/ ZINDO, = ePBEO+  B3LYP/6- B3LYPPBE/ STO-3G/  B3LYP/
XC-fi Def2-SVP  Def2-Svp  TBE0  SCS. MBD,  31G(2dfp) 6-31GQ2dLp), Byjvp  pepsyp
-une. o= = PBEO, GW TotFOR  +G4MP2 SZ,DZP,TZP ¢
Storage size 220 Tb 100 Tb 179MB 16.1MB 1.35Gb 230 Mb 317 Gb 240 GB 28.4 Gb
ANI-1x/  OrbNet
GEOM ANI-1 ANI-lexx  Denali QMugs SPICE PubChemQC Frag20 VQM24
. PubChem+. .
Chem. inf. GDB-11, ChEM- ’ PubChem, Combina-
source QM9, AlCures GDB ChEMBL BL27 ChEMBL oDllseSr370K+4, PubChem ZINC torial
# molecules 450K 57K 57K 16K 665K 19K 85M 565K 10K
# conformers  37M 24M 20M 2.3M 2M IKK 85M 566K 835K
# atoms — — 2-26 — 4-228 2-96 — — 4,5
# heavy atoms — 1-11 1-8 — 4-100 — 51 20 —
PLBC HeNO, pLESN HCN,OPS, HBCO. HCNO,
Atoms H,C,N,O.F H,C,N,O H,C,N,0 e 5o PS,.CLE NS F,CI,Na, N.EP, ESi,P,
MeSLPS, p 1 PSCLK. ¢ MgCa  SCLBr  S.CLBr
CLK,Ca,Br,l Ca,Br,1 Mg Y T
Forces X X v X X* 4 X X X
Hamiltonians X X X X X* X X X X
Optim traj. X X X X X X X X X
wB97x/6-
31G*, QB97X- wB97X-D/  wB97M- 2?97\;;];3/
Basis setand  mTZVPP/ ‘WBI7x/ wB97x/ D3/ Def2- Def2- SVP  D3(BJ)/ B3LYP/ B3LYP/ DIL\/IZ@ ?
XC-func. R2scan-3 6-31g(d) def2-TZVPP, TZVP +GFN2- Def2- 6-31G*+ PM6 6-31G* PREO(ECY
CCSD(T)*/ XTB TZVPPD (c
CBS Cc-VQ2))
Storage size 130.8 GB 4.48 Gb 5.29 Gb 274GB 7Tb 37.5GB 100 Tb 566 Mb 1.5Gb

ChEMBL/ChEMBL27. OrbNet Denali [59] contains ~16,000 molecules, ~2,300,000 conformations,
and 17 atom types; it does not provide forces and has a low molecule diversity. QMugs [60] includes
~665,000 molecules and ~2,000,000 conformers, 10 atom types, and up to 228 atoms per molecule.
QMugs provides about 50 molecular properties and the density matrix but does not provide forces,
and an additional step of the SCF solver is required to obtain the Hamiltonian.

PubChem. The latest version of PubChemQC [61] includes 85,938,443 molecules and a single
conformer for each molecule, with up to 51 atoms per molecule and 13 atom types. This dataset does
not provide forces and Hamiltonians but includes full solver convergence reports that can be parsed
to obtain QC properties. The SPICE [62] dataset combines a subset of PubChem, DES370K, and
some other sources of chemical information; the small molecule part of SPICE includes ~14,600
molecules, 730,000 conformations, 10 atom types, and provides information about forces. The main
drawbacks include a small number of molecules and the lack of Hamiltonians.

Combinatorial. Instead of sampling molecules from a specific database, VQM?24 [63] covers the
full chemical space of molecules with up to 5 heavy atoms (~258,000 molecules and ~577,000
conformations) via a combinatorial algorithm with filtering. Additionally, conformers of 10,793
molecules with up to 4 heavy atoms are evaluated with quantum Monte Carlo.

Other domains. Other QC datasets include materials, chemical reactions, peptides, nanotubes, and
more, or provide molecular dynamic (MD) trajectories. ISO17 [31] and MD17 [64] provide MD
trajectories for several organic molecules. MD22 [39] is a dataset of MD trajectories for several large
atomic structures. OC20 [47], OC22 [44], and OC20-Dense [45] provide optimization trajectories for
various adsorbate-catalyst pairs. PCQM4Myv2, a part of the Open Graph Benchmark project [65],
contains a subset of properties from the PubChemQC dataset. QMOF [66] is a dataset of metal-
organic substances. GeckoQ [67] is a dataset with atomic structures of atmospherically relevant



molecules. DES370K [68] is a dataset of dimers computed with the CCSD(T) level of theory.
Transitionlx [69] is a dataset of molecules and reaction pathways.

The key feature of V2DFT that separates it from other datasets is its universality. It provides all
the above-mentioned molecular properties, full Psi4 wavefunction objects, Hamiltonian matrices,
and geometry optimization trajectories, all calculated at a reasonably accurate DFT level for a large
number of diverse molecules with 8 atom types and up to 62 atoms. Moreover, our source of chemical
information is the MOSES dataset of structures of commercially available drug-like molecules [70]
(ZINC Clean Leads [71]), which makes V2DFT most relevant for the chemical and pharmaceutical
industry.

Neural Network Potentials. NNPs are a family of models that predict potential energies and atomic
forces based on conformations; NNPs are useful for downstream applications and represent the
primary focus of our benchmark. Most existing models [31-40] are based on message passing in
NNs [16]. Importantly, NNPs can perform molecular dynamics (MD) by predicting forces.

Wavefunction learning and Hamiltonian prediction. PauliNet [17] and FermiNet [18] are two
deep learning wavefunction Ansitze that provide nearly exact solutions to the electronic Schrodinger
equation for single atoms and small molecules such as LiH, ethanol, and bicyclobutane. However,
scaling these approaches to larger systems and increasing the number of molecules presents significant
challenges: training PauliNet and Ferminet requires a substantial amount of computation even for a
system of two nitrogen atoms [19]. Recently proposed models [19-24, 72, 73] employ Transformers,
adapter models structure, and other approaches to get better accuracy and generalization, but still can
deal with only small structures and need lots of compute; nevertheless, the V2DFT dataset provides
all necessary data for the training of such models. Instead of directly learning a wavefunction, one
can predict Hartree-Fock or DFT Hamiltonian matrices. SchNOrb [25] is a direct continuation of the
SchNet model [31]. PhiSNet [26] can be seen as a SE(3)-Equivariant variation of SchNOrb, which
makes it more accurate and stable. DeepH [27] and DeepH-E3 [28] are similar models which can be
applied to crystal structures. Finally, the works [29, 30] propose variations of PhiSNet tested not only
in a single molecule scenario but also on QM9-based datasets. Considering this a promising approach,
we add three of these models to our benchmark to test their performance and generalizability in a
more difficult scenario.

Geometry optimization with neural networks. Guan et al. [74] and Lu et al. [75] frame the
conformation optimization problem as a conditional generation task, training models to generate low-
energy conformations conditioned on conformations generated by RDKit or randomly sampled from
pseudo-optimization trajectories by minimizing RMSD between predicted and real atom coordinates.
Another approach [44-46] is to use interatomic forces, predicted by an NNP, as antigradients for an
optimization method such as L-BFGS [76]. Tsypin et al. [46] investigate the iterative optimization of
molecules and demonstrate that NNPs can match the optimization quality of DFT-based methods
by utilizing extensive datasets comprised of geometry optimization trajectories. In this work, we
augment V2DFT with geometry optimization trajectories and establish a new benchmark to support
further research on the iterative optimization of molecular conformations with NNPs.

3 Dataset

The primary contribution of this work is V2DFT, an extension of the large-scale nablaDFT dataset
of QC properties for druglike molecules [11]. V2DFT is based on the Molecular Sets (MOSES)
dataset [70]; it contains 1,936,929 molecules with atoms C, N, S, O, F, Cl, Br, and H, 448,854 unique
Bemis-Murcko scaffolds [77], and 58,315 unique BRICS fragments [78].

For each molecule from the dataset, we have run the conformation generation method from the
RDKit software suite [79] proposed by Wang et al. [80], getting 1 to 100 conformations per molecule.
Next, we clustered the resulting conformations with the Butina clustering method [81], selected
the minimal set of clusters that cover 95% of the conformations, and included their centroids as
conformations in V2DFT, obtaining 1 to 69 unique conformations for each molecule, with 12,676,264
total conformations in the full dataset. For each conformation, we calculated its electronic properties,
including the total energy (E), interatomic forces F', DFT Hamiltonian matrix (H), and DFT overlap
matrix (S) (see the full list in Table 2). All properties were calculated using the Kohn-Sham
method [82] at wB97X-D/def2-SVP level of theory using the quantum-chemical software Psi4 [83],
version 1.5, with default parameters: the Lebedev-Treutler grid with a Treutler partition of the atomic



Table 2: Properties available for each data instance in V2DFT.

Access mode Content

Main data (basic Atom numbers, atom positions, energy (' DFT FORMATION ENERGY"), forces,
dataloader) Hamiltonian (Fock matrix), overlap matrix, coefficients matrix

’DFT TOTAL ENERGY’, 'DFT XC ENERGY’, 'DFT NUCLEAR REPULSION
ENERGY’, 'DFT ONE-ELECTRON ENERGY’, 'DFT TWO-ELECTRON ENERGY’,
"DFT DIPOLE X', 'DFT DIPOLE Y’, ’DFT DIPOLE Z’, 'DFT TOTAL DIPOLE’,

Metainformation ', yer ROT CONSTANT A, 'DFT ROT CONSTANT B, *DFT ROT CONSTANT C,
’DFT HOMO’, 'DFT LUMO’, ’DFT HOMO-LUMO GAP’, 'DFT ATOMIC ENERGY’,
"DFT FORMATION ENERGY”
All data from two previous rows. Ca/Cb (molecular orbital coefficients), Da/Db (density
Raw stored matrix), Fa_l/Fb (Fock_ matrix), H (Core.Hami!tonian), S (overlap matrix), X
wavefunction (XC—functlone}l matrix), aotoso (Atomic Orbital to Symmetry O.rbltal),
object epsilon_a/epsilon_b (orbital eigenvalues), SCF DIPOLE, doccpi (number of doubly

occupied orbitals), nmo (number of molecule orbitals), " DISPERSION CORRECTION
ENERGY’, 'GRID ELECTRONS TOTAL’

All data from three previous rows. Electric dipole moment, Electric quadrupole moment,
All moments up order N, Electrostatic potential at nuclei, Electrostatic potential on grid,
Electric field on grid, Molecular orbital extents, Mulliken atomic charges, Lowdin atomic
charges, Wiberg bond indices, Mayer bond indices, Natural orbital occupations,
Stockholder Atomic Multipoles, Hirshfeld volume ratios

Available after
loading into Psi4

weights, 75 radial points and 302 spherical points, convergence of energy and density up to 10~° as
the criterion for SCF cycle termination, and 10712 as the integral calculation threshold.

We applied a multi-step filtration protocol to ensure the validity of the provided QC computations.
We filtered 31 molecules from the MOSES dataset where the above procedure could not produce
valid conformations. Then, we filtered samples with anomalous values of QC properties: (‘DTF
TOTAL ENERGY’ > 0), (‘DFT TOTAL DIPOLE’ < 20), or (‘DFT FORMATION ENERGY’ < 0).
We excluded 29 conformations and discarded 2 more molecules, totaling 33. Finally, 17 additional
molecules and 145 conformations with an atomic forces norm exceeding 99.999 percentile were
discarded.

To set up the VZDFT benchmark, we provide several data splits that can be used to compare different
models fairly (see Fig. 2). First, we fix the training set D that consists of 1,583,996 molecules
with 8,849,983 conformations and its smaller subsets D'arge, pmedium psmall 554 Dy with 99,018,
9689, 5768, and 2809 molecules and 500,552, 49,725, 28,362, and 12,145 conformations respectively.
These subsets help study how the performance of various models depends on available data.

We select 176,001 random molecules, not present in D!, and call it the structure test set D™evre,
We also select another 176,917 molecules containing a Bemis-Murcko scaffold, which are not
present in D! and call it the scaffold test set D**™', Finally, for each training set we have the
corresponding conformation test set that contains different conformations of the same molecules:
chonf—full’ chonf-large, Dconf—medium’ Dconf-small’ and Dconf—tiny’ with 1,491’937’ 90’973’ 9345’ 5527’ 2747)
molecules and 1,542,971, 93,530, 9532, 5634, 2774 conformations respectively (the sizes are different
from training sets because molecules with a single conformation cannot appear here). Conformation
test sets are designed to test the ability of the models to generalize to unseen geometries of molecules;
structure and scaffold test sets, to unseen molecules. We expect the conformation test set to be the
easiest and the scaffold test set to be the most challenging as it contains unseen molecular fragments.

We also present the second dataset based on VZDFT: V2DFT,, that contains relaxation trajectories
for approximately 60K conformations of 17K molecules, resulting in approximately 3M geometries.
We report the energy (E) and forces matrix (F) for each geometry from these trajectories. We split
the trajectories data into 3 datasets: DUa-test prai-medium " 4 puraj-additional, prraj-test jg designed for
fast validation of NNPs for conformation optimization contains optimization trajectories of 1000
molecules from D" and 1000 molecules from Dscaffold prrajimedium ontaing trajectories for 9538
molecules from Dmedium - apng prraj-additional proyides additional optimization trajectories for 5462
molecules, suitable both for training and validation. As part of the benchmark, we provide databases



Table 3: Prediction metrics for Hamiltonian and overlap matrices; mean absolute error, less is better.

Hamiltonian prediction MAE, x103E}, | Overlap prediction MAE, x10~°
Model i ; i ;
Dtmy Dsmall Dmedlum Dlarge Dlmy Dsmall Dmedlum Dlarge
Structure SchNOrb | 19.8  19.6 19.6 19.8 1320 1310 1320 1340
test split PhiSNet 0.19  0.32 0.34 0.36 2.7 3.0 2.9 33
P QHNet 098  0.79 0.52 0.69 - - - -
Scaffolds | SchNOrb | 19.9 19.8 20. 19.9 1330 1320 1330 1340
test split | PhiSNet 0.19 0.32 0.34 0.36 2.6 29 2.9 3.2
QHNet 098  0.79 0.52 0.69 - - - -
Confor- | SchNOrb | 21.5  20.7 20.7 20.6 1410 1360 1370 1370
mations | PhiSNet | 0.18  0.33 0.35 0.37 3.0 32 3.1 3.5
test split | QHNet 084 073 0.52 0.68 - - - -

for each subset and task and a complete archive with wavefunction files produced by Psi4 that contain
QC properties of the corresponding molecule and can be used in further computations.

4 Benchmark setup and results

The goal of our benchmark is to advance and standardize studies in the field of machine learning
methods for computational quantum chemistry. We focus on three fundamental tasks: (1) DFT
Hamiltonian matrix prediction, (2) molecular conformation energy and atomic forces prediction, and
(3) conformational optimization. In the first two tasks, we measure the ability of state-of-the-art
models to generalize across a diverse set of molecules. In the third, we evaluate the performance
of NNPs trained to predict energies and atomic forces for conformational optimization. For the
Hamiltonian prediction task we compare SchNOrb [25], PhiSNet [26] and QHNet [29] models;
note that we predict full Hamiltonian (Fock) matrices, while Khrabrov et al. [11] predicted core
Hamiltonian matrices. For the energy and atomic forces prediction, we compare linear regression,
SchNet [31], SchNOrb, Dimenet++ [36], PaiNN [34], Graphormer3D [84], GemNet-OC [37, 38],
EquiformerV2 [40], and eSCN [85]. All models have been trained on Dty psmall pmedium -plarge
subsets of V2DFT and evaluated on Dstructure pscaffold pyconformation with mean absolute error (MAE),
as shown in (2), (3), (4). Details of the training procedure are given in Appendix A.

4.1 Hamiltonian matrix prediction

Neural networks are trained to minimize Lq or Lo loss for the Hamiltonian matrix H € R"s*"s,
where n, is the number of electronic orbitals for a conformation s. PhiSNet and SchNOrb are also
trained to predict the overlap matrix S, and SchNOTrb predicts energy. A comparison of the MAE
metrics (see Appendix B.3) is reported in Table 3. PhiSNet performs best, even though training did
not converge for larger splits (we stopped training after 1920 GPU hours). The SchNOrb model
benefits vastly from the additional energy prediction task, compared with [11], but still performs
worse than PhiSNet and QHNet, which agrees with the results of a single molecule setup [26].

The models perform better on the conformation test splits D°™; this is expected because the training
set is more similar to the test set in this case. Hamiltonian prediction results on VZDFT are worse
than previously published; e.g., PhiSNet has MAE 1.8 x 10~°E, for the molecules from MD17 [26];
QHNet, 7 x 1075 Ej, on QH9 [52]. We believe this is caused by a higher diversity of V2DFT, and
our benchmark highlights generalization issues of Hamiltonian prediction models.

4.2 Energy and atomic forces prediction

We denote the DFT energy for conformation s as F/;. For energy and atomic forces prediction, a neural
network takes a conformation s as input and outputs the energy Es = f(s;0), f(s;0) : {2z, X} = R.
To predict interatomic forces, we take the gradients of E; w.r.t. coordinates of atoms X in case of

SchNet, PaiNN and DimeNet++: 13‘5 = 8]:9(;9) , FS € R™*3, where n is the number of atoms
in the system. For EquiformerV2, Graphormer3D, GemNet-OC and eSCN we use a separate head:
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F, = F(s;¢),F(s;¢) : {z, X} — R"*® NN are trained to minimize L1, Ly, or RMSE loss
for energy and interatomic forces. We compare the models based on MAE (see Appendix B.3).

Metrics for energy and forces prediction are reported in Figure 3 and Table 7, respectively. First,
a significant improvement of all metrics compared to [11] is because we subtracted atomization
energies from the target energies (see Appendix B.4 for details). Together with a richer dataset, this
has led to a drastic decrease in energy and forces prediction error. Second, we see that all models
benefit from increasing the size of the training dataset, which highlights the need to develop extensive
datasets for NNPs. Third, both Transformer-based models perform worse than MPNN-based ones,
indicating that additional architecture search and hyperparameter tuning are likely needed for such
models. Moreover, we note that models with a separate force prediction head work better in the
forces prediction task but worse for energy prediction. We hypothesize that this discrepancy is caused
either by the gradient of the forces prediction loss serving as a regularizer or by the improper choice
of hyperparameters. Finally, we see that ScChNOrb shows performance on par with state-of-the-art
networks for energy prediction, which supports the conjecture that modeling the electronic structure
helps NN models in property prediction tasks. In our setup, NNPs perform worse but comparable
with previously known benchmarks such as QM9 or MD17; e.g., DimeNet++ has MAE 23 x 1075 E,
on QM9 [36]. Decreased performance is likely caused by more diverse and larger molecules in
V2DFT and limited sizes of training sets. We leave training NNPs on the full dataset for future work.

4.3 Conformation optimization

To evaluate the quality of optimization with NNPs, we use a fixed subset D'**"" of V2DFT that
shares no molecules with any train sets. For each conformation s € D'**"" we perform optimization
with the DFT simulator to get the ground truth optimal conformation sept and its energy Es__, .
For the conformation optimization task we use the metrics pcty, PCtgeeess aNd PCly;, proposed in
[46] (see Appendix B.3). We benchmark NNPs and additionally two non-neural methods: RDKit’s
MMFF and a semi-empirical XTB, chosen as a baseline because it is often used for conformational
optimization in other datasets [58, 60].

Geometry optimization results are shown in Tables 4, 5. First, the optimization quality of NNPs
drastically increases with the increase in the training dataset size. Second, the quality of forces
prediction directly influences the quality of conformational optimization (see Fig. 3 and Table 4). We
conclude that to obtain the best architecture for optimization, one can choose the best-performing
model based on the results of forces prediction.

While optimization performance is relatively good for several models trained on the D!?"9¢, it can
be further improved by incorporating optimization trajectories into training [46]. We show this
by finetuning our best-performing optimization models (PaiNN and GemNet-OC) on D™edium We
call this models PaiNN-finetune and GemNet-OC-finetune and additionally compare them with
non-neural methods (see Table 5). We have also calculated the RMSD between final conformations
and ground-truth optimized conformations s,p¢. The RMSD distribution is shown in Fig. 4 (see
also Appendix D). We observe that NNPs significantly outperform non-neural methods in terms
of pctgecess While being comparable in terms of RMSD. This result confirms that the widely used
RMSD is not an ideal metric for geometry optimization.



Table 4: Geometry optimization metrics for NNPs.

Metric Model ‘ Dliny Dsmall Dmedium Dlarge
SchNet 38.56 39.75 36.50 75.51
pety (%) 4 PaiNN 6026 66.63 74.16  98.50

DimeNet++ 3227 89.16  93.22 96.35
EquiformerV2 | 64.41 76.11 75.24 86.10

eSCN 76.83 8594 8934 9727

GemNet-OC | 69.04 8557 9242  100.06

SchNet 00 00 0.0 4.00
PClccess (%) 1 PaiNN 00 011 26  77.09

DimeNet++ 0.0 13.02  34.04 55.71
EquiformerV2 | 690 12.62 16.38 32.01
eSCN 1149 1923 2539 53.38

GemNet-OC 091 1042 3094 90.71
SchNet 39.6 3485 4582 0.8
pctay (%) 4 PaiNN 2125 1035  7.00 0.05
DimeNet++ 96.55 20.50 7.6 1.00
EquiformerV2 | 9275 84.55  84.75 76.10
eSCN 59.1 27.7 11.00 0.80

GemNet-OC 11.55  0.75 0.60 0.40

Table 5: Geometry optimization metrics for PaiNN, GemNet-OC, and computational approaches

. GemNet- .
Metrics paiNy - PONN - Gemlet: pe KDL xTB
finetune
pet (%) 1 98.50 99.83  100.06 100.01  84.44 92.33
PCtecess (%) 1| 77.09 84.35 90.71 94.55 1.9 3.1
pety (%) 1 0.05 0. 0.4 0. 0. 0.
RMSD | 50+ .53 52+ .54 734+ .54 .38+ .54 .72+ .54 52+ 51

5 Limitations

V2DFT does not contain solvated molecules or protein-ligand pairs (important for ML applications
in drug design). It lacks charged and open-shell systems, nano-particles, nanotubes, big rings, and
other non-drug-like structures. Moreover, V2DFT is unsuitable for material science and inorganic
chemistry and for ML-based studies of long-range and non-covalent interactions.

6 Conclusion

This work introduces V2DFT, a universal dataset of drug-like molecules for quantum chemistry
models. It contains ~16 million conformations of ~2 million molecules, with key properties such
as energy, forces, and Hamiltonian matrices. A unique property of V2DFT is relaxation trajectories
for ~60,000 conformations of ~17,000 molecules, aiding conformational optimization research. We
propose a novel benchmark for evaluating quantum chemistry models and an extendable framework
for training them. Our experiments highlight the importance of training on large datasets and
emphasize the need for further dataset development.
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Table 6: Parameters number and compute for GNN models

Backbone Parameters number GPU hours for training FLOPS
Neural Network Potentials
SchNet 0.5M 504 1.9¢19
PaiNN 1.3M 720 2.5e19
DimeNet++ 5.1M 600 2.8el19
Graphormer3D 10.7M 605 1.7¢19
GemNet-OC 37.8M 3046 1.08e20
EquiformerV2 83.1 M 2016 7.0e19
eSCN 343M 2016 9.3e19
Hamiltonian Prediction Models
SchNorb 242.36M 1920 9.1e19
PhiSNet 21M 1920 6.9¢19
QHNet 21.9M 4378 7.8e21

A Computational and experimental setup

All DFT computations were carried out with Psi4 software on Intel(R) Xeon(R) Gold 2.60Hz CPU-
cores, and the total computational cost is & 120 CPU-years. All GPU computations were carried out
on NVIDIA V100/A100 graphical units.

In general, model hyperparameters were derived from the corresponding publications and can be
found in https://github.com/AIRI-Institute/nablaDFT/tree/main/config/model. We
list an approximate compute needed for training models on D!*"9€ in the Table 6. SchNet and PaiNN
models code was based on Schnetpack2.0 [86], plus we provide a PyTorch Geometric [87] version
of PaiNN, based on the Open Catalyst [47] codebase. For DimeNet++ we used an implementation
from PyTorch Geometric. For SchNOrb, PhiSNet and Graphormer3D we used an adaptation of the
code, provided by the papers authors. Finally, for GemNet-OC, EquformerV2 and eSCN models we
adapted the code from the Open Catalyst [47] codebase.

B Preliminaries

B.1 Conformations

Conformations represent structural arrangements of the same molecule, distinguished by rotations
around single bonds and bond stretching. A conformation s = {z, X } of a molecule is defined by a
set of atomic numbers z = {z1,..., 2, }, 2; € N and atomic coordinates X = {x1,...,z,},x; €
R3, where n denotes the number of atoms in the molecule. Given that most druglike molecules are
capable of adopting multiple conformations, conformational analysis becomes a pivotal component in
molecular modeling. This is because a molecule’s biological activity and physico-chemical properties
are largely determined by its specific conformation. Conformational analysis entails the exploration
of the total energies of various conformations for a particular molecule (conformational energies Es).

B.2 DFT

Anti-symmetrized products of single-electron functions or molecular orbitals are frequently used
in quantum chemistry to express the electronic wavefunction W associated with the electronic time-

independent Schrodinger equation HU = EV.

These single-particle functions are usually defined in a local atomic orbital basis of spherical atomic
functions |¢,,) = >, ¢!, |¢:), Where |¢;) are the basis functions and ¢}, are the coefficients. As a
result, one can represent the electronic Schrédinger equation in matrix form as

Frrca = EUSCU,

where F is the Fock matrix (otherwise called the Hamiltonian matrix H), H;; = <¢i | H | ?; > Sis

the overlap matrix, S;; = (¢; | ¢;), c is the vector of coefficients, and o = {«, 5} is the spin index.
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In matrix form, the single-particle wavefunction expansion can be represented by using Einstein
summation as
¥ (7) = Clidu(F).

Therefore, the density matrix is represented as

o __ o o
D7 = C3.Ch

In DFT, the matrix F corresponds to the Kohn-Sham matrix:

Fg = He§, +J7 + ViF,

where Hcfj is the core Hamiltonian matrix, ij is the Coulomb matrix, and VZ’J‘C is the exchange-
correlation potential matrix.

In DFT, the total energy of the system (e.g., total energy of a conformation) can be expressed as
1 .
Eiotal = D;rj (Tij + Vij) + ingDEﬂ(ZJ|A5> + EXC[/DOHPBL

where T’ is the noninteracting quasiparticle kinetic energy operator, V' is the nucleus-electron attraction
potential, D is the total electron density matrix, and F,. is the (potentially nonlocal) exchange,
correlation, and residual kinetic energy functional. The residual kinetic energy term is usually quite
small and is often incorporated in the correlation term of E..

One can represent the Hamiltonian matrix in block form [25]:

H, -~ H;, --- Hy,
H=| Hy - Hy; - H
H, - H, - H,,

Here the matrix block H;; € R™20:¢*"0.s and the choice of n,,; and 7, ; atomic orbitals depend on
the atoms 4,7 within their chemical environments. This fact underlies the construction of interaction
modules in the NN Hamiltonian prediction models: they construct representations of atom pairs from
representations of atomic environments.

Unfortunately, eigenvalues and wavefunction coefficients are not well-behaved or smooth functions
because they depend on atomic coordinates and changing molecular configurations. This problem
can be addressed by deep learning architectures that directly define the Hamiltonian matrix.

We define the interatomic forces F; € R™*3 as the gradient of E% for conformation s w.r.t. the
Euclidian coordinates X:

aEtotal
Fy = 78;( . €))]
B.3 Metrics
We use the following metrics for model validation:
1 ~
MAEL = — > " |E, — |, @)
|ID‘ seD
1 .
MAEL = — Y " ||F, — Fi|,. 3)
|D‘ seD
1 1 ni i
MAE} = D] Z oz Z HY —HY|. 4)
seED % 4,5

The quality of the NNP-optimization is evaluated with the average percentage of minimized energy
for terminal conformations st:

_ 1 1 Es — Es,
pety = [Desm] EDZJ pet(sr) = ] > 100% 5 ®)

sEDest-traj 50 Sopt
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Another metric is the average residual energy in terminal states s7: E™(sr).

— 1

B, — e > (Bap = Eap)- (6)

sE Diest-traj
Generally accepted chemical accuracy is 1 kcal/mol(4.184 kJ/mol) [88]. Thus, another important
metric is the percentage of conformations for which the residual energy is less than chemical accuracy.
We consider optimizations with such residual energies successful:
1 T
pCtsuccess = "Dtest—traj| Z I [E eS(ST) < 1] . (7)

sE PDrest-traj

Finally, we denote the percentage of diverged (terminal energy is larger than the initial energy or DFT
calculation was unsuccessful) optimizations as pcty;, .

To measure the difference between two conformations s and S of the same molecule, we use the
GetBestRMSD in the RDKit package and denote the root-mean-square deviation as RMSD(s, §).

B.4 Atomization energy

For a molecule m, the formation energy Er,.n,, is obtained by subtracting atomization energy F A¢om
from the total DFT energy, where Eatom(m) = >,  FEatom. The quantity F,top, is the energy

atomem
of a system consisting of a single atom. Thus, it depends only on the atom type. This operation,

while being just a bias/dispersion correction, seems to be a hard task for end-to-end training of
state-of-the-art models in our setup.

C Applications for the Drug Discovery

The proposed dataset includes a large amount of Quantum Chemistry (QC) data that is important
both for the manual analysis of chemical properties and the training of Neural Network models. The
dataset includes:

* Energies and forces. The potential energy and interatomic forces are fundamental properties
of the atomic system that define the dynamics of the system in an environment. Accurate
prediction of the interatomic forces allows to carry out molecular dynamics simulation that
are for example employed in alchemical free energy calculations [89]. Calculated binding
free energy could serve as criteria for selecting promising ligands [90].

* Optimization trajectories. Understanding the local minima of the Potential Energy Surface
(conformers) is an important task, as these represent the most likely states for a molecule.
Conformers are usually acquired through iterative optimization. We included the optimiza-
tion trajectories in the dataset to estimate how the predicted forces can be used in iterative
optimization.

* Hamiltonians and overlap matrices. This data is used in quantum chemistry computa-
tional software to calculate important quantum chemical properties: Molecular electrostatic
potential (MEP), Lowdin atomic charges, Wiberg bond indices, the restrained electrostatic
potential (REsP), various partial charges, and many other [91]. These properties can, for
example, be used for manual analysis of chemical reactivity, bioavailability, and blood-brain
barrier permeability [92].

In conclusion, our dataset is a reliable source of QC data for commercially available drug-like
substances. We believe it will be instrumental in developing models for structure- and ligand-based
drug design, docking pose estimation, and other challenging tasks in computational chemistry.

D Additional information and benchmarking

Table 9 details the contents of quantum chemistry datasets, showing all information provided in the
V2DFT dataset in comparison with other datasets. Figure 4 shows the RMSD between optimized
conformations and optimal geometry from DFT optimization. Table 7 shows energy prediction
metrics in terms of mean absolute error (MAE, less is better). Table 8 snows similar results for the
forces prediction task.
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Figure 4: RMSD between optimized conformations and optimal geometry from DFT optimization.

Table 7: Energy prediction metrics: mean abso- Table 8: Forces prediction metrics: mean abso-

lute error (MAE), less is better. lute error (MAE), less is better.
MAE for energy MAE for forces
Model prediction, x 1072E}, Model prediction, x 1072E, / A
Dtiny Dsmall Dmedium Dlarge Dtiny Dsmall Dmedium Dlarge
Structure test split Structure test split
LR 486 4.64 456 4.56 SchNet 0.44 0.37 041 0.16
SchNet 1.17 090 1.10 031 PaiNN 037 026 017 0.06
PaiNN 082 060 036 0.09 Dimenet++ 1.31 020 0.13 0.07
Dimenet++ 4284 056 021  0.09 Graphormer3D | 1.11 0.67 0.54 0.26
SchNOrb 083 047 039 039 GemNet-OC 0.14 0.07 0.05 0.02
Graphormer3D 154 096 077 037 EquiformerV2 | 030 023 021 0.17
GemNet-OC 279 065 028 022 eSCN 0.10 0.0 0.04 0.02
EquiformerV2 281 1.13 028 0.19 :
eSCN 1.87 047 094 042 Scaffolds test split
. SchNet 045 037 041 0.16
Scaffolds test split PaiNN 038 026 017 0.06
LR 437 4.18 4.12 4.15 Dimenet++ 1.36 0.19 0.13 0.07
SchNet 1.19 0.92 1.11 0.31 Graphormer3D | 1.13  0.68 0.55 0.26
PaiNN 0.86 061 0.36  0.09 GemNet-OC 0.14 0.06 0.04 0.02
Dimenet++ 37.41 0.41 0.19 0.08 EquiformerV2 | 0.31 0.23 021 0.17
SchNOrb 086 046 037 0.39 eSCN 0.10 0.05 0.04 0.02
Graphormer3D 1.58 094 075 0.36 : :
GemNet-OC 259 059 027 023 Conformations test split
EquiformerV2 265 1.13 027 0.17 SchNet 032 030 037 0.14
eSCN 1.87 047 092 042 PaiNN 0.23 022 0.14 0.05
- - Dimenet++ 0.26 0.12 0.10 0.06
Conformations test split Graphormer3D | 0.82 0.54 045 023
LR 376 3.61 369 3.95 GemNet-OC 0.07 0.04 0.03 0.02
SchNet 0.56 0.63 0.88 0.28 EquiformerV2 | 0.16 0.15 0.16 0.13
PaiNN 043 049 028 0.08 eSCN 0.07 0.04 0.03 0.02
Dimenet++ 042 0.10 0.09 0.07
SchNOrb 037 026 027 0.36
Graphormer3Dgpqn | 0.99  0.67 0.58 0.39
GemNet-OC 052 020 015 024
EquiformerV2 045 023 024 0.16
eSCN 0.48 0.31 0.80 044
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V2DFT/VDFT

QM7
QM7b
QM7-X

QM9

MultiXC-QM9

QMIB

QHY
GEOM
ANI-1
ANI-1x, ANI-Icex

OrbNet Denali
SPICE
PubChemQC

Frag20
VQM24

QMugs

Table 9: Content of quantum chemistry datasets.

Atom numbers, atom positions, energy, forces, Hamiltonian (Fock matrix), overlap matrix, coefficients matrix,
’DFT FORMATION ENERGY’, 'DFT TOTAL ENERGY’, 'DFT XC ENERGY’, 'DFT NUCLEAR REPULSION
ENERGY’, 'DFT ONE-ELECTRON ENERGY’, 'DFT TWO-ELECTRON ENERGY’, 'DFT DIPOLE X', 'DFT
DIPOLE Y’, 'DFT DIPOLE Z’, ’DFT TOTAL DIPOLE’, 'DFT ROT CONSTANT A’, 'DFT ROT CONSTANT
B’, 'DFT ROT CONSTANT C’, 'DFT HOMO’, 'DFT LUMO’, "DFT HOMO-LUMO GAP’,DFT ATOMIC
ENERGY’, Ca/Cb, Da/Db, Fa/Fb, H, S, X, aotoso, epsilon_a/epsilon_b, SCF DIPOLE, doccpi, nmo, ’"DISPERSION
CORRECTION ENERGY’, 'GRID ELECTRONS TOTAL, electric dipole moment, electric quadrupole moment, all
moments up order N, electrostatic potential at nuclei, electrostatic potential on grid, electric field on grid, molecular
orbital extents, Mulliken atomic charges, Lowdin atomic charges, Wiberg bond indices, Mayer bond indices, natural
orbital occupations, Stockholder Atomic Multipoles, Hirshfeld volume ratios

Coulomb matrices, atomization energies
13 properties (e.g. polarizability, HOMO and LUMO eigenvalues, excitation energies)

Atomic numbers, atomic positions, RMSD to optimized structure, moment of inertia tensor, total PBEO+MBD
energy, total DFTB3+MBD energy, atomization energy, PBEO energy, MBD energy, TS dispersion energy, nuclear-
nuclear repulsion energy, kinetic energy, nuclear-electron attraction, classical coulomb energy, exchange-correlation
energy, exchange energy, correlation energy, exact exchange energy, sum of Kohn-Sham eigenvalues, Kohn-Sham
eigenvalues, HOMO energy, LUMO energy, HOMO-LUMO gap, scalar dipole moment, Dipole moment, Total
quadrupole moment, ionic quadrupole moment, electronic quadrupole moment, molecular C6 coefficient, molecular
polarizability, molecular polarizability tensor, total PBEO+MBD atomic forces, PBEO atomic forces, MBD atomic
forces, Hirshfeld volumes, Hirshfeld ratios, Hirshfeld charges, scalar Hirshfeld dipole moments, Hirshfeld dipole
moments, Atomic C6 coefficients, Atomic polarizabilities, vdW radii

DFT + partially G4AMP2: rotational constants, dipole moment, isotropic polarizability, HOMO/LUMO/gap energies,
electronic spatial extent, zero point vibrational energy, internal energy at 0 K, internal energy at 298.15 K, enthalpy
at 298.15 K, free energy at 298.15 K, heat capacity at 298.15 K, Mulliken charges, harmonic vibrational frequencies

Semi-empirical energies with XTB method of molecules, atomization energies with all basis sets and functionals,
DFT energies with TZP basis of molecules and bond lists , index of reactions, reactants, and products, reaction
energy for A;B reactions, reaction energy for A-B reactions,DFT energies with SZ basis of the molecules, bond
change for reactions and reaction energies, DFT energies with TZP basis of the molecules, xyz files

Energy, HOMO, LUMO, the number of atomic orbitals, the standard deviation of the energy of the last five iterations,
HOMO-LUMO gap

Hamiltonian matrices
Degeneracy, total energy, relative energy, Boltzmann weight, conformer weights
Total energies, atomization energies

Atomic positions, atomic numbers, total energy, HF energy, NPNO-CCSD(T), correlation, energy, MP2, correlation,
energy, atomic forces, molecular moments, electric moments, atomic charges, atomic, electric, moments, atomic
volumes

Total energy, charge of the molecule

Dipole and quadrupole moments; MBIS charges, dipoles, quadrupoles, and octopoles for each atom; Wiberg bond
orders; and Mayer bond orders.

Molecular formula, Canonical SMILES, charge, HOMO, LUMO, HOMO-LUMO gap, total dipole moment, orbital
energies, number of basis, Mulliken populations, Lowdin populations, molecular weight, InChl strings, multiplicity.

SMILES, 3D Structure, formation energy.

Stoichiometry, atomic Numbers, Cartesian coordinates, SMILES, InCHI strings, total energies, internal energies,
atomization energies, electron-electron energies, exchange correlation energies, dispersion energy, HOMO-LUMO
gap, dipole moments, quadrupole moments, octupole moments, hexadecapole moments, rotational constants,
vibrational eigen modes, vibrational frequencies, free energy, internal (thermal) energy, enthalpy, zero point
vibrational energy, entropy, heat capacities, electrostatic potentials at nuclei, Mulliken charges, MO energies (molden
files), wavefunctions (molden files), error bars.

ChEMBL identifier, conformer identifier, total energy, internal atomic energy, formation energy, total enthalpy, total
free energy, dipole, quadrupole, rotational constants, enthalpy, heat capacity, entropy, HOMO energy, LUMO energy,
HOMO-LUMO gap, Fermi level, Mulliken partial charges, covalent coordination number, molecular dispersion
coefficient, atomic dispersion coefficients, molecular polarizability, Atomic polarizabilities, Wiberg bond orders,total
Wiberg bond orders, total energy, total internal atomic energy, formation energy, electrostatic potential, Lowdin
partial charges, Mulliken partial charges, rotational constants, dipole, exchange-correlation energy, nuclear repulsion
energy, one-electron energy, two-electron energy, HOMO energy, LUMO energy, HOMO-LUMO gap, Mayer bond
orders, Wiberg-Lowdin bond orders, total Mayer bond orders, total Wiberg-Lowdin bond orders; alpha density
matrix, beta density matrix, alpha orbitals, beta orbitals, atomic-orbital-to-symmetry-orbital transformer, Mayer
bond orders, Wiberg-Lowdin bond orders.
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