
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMIZING INFERENCE-TIME REASONING IN LLMS
VIA RETRIEVAL-AUGMENTED REFLECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Empowering LLMs to improve their performance through increased inference-
time computation is a crucial step in developing self-improving agents capable of
operating in open-ended natural language contexts. In this paper, we explore how
iteratively revising a chain of thoughts guided by information retrieval significantly
improves large language models’ reasoning ability in challenging tasks, while
hugely mitigating hallucination. In particular, the proposed method — retrieval-
augmented reflection (RaR) — revises the generation tokens step by step, leveraging
multiple pieces of retrieved information relevant to the intermediate reasoning
steps and the instruction. Applying RaR during inference-time to a various set of
language models substantially improves their performances on various reasoning
tasks; on relatively increasing scores by up to +16.4% on code generation, +11.6%
on mathematical reasoning, and 29.1% on embodied task planning. Moreover, we
find that with more inference-time computation given to the LLM for multi-times
retrieval-augmented reflection, the LLM can continuously improve on various
reasoning benchmarks. A small LM can surpass the performance of the LM with
more than 10 times parameters, when giving more computation cost.

1 INTRODUCTION

Figure 1: Performance vs. Inference Cost
for various models on the ClassEval bench-
mark (Du et al., 2023). The size of each circle
reflects the model parameters. The chart high-
lights the trade-off between inference-time com-
putation and performance, demonstrating the ef-
fectiveness of different model architectures, with
RaR-enhanced models generally achieving better
performance for the same model scale. We also
list the latest OpenAI O1 model (OpenAI, 2024),
and our methods achieve better performance with
less inference-time computation.

Large Language Models (LLMs) have achieved fruit-
ful progress on various natural language reasoning
tasks (Wei et al., 2022; Yao et al., 2022; Wang et al.,
2023a; Zhou et al., 2023; Brown et al., 2020), espe-
cially when combining large-scale models (Team,
2022; OpenAI, 2023) with sophisticated prompting
strategies, notably chain-of-thought (CoT) prompt-
ing (Wei et al., 2022; Kojima et al., 2022). However,
there have been increasing concerns about the factual
correctness of LLMs reasoning, citing the possible
hallucinations in model responses (Rawte et al., 2023)
or the intermediate reasoning paths, i.e. CoTs (Dhu-
liawala et al., 2023). This issue becomes more sig-
nificant when it comes to zero-shot CoT prompting,
aka. “let’s think step-by-step” (Kojima et al., 2022)
and long-horizon generation tasks that require multi-
step and context-aware reasoning, including code
generation, task planning, mathematical reasoning,
etc. Factually valid intermediate thoughts could be
critical to the successful completion of these tasks.

Several prompting techniques have been proposed to
mitigate this issue, one promising direction, Retrieval
Augmented Generation (RAG) (Lewis et al., 2020b)
seeks insights from human reasoning (Holyoak &
Morrison, 2012), and utilizes retrieved information
to facilitate more factually grounded reasoning. In
this paper, we explore how to synergize RAG with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

sophisticated long-horizon reasoning. Our intuition is that the hallucination within the intermediate
reasoning process could be alleviated through the help of outside knowledge. The resulting prompting
strategy, retrieval-augmented reflection (RaR), comprises two key ideas. Firstly, the initial zero-shot
CoT produced by LLMs along with the original task prompt will be used as queries to retrieve
relevant information that could help revise the possibly flawed CoT. Secondly, instead of retrieving
and revising with the full CoT and producing the final response at once, we devise a progressive
approach, where LLMs produce the response step-by-step following the CoT (a series of subtasks),
and only the current thought step will be revised based on the information retrieved with task prompt,
the current and the past CoTs. This strategy can be an analogy to the human reasoning process:
we utilize outside knowledge to adjust our step-by-step thinking during complex long-horizon
problem-solving (Holyoak & Morrison, 2012).

We observe that hallucinations in model outputs often originate from errors in earlier tokens, which
can propagate and lead to incorrect final results. To tackle this issue, we extend retrieval-augmented
generation to retrieval-augmented reflection. In RaR, the language model retrieves external infor-
mation to verify and revise the original generation. This modification allows the model to correct
errors in previously generated tokens—something traditional generation pipelines cannot achieve.
By adopting retrieval-augmented reflection, we enable the model to iteratively improve its reasoning
process in real-time, making it highly scalable with increased inference-time computation. This
approach resolves the limitation of not being able to revise erroneous tokens generated earlier in the
process, thus providing more reliable outputs without requiring model parameter adjustments (Ope-
nAI, 2024). Different from methods required reinforcement learning to perform better reasoning
during inference-time computation (OpenAI, 2024), our method does not require any modifications
to the original model parameters; it only needs to provide more inference-time computation tokens,
allowing the LM to automatically verify and revise the generation. As shown in Figure 1, RaR
demonstrates better scalability performance.

We evaluate Retrieval-augmented Reflection (RaR) on a wide collection of challenging long-horizon
tasks, including code generation, mathematical reasoning, embodied task planning, and creative
writing. We employ several LLMs of varied scales: GPT-3.5 (Brown et al., 2020), GPT-4 (OpenAI,
2023), Deepseek-Coder (Zhu et al., 2024), Llama-3 (AI@Meta, 2024) and Gemma (Team et al.,
2024). The results indicate that combing RaR with these LLMs elicits strong advantages over
vanilla CoT prompting and RAG approaches. In particular, we observe new state-of-the-art level
of performances across our selection of tasks when given the same maximum inference-time token
limitation: 1) code generation: ClassEval (+16.4%), HumanEval (+4.7%), HumanEval+ (+2.4%),
MBPP (+2.5%), MBPP+ (+4.2%); 2) mathematical reasoning problems: GSM8K (+11.6%), and
GSMHard (+3.0%); 3) Minecraft task planning (+2.2% on accuracy); 4) QA (+16.44% on accuracy).
Our scaling experiments show that RaR can be scalable with more inference-time computation and
model parameters. By allowing for more inference-time tokens, RaR can achieve up to +33.3%,
+12.2%, and +16.2% relative improvements in code generation, math reasoning, and task planning
benchmarks, respectively. Our additional ablation studies further confirm the crucial roles played
by the two key ingredients of RaR: revising CoT using RAG and progressive revision & generation.
This work reveals how can LLMs revise their reasoning process in a zero-shot fashion with the help
of outside knowledge, just as what humans do.

2 RELATED WORKS

Retrieval-augmented Generation (RAG). Recently, RAG has gained popularity for boosting the
performance of LLMs by guiding their generation process using the retrieved knowledge (Zhao
et al., 2023). Without updating model parameters that may be expensive (Lewis et al., 2020a) or
unstable (Ke et al., 2022b;a), RAG is a cost-effective way for LLMs to interact with the external
world (Gu et al., 2018; Lewis et al., 2020a). RAG is widely applied to downstream tasks, such as
code generation (Zhou et al., 2022b; Lu et al., 2022; Nashid et al., 2023), question answering (Baek
et al., 2023; Siriwardhana et al., 2023), and creative writing (Wen et al., 2023; Asai et al., 2023).

Reasoning-enhanced RAG. Some recent works also leverage reasoning to enhance the performance
of RAG (Li et al., 2023b). For example, IRCoT (Trivedi et al., 2022) exploits CoT to generate better
queries for retrieval, IRGR (Ribeiro et al., 2022) performs iteratively retrieval to search for suitable
premises for multi-hop QA, GEEK (Liu et al., 2023a) can choose to query external knowledge or

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

perform a single logical reasoning step in long-horizon generation tasks, and ITRG (Feng et al.,
2023a) performs retrieval based on the last-step generation. Active RAG (Jiang et al., 2023) also
utilizes reasoning to enhance the quality of language model retrieval for better completion of QA
tasks. These previous RAG methods simply adopt a single query to retrieve the knowledge for
question-answering tasks (Gao et al., 2023; Feng et al., 2023b; Jiang et al., 2023; Yu et al., 2023).
Our proposed RaR focuses on retrieval to refine LLM reasoning outputs and ensure consistent results.
The reasoning and retrieval processes are interlinked to improve both aspects, as shown in Figure
2. Our approach is evaluated across long-horizon content generation tasks such as code generation,
math reasoning, embodied planning, and creative writing.

Language Model for Reasoning. The advancement of reasoning in language models has seen
notable methodologies emerge since CoT was proposed by Wei et al. (2022), which showcased LMs’
ability to generate self-derived problem-solving strategies. This foundational work spurred further
innovations such as the least-to-most prompting (Zhou et al., 2022a), zero-shot CoT (Kojima et al.,
2022), self-consistency (Wang et al., 2022), zero-shot CoT without prompting (Wang & Zhou, 2024).
Moving beyond basic prompting, Creswell et al. (2022) introduced the Selection-Inference framework,
while Zelikman et al. (2022) developed STaR to refine reasoning through model finetuning. Creswell
& Shanahan (2022) proposed a faithful reasoning model, segmenting reasoning into dedicated steps,
similar to Scratchpad’s approach by Nye et al. (2021) for enhancing multi-step computation. Tree-
of-Thought (Yao et al., 2023) and Graph-of-Thought (Besta et al., 2023) also expand the reasoning
paths into a complex structure instead of linear CoT. These methods usually aim to improve the
reasoning ability of LLM by designing prompts or providing feedback from the environment to assist
in better planning and decision-making (Wang et al., 2023c; Yao et al., 2022; Shinn et al., 2023; Li
et al., 2023a; Zhang et al., 2023). However, RaR takes a different approach by using RAG to access
external knowledge that can help LLM with its reasoning process.

3 RETRIEVAL AUGMENTED REFLECTION

Our goal is to support reasoning and generation while mitigating hallucination when using LLMs.
To have satisfying performance on long-horizon tasks, two ingredients are indispensable. Firstly,
access to factual information can be facilitated by retrieval. Secondly, appropriate intermediate steps
that outline a scratchpad to finish complex tasks, can be facilitated by CoT. Yet, a naive combination
of the two would not necessarily yield improvements. Three questions still persist: (1) what is
relevant information to retrieve; (2) how to effectively correct reasoning steps with relevant factual
information; (3) can this combination be scalable with more inference-time computation. To better
appreciate our method and why our method can address these questions, we first provide a brief
introduction of basic RaR and interactive RaR.

3.1 RETRIEVAL AUGMENTED REFLECTION

We first describe the pipeline of the Retrieval-augmented Reflection (RaR) method. The key steps
of the RaR process are as follows:

First, given an input question or instruction x, we first generate an initial coarse response yraw ∼
pLM(· | x) using the language model pLM, where pLM denotes the probabilistic output of the language
model. To enhance the quality of initial response yraw, we construct a retrieval query q ∼ pLM(· |
x, yraw) by leveraging both the input question x and the initial coarse response yraw. We then retrieve
the relevant document V k from a set of K candidate documents V = {V 1, V 2, . . . , V K}. Generally,
the retrieval process involves selecting the document that maximizes a similarity function sim(q, V k),
defined over the query embedding emb(q) ∈ Rd and the documents embeddings emb(V k) ∈ Rd:

V k = arg max
k∈{1,...,K}

sim(q, V k) = arg max
k∈{1,...,K}

emb(q) · emb(V k)

∥emb(q)∥∥emb(V k)∥
, (1)

where d is the dimension of text embeddings (Reimers & Gurevych, 2019). Finally, the retrieved
document V k is then used to prompt the language model to reflect the initial response yraw and
output reflection yreflection ∼ pLM(· | x, yraw, V k). The reflection process identifies potential errors or
hallucinations in yraw. Based on the reflection output yreflection, the language model then refine the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Iterative Retrieval-augmented Reflection (RaR)

Input: Task Prompt x, Autoregressive Large Language Model pθ, Number of Reasoning Steps n
1: yraw, {ythought

i }i=n
i=1 ← pθ(·|I) ▷ Generate initial response yraw and step-by-step reasoning ythought

2: yRaR
0 ← None ▷ Initialize the intermediate RaR response

3: for i = 1 to n do
4: qinter

i ← pquery(x, y
RaR
i−1, y

thought
i) ▷ Generate query for intermediate reasoning step i

5: V inter
i ← RetrieveFromCorpus(qinter

i) ▷ Retrieve related document for step i

6: yRaR
i ← pθ(·|I, T thought

≤i−1 ,K inter
i) ▷ Reflect and refine step i

7: end for
8: yRaR

n+1 ← pθ(·|I, yRaR, T raw,K iter
n+1) ▷ Initialize the overall RaR response

9: j ← n+ 1 ▷ Start Overall Response RaR
10: repeat
11: qiter

j ← pquery(x, y
RaR
j) ▷ Generate query for full reflection step j

12: V iter
j ← RetrieveFromCorpus(qiter

j) ▷ Retrieve additional related documents
13: yRaR

j ← pθ(·|x, yRaR
j−1, V

iter
j) ▷ Iteratively refine full response

14: j ← j + 1
15: until Convergence (e.g., m identical generations) or maximum token limit reached
16: return T ⋆ ▷ Output refined response yRaR as the final generation

initial raw coarse response, incorporating the corrective information from V k:

RAG : yRAG ∼ pLM(· | x, V k), V k = arg max
k∈{1,...,K}

sim(x, V k),

RaR : yRaR ∼ pLM(· | x, yraw, V k, yreflection).
(2)

This pipeline synergizes the Retrieval-augmented Generation and self-reflection based on the same
Language Model, which is different from RAG methods (Lewis et al., 2020b). To improve the
performance, we further increase the number of RaR iterations through iterative integration of
retrieval-augmented generation and self-reflective reasoning.

3.2 ITERACTIVE RETRIEVAL AUGMENTED REFLECTION

To further scale up reasoning accuracy and overall response quality, we extend the basic RaR
framework to an iterative version, referred to as Iterative RaR. This approach enables the model to
repeatedly retrieve and reflect on intermediate reasoning steps and the overall response in multiple
iterations, progressively improving its performance. The workflow of Iterative RaR comprises two
key phases:

Reflection on Intermediate Reasoning Steps. In this phase, RaR focuses on improving the step-by-
step reasoning process by reflecting on intermediate steps. We first enhance the instruction x with a
CoT prompt to form an augmented instruction x∗. The language model then generates a reasoning
process and the raw response, represented as:

(ythought, yraw) ∼ pLM(· | x∗), (3)

where ythought = {ythought
1 , . . . , ythought

J } denotes the step-by-step reasoning process, divided into J
sections corresponding to J reasoning steps. For each iteration i, the retrieval query qi is constructed
based on the causal history of reasoning steps up to step i, while masking future steps j > i. The
query generation is expressed as:

qi ∼ pLM(· | x∗, {ythought
j }j<=i

j=1), i = 1, . . . , J. (4)
To improve efficiency, this retrieval based on intermediate reasoning steps is parallelized through
causal mask (Vaswani et al., 2017), enabling the generation of queries for different reasoning steps
simultaneously. And the retrieved documents {V j

k }Jj=1 are used to review and correct any potential
errors in the reasoning steps.

yRaR
i ∼

pLM(· | x, ythought

i , V k
i , yreflection

i), if i = 1,

pLM(· | x, yRaR
i−1, y

thought
i , V k

i , yreflection
i), if 1 < i < J,

pLM(· | x, yRaR
i−1, y

thought
i , yraw, V k

i , yreflection
i), if i = J.

(5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

This allows for correcting errors in the original thoughts ythought by continually consulting different
reference texts and ensuring that the most accurate and relevant information informs each step of
reasoning. Previous methods have demonstrated that in tasks involving long-term planning and
rigorous reasoning, like mathematical reasoning (Lightman et al., 2023) and embodied planning (Yao
et al., 2022; Shinn et al., 2023), supervision of intermediate processes is necessary to ensure the
accuracy of model outputs. However, these approaches typically rely on feedback from humans or the
environment, which can be costly in situations where exploration and annotation expenses are high,
such as in safe decision-making scenarios (Gu et al., 2022). In contrast, RaR can automatically access
relevant information from external sources to validate and revise the content of model outputs through
a retrieval process. This allows RaR to autonomously verify each step without requiring human
labels (Lightman et al., 2023), which explains its significant success in mathematical reasoning.

Refinement of Overall Response. After refining the intermediate reasoning steps, RaR observes the
full response yRaR

J with refined intermediate steps, obtained from the corrected reasoning process. The
full response is then used to produce query qi ∼ pLM(· | x∗, yRaR

J) about overall structure to identify
potential errors or inconsistencies in the overall structure, where i > J . The retrieved documents
guide the refinement of the complete response, ensuring consistency and correctness across the entire
output. The final response will be formulated as:

yRaR
i ∼ pLM(· | x, yRaR

i−1, V
i
k , y

reflection
i), i > J. (6)

We can repeat the RaR more times for better refinement of final response with more inference-time
computation. The iterative process continues until the response reaches the maximum token limitation
or the reflection process produces m consecutive identical generations, indicating convergence. In
practice, m is set as 3.

Our hypothesis why our method can address the two problems mentioned at the beginning of this
section is as follows. Firstly, the most straightforward way to know what information will be used
in complex reasoning is to “see” the reasoning steps. Our approach leverages all the generated
thoughts along with the task prompt to provide more clues for more effective retrieval. Secondly,
some information cannot be directly retrieved, especially information related to the final answer to a
hard complex question. Instead, retrieval of information relevant to intermediate questions, which are
assumed to be easier, is more accessible. Thanks to the compositional nature of many reasoning tasks,
an iterative retrieval process could also be more effective. Thirdly, correcting potential hallucinations
needs to be targeted. Revising a complete CoT with RAG could introduce errors at otherwise already-
correct steps. Revising every step one by one could be more reliable. The first two points address
question (1) and the last point addresses question (2). Quantitative evidence can be found in our
ablation studies in Section 4.4.

3.3 OPTIMIZING RAR BY SCALING INFERENCE-TIME COMPUTATION

In this section, we explore how to improve the reasoning performance of LLMs by scaling inference-
time computation. While the native approach to scaling inference-time performance typically
involves increasing the parameters of the LLM itself, we present an alternative method using Iterative
Retrieval-augmented Reflection (RaR) that scales computation by augmenting input and output tokens
iteratively.

Native Scaling via Model Size. The conventional approach to improving LLM performance, referred
to as DIRECT Scaling, relies on increasing the number of model parameters, as suggested by the
LLM scaling laws (Kaplan et al., 2020). Larger models generally exhibit better performance with
higher computational costs during inference. However, this method comes with significant drawbacks,
such as the increased burden of training large-scale models and the accompanying demand for vast
amounts of data (Kaplan et al., 2020).

Inference-time Scaling without Increasing Model Parameters. Recent research shows that
inference-time performance can be improved for LLMs with fixed parameters by increasing the
computational cost through additional input tokens or output tokens during inference (Snell et al.,
2024). Scaling input tokens involves extending the user prompt with more tokens. Few-shot CoT
adds more demonstrations (instruction-response pair) to the prompt, e.g., increasing from 1-shot
to 5-shot CoT, enables better contextual reasoning for complex tasks (Wei et al., 2022). RAG
retrieves and adds more related documents to the user prompt. For instance, increasing the top-k

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

documents from 1-shot RAG to 5-shot RAG can provide richer contextual information for reasoning.
Scaling output tokens involves generating more detailed outputs or sampling more generations. For
example, Self-Consistency will generate multiple outputs in parallel and merge them into a final
response (Wang et al., 2023a).

Iterative RaR simultaneously scales both input and output tokens by performing multiple rounds of
retrieval and reflective reasoning. Specifically, for n iterations, RaR adds n · top-k related documents
to the input tokens and generates more than n-times the output tokens during reasoning. This iterative
process enables a gradual refinement of the reasoning process and response quality. As shown in our
experiments, the performance of RaR improves consistently with increasing computational cost.

Scaling input and output tokens at inference time often encounters the long-context problem, wherein
the fixed context length of LLMs restricts the number of tokens that can be processed (Brown et al.,
2020). When the token count approaches the model’s maximum limit, performance degradation can
occur (Li et al., 2024). RaR mitigates this issue by iteratively performing retrieval and reflection,
thereby avoiding a single, overly lengthy context and maintaining high performance.

It is worth noting that some approaches employ agent systems that utilize multiple prompts within a
single LLM to create complex pipelines for answering questions (Yao et al., 2022; Gravitas, 2024).
However, such methods are compositions of foundational techniques and are not directly comparable
to standalone reasoning and generation methods like RaR. For this reason, we exclude agent-based
approaches from our discussions and experiments.

4 EXPERIMENTS

We evaluate our proposed method RaR on a variety of benchmarks that emphasize LLM generation
and reasoning. Previous methods have struggled with these benchmarks, often producing "halluci-
nated" steps in LLM outputs that do not align with the original query or are clearly incorrect. For a
detailed discussion, please refer to subsection 4.3 (case analysis). Due to space limitations, we do not
present each benchmark setting or discuss our results extensively for each benchmark. Instead, this
section offers a thorough showcase of our method’s performance, shedding light on the preliminary
empirical analysis of when our method succeeds and when it falls short.

4.1 EXPERIMENTAL SETUPS

Benchmarks. We adopt four groups of benchmarks including class-level code generation, math
reasoning, task planning, and question answering.1 Code Generation benchmarks include ClassE-
val (Du et al., 2023), HumanEval (Chen et al., 2021), HumanEval+ (Liu et al., 2023b), MBPP (Austin
et al., 2021), and MBPP+ (Liu et al., 2023b). These benchmarks encompass a wide range of pro-
gramming problems, from simple function implementations to more complex class-level generation
challenges, providing a robust testbed for assessing generative and reasoning capabilities. Mathe-
matical Reasoning evaluation is conducted on GSM8K and GSM-HARD dataset, which comprises
thousands of multi-step mathematical problems (Cobbe et al., 2021; Gao et al., 2022). Task Planning
are evaluated on open-ended environments Minecraft. A set of 100+ tasks ranging from simple
objectives to challenging diamond objectives are evaluated through MC-TextWorld (Lin et al., 2023).
Question-answering (QA) tasks are assessed using TriviaQA (Joshi et al., 2017) benchmark, where
systems are required to answer various questions related to factual knowledge.

Evaluation Metrics. For fair evaluation, we report the best results achieved by all methods under the
given maximum token limitation in Table 1, and the performance of different methods under different
inference computation costs is reported in Figure 2. For code generation benchmarks, we use classical
pass rate pass@5 as the evaluation metrics (Chen et al., 2021; Liu et al., 2023b). In ClassEval, we
tested the generation pass rates for class-level and method-level (function) separately. We compute
accuracy to evaluate every question in mathematical reasoning tasks, aligning with the established

1We used bigcode-evaluation as the tool library for code evaluation. The pass@1 result of DIRECT
in the table is slightly different from the result in the bigcode leaderboard, because we tested our pass@1 five
times in our original setup and calculated the average value. We used the same settings as DIRECT in all
experiments and reported on the relative improvement of RaR compared to baselines to promise fair evaluation
and comparison.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: The evaluation results cover various benchmarks such as code generation, math reasoning, and task
planning. All evaluations were conducted using the GPT-3.5-turbo model from the OpenAI API, which has a
maximum token length of 4096.

Token
Limitation

Method
ClassEval
Function

ClassEval
Class

HumanEval HumanEval+ MBPP MBPP+ GSM8K GSMHard Planning

DIRECT (gpt-3.5) 14.4 23.8 72.5 70.5 72.9 64.0 65.9 51.3 19.3

Input Scaling
RAG (n-shot) 24.3 53.1 76.2 70.5 70.5 68.0 61.8 56.8 33.0
IRCoT 29.2 57.6 77.4 - - - - 60.3 57.3
Active RAG 25.7 55.3 75.8 - - - - 61.3 59.4
Output Scaling
Few-shot CoT 16.0 36.2 75.8 74.8 65.4 62.9 63.8 44.7 49.3
Self-Refine 21.4 46.4 75.8 74.2 69.4 65.6 65.8 55.4 50.5
Self-Consistency 19.4 40.4 75.8 72.9 73.8 69.7 65.0 52.8 50.2
Both Scaling
RAG+CoT 24.7 55.7 76.8 69.3 - - 67.5 67.3 50.4

4K

RaR (ours) 34.0 66.9 80.4 76.0 74.7 72.6 75.3 69.3 60.5

Self-Refine 22.8 45.4 73.2 72.6 67.3 63.5 62.1 50.3 55.5
8K

RaR (ours) 37.3 66.9 81.3 79.4 76.9 74.9 75.8 69.3 76.7

16K RaR (ours) 38.9 67.2 82.5 79.6 - - - - 76.7

metric for the GSM8K (Cobbe et al., 2021). For embodied planning tasks, we compute the plan
execution success rate in MC-TextWorld as accuracy (Lin et al., 2023). For the QA benchmarks, we
use the official accuracy metric (Asai et al., 2023) to evaluate all methods. These indicators are better
the higher they are.

Baselines. To establish a comprehensive and equitable comparison landscape, we incorporate a
suite of baseline methods. Our baselines, in addition to directly using LLM for sampling (DIRECT),
are divided into three groups: Scaling input tokens, which includes RAG (Lewis et al., 2020b),
IRCoT (Trivedi et al., 2022), Active-RAG (Jiang et al., 2023); scaling output tokens, which includes
CoT (Wei et al., 2022), Self-consistency (Wang et al., 2023a), Self-refine (Madaan et al., 2024); and
scaling both, including RAG+CoT and RaR. For specific scaling methods of each approach, please
refer to Section 3.3. For each method, we will scale them to stay within the permitted maximum
token limit, e,g, by adjusting the sample size n for self-consistency and the number of documents k in
RAG. For the QA benchmark, we also list the result from Self-RAG (Asai et al., 2023) in Figure 2 (a).
For different methods, the same language model is used as the base model. All methods in the Table 1
are evaluated with gpt-3.5-turbo. To ensure a fair comparison, none of the methods used examples
from the benchmark as demonstrations for in-context learning.

Model and RAG Settings. RaR leverages the capabilities of Retrieval-Augmented Generation
methods, which enhance the performance of language models by integrating external knowledge
sources. Specifically, we employed the codeparrot/github-jupyter dataset as our primary
search vector library for code generation and mathematical reasoning tasks. For embodied planning
tasks in Minecraft, we utilized the Minecraft Wiki2 and DigMinecraft3 websites as the information
sources accessible to the LLMs. For QA benchmarks, we use the wiki pages as the retrieval library,
which is consistent with Asai et al. (2023). We utilized OpenAI’s text-embedding-ada-002
API service for all embedding calculations across different methods and base models.

Acknowledging the risk of benchmark contamination (an issue where the code library may contain
solutions to the exact problems being evaluated), we adopted a rigorous pre-processing methodology
as described by Guo et al. (2024). The potential implications of benchmark contamination, along
with the effectiveness of our pre-processing strategy, are discussed in detail in Appendix D.

4.2 RESULTS

The code generation, math reasoning and task planning results are presented in Table 1 and QA
results are presented in Figure 2 (a), which demonstrate the comprehensive evaluation of the RaR
across multiple benchmarks. RaR consistently outperforms the other methods across the majority of

2https://minecraft.wiki/
3https://www.digminecraft.com/

7

https://minecraft.wiki/
https://www.digminecraft.com/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 2: Evaluation results on different methods with (a) scaling model parameters, (b) scaling inference tokens,
and (c) average computation cost. The language model in (b) is Deepseek-Coder 6.7B (Zhu et al., 2024). The
language models in (c) are all OpenAI models including gpt-3.5 (Brown et al., 2020), gpt-4 (OpenAI, 2023) ,
and openai o1 (OpenAI, 2024). The computation cost in (c) is computed with OpenAI Pricing.

the benchmarks and metrics, showcasing its superior ability in reasoning. For the most challenging
class-level generation tasks in ClassEval, RaR based on ChatGPT outperforms the base model with
more than 1.8 times improvements. For the method-level generation tasks in the HumanEval and
HumanEval+ benchmarks of code generation, RaR achieves remarkable improvements in pass@5
rates, indicating a significant enhancement in first-attempt accuracy and within the top five attempts.
For example, on the HumanEval benchmark, RaR improves pass@5 by up to 25.68% relative to
the base models’ performances. This trend is observed across different underlying base models,
highlighting RaR’s effectiveness regardless of the initial model’s capabilities. For mathematical
reasoning tasks, RaR demonstrates a significant relative improvement, with a 14.44% increase in
accuracy on GSM8K and a remarkable 35.27% relative increase on GSMHard, culminating in an
overall average improvement of 23% when deployed on the GPT-3.5 model. RaR significantly
outperforms all other methods on task planning tasks in Minecraft, achieving the highest scores with
76.67±8.02% for accuracy and 88.73% for partial accuracy, demonstrating its superior ability to
generate feasible and contextually appropriate plans in the complex open-world environment. RaR
has achieved state-of-the-art results on the QA benchmark. Specifically, the RaR method, based on
the 8B model, outperforms the larger 27B model in terms of direct output results despite having
fewer parameters as shown in Figure 2 (a). While other methods like self-RAG (Asai et al., 2023)
and Active-RAG (Jiang et al., 2023) also incorporate reasoning methods and RAG during inference,
they fall short in performance compared to RaR. This highlights the effectiveness of the RaR method
in leveraging retrieved content for reflective reasoning.

The tasks are extremely diverse, while RaR can have consistent improvements over all baselines.
These results underline the advantages of RaR’s approach, which leverages iterative refinement of
retrieval queries based on evolving reasoning thoughts. This strategy not only enhances the relevance
and quality of the information retrieved but also significantly improves the accuracy and efficiency of
the generated context.

4.3 SCALING EXPERIMENTS

We explored the performance scaling of the RaR technique from three key perspectives: (1) increasing
the base model parameters, (2) increasing the inference-time tokens, and (3) increasing the inference-
time computation cost (influenced by both token number and model parameters) which correspond to
more iterations of Iterative Retrieval-Augmented Reflection during inference. These experiments
were conducted on the Trivial QA Benchmark (Joshi et al., 2017) and the ClassEval Code Generation
Benchmark (Du et al., 2023). The results are demonstrated in Figure 2.

Scaling Model Parameters. In the QA benchmark, we utilized language models with varying param-
eter sizes—Gemma-2-2B, Llama-3-8B, Gemma-2-27B, and Llama-3-70B—as base models (Team
et al., 2024; AI@Meta, 2024). Our findings demonstrate that RaR consistently enhances perfor-
mance as the model scale increases. This trend was observed across all base model sizes, with
RaR maintaining a significant performance advantage over both the Gemma and Llama models in
the QA task. Under the same model parameters, RaR always performs the best. Importantly, the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Case analysis on long-horizon task planning and question answering. RaR improves upon CoT’s initial
answers by continuously refining thoughts with intermediate step retrieval and overall retrieval, aligning closely
with task progression and relevant item knowledge.

more reasoning-intensive the task, the more pronounced the performance gains achieved by RaR,
underscoring its ability to improve reasoning capabilities, which are typically more pronounced in
larger models.

Scaling Inference Tokens. Additionally, we investigated the impact of stricter inference-time tokens
on the performance of different methods. We utilize the DeepSeek-Coder-6.7B (Zhu et al., 2024) on
ClassEval method-level pass rates (Du et al., 2023) to analyze all methods and present the performance
results along with the corresponding tokens in Figure 2 (b). Almost all methods show growth with
the increase in inference-time tokens used. RaR performs worse than methods like IRCoT when
the number of tokens used is less than 2k, because RaR has not yet completed modifications to
all intermediate steps. However, when given more tokens up to 4k, RaR shows significant growth
compared to other methods. Additionally, we found that methods like self-consistency and RAG
experienced a decline in performance during the later stages of token growth. We speculate that this
is due to these methods requiring a large number of tokens at once, leading to long text issues that
cause performance degradation. In contrast, RaR, by using an iterative updating approach, does not
encounter long text problems, thus showing continuous performance growth when given more tokens.
This demonstrates that RaR has good scaling potential.

Scaling Computation Cost. Finally, we will also combine the model scale and the number of tokens
used to examine the performance of different methods under computation cost scaling. The horizontal
axis in Figure 2 (c) represents the average API price used, where all models utilize OpenAI models,
including gpt-3.5-turbo, gpt-4, and openai-o1. All pricing is based on OpenAI’s official pricing4,
calculated according to the actual consumption of prompt tokens and generation tokens. We found
that RaR is the most economical choice, as it is nearly the best under the same computation cost.
Additionally, we discovered that with less computation cost, the RaR based on gpt-4 demonstrated
performance exceeding that of openai o1.

4.4 ABLATION STUDY

Ablation on retrieval in RaR. In this ablation study, we investigate the influence of various
retrieval strategies on the efficacy of RaR, focusing on the optimization of content retrieval for

4https://openai.com/api/pricing/

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Comparative Impact of Retrieval Strategies on
RaR Performance.

Method
HumanEval HumanEval+

pass@1(∆) ↑ pass@5(∆) ↑ pass@1(∆) ↑ pass@5(∆) ↑

Baseline 50.6% 76.2% 48.2% 70.5%
CoT+RAG 53.9(+3.3)% 76.8(+0.6)% 51.3(+3.1)% 69.3(-1.2)%
RaR 59.2(+8.7)% 80.4(+7.9)% 56.3(+8.2)% 76.0(+5.5)%

Table 3: Ablation Study on Causal vs. Non-Causal
Reasoning in RaR.

Method
HumanEval HumanEval+

pass@1(∆) ↑ pass@5(∆) ↑ pass@1(∆) ↑ pass@5(∆) ↑

Baseline 47.3% 75.8% 41.7% 74.8%
Non-Causal 57.3(+10.0)% 78.0(+2.1)% 54.9(+13.2)% 74.8(+0.0)%
Causal 59.2(+11.9)% 80.4(+4.6)% 56.3(+14.6)% 76.0(+1.2)%

improving generative outputs. The experimental results, detailed in Table 2, highlight the significant
advancements achieved through the iterative refinement of retrieval queries in RaR compared to
baseline methods. The baseline denoted as RAG-1, employs a direct approach by using the question
itself as the retrieval query. In contrast, CoT+RAG enhances this process by utilizing the entirety of
the reasoning thoughts output by the language model as the query, aiming for a broader contextual
understanding. However, RaR introduces a more dynamic method by employing continuously
modified parts of reasoning thoughts as queries, which allows for a more focused and relevant
information retrieval process. The comparative analysis shows that RaR surpasses both the baseline
and the CoT+RAG method in terms of pass@1 and pass@5 metrics across the HumanEval and
HumanEval+ benchmarks. Specifically, RaR demonstrates an 8.7 percentage point increase in pass@1
and a 7.9 percentage point increase in pass@5 over the baseline in the HumanEval benchmark, and
similarly impressive gains in the HumanEval+ benchmark. These improvements underscore the
effectiveness of RaR’s retrieval strategy, which by iteratively refining next queries based on evolving
reasoning thoughts and previous queries, ensures the retrieval of highly pertinent information. This
process not only enhances the relevance of the information retrieved but also significantly improves
the quality and accuracy of the final generated outputs. The results firmly establish the superiority of
RaR’s dynamic retrieval method in leveraging contextual nuances to drive more precise and effective
generative processes.

Ablation on causal reasoning in RaR. In this ablation study, we systematically examine the impact
of causal and non-causal reasoning approaches on the performance of the RaR system, with the
Chain of Thought (CoT) serving as our baseline. Our findings, as summarized in Table 3, reveal
significant enhancements in generation capabilities when incorporating causal reasoning techniques.
Specifically, the causal approach, which iteratively performs reasoning and retrieval, leads to notable
improvements in both pass@1 and pass@5 metrics across HumanEval and HumanEval+ benchmarks.
For instance, the causal method outperforms the baseline (CoT) by 11.9 percentage points in pass@1
and by 4.6 percentage points in pass@5 on the HumanEval dataset. This approach contrasts with
the non-causal method, which, although also surpassing the baseline, leverages the initial reasoning
thought to directly retrieve all necessary steps and generate the final answer. The causal method’s
superior performance underscores the value of sequential reasoning and information retrieval in
enhancing the accuracy and reliability of generated outputs. This iterative process likely aids in
refining the search and reasoning steps based on continuously updated context, allowing for more
precise and relevant information retrieval, which in turn supports more accurate final answers. These
results firmly establish the efficacy of causal reasoning in long-horizon problem-solving tasks.

5 DISCUSSION ON LIMITATIONS AND CONCLUSION

One limitation of this work is that the performance of RaR relies on the chain-of-thought reasoning
and in-context learning (or RAG) capability of the base LLM. Since this work does not involve
any model training, the capability of base LLM will not change when applying RaR. Despite RaR
achieves significant improvement on powerful LLMs such as GPT-3.5 and GPT-4, the effect on
smaller and weaker LLMs is questionable. Another limitation of this work is that the performance of
RaR also relies on the quality of the retrieved knowledge. Another limitation of this work is that the
performance of RaR also relies on the quality of the retrieved knowledge.

We have presented Retrieval Augmented Reflection (RAR), a simple yet effective prompting strategy
that synergies chain of thought (CoT) prompting and retrieval augmented generation (RAG) to
address the challenging long-horizon reasoning and generation tasks. Our key ideas involve revising
the zero-shot chain of thoughts produced by LLMs through RAG with the thoughts as queries, and
causally revising the thoughts & generating the response progressively. RaR, a zero-shot prompting
approach, has demonstrated significant advantages over vanilla CoT prompting, RAG, and other

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

baselines on challenging code generation, mathematics reasoning, embodied task planning, and
creative writing tasks.

REFERENCES

AI@Meta. Llama 3 model card, 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. arXiv preprint arXiv:2310.11511, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jinheon Baek, Alham Fikri Aji, and Amir Saffari. Knowledge-augmented language model prompting
for zero-shot knowledge graph question answering. arXiv preprint arXiv:2306.04136, 2023.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. arXiv preprint arXiv:2206.11795, 2022.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, et al.
Graph of thoughts: Solving elaborate problems with large language models. arXiv preprint
arXiv:2308.09687, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Shaofei Cai, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Open-world multi-task control
through goal-aware representation learning and adaptive horizon prediction. 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13734–13744, 2023a.

Shaofei Cai, Bowei Zhang, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Groot: Learning to
follow instructions by watching gameplay videos. arXiv preprint arXiv:2310.08235, 2023b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Antonia Creswell and Murray Shanahan. Faithful reasoning using large language models. arXiv
preprint arXiv:2208.14271, 2022.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
language models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. Chain-of-verification reduces hallucination in large language models. arXiv preprint
arXiv: 2309.11495, 2023.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluating
llms on class-level code generation. arXiv preprint arXiv:2308.01861, 2023.

Zhangyin Feng, Xiaocheng Feng, Dezhi Zhao, Maojin Yang, and Bing Qin. Retrieval-generation
synergy augmented large language models. ArXiv, abs/2310.05149, 2023a.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhangyin Feng, Xiaocheng Feng, Dezhi Zhao, Maojin Yang, and Bing Qin. Retrieval-generation
synergy augmented large language models. arXiv preprint arXiv:2310.05149, 2023b.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. arXiv preprint arXiv:2211.10435, 2022.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Significant Gravitas. Autogpt. https://github.com/Significant-Gravitas/
AutoGPT, 2024. GitHub repository.

Jiatao Gu, Yong Wang, Kyunghyun Cho, and Victor OK Li. Search engine guided neural machine
translation. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and
Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
the large language model meets programming – the rise of code intelligence. arXiv preprint
arXiv:2401.14196, 2024.

Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill™: a bayesian skill rating system. Advances
in neural information processing systems, 19, 2006.

Keith J Holyoak and Robert G Morrison. The Oxford handbook of thinking and reasoning. Oxford
University Press, 2012.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. ICML, 2022.

Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. Conference on
Empirical Methods in Natural Language Processing, 2023. doi: 10.48550/arXiv.2305.06983.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Zixuan Ke, Haowei Lin, Yijia Shao, Hu Xu, Lei Shu, and Bing Liu. Continual training of language
models for few-shot learning. arXiv preprint arXiv:2210.05549, 2022a.

Zixuan Ke, Yijia Shao, Haowei Lin, Hu Xu, Lei Shu, and Bing Liu. Adapting a language model
while preserving its general knowledge. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 10177–10188, 2022b.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. arXiv preprint arXiv: 2211.17192, 2022.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020a.

12

https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020b.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine,
Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-augmented
code emulator, 2023a.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning. arXiv preprint arXiv:2404.02060, 2024.

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng Ding, Shafiq Joty, Soujanya Poria, and Lidong
Bing. Chain-of-knowledge: Grounding large language models via dynamic knowledge adapting
over heterogeneous sources. In The Twelfth International Conference on Learning Representations,
2023b.

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and Sheila McIlraith. Steve-1: A generative
model for text-to-behavior in minecraft. arXiv preprint arXiv:2306.00937, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. PREPRINT, 2023.

Haowei Lin, Zihao Wang, Jianzhu Ma, and Yitao Liang. Mcu: A task-centric framework for
open-ended agent evaluation in minecraft. arXiv preprint arXiv:2310.08367, 2023.

Chang Liu, Xiaoguang Li, Lifeng Shang, Xin Jiang, Qun Liu, Edmund Y. Lam, and Ngai Wong.
Gradually excavating external knowledge for implicit complex question answering. In Conference
on Empirical Methods in Natural Language Processing, 2023a.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023b.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svyatkovskiy. Reacc:
A retrieval-augmented code completion framework. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 6227–6240, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Noor Nashid, Mifta Sintaha, and Ali Mesbah. Retrieval-based prompt selection for code-related
few-shot learning. In Proceedings of the 45th International Conference on Software Engineering
(ICSE’23), 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021.

OpenAI. Gpt-4 technical report, 2023.

OpenAI. Introducing openai o1 preview. https://openai.com/index/
introducing-openai-o1-preview/, 2024. Accessed: 2024-09-25.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

Vipula Rawte, Amit Sheth, and Amitava Das. A survey of hallucination in large foundation models.
arXiv preprint arXiv:2309.05922, 2023.

13

https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

Danilo Ribeiro, Shen Wang, Xiaofei Ma, Rui Dong, Xiaokai Wei, Henry Zhu, Xinchi Chen, Zhiheng
Huang, Peng Xu, Andrew Arnold, et al. Entailment tree explanations via iterative retrieval-
generation reasoner. arXiv preprint arXiv:2205.09224, 2022.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, I. Evtimov, Joanna Bitton, Manish P
Bhatt, Cristian Cantón Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre D’efossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code llama: Open foundation models for code. ArXiv, abs/2308.12950, 2023.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Shamane Siriwardhana, Rivindu Weerasekera, Elliott Wen, Tharindu Kaluarachchi, Rajib Rana, and
Suranga Nanayakkara. Improving the domain adaptation of retrieval augmented generation (rag)
models for open domain question answering. Transactions of the Association for Computational
Linguistics, 11:1–17, 2023.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Google PaLM Team. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:
2204.02311, 2022.

H. Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval with
chain-of-thought reasoning for knowledge-intensive multi-step questions. ArXiv, abs/2212.10509,
2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv: 1706.03762, 2017.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. arXiv preprint
arXiv:2402.10200, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
2023a.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-world multi-task
agents with memory-augmented multimodal language models. ArXiv, abs/2311.05997, 2023b.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and select:
Interactive planning with large language models enables open-world multi-task agents. arXiv
preprint arXiv:2302.01560, 2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou.
Chain of thought prompting elicits reasoning in large language models. 36th Conference on Neural
Information Processing Systems (NeurIPS 2022), 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zhihua Wen, Zhiliang Tian, Wei Wu, Yuxin Yang, Yanqi Shi, Zhen Huang, and Dongsheng Li.
Grove: a retrieval-augmented complex story generation framework with a forest of evidence. arXiv
preprint arXiv:2310.05388, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.

Wenhao Yu, Zhihan Zhang, Zhenwen Liang, Meng Jiang, and Ashish Sabharwal. Improving language
models via plug-and-play retrieval feedback. arXiv preprint arXiv:2305.14002, 2023.

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing
Lu. Plan4mc: Skill reinforcement learning and planning for open-world minecraft tasks. arXiv
preprint arXiv:2303.16563, 2023.

Haoqi Yuan, Zhancun Mu, Feiyang Xie, and Zongqing Lu. Pre-training goal-based models for
sample-efficient reinforcement learning. In The Twelfth International Conference on Learning
Representations, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: Building proactive cooperative ai with large
language models. arXiv preprint arXiv:2308.11339, 2023.

Ruochen Zhao, Hailin Chen, Weishi Wang, Fangkai Jiao, Xuan Long Do, Chengwei Qin, Bosheng
Ding, Xiaobao Guo, Minzhi Li, Xingxuan Li, and Shafiq R. Joty. Retrieving multimodal informa-
tion for augmented generation: A survey. ArXiv, abs/2303.10868, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022a.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting enables
complex reasoning in large language models. In The Eleventh International Conference on
Learning Representations, ICLR 2023, 2023.

Shuyan Zhou, Uri Alon, Frank F Xu, Zhengbao Jiang, and Graham Neubig. Docprompting: Gen-
erating code by retrieving the docs. In The Eleventh International Conference on Learning
Representations, 2022b.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A TASK DETAILS

A.1 CODE GENERATION

Benchmarks. We select HumanEval (Chen et al., 2021), HumanEval+ (Liu et al., 2023b),
MBPP (Austin et al., 2021), and MBPP+ (Liu et al., 2023b) as the code generation evaluation
benchmark. These benchmarks are commonly used to test the performance of code generation
models, which are briefly introduced below:

• HumanEval consists of 164 Python programming problems, each with a function signature,
docstring, body, and multiple unit tests (Chen et al., 2021).

• HumanEval+ includes the same programming problems as HumanEval, but with an addi-
tional 80 times more unit tests for each of the 164 problems (Liu et al., 2023b).

• MBPP is a collection of approximately 1,000 Python programming problems that are
intended to be solvable by beginner programmers. Each problem includes an English task
description, a code solution, and three automated test cases. We assess the sample test set
from index 11 to 175 (Austin et al., 2021).

• MBPP+ consists of 399 tasks (Liu et al., 2023b), which are a subset of the original MBPP
dataset. Additionally, MBPP+ includes extra unit tests for each of the 399 problems (35
times more than the original MBPP). We utilized the first 164 questions as our test set.

These benchmarks encompass a wide range of programming problems, from simple function im-
plementations to more complex algorithmic challenges, providing a robust testbed for assessing the
generative capabilities of various models.

Metrics. We adopt the pass@k metric for evaluating the efficacy of various code generation
algorithms, following the methodology proposed by Chen et al. (2021) and extended by Liu et al.
(2023b). This metric quantifies the rate at which generated code snippets successfully execute and
pass all test cases, where k represents the number of attempts or samples generated by the model
for each problem. This approach allows us to rigorously assess the precision and reliability of
code generation models in producing functionally correct code across a diverse set of programming
challenges.

Baselines. To establish a comprehensive and equitable comparison landscape, we incorporate a suite
of baseline methods and diverse code generation models. Our baselines include the original code
generation language models, referred to as DIRECT, and the Retrieval-Augmented Generation (RAG)
methodology with n retrieved examples, instantiated in both single-shot (1 shot) and multi-shot (5
shots) configurations, as documented by Lewis et al. (2020b). Additionally, we examine the zero-shot
CoT (CoT) approach, as conceptualized by Kojima et al. (2022), which simulates a step-by-step
reasoning process to facilitate complex problem-solving tasks under zero demonstration. To ensure
a fair comparison, none of the methods used examples from the benchmark as demonstrations for
in-context learning.

The diversity of our evaluation is further enriched by testing across various language mod-
els with differing capacities, including CodeLlama-7b (Rozière et al., 2023), along with Chat-
GPT(gpt-3.5-turbo) (Ouyang et al., 2022), and the more advanced GPT-4(gpt-4) model (Ope-
nAI, 2023). Recognizing the potential format discrepancies in code outputs, especially considering
that models like gpt-3.5-turbo and gpt-4 may produce code in markdown format which is not
immediately executable, we implement post-processing steps to convert the original language model
outputs into a form that can be executed within a sandbox environment. This normalization ensures
that all models are evaluated under uniform execution conditions, thereby facilitating a fair and direct
comparison of their code generation capabilities. Through this methodological framework, we aim to
provide a detailed and nuanced understanding of the performance landscape across a spectrum of
LLM-driven code generation approaches.

RAG Settings. RaR leverages the capabilities of Retrieval-Augmented Generation methods, which
enhance the performance of language models by integrating external knowledge sources. Specifically,
we employed the codeparrot/github-jupyter dataset as our primary search vector library.
This dataset is a comprehensive compilation of 452k markdown and code pairs, meticulously extracted
from Jupyter notebooks hosted on GitHub BigQuery, representing a rich repository of programming

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

knowledge and examples. We utilized OpenAI’s text-embedding-ada-002 API service for
all embedding calculations across different methods and base models.

A.2 MATHEMATICAL REASONING

Benchmarks. Our evaluation framework for assessing mathematical reasoning capabilities leverages
two primary benchmarks: the GSM8K dataset, which comprises over 8,000 multi-step mathematical
problems (Cobbe et al., 2021), and the GSM-HARD dataset, an adaptation of GSM8K where
numbers in the questions are replaced with larger values to increase problem complexity (Gao et al.,
2022). This study employs the PAL methodology to scrutinize the mathematical reasoning results,
involving the utilization of Large Language Models (LLMs) to parse natural language problems,
generate intermediary programmatic solutions, and subsequently execute these solutions via a Python
interpreter. The test set for each benchmark consists of samples ranging from index 1 to 200. Uniquely,
our approach does not use any examples for in-context learning, differing from the original PAL
methods.

Metrics and Baselines. Accuracy serves as our principal metric for evaluation, aligning with the
established metric for the GSM8K benchmark. Each question undergoes three execution attempts,
with the average score recorded as the final result. The baselines, including DIRECT, CoT, RAG
(1 shot), and RAG (5 shots), are consistent with those outlined in code generation, facilitating a
comprehensive and comparative analysis across different code generation benchmarks. The RAG
settings are consistent with the code generation tasks.

A.3 EMBODIED PLANNING

We further conduct experiments on embodied planning benchmarks on open-ended environments
Minecraft (Lin et al., 2023).

Benchmarks. The complexity and vast item interconnectivity within the open-world Minecraft
present an ideal testbed for evaluating the LLM’s capability to generate long-horizon plans (Yuan
et al., 2023; Wang et al., 2023c;b). With thousands of items and intricate relationships between them,
obtaining a specific item in survival mode from scratch may involve dozens of intermediate items and
their quantitative relationships, such as crafting 1 crafting table from 4 planks. This setting rigorously
tests the planning abilities of LLMs instead of low-level control policies (Cai et al., 2023b; Baker
et al., 2022; Cai et al., 2023a; Lifshitz et al., 2023; Yuan et al., 2024). Moreover, Wang et al. (2023b)
have identified instances of hallucinations about Minecraft knowledge in OpenAI’s ChatGPT and a
general scarcity of Minecraft-related knowledge in open-source language models, making this task a
suitable benchmark for assessing the RAG algorithm’s effectiveness.

The planning prompts are aligned with those used in DEPS (Wang et al., 2023c), structured as Python
templates and evaluated using MC-TextWorld as detailed by Lin et al. (2023). A set of 100 tasks
were randomly selected for the test set, ranging from simple objectives like obtaining a crafting table
to more complex goals such as crafting an iron helmet and even challenging making an enchanting
table. The task instruction is formulated as:

• Give you nothing in the inventory, generate a step-by-step plan for the task of obtaining a
{placeholder:acacia_boat} in Minecraft survival mode, and describe the object Minecraft
item and its number at every step. For every step, start with ’STEP’ as start.

• Give you nothing in the inventory, generate a step-by-step plan for the task of obtaining a
{placeholder:diamond_pickaxe} boat in Minecraft survival mode, and describe the object
Minecraft item and its number at every step. For every step, start with ’STEP’ as start.

There are over 100 tasks involving different Minecraft items.

RAG Settings. For the retrieval component of the RAG algorithm, we utilized the Minecraft Wiki5 and
DigMinecraft6 websites as the information sources accessible to the LLMs. Data from these websites
was cleaned and formatted into markdown text, then segmented into trunks not exceeding 2000 tokens

5https://minecraft.wiki/
6https://www.digminecraft.com/

17

https://minecraft.wiki/
https://www.digminecraft.com/

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

each, with embedding calculations performed using OpenAI’s text-embedding-ada-002 API
service.

Evaluation Metrics. Based on the methodology of Huang et al. (2022), our evaluation of open-ended,
long-horizon planning in Minecraft focuses on both executability and plausibility. Executability
primarily examines whether a plan can be carried out, including the accuracy of each step’s precon-
ditions and effects. The executability is automatically calculated using MC-TextWorld (Lin et al.,
2023). However, executability only evaluates if an objective-level plan can be executed, without
considering the specific details involved in executing individual objectives. For instance, crafting a
wooden pickaxe requires placing a crafting table and arranging three planks and two sticks in a partic-
ular pattern, which are important details for human execution but not assessed by MC-TextWorld.
Therefore, we complement our evaluation with human ratings to assess the plausibility of plans.

A.4 CREATIVE WRITING

To further understand the potential of Retrieval-Augmented Generation (RAG) models in enhancing
the creativity and relevance of generated content, we extend our investigation to open-ended text
generation tasks within the realm of creative writing.

Benchmarks. The versatility of RaR was tested through a series of creative writing tasks, each
chosen to highlight different aspects of open-ended text generation. These tasks include:

• Write a survey paper to summarize the placeholder:Retrieval-augmented
Generation methods for Large Language Models.

• Describe of placeholder:Jin-Yong’s life.

• Summarize the placeholder:American Civil War according to the timeline.

For each task, three variants for placeholder were created to ensure a comprehensive evaluation
of the model’s performance across different contexts and requirements.

RAG Settings. Differing from previous tasks, creative writing is categorized as an open-ended
generation task, demanding a broader scope of information retrieval to aid content generation. To
accommodate this, Google was utilized as the search engine, with the top-k web pages converted into
markdown text to assist the LLM in generating outputs. This approach allowed LLM to leverage a
wide array of information sources.

Baselines and Evaluations. To benchmark RaR’s performance, we compared it against DIRECT,
RAG-1 shot, and RAG-5 shot methods, all based on the gpt-3.5-turbo model. The evaluation
was conducted by human experts, employing the TrueSkill rating system (Herbrich et al., 2006) to
calculate scores for each method. This evaluation framework enabled a comprehensive assessment of
each model’s creative output quality, accuracy, relevance, and innovativeness.

B PROMPT DETAILS

Our prompts consist of three parts: prompt for generating initial answer, prompt for generating search
query, and prompt for revising answers according to retrieved context.

Prompt B.1: Prompt for generating initial answers in creative writing tasks

{user}
##Question:
{question}
##Instruction:
Try to answer this question/instruction with step-by-step thoughts and make the answer more structural.
Use /n/n to split the answer into several paragraphs.
Just respond to the instruction directly. DO NOT add additional explanations or introducement in the answer
unless you are asked to.
{assistant}
...

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The process of query generation is omitted in code generation tasks. Instead, we use the generated
code draft as a query and compute the embedding of it based on OpenAI Embedding services. For
embodied planning and creative writing tasks, we will generate an additional query.

Prompt B.2: Prompt for generating open-search query in creative writing tasks

##Question:
{question}
##Content:
{answer}
##Instruction:
I want to verify the content correctness of the given question, especially the last sentences.
Please summarize the content with the corresponding question.
This summarization will be used as a query to search with Bing search engine.
The query should be short but need to be specific to promise Bing can find related knowledge or pages.
You can also use search syntax to make the query short and clear enough for the search engine to find relevant
language data.
Try to make the query as relevant as possible to the last few sentences in the content.
IMPORTANT
Just output the query directly. DO NOT add additional explanations or introducement in the answer unless
you are asked to.
{assistant}
...

Prompt B.3: Prompt for revising answer according to retrieved materials in creative writing tasks

{user}
##Existing Text in Wiki Web:
{content}
##Question:
{question}
##Answer:
{answer}
##Instruction:
I want to revise the answer according to retrieved related text of the question in WIKI pages.
You need to check whether the answer is correct.
If you find some errors in the answer, revise the answer to make it better.
If you find some necessary details are ignored, add it to make the answer more plausible according to the
related text.
If you find the answer is right and do not need to add more details, just output the original answer directly.
IMPORTANT
Try to keep the structure (multiple paragraphs with its subtitles) in the revised answer and make it more
structural for understanding. Split the paragraphs with /n/n characters. Just output the revised answer directly.
DO NOT add additional explanations or annoucement in the revised answer unless you are asked to.
{assistant}
...

C TRUESKILL EVALUATION FRAMEWORK

Part of the tasks in “Embodied planning” and “creative writing” involve using humans for labeling.
Human labelers have 4 choices: “A is better”, “B is better”, “Tie” or “Both are bad”. In this case,
“Tie” and “Both are bad” will be counted as a tie. For each task group, we have selected more than
10 professional annotators to provide labels. We use the Python “trueskill” package to calculate
the win rate and score. The default score for every method is set as 25. In order to facilitate user
understanding and selection, we also provide prompts when entering the system.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure C.1: The human evaluation UI. We will display responses from two different methods for the same
instruction on the page simultaneously. The source of the response will be marked as [MASK], and after human
labeling, [MASK] will be replaced with the specific method name.

Chatbot Arena : Benchmarking LLMs in the Wild
##Rules
- Refresh to obtain the question and its corresponding answers from two anonymous models.
- Vote for the better answer. And then click "New Round" to get a new question.
- If both answers are bad, vote for "Both are bad".
- If you want to skip, click "Skip".

Principle
You can evaluate the performance of the model from the following aspects:
1. **Relevance**: Does it answer the question accurately?
2. **Accuracy**: Is it accurate? For example, a crafting table is made by combining 4 wooden planks, not 4
logs; a diamond axe requires 3 diamonds and 2 sticks to craft, not 3 sticks and 2 diamonds.
3. **Completeness**: Is it complete? For example, crafting a wooden pickaxe from logs requires
first crafting wooden planks and then crafting sticks before finally being able to craft the pickaxe. The
intermediate steps cannot be ignored.
4. **Readability**: Is it coherent?
5. **Executability**: Considering the characteristics of the game, is it executable?

Vote now!

D DISSCUSSIONS ON BENCHMARK CONTAMINATION

To avoid the code library containing solutions to the exact problems being evaluated) in code
generation benchmarks, we adopted a rigorous pre-processing methodology as described by Guo
et al. (2024). This process was meticulously designed to remove any direct matches or overly similar

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

code snippets from our search vector library, thereby ensuring that our evaluation remains fair and
uncontaminated by pre-existing solutions. This examination aims to underscore the importance of
maintaining the integrity of the evaluation process while utilizing external knowledge sources to
augment the capabilities of language models in code-generation tasks.

Table 4: Benchmark contamination study based on CodeLlama-7b-Python models. We find using the code
corpus finetuning the CodeLlama models directly will damage model performance on the code generation

benchmark, while using RaR for in-context generation yields better performance.

Method HumanEval HumanEval+

pass@1 pass@5 pass@1 pass@5

DIRECT 40.85% 53.65% 37.43% 48.78%
FINETUNE 29.02% 40.24% 26.34% 35.98%
RaR 45.73% 59.75% 43.29% 53.66%

To further explore the potential benchmark contamination, we also conducted additional finetuning
on CodeLLaMA-7B-Python using the code corpus in Table 4.

E MORE RESULTS

E.1 EMBODDIED PLANNING

Embodied planning involves multiple steps, each of which relies on specific world knowledge and
causal knowledge (i.e., preceding steps are usually preconditions for subsequent steps), including
recipes for items in Minecraft, tools for performing related actions, and quantity restrictions. There-
fore, although the plan generated by ChatGPT may appear complete and correct, there are often
errors within the steps that can affect the proper execution of the plan.

We mark the errors found in the generated plan in red.

Response E.1: Response from Zero-Shot CoT(based on ChatGPT-3.5) in embodied planning tasks

{instruction}
Give you nothing in the inventory, generate a step-by-step plan for the task of obtaining a golden apple in
Minecraft survival mode, and describe the object Minecraft item and its number at every step. For every step,
start with ’STEP’ as start.

{response from Original ChatGPT}
STEP 1: Start by punching trees to gather at least 4 logs. - Minecraft item: 4x Logs
STEP 2: Craft the logs into a crafting table. - Minecraft item: 1x Crafting Table
STEP 3: Place the crafting table on the ground and right-click on it to open the crafting interface.
STEP 4: Use the crafting interface to turn 4 of the oak planks into a wooden pickaxe.
- Minecraft item: Wooden Pickaxe
STEP 5: Find a cave or dig into the ground to gather some stone. Mine at least 8 blocks of stone using your
wooden pickaxe. - Minecraft item: 8x Cobblestone
STEP 6: Craft the cobblestone into a furnace using the crafting table. - Minecraft item: 1x Furnace
STEP 7: Place the furnace on the ground and right-click on it to open the furnace interface.
STEP 8: Use the furnace interface to smelt some iron ore. Place at least 3 iron ore in the top slot of the
furnace and use wooden planks as fuel in the bottom slot. - Minecraft item: 3x Iron Ingots
STEP 9: Craft the iron ingots into a bucket using the crafting table. - Minecraft item: 1x Bucket
STEP 10: Find a water source (such as a lake or a river) and right-click on it while holding the bucket to fill
it with water. - Minecraft item: 1x Water Bucket
STEP 11: Look for an apple tree in a forest biome. Break some leaves until you find an apple. - Minecraft
item: 1x Apple
STEP 12: Combine the water bucket and the apple in the crafting table to craft a golden apple. - Minecraft
item: 1x Golden Apple
Congratulations! You have successfully obtained a golden apple in Minecraft survival mode.

Although the Zero-shot CoT has generated a step-by-step plan overall, there are many factual errors
within it. These include recipe errors in STEP 2, where the crafting table requires planks instead of
wood; missing raw materials in STEP 4, as the wooden pickaxe needs 2 sticks but lacks the relevant

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

step in the plan; absence of instructions to use a stone pickaxe to mine iron ore in STEP 8; and an
incorrect recipe for golden apple in STEP 12, which should include gold ingots and an apple rather
than a water bucket.

Response E.2: Response from RAR(based on ChatGPT-3.5) in embodied planning tasks

{instruction}
Give you nothing in the inventory, generate a step-by-step plan for the task of obtaining a golden apple in
Minecraft survival mode, and describe the object Minecraft item and its number at every step. For every step,
start with ’STEP’ as start.

{response from Original ChatGPT}

STEP 1: Find a tree and chop it down to get wood. You need at least 4 Oak Logs.
- Minecraft items: 4x Oak Logs
STEP 2: Craft the oak log into oak planks.
- Minecraft items: 16x Oak Planks
STEP 3: Convert some oak planks into sticks.
- Minecraft items: 4x Stick
STEP 4: Use the crafting table to create a wooden pickaxe.
- Minecraft items: 1x Wooden Pickaxe
STEP 5: Start digging down to find stone and gather at least three pieces of cobblestone.
- Minecraft items: 3x Cobblestone
STEP 6: Use the crafting table to create a stone pickaxe.
- Minecraft items: 1x Stone Pickaxe
STEP 7: Explore caves and mineshafts to find iron ore. Collect 3 iron ore for crafting an iron pickaxe.
- Minecraft items: 3x Iron Ore
STEP 8: Smelt the iron ore using a furnace to obtain iron ingot.
- Minecraft items: 3x Iron Ingot
STEP 9: Use the crafting table to create an iron pickaxe.
- Minecraft items: 1x iron pickaxe
STEP 10: Explore caves and mineshafts to find gold ore. Use an iron pickaxe or higher to mine the gold ore
block. Collect as much gold ore as needed for crafting a golden apple.
- Minecraft items: 8x Gold Ore
STEP 11: Smelt the raw gold using a furnace to obtain a gold ingot.
- Minecraft items: 8x Gold Ingot
STEP 12: Find an oak tree and chop it down until an apple falls.
- Minecraft items: 1x Apple
STEP 13: Open the crafting menu and place the items in the correct pattern to craft a Golden Apple. In the
3x3 crafting grid, place 8 Gold Ingots in the first and third rows, leaving the middle square empty. In the
second row, place 1 Gold Ingot in the first and third squares, and place an Apple in the middle square.
- Minecraft items: 1x Golden Apple
Congratulations! You have successfully obtained a golden apple in Minecraft survival mode.

There are still errors in the plan generated by RAR, such as the lack of tools before "STEP 8: smelt
iron ore into iron ingots", which should be “Mine 8 cobblestone to craft 1 furnace”. However,
compared to the errors in ChatGPT, the error rate in the plan has been significantly reduced.

We have also listed the links of the retrieved pages involved in different steps in Table 5 and Table 6.
We can see that the text sources retrieved in each step generated by RaR are usually highly related to
the synthesized item of that step. Traditional RAG (with 5 retrieval documents) uses instructions for
retrieval and can only find the final step and other unrelated items, which may even harm the model’s
output. Compared to standard RAG, RaR extracts more pertinent knowledge from the database and
provides more accurate answers. Furthermore, RaR does not directly generate answers based on
retrieved content but evaluates previously generated content using both external information and
internal knowledge. If inconsistencies or inaccuracies are detected in previous responses, revisions
are made accordingly. By leveraging LLM’s reasoning capabilities, RaR can decrease its reliance on
retrieved data.

E.2 CREATIVE WRITING

Discussions on Computational Efficiency.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 5: Page link of retrieved text by RaR in embodied Minecraft planning tasks.

Step Item Recipe Link

1 4x Oak Log - https://minecraft.fandom.com/wiki/Log
2 16x Oak Planks 4x Oak Log https://www.digminecraft.com/basic_recipes/make_oak_wood_plank.php
3 4x Stick 2x Oak Planks https://www.digminecraft.com/basic_recipes/make_stick.php
4 1x Wooden Pickaxe 3x Oak Planks, 2 Stick https://www.digminecraft.com/tool_recipes/make_wooden_pickaxe.php
5 3x Cobblestone Wooden Pickaxe https://minecraft.fandom.com/wiki/Cobblestone
6 1x Stone Pickaxe 3x Cobblestone, 2 Stick https://www.digminecraft.com/tool_recipes/make_stone_pickaxe.php
7 3x Iron Ore Stone Pickaxe https://minecraft.fandom.com/wiki/Iron_Ore
8 3x Iron Ingot 3x Iron Ore https://www.digminecraft.com/basic_recipes/make_iron_ingot.php
9 1 Iron Pickaxe 3x Iron Ingot, 2x Stick https://www.digminecraft.com/tool_recipes/make_iron_pickaxe.php
10 8x Gold Ore Iron Pickaxe https://minecraft.fandom.com/wiki/Gold_Ore
11 8x Gold Ingot 8x Gold Ore https://www.digminecraft.com/basic_recipes/make_gold_ingot.php
12 1x Apple - https://minecraft.fandom.com/wiki/Apple
13 1x Golden Apple 8x Gold Ingot, 1x Apple https://www.digminecraft.com/food_recipes/make_golden_apple.php

Table 6: Page link of retrieved text by conventional RAG methods in embodied Minecraft planning tasks.

Step Item Recipe Link

1 4x Oak Log - -
2 16x Oak Planks 4x Oak Log -
3 4x Stick 2x Oak Planks -
4 1x Wooden Pickaxe 3x Oak Planks, 2 Stick -
5 3x Cobblestone Wooden Pickaxe -
6 1x Stone Pickaxe 3x Cobblestone, 2 Stick -
7 3x Iron Ore Stone Pickaxe -
8 3x Iron Ingot 3x Iron Ore -
9 1 Iron Pickaxe 3x Iron Ingot, 2x Stick -
10 8x Gold Ore Iron Pickaxe -
11 8x Gold Ingot 8x Gold Ore -
12 1x Apple - https://minecraft.fandom.com/wiki/Apple

13 1x Golden Apple 8x Gold Ingot, 1x Apple
https://minecraft.fandom.com/wiki/Golden_Apple

https://www.digminecraft.com/food_recipes/make_golden_apple.php

14 Other unrelated Items -
https://minecraft.fandom.com/wiki/Enchanted_Golden_Apple

https://www.digminecraft.com/game_commands/enchant_command.php
https://www.digminecraft.com/tool_recipes/make_golden_pickaxe.php

In our experiment, we used RAG-5 as the baseline, which retrieves 5 content sources (commonly
the default choice for most current RAG algorithms). We also set an upper limit on RaR retrieval
times, ensuring that RaR does not retrieve more than 5 contents. Therefore, RaR does not exceed the
standard RAG algorithm in terms of content retrieval.

Compared to including all 5 retrieved contents at once in context for generation in RAG-5, RaR
incorporates one external content at a time to reduce prompt length. This approach prevents exceeding
the language model’s context length limitation that may occur when inputting all knowledge into the
prompt with RAG-5. Using only one external content per revision in RaR avoids issues related to
excessive content length and allows more token space for generating longer content.

Additionally, we utilized the Google search engine directly for RaR searches and compared time
consumption between RaR and RAG-5 when creating creative writing prompts. Our findings indicate
that while increased search time plays a role, more time is consumed during crawling and generation
processes. And RaR does not have a significant efficiency gap compared to RAG-5. The detailed time
consumption of every method is listed in Table 7. However, since RaR must be processed causally, it
is worth further exploring how to improve the efficiency of RaR by referring to speculative decoding
and other methods (Leviathan et al., 2022).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 7: Comparison of time consumed by different methods in creative writing tasks.

Method CoT RAG-5 RaR

Search Time(s) - 0.12 0.47
Crawl Content Time(s) - 5.17 4.26
Generation Time(s) 3.59 10.72 12.75
Total Time(s) 3.59 17.37 18.45

Response E.3: Response from ORIGINAL ChatGPT-3.5 in creative writing tasks

{instruction}
Describe the history of the United States. {response from Original ChatGPT}

The history of the United States dates back thousands of years, with indigenous peoples such as the Native
Americans inhabiting the land long before the arrival of European settlers. However, the official history of
the United States begins in 1776 when the Founding Fathers declared independence from Great Britain. This
marked the start of the American Revolution, a conflict that ultimately led to the creation of the United States
as an independent nation.
After gaining independence, the United States went through a period of rapid expansion in the 19th century.
The country acquired vast amounts of territory, including the Louisiana Purchase and the annexation of Texas.
This expansion was accompanied by conflicts, such as the Mexican-American War and the Civil War, which
tested the unity of the nation.
In the 20th century, the United States emerged as a global superpower. The country played a significant role
in both World War I and World War II, eventually becoming the leader of the free world during the Cold War
with the Soviet Union. The United States experienced social and cultural shifts during this time, including
the Civil Rights Movement and the rise of consumerism.
Today, the United States remains a powerful nation, with a diverse population and a complex history that
continues to shape its identity.

Response E.4: Response from Zero-shot CoT in creative writing tasks

{instruction}
Describe the history of the United States.
{response from Zero-shot CoT}
Pre-Columbian Era
The history of the United States begins long before the arrival of European explorers in the 15th century.
The land was initially inhabited by diverse Native American tribes, such as the Apache, Sioux, Iroquois,
and Cherokee. These societies had rich cultures, with their own languages, traditions, and social structures.
They lived off the land, flourishing through hunting, fishing, farming, and trade. However, the indigenous
populations faced significant challenges, including conflicts, displacement, and diseases brought by the
European settlers.
Colonial Period
In the 16th century, European powers began to claim territories in what is now the United States. The
Spanish were the first to establish colonies, initially focusing on Central and South America. Later, English,
French, and Dutch explorers arrived, establishing their own colonies along the Atlantic coast. These colonies
varied in purpose and organization, with the English colonies primarily seeking economic opportunities and
religious freedom. Over time, thirteen British colonies emerged, forging their own identities, developing
local governments, and experiencing an increase in population due to immigration.
American Revolution and Beyond
Tensions between the British colonies and their colonial masters grew, leading to the American Revolution in
1775. The colonies, unified under the Continental Congress, fought for independence from British rule. The
war lasted several years, until the signing of the Treaty of Paris in 1783, which granted the newly formed
United States of America independence. After achieving independence, the founding fathers convened to
draft the Constitution, establishing the framework for the new nation’s government.
This is just a brief overview, and the history of the United States is vast and complex. However, these steps
provide a simplified understanding of how the nation evolved from Native American civilizations to a group
of British colonies, to an independent country.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Response E.5: Response from RAG(1-shot) in creative writing tasks

{instruction}
Describe the history of the United States.
{response from RAG-1}
The history of the United States is a complex and rich tapestry that spans over four centuries. The story
begins with the arrival of European explorers and settlers in the 16th century. In 1492, Christopher Columbus
reached the Americas, which led to subsequent expeditions and colonization by the Spanish, French, Dutch,
and English. The first successful English settlement was established at Jamestown, Virginia in 1607.
Over the next few centuries, the colonies grew and developed their own unique cultures, economies, and
systems of government. Tensions rose between the American colonies and the British Crown, leading to the
American Revolutionary War in 1775. The colonies declared their independence in 1776 and formed the
United States of America, which became a republic based on democratic ideals and principles.
The young nation faced numerous challenges in its early years, including establishing a central government,
expanding westward, and dealing with the issue of slavery. The 19th century saw rapid westward expansion,
the Industrial Revolution, and the Civil War. The United States emerged from the Civil War as a more unified
and powerful nation, with the abolition of slavery and the preservation of the Union. In the 20th century, the
United States became a global superpower, playing a crucial role in both World Wars and the Cold War. It
witnessed significant social movements for civil rights and equality, as well as advancements in technology
and innovation.
Today, the United States is a diverse and influential country with a strong economy, global military presence,
and a complex political landscape. Its history continues to shape its present and future, as the nation grapples
with ongoing social, economic, and political challenges.

Response E.6: Response from RAG(5-shot) in creative writing tasks

{instruction}
Describe the history of the United States.
{response from RAG-5}
The history of the United States dates back to the colonization of the Americas by European explorers in the
16th century. The first permanent English settlement was established in Jamestown, Virginia in 1607. This
marked the beginning of British colonization in North America.
Over the next century, more British colonies were established along the eastern seaboard, including Mas-
sachusetts, New York, Pennsylvania, and Georgia. These colonies grew and developed their own distinct
cultures and economies.
Tensions between the colonies and the British government grew in the mid-18th century, leading to the
American Revolutionary War in 1775. The colonists, led by figures such as George Washington, Thomas
Jefferson, and Benjamin Franklin, fought for their independence from British rule.
In 1776, the Second Continental Congress adopted the Declaration of Independence, which declared the
thirteen American colonies to be independent states. This marked the birth of the United States of America.
Following the Revolutionary War, the Founding Fathers drafted the Constitution of the United States, which
established a federal government and outlined the rights and freedoms of American citizens. The Constitution
was ratified in 1788 and is still the supreme law of the land.
Since its founding, the United States has experienced significant growth and development. It expanded
westward through the Louisiana Purchase and the annexation of Texas, and it eventually stretched from coast
to coast. The country also faced significant challenges, such as the Civil War, the Great Depression, and the
Civil Rights Movement.
Today, the United States is a global superpower with a diverse population and a strong economy. It is known
for its democratic system of government, individual freedoms, and cultural influence.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Response E.7: Response from RaR in creative writing tasks

{instruction}
Describe the history of the United States.
{response from RAR}
The history of the United States is characterized by several significant phases. The pre-colonial period
witnessed diverse Native American populations with unique cultures inhabiting the land. This era transitioned
into colonialism through European exploration and settlement by powers such as the Spanish, French, Dutch,
and British, leading to the establishment of colonies along the East Coast with distinct economic and political
frameworks.
A pivotal moment in American history was the American Revolution, beginning in 1775, as the colonies
sought independence from British rule. The Declaration of Independence in 1776 marked the nation’s
founding on principles of liberty and democracy, establishing autonomy from Great Britain. This revolutionary
period not only birthed a republic based on the will of the people but also forged American national identity,
fostering a collective ethos entrenched in history and culture, inspiring revolutions worldwide and aiding in
the establishment of republican governments elsewhere.
The United States stands out as the first modern nation to achieve independence through a national war of
liberation, articulating its motives and aspirations in a declaration of independence. This event had global
reverberations, spreading fundamental values like liberty, equality, natural and civil rights, and civic duty. The
formative years were shaped by the drafting of the Constitution in 1787, defining the federal government’s
framework. The subsequent ratification of the Bill of Rights further cemented individual freedoms and
outlined governance principles that have endured across the nation’s history, ensuring a system of checks and
balances that protect citizens’ rights.
The 19th century in the United States witnessed significant developments, including westward expansion,
industrialization, and conflicts like the Civil War (1861-1865), which decisively addressed issues of slavery
and reinforced federal authority over the states. The late 19th and early 20th centuries were marked by rapid
industrial growth, extensive immigration, urbanization, and overseas expansion, including involvement in
conflicts such as the Spanish-American War and World War I. The 20th century saw the United States emerge
as a global superpower after World War II, engaging in the Cold War with the Soviet Union and participating
in conflicts like the Korean and Vietnam Wars, significantly impacting the nation’s foreign policy and global
standing.
Recent history includes social movements for civil rights, gender equality, and environmental protection,
as well as economic shifts, advancements in technology, and challenges in areas such as healthcare and
international relations.

26

	Introduction
	Related Works
	Retrieval Augmented Reflection
	Retrieval Augmented Reflection
	Iteractive Retrieval Augmented Reflection
	Optimizing RaR by Scaling Inference-time Computation

	Experiments
	Experimental Setups
	Results
	Scaling Experiments
	Ablation Study

	Discussion on Limitations and Conclusion
	Task Details
	Code Generation
	Mathematical Reasoning
	Embodied Planning
	Creative Writing

	Prompt Details
	TrueSkill Evaluation Framework
	Disscussions on Benchmark Contamination
	More Results
	Emboddied Planning
	Creative Writing

