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Abstract

Large Language Models (LLMs) have shown impressive ca-
pabilities across a wide variety of tasks. However, they still
face challenges with long-horizon planning. To study this,
we propose path planning tasks as a platform to evaluate
LLMs’ ability to navigate long trajectories under geomet-
ric constraints. Our proposed benchmark systematically tests
path-planning skills in complex settings. Using this, we ex-
amined GPT-4’s planning abilities using various task repre-
sentations and prompting approaches. We found that fram-
ing prompts as Python code and decomposing long trajectory
tasks improve GPT-4’s path planning effectiveness. However,
while these approaches show some promise toward improv-
ing the planning ability of the model, they do not obtain opti-
mal paths and fail at generalizing over extended horizons.

INTRODUCTION

Trained on vast amounts of data, Large language models
(LLMs) have demonstrated outstanding performance across
a wide spectrum of tasks (OpenAl et al.|[2023; [Touvron et al.
2023; [We1 et al.|2022; (Chen et al.|2023b). However, these
models still struggle on tasks requiring end-to-end plan-
ning and long-horizon reasoning (Valmeekam et al.[2023albj
Yang and Tomar|[2023)), which are fundamental for their ap-
plications to robotics.

To facilitate the assessment of LLMs’ planning capabil-
ities, path planning has emerged as a promising venue in
recent years. It involves determining a viable route for an
agent to move from a starting point to a goal location while
avoiding obstacles. Hence, it offers a straightforward yet
challenging environment for testing grounding and long-
horizon planning problems, making it highly relevant to var-
ious robotics applications. Prior benchmarks for path plan-
ning include BabyAl (Chevalier-Boisvert et al.|2019) and
gSCAN (Ruis et al.|2020; Qiu et al.[2021); however, these
datasets were proposed mainly for studying linguistic un-
derstanding in grounded environments and the planning set-
tings are relatively simple. For example, since their settings
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are on relatively small grids (e.g., 6 by 6), the tasks can typi-
cally be solved within a small number of steps. Moreover, as
they consist of only randomly scattered obstacles, their en-
vironments are not representative of a real-world navigation
problem. In such settings, the models can often serendipi-
tously find a path from the expansively unblocked space that
evades obstacles, rather than developing a reliable strategy
for obstacle avoidance.

To address these limitations, we propose a new bench-
mark aiming to more reliably assess the path-planning abil-
ity of LLMs. In particular, we target environments with
larger grid sizes (i.e., 25 by 25) and with more geometric
constraints, such as those shown in Fig.[2] The synthetic na-
ture of our benchmark and its flexible experimental setup
allows for the easy generation of novel settings. It can, thus,
serve as a valuable resource for future research on the path-
planning capabilities of LLMs.

Our benchmark and experiments provide insights into the
following research questions (RQs):

* RQI: Can LLMs be used to effectively plan paths in com-
plex geometric environments?

* RQ2: How should the environments be represented?
* RQ3: How should the LLMs be prompted?

Answering RQ1 requires addressing the more fundamen-
tal challenges of RQ2 and RQ3. Specifically, RQ2 targets the
foremost challenge to leverage LLM:s for path planning, i.e.,
how to describe the task environment to the models (called
“task representation”).

The most natural way could be to employ large multi-
modal models (LMMs), such as GPT-4V (OpenAl||2023)),
and feed a snapshot of the environment as the task represen-
tation. However, state-of-the-art LMMs have been found to
have extensive perceptual errors (Mitchell, Palmarini, and
Moskvichev| 2023} Tong et al.[2024; |Yue et al.[[2023). In
our preliminary experiments, GPT-4V was unable to un-
derstand the original task environment. This weakness in
perception, thus, introduces confounding variables that hin-
der our analysis of LMMs’ path-planning capability. Con-
versely, directly verbalizing all of the obstacles in a complex
environment (called “naive enumeration”) is non-optimal, as
it easily leads to overly long prompts, which may not be
easy for an LLM to digest. Observing this challenge, our
work first explores two novel representations, i.e., “‘code rep-



resentation”, which uses a Python code snippet to describe
the process of locating the obstacles on the grid, and “grid
representation”, which is a 2-dimensional string represen-
tation of the full environment (Fig. [T). Intuitively, the code
representation allows for a more compact yet unambiguous
way to describe the environment, while the grid representa-
tion aligns more with human intuition and may thus help the
LLM planning.

LLMs have shown varying levels of performance depend-
ing on how they are prompted (Wei et al.|2022; |Chen et al.
2023b; Mueller et al.|2023). Therefore, our RQ3 looks into
the more effective ways to prompt an LLM for path plan-
ning. Specifically, we consider the naive few-shot prompt-
ing (Brown et al.|2020) as a baseline. Prior work showed
that for an LLM to fully conceptualize a complex environ-
ment, it is crucial to let it directly interact with the envi-
ronment and build a mental image of the space based on
the environment feedback (Yao et al.[2023b). We generalize
the idea to the novel setting of path planning and propose
“Planning with Feedback”, a prompting approach that al-
lows an LLM to execute its partial action sequence, observe
the outcome, and adjust its plan dynamically. Finally, con-
sidering the challenge of planning for a long trajectory, we
also propose “Task Decomposition”, a prompting approach
that decomposes the long-range problem into smaller shorter
segments and then prompts the LLM to complete each of
them one by one. This approach was found helpful in prior
work (Zhou et al.|2023} |Prasad et al.|2023; |[Khot et al.[2023)
but has not been tested in path planning.

RELATED WORK
LLMs as Autonomous Planning Agents

Using LLMs to perform planning has emerged as a promi-
nent theme across several recent studies. For instance, the
work in (Huang et al.|[2022a)) highlighted the potential of
LLMs to serve as planning agents, and SayCan (Ahn et al.
2022) used LLMs to transform natural language instructions
into actionable plans for robotic applications. However, sev-
eral studies argued that LLMs are not well suited for end-
to-end planning tasks (Valmeekam et al.|2023bla; Pallagani
et al.||2023}; |Chen et al.|2023a), despite others demonstrat-
ing that they could be enhanced when augmented with tree
search (Hao et al.[2023;[Zhao, Lee, and Hsul2023; Yao et al.
2023a)) or used with a classic planner (Chen et al.[2023c} Liu
et al.|2023; |Silver et al.|2023; |Kambhampati et al.[2024} Xie
et al.[2023)).

Another promising idea to enhance LLM planning is to
leverage environmental feedback (Yao et al|2023b; [Song
et al.|2023; [Wang et al.|2023; |Sun et al.[|[2023; Raman et al.
2022; |Huang et al.[2022b). We generalize this idea in the
context of path planning and look at how it scales up to plans
that require a longer number of actions.

Furthermore, while natural language may be the most in-
tuitive method for prompting LLMs, it may not always be
an optimal representation for unleashing their full capability.
For instance, in (Lin et al.|[2023)), the authors demonstrated
that using a table representation yields superior performance
on embodied planning tasks, and in (Madaan et al.| 2022}

Mueller et al.|2023} |Chen et al.||2023b; [Puerto et al.|[2024),
authors found that code representations could better elicit
the reasoning capability in LLMs. In this same spirit, we ex-
periment with a novel Python code representation for path
planning, which offers a compact and unambiguous way to
describe the environments as well as the tasks that ought to
be solved. Our observation is consistent with recent work,
which showed the advantage of code representations.

To the best of our knowledge, this work presents the first
exploration of code representation for path planning.

Benchmarks for LLM Path Planning

The potential of LLMs in navigation tasks has been a topic
of interest in recent years. Several embodied datasets (An-
derson et al.|2018}; |(Gordon et al.|[2018; |Shridhar et al.|2020)
have been proposed in the past. However, these datasets in-
troduced additional confounding variables (i.e. vision com-
ponent), which may affect the LLM performance. Text-
only embodied navigation benchmarks (Shridhar et al.[2021}
Coté et al.|2018)) have also been introduced; nevertheless, the
planning required to solve the tasks involves merely plan-
ning over short horizons.

Conducting path and motion planning with LLMs has
gained traction recently (Xiao and Wang|2023; (Chen et al.
2023c; |Ding et al.|[2023} |Chen, Koenig, and Dilkinal[2024)).
To this end, several benchmarks have been proposed. For in-
stance, datasets such as BabyAl (Chevalier-Boisvert et al.
2019) and gSCAN (Ruis et al.|2020; |Qiu et al.|2021) were
proposed to study grounded language learning through 2D
navigation tasks, however, the focus on these tasks was on
linguistic generalization and task understanding, whereas
the planning problems considered are simple and may not
be reflective of the limits to which LLMs can be pushed in
terms of path planning. In a recent technical report (Aghzal,
Plaku, and Yao|2023)), we proposed a benchmark specifi-
cally designed for path planning. However, the task envi-
ronments we considered there were simplistic, consisting of
only random obstacle placements in a small grid size, which
is not reflective of real-world applications. Our work in this
paper fills the gap by proposing a new benchmark dataset
with more complex geometric shapes and larger grid sizes.
Under such more realistic task environments, we systemati-
cally explored different task representations and prompting
approaches for utilizing LLMs for path planning. As such,
we expect our benchmark and experimental results to inspire
future research on this topic.

MATERIALS AND METHODS
Benchmark Data Synthesis

Geometric Environments For our main experiments, we
use N x N grid environments, where N = 25. As shown in
Fig. 2] we create three types of environments: (a) square
mazes, where the agent must navigate through squares with
one opening each and find the correct entrances; (b) rectan-
gular blocks, where the agent faces diverse and irregular ob-
stacles that block its path; and (c) zig-zag mazes, where the
agent has to locate the opening on each horizontal wall and



Naive Enumeration

Generate a path to navigate from the initial location
to the goal location similarly to the examples below.

You are in a 25 by 25 world. There are obstacles that you
‘have to avoid at: (17,11), (17,12), (17,13), (17,14),
(17,15), (17,16), (18,11), (18,12), (18,13), (18,14),

(18,15), (18,16), (19,11),..... Go from (24,19) to (23,15).

Solution: up left left left left

...5 demonstrations. ..

Naive Few-shot Prompts

fGenerate a path to navigate from the initial location
to the goal location similarly to the examples below.

obstacles = []
goal = (23, 15)
initial location = (24, 19)
for i in range(17, 22):
for j in range (11, 16):
obstacles.append ((i,j))

Solution: up left left left left
...5 demonstrations...

Code tion Grid ion

Generate a path to navigate from the initial
location to the goal location similarly to the
examples below. 2 denotes the starting location,
3 denotes the goal location, while 1's denotes
obstacles.

111 111111111111100
111 111111111111100
111 111111111111100
000 000000300000000
000 000000000020000

Solution: up left left left left

...5 demonstrations...

Task description: obstacles = []
You are in a 25 by 25 world. There are obstacles that you goal =] (14)722) 0111111111111110002000000
have to avoid at: (17,11), (17,12), (17,13), (17,14), initial location = (2, 18) 0111111111111110000000000
(17,15), (17,16), (18,11), (18,12), (18,13), (18,14), for i in range (17, 22): 011111111111111211111 1EmN0o0o0
(18,15), (18,16), (19,11),..... Go from (2,18) to [(14,22). for j in range(ll, 16): 0000000000000000000000000
obstacles.append ((i,3)) .
\ Solution: B Solution: 1
. \ Solution: 7
.
e .l. __________ -
( ® GPT-4 - -
1
v |
down left left left [ up up up up [ down down down left left ] 1
1
l Up to
gy N 7 trials

Environmental Feedback

the action leads to (5,16).

-

1
! 1
1 e (g (e ceieem domeh] #Performing the first two actions The path is highlighted using 4's. 1
!|erom (2.18) to (3.18). peforming | 15305 from (2,18) to (0.18) 0111111111111110004000000 1
o) E t | |the 2nd action leads fo the performing the 3rd action leads ]
L~ Executor 1 [poEaclelaEN R pucside the gzid. o111111111112110004000000
I You are now at (3,18) path = [(2, 18), (1, 18), (0, 18)] 0111111111111110444000000]!
| current_location = (0, 18) 1
1

Figure 1: Overview of our planning with feedback prompting method using the different representations. The example shown
is of a rectangular blocks setting. Solutions are highlighted in purple , initial locations are highlighted in blue , while goal

locations are 'highlighted in green . Environmental feedback consists of a warning message (highlighted in pink) explaining

the cause behind failure, and the current status of the agent after performing the actions (highlighted in orange).
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Figure 2: Summary of the different environment types used
in the experiments. The black regions represent the obsta-
cles (walls), while the white space represents free cells. The
figure shows one instance from each of the three types: (a)
rectangular blocks, where certain regions are completely
blocked, (b) square mazes, alternating squares with a single
opening on each square, and (¢) zig-zag mazes, consisting of
horizontal obstacles on alternating rows except one opening.

make frequent turns to reach the goal. For each environment
type, we randomly sample a set of 30 different instances.

These environments provide challenging planning tasks
for LLMs as they have to navigate in narrow passages, avoid
large obstacles, make frequent turns, and take many steps
to reach the goal. This allows us to assess LLMs’ ability
for long-range planning in complex, obstacle-rich, environ-
ments.

Ground-Truth Plan Generation We also aim to assess an
LLM’s ability for length generalization in the context of path
planning (i.e., the ability of LLMs to succeed on paths re-
quiring longer sequences than the demonstrations shown to
them). Accordingly, we generate our planning scenarios of
varying lengths. We adjust these values based on the specific
geometries and the maximum path lengths they allow. We
sample each of the path lengths in Table [T] once from each
environment. We generate the paths for our ground-truth so-
Iutions using the A* algorithm (Hart, Nilsson, and Raphael
1968). We designate instances of each path length as In-
distribution (IID) , i.e., instances of shorter path lengths
similar to the demonstrations shown to the LLM, or Out-of-
distribution (OOD), i.e., tasks involving longer-range plan-
ning compared to the demonstrations observed by the LLM.

Task Representations

Representing complex task environments as prompts for
LLMs is challenging. Prior research overlooked this when
focusing on small planning tasks. To understand the im-
pact of task representation, we analyze three representations
(Fig.[T):
* Naive Enumeration: This is the naive baseline which
simply lists all of the obstacles on the grid. As a result, it
often leads to very long prompts, making it difficult for

an LLM to understand the task.




Table 1: Data Overview: We randomly chose one start and goal pair for every path length across all environments. In total, we

sampled 150 IID and 150 OOD instances per geometric setting.

Path Length Values
Geometry # Env. 11D 00D
Rect. blocks 30 2,5,10,15,20 | 25,30, 35, 40, 45
Square Mazes | 30 5, 10, 15, 20, 25 30, 40, 50, 60, 75
Zig Zag 30 2,5,10,15,20 | 30, 50, 60, 75, 100

* Code Representation: LLMs have shown promise
in a variety of tasks when prompted using
code chen2023program, mueller2023incontext,
madaan2022language, puerto2024code. Hence, we
assess LLMs ability to conduct path planning when the
task specification is provided using a description of the
setting in Python code. To this end, we define variables
specifying the start and goal locations as well as the logic
to place the obstacles on the grid to form the geometric
shape portrayed in the environment. Intuitively, code can
offer a compact yet unambiguous way to define the task
setting.

* Grid Representation: Humans find grid tasks easier with
visual representation. Inspired by this, we evaluated an
LLM’s planning using grids where 1’s denote obstacles,
2 indicates the start, and 3 marks the goal.

Prompting Methodologies

LLMs have shown great ability in learning from few-shot
demonstrations, giving rise to a novel paradigm known as in-
context learning (Brown et al.||2020). However, prior work
also found that LLMs can be sensitive to the specific way
how these few-shot demonstrations are designed (Wei et al.
2022; (Chen et al.|[2023b; Mueller et al.|[2023). In experi-
ments, we compare a total of three prompt designs to under-
stand the potential of LLMs being prompted for path plan-
ning.

* Naive Few-Shot: We explored the naive few-shot
prompting approach from (Brown et al.|[2020), where
an LLM is prompted with a few examples of tasks and
their correct action sequences. The model was given five
demonstrations from the same environment as the test in-
stance, using IID-sampled values.

e Planning with Feedback: Environmental feedback has
been shown to enhance the planning capabilities of
LLMs (Yao et al.[[2023bj |Sun et al. [2023} [Song et al.
2023)). We generalize this idea to path planning by ini-
tially prompting the LLM to generate a plan. Subse-
quently, when a failure is about to occur, we supply feed-
back at the failure point, encouraging the model to con-
tinue its planning from that juncture. The “feedback”
considered in our experiment is a natural language sen-
tence indicating how an LLM’s next action will lead to an
obstacle (Fig. [I)), which simulates how a physical robot’s
local sensor could emit a warning message when the
robot is detected to be close to an obstacle. We allow
up to 7 trials as a trade-off between thorough exploration
of potential solutions and preventing infinite loops and/or

high inference costs.

» Task Decomposition: Recent work (Valmeekam et al.
2023b; |Aghzal, Plaku, and Yao|2023; |Valmeekam et al.
2023a; |Yang and Tomar|2023)) has shown the shortcom-
ings of LLMs in long-horizon planning. On the other
hand, several papers have shown that LLMs’ success on
complex tasks can be improved by decomposing them
into smaller, simpler sub-tasks (Khot et al.|2023} |Prasad!
et al.|2023). As such, we assess GPT-4’s strength in nav-
igation over short horizons by evaluating how it per-
forms if we decompose a long-range planning problem
into multiple simpler problems. Accordingly, we reduce
planning problems into sub-tasks consisting of 5 or fewer
steps. This is achieved by decomposing the ground-truth
solution into sub-steps, providing the LLM with pairs of
initial and goal locations of each sub-problem, and as-
sessing whether it can solve all of the sub-problems.

Finally, we note that the popular approach of Chain-of-
Thought (CoT) (Wei et al.|2022), though effective in short-
horizon planning tasks, is not practical in our context. As
the tasks in our setting require reasoning over long trajec-
tories, this step-by-step reasoning becomes both costly and
inaccurate.

Model and Implementation

We experiment with GPT-4 using a variety of prompting
techniques and representations. We access the “gpt-4-turbo”
version of the model through the OpenAl APIJ'| We set the
temperature to 0 to encourage the results to be reproducible.
In addition, we limit the generation output to 200 tokens for
all experiments. We provide our code and prompt examples
on GitHub to enable experiment replication Our bench-
mark to designed to be extensible, accommodating new ge-
ometric settings, for researchers wishing to further explore
the topic.

Evaluation

We evaluate the performance of an LLM in path planning us-
ing the following metrics: (1) Success Rate (%), which mea-
sures the proportion of paths that successfully navigate from
the starting point to the designated goal. We note that for this
case, if the goal is reached before executing the full path,
then it is marked as a success; (2) Optimal Rate (%), repre-
senting the proportion of paths that are of the same length
as the ground truths calculated using A* (Sec. ); (3) Exact

Unttps://openai.com/blog/openai-api
2Qur code, data and prompt examples can be found on the fol-
lowing link


https://openai.com/blog/openai-api
https://github.com/MohamedAghzal/llms-as-path-planners

Match Accuracy (%), the proportion of paths that precisely
match the ground-truth plan calculated in advance. Note that
for the two maze environments, exact match accuracy al-
ways equals the optimal rate. However, for a rectangular
block environment, there could exist multiple optimal paths,
hence its Exact Match Accuracy is a more strict metric than
its Optimal Rate.

RESULTS AND ANALYSIS

In Fig. 3] we present the results when different prompt
methodologies are combined with various task representa-
tions when prompting an LLM for path planning.

Planning with Different Task Representations

Describing tasks using code is promising: GPT-4 gener-
ally performs better when prompted with the code represen-
tation. This is consistent with previous work, which suggests
that LLMs can conduct better reasoning when prompted us-
ing code (Mueller et al.|2023;; (Chen et al.|[2023b). The com-
pactness of the code representation can also be used to ex-
plain this improvement. As shown in Table 2] code can pro-
vide the task specification using significantly fewer input to-
kens, when compared to naive enumeration. Nevertheless,
this method has a drawback: the requirement for manually
designing a template to describe tasks according to the de-
picted geometry.

Naive enumeration falls short: Having to list all of the
obstacles can lead to long prompts, which, in turn, results in
a longer context window for the model, which hinders LLM
performance. Performance in square maze environments is
the lowest with naive enumeration, due to the higher number
of obstacles, as Table [2]indicates.

LLMs fail to conceptualize 2-dimensional grids: Per-
formance with grid representation was notably poor, with
GPT-4 often generating random sequences that failed to di-
rect the LLM agent correctly. This is contrary to human in-
tuitions as we often prefer developing an overview image of
the environment before making a plan. This issue may stem
from LLMSs’ sequential input processing, making the two-
dimensional task specification ill-suited for LLMs.

Planning in Different Geometries

Planning is easier in rectangular block environments:
Fig. [ showcases superior performance in terms of success
rate on rectangular block environments across all represen-
tations. This type of environment was easier to navigate for
the agent. This is because the environments under this de-
sign are typically less complex, and multiple paths can be
taken to reach the goal. The two maze environments were
harder for the agent to navigate, across all representations.
This highlights that environmental complexity plays an im-
portant role in the LLMs capability to plan.

Long-horizon planning is more difficult in complex en-
vironments: The lower performance in the two maze envi-
ronments offers insights into what decides the difficulty of a
“planning” task. For instance, navigating 10 steps horizon-
tally is not necessarily a more difficult task than a scenario
involving moving 5 steps to reach a goal two levels down

(e.g. left down right right down). This further highlights the
need for evaluating LLMs planning in cases that pose a chal-
lenge not solely from a temporal planning axis, but also un-
der different geometric settings. We notice that GPT-4’s per-
formance drops more rapidly in zig-zag environments. This
can be explained by the nature of navigation in this environ-
ment, which typically requires making more frequent turns
to go from the initial to the goal locations. Task decomposi-
tion often fails on the sub-tasks for making such turns. This
highlights GPT-4’s shortcomings in dealing with complex
geometries, even in short-sighted scenarios.

Length Generalization with Different Prompt
Methods

GPT-4 struggles to strategize over long-horizon paths:
In Fig. 3] we can observe a drop in performance as we in-
crease the path lengths. This highlights GPT-4’s inability to
plan over longer trajectories. Reducing the long planning
problem into smaller sub-segments helps improve general-
ization in rectangular block environments because problem
decomposition in this case leads to simpler geometries. As
the rectangular blocks form random regions across the grid,
oftentimes, the optimal ground-truth paths are across regions
consisting of mostly free space. Exposing points from such
a plan prompts the model to solve sub-tasks involving fewer
obstacles. Decomposition based on length does not achieve
this in the two maze environments; as the obstacles under
these settings are evenly distributed across the grid.

GPT-4 shows promise as a short-sighted planning
agent: Task decomposition showcases enhanced perfor-
mance compared to the other methods on long trajectory sce-
narios. This showcases LLMs’ ability to solve short-sighted
planning tasks in our environments. This highlights the po-
tential for incorporating GPT-4 in frameworks that require
the LLM to conduct localized decision-making.

Feedback is useful, particularly in rectangular blocks:
Allowing GPT-4 to interact with the environment and ob-
serve the effect of its actions shows promise, particularly in
rectangular block environments. This showcases that GPT-
4 can guide the agent in the correct “general” direction and
can recover by providing a new plan in case it encounters
an illegal action. Nevertheless, this technique still fails on
OOD path lengths. The success in shorter tasks is a result
of implicitly solving multiple smaller subproblems. Longer-
horizon tasks would require breaking the problem down into
more than seven subtasks (i.e. more than 7 interactions with
the environments). As such, increasing this value may offer
improvements, but this can incur high inference costs.

Optimal Planning

GPT-4 is unable to find the optimal strategy: As can be
seen from the optimal rate metric, the LLM struggles to find
the optimal path in almost all instances. Upon examining
the model’s outputs, we notice that it opts for unnecessarily
long trajectories, even in cases where the goal is within close
range. Curiously, a common trend across the paths adopted
by the model in successful cases tends to resemble a back-
tracking approach where the agent tasks several steps in a
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Figure 3: Path planning performance (y-axis) achieved using different prompt methodologies as a function of the ground-truth
path length (x-axis). Experiments were conducted in 25 x 25 rectangular blocks (first row), rectangular mazes (second row),
and zig-zag mazes (third row), respectively. The performance using different task representations is highlighted from left to
right as a) Naive enumeration, b) Code representation, and c) Grid representation.

certain direction only to return and take a different route.
For instance, for a case where the correct path is “right up”,
the model predicts “down down down up up up up right”.
This pattern may be because the model fails to identify the
placements of entrances and obstacles on the grids.

GPT-4 is not mimicking the patterns in the few-shot
demonstrations: The paths produced by the model differ
greatly from the ground-truth plans, as can be seen in the dis-
crepancy between the success rate and exact match scores.
This indicates that the strategy adopted by the model is not
the same as the one portrayed in the few-shot demonstrations
(A* search). This highlights the complexity of leveraging in-
context learning in tasks that require algorithmic problem-
solving and spatio-temporal reasoning. As this is an opti-
mization problem, the algorithmic pattern may not be eas-
ily extracted from the few-shot demonstrations. Prompting
with reasoning patterns that trace the algorithm (e.g., CoT
(Weit et al.[2022)) may improve in this regard in short-term
planning settings. However, as the number of steps increases
this approach becomes inaccurate and inefficient. Our pre-
liminary experiments show that the LLM fails to localize it-
self correctly on the grid and generates inaccurate reasoning

chains when using CoT for our long-range planning prob-
lems.

Ablations and Error Analysis

Planning in Smaller Grids We look into whether the grid
size plays a role in the ability of the LLM in path planning.
Accordingly, we follow a process similar to the one used
in Sec. to generate 15x15 zig zag environments. We use
2,5, 10, 15 and 20 as in-distribution values, while out-of-
distribution length generalization is evaluated using values
25, 30, 40, 50 and 60. We then run naive few-shot prompting
with all three task representations. Results are showcased in
Fig. ] We notice relative improvements across all represen-
tations, particularly on short-term planning scenarios, indi-
cating that LLMs are better at planning over shorter horizons
and more simplistic environments. We observed enhance-
ments in naive enumeration, likely because this scenario in-
volves listing fewer obstacles.

Distance to Goal Scores To assess cases of failure, we an-
alyze the performance of Task Decomposition. We introduce
an additional metric, Distance to Goal, defined as the aver-
age number of actions needed for the LLM agent to move



Table 2: Average number of input tokens needed to provide the task specifications for each representation

Task Representation | Rect. Blocks Square Mazes Zig Zag
Naive enumeration 13,734 21,360 18,063
Code representation 1,964 4,336 2,316
Grid representation 3,365 3,410 3,402

Naive enumeration

Code representation

Grid representation

0.8 0.8

" 0.5
) \
0.6 i\ 0.6 \ 0.4+ \
A m_\ \
> \ -\ \ 0.3 1
N 0.4 3 0.4 W\
(=] AN
N ‘i 0.2 \
0.2 0.2 N\ .
\ 0.1
N\
- LR B
0.0 1 —B—— - - - 0.0 4 ~E—a———— - . - 001 W--B--E-E—EE W -
0 10 20 30 40 50 60 0 10 20 40 50 60 0 10 20 30 40 50 60

—— Naive few-shot Success Rate -3 Naive few-shot Exact Match - Naive few-shot Optimal Rate

Figure 4: Path planning performance achieved on 15X 15 zig-zag mazes environments. In cases where only the optimal rate is

shown, the exact match and optimal rate values are identical.

Table 3: Average distance to goal for incorrect instances (IID/OOD).

Task Representation | Rect. Blocks Square Mazes Zig Zag
Naive enumeration 5.98/7.02 5.89/6.87 6.98/8.29
Code representation 7.09/7.03 5.57/6.59 7.43/8.40
Grid representation 8.94/8.87 6.83/7.12 8.03/8.92

from its last valid position to the goal location for each sub-
task, calculated using the A* algorithm. We compute the dis-
tance to goal scores on the instances that are not solved by
Task Decomposition and report an average over the number
of sub-tasks. The results are presented in Table

GPT-4 often fails to lead the agent in the right direc-
tion: The average distances in failed cases exceed the maxi-
mum initial distance of 5. This points to the fact that GPT-4
tends to lead the agent to positions further away from the
goal. This may also be a consequence of the model’s inabil-
ity to plan optimally.

Planning using the grid representation leads to more
serious failures: The distances using the grid represen-
tation are significantly higher, significantly exceeding the
maximum initial distance of 5. This further suggests that this
representation is not understandable to the model.

Failures in zig-zag mazes are more significant: We
notice that the distance to goal scores in zig-zag mazes
are higher across all representations. This further highlights
LLMs struggle to deal with this type of environment, and
GPT-4’s inability to produce paths that require making fre-
quent turns. This, in turn, suggests that GPT-4 fails to per-
form any advanced level spatial planning/reasoning.

CONCLUSIONS

In this paper, we evaluate the ability of GPT-4 to plan
through the lens of “path planning” tasks in complex geo-
metric settings, using a variety of task representations. Our

findings highlight the potential of leveraging code to pro-
vide the environment description. Decomposing a planning
problem into multiple short-term planning subtasks yields
promising performance. Nevertheless, performance remains
subpar on long-range planning and the LLM failed to pro-
vide the optimal path in the vast majority of instances; high-
lighting key limitations in LLMs capability for plan gen-
eration. Addressing these issues by integrating specialized
path-planning algorithms within an LLM framework can
open the door to many applications in robotics and beyond.
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