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Abstract

Recent studies have revealed the vulnerability of graph neu-
ral networks (GNNs) to adversarial poisoning attacks on node
classification tasks. Current defensive methods require substi-
tuting the original GNNs with defense models, regardless of
the original’s type. This approach, while targeting adversar-
ial robustness, compromises the enhancements developed in
prior research to boost GNNs’ practical performance. Here
we introduce GRIMM, the first plug-and-play defense model.
With just a minimal interface requirement for extracting fea-
tures from any layer of the protected GNNs, GRIMM is thus
enabled to seamlessly rectify perturbations. Specifically, we
utilize the feature trajectories (FTs) generated by GNNs, as
they evolve through epochs, to reflect the training status of
the networks. We then theoretically prove that the FTs of
victim nodes will inevitably exhibit discriminable anoma-
lies. Consequently, inspired by the natural parallelism be-
tween the biological nervous and immune systems, we con-
struct GRIMM, a comprehensive artificial immune system for
GNNs. GRIMM not only detects abnormal FTs and recti-
fies adversarial edges during training but also operates ef-
ficiently in parallel, thereby mirroring the concurrent func-
tionalities of its biological counterparts. We experimentally
confirm that GRIMM offers four empirically validated ad-
vantages: 1) Harmlessness, as it does not actively interfere
with GNN training; 2) Parallelism, ensuring monitoring, de-
tection, and rectification functions operate independently of
the GNN training process; 3) Generalizability, demonstrat-
ing compatibility with mainstream GNNs such as GCN, GAT,
and GraphSAGE; and 4) Transferability, as the detectors for
abnormal FTs can be efficiently transferred across different
systems for one-step rectification.

Extended version — https://arxiv.org/abs/2412.08555

1 Introduction
Graph neural networks (GNNs), benefitting from the mes-
sage passing (MP) strategy, have achieved remarkable suc-
cess in node classification tasks (Wu et al. 2021). However,
GNNs are easily poisoned by imperceptible adversarial per-
turbations (i.e., inserted/deleted edges) on graph structure
during their training phase (Li et al. 2021; Zheng et al. 2021;
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Wang and Gong 2019; Xi et al. 2021; Meng et al. 2023; Wu
et al. 2022). Even slight but deliberate perturbations 1 in-
troduced to the training set can poison the target GNN, and
then rewire the MP pattern driven by the poisoned GNN,
to further misclassify nodes to the target categories (Dai
et al. 2018; Zügner, Akbarnejad, and Günnemann 2018).
This may lead to critical issues in many application ar-
eas (Che et al. 2020; Chaturvedi and Garain 2021; Katzir
and Elovici 2021; Liu, Akhtar, and Mian 2020), including
those where perturbations undermine public trust (Kreps and
Kriner 2020), interfere with human decision making (Walt,
Jack, and Christof 2019), and affect human health and liveli-
hoods (Samuel et al. 2019). More seriously, it’s proved that
non-robust GNNs are inevitably poisoned once adversaries
take them as the target (Liu et al. 2022).

A plethora of robustness models aim to enhance pro-
tected GNNs with add-on functions to defend against edge-
perturbing attacks, which causes the unavoidable dismissal
of the original inner function of the non-robustness GNNs.
As representative examples: (1) RGCN (Zhu et al. 2019)
replaces the hidden representations of nodes in each graph
convolutional network (GCN) (Kipf and Welling 2017) layer
to the Gaussian distributions, to further absorb the effects of
adversarial changes. (2) GCN-SVD (Entezari et al. 2020)
combines a singular value decomposition (SVD) filter prior
to GCN to eliminate adversarial edges in the training set. (3)
STABLE (Li et al. 2022) reforms the forward propagation of
GCN by adding functions that randomly recover the roughly
removed edges. (4) EGNN (Liu et al. 2021) leverages graph
smoothing techniques based on transductive model PPNP
& APPNP (Gasteiger, Bojchevski, and Günnemann 2018),
to confine the permutation setting space, effectively exclud-
ing the majority of non-smooth permutations. (5) GRN (Liu
et al. 2024) incorporates local signals into the central node’s
representation to improve resonance-based robustness.

Unfortunately, deploying these defense models requires
(partially or completely) replacing the original GNN, in-
evitably leading to the loss of its custom functions and fea-
tures. In practical applications, diverse GNNs, such as GCN,
graph attention network (GAT) (Veličković et al. 2017), and
GraphSAGE (Hamilton, Ying, and Leskovec 2017), are de-

1We prioritize defense against graph structure attacks due to
their heightened destructiveness compared to feature attacks.



signed for various tasks according to differentiated require-
ments. For instance, a node classification task in large graphs
relies on inductive frameworks such as GraphSAGE, instead
of transductive frameworks such as GCN. However, GCN-
based defending models discards the generalizability of in-
ductive frameworks, leading to excessive time spend. This
approach sacrifices the efforts made by previous research to
enhance GNNs’ practical performance.

The examination of the issue necessitates the integration
of a non-disruptive, plug-and-play defensive mechanism.
The core challenge lies in identifying a describable anomaly
pattern that is directly related to the data and independent of
the model architecture.

For this challenge, we theoretically demonstrate that the
manifestation of anomalies in the MP of a compromised
GNN is discernible. This is substantiated by the observ-
able differences in the feature trajectories (FTs) of attacked
versus non-attacked nodes throughout the training process.
These trajectories provide a detectable interface for the im-
plementation of external defensive strategies.

However, formulating anomalous trajectories of node fea-
tures is possible, yet capturing these observable antibody
behaviors remains challenging attributes to two primary is-
sues: 1) Abnormal trajectories are aggregated by illegal mes-
sages that are hide inside GNNs and pass along the edges of
the graph throughout the training epochs. Due to the non-
Euclidean nature of graphs, monitoring fine-grained (in-
cluding node- and edge-grained) MP and converting them
into computable Euclidean tensors is almost intractable,
much less capturing these illegal messages. This problem
is even more pronounced in some transductive GNNs (such
as GCN). 2) Sufficient samples of illegal messages can only
be obtained after the GNN is already poisoned, and these
samples are non-transferable due to the randomness of the
adversaries, resulting in the inability of the classifier to pre-
dict the universal pattern of illegal messages.

In addressing this challenge, we have identified a biolog-
ically inspired method. Our research indicates that mimick-
ing the mechanism by which the human immune system
(HIS) detects viruses (Kipnis 2016) serves as an efficacious
strategy for the issues delineated previously. This efficacy is
ascribed to the synergistic interaction between the HIS and
the human nervous system (HNS). The HNS, serving as a bi-
ological prototype for neural networks (Morton, Schlichting,
and Preston 2020), collaborates with the HIS to safeguard
the human body against invasive viral antibodies (Brodin
and Davis 2017), without inducing mutual harm (Kenney
and Ganta 2014).

Therefore, it is intuitive that capturing the distributed il-
legal messages and rectify them in parallel by imitating the
mechanism of HIS. Here we propose GRIMM which inherits
the merits of the HIS: Harmless. GRIMM does not actively
intervene with the inner function of the protected GNN. It
is a plug-and-play system in practical applications. Parallel.
GRIMM detects adversarial edges and rectifies the perturbed
graph parallel with the protected GNN during its training
phase. Generalizable. GRIMM can cooperate with the main-
stream GNNs such as GCN, GAT and GraphSAGE while
fully maintaining their original inner functions. Transfer-

able. GRIMM can improve its defending ability by inter-
system information from another system.

In practical application, initially, GRIMM is integrated
into any layer of the protected GNNs before training be-
gins. It computes the feature trajectories (FTs) of nodes
and edges in real-time from this layer’s outputs, transform-
ing global message passing in non-Euclidean geometry into
computable tensors within Euclidean space. This enables
global monitoring of the target. GRIMM then starts train-
ing simultaneously with the target GNN. Given the hyper-
parameters of the target GNN, GRIMM systematically gen-
erates potential detectors from feasible FTs. It evolves these
FTs into detectors by selecting a subset of reliable FTs and
inversely detecting anomalies within the target. In the final
training phase, these detectors identify adversarial edges and
correct perturbations in the database in real-time. This pro-
cess runs concurrently with GNN training, ensuring a clean
dataset and a well-trained GNN at completion.

Our contributions are:
• To the best of our knowledge, we propose the first plug-

and-play defense model against poisoning attacks.
• We theoretically demonstrate that nodes under attack

form discriminable FTs.
• We reconstruct the implementation of the HIS specifi-

cally for graph learning scenarios.
• We systematically evaluate our proposed defense model

on real-world datasets.

2 Preliminaries
Message Passing GNN We consider connected graphs
G = (V, E) consisting N = |V| nodes, where E is the set
of edges. Let A ∈ {0, 1}N×N be the adjacency matrix. Let
generic symbol L be the Laplacian in its broadest sense. De-
note the GNN’s number of layers as L and the feature di-
mension of its ℓth layer output as dℓ. The feature and one-hot
label matrix are Z ∈ RN×d0 and Y ∈ RN×dL respectively.
The edge connected nodes vi and vj is (vi, vj) or (vj , vi).
The neighborhood Ni of node vi consists of all nodes vj for
which (vi, vj) ∈ E . Let degi be the degree of node vi. The
feature vector and one-hot label of node vi are zi and yi.

Feature Trajectories (FTs) Formed by MP GNNs are
vulnerable to poisoning attacks that subtly introduce pertur-
bations, manifesting progressively across training epochs.
This gradual emergence suggests that oscillatory trends in
node signals across GNN layers might reveal latent adver-
sarial edges. Our analysis concentrates on the evolution of
output features at layer ℓ, represented by zi,ℓ for each node
i in V . To capture this evolution, we incorporate a temporal
dimension, denoting the feature of node i at the t-th epoch at
layer ℓ as z(t)i,ℓ and the collective features at this layer as Z(t)

ℓ .

Initially, z(0)·,ℓ and Z
(0)
ℓ capture the baseline state of features.

The trajectory of z(t)i,ℓ in Rdℓ is described by:

Ti,ℓ = [z
(0)
i,ℓ , z

(1)
i,ℓ , . . .]. (1)

Section 3.2 discusses how deviations in Ti,ℓ indicate attacks,
aiding in corrective measures.



LayerLayer

Layer Layer Layer 

GNN

loss e
p
o

c
h
 1

e
p
o

c
h
 2

e
p
o

c
h
 3

e
p
o

c
h
 4

Back propagation

xx
interface

LayerLayer

Node FTs 

Edge FTs

detectors

x

Perturbed graph

x

Perturbed graph

Fine-grained MP 

Suspected  
subgraph
Suspected  
subgraph FeatureFeature

Reliable 
subgraph
Reliable 
subgraph

Inserted 
edge
Inserted 
edge

Feasible trajectory generator

Real-time Monitor
R

eco
n
stru

ct

Rectify

GNN learning Integration for trajectories Monitoring and rectification

Figure 1: The general workflow of GRIMM.

Feature aggregation through edges is pivotal in GNN
learning. During the message passing from epoch t to t+ 1,
the feature quantity transmitted between nodes i and j af-
fects z

(t)
i,ℓ and z

(t)
j,ℓ , although each node’s feature also re-

flects contributions from all adjacent edges. For edge (i, j),
the features transmitted at epoch t at layer ℓ are denoted
as z

(t)
(i,j),ℓ or z(t)(j,i),ℓ, indicating bidirectional feature flow in

undirected graphs. The trajectory of features on the edge
(i, j) at layer ℓ evolves as: T(i,j),ℓ = [z

(0)
(i,j),ℓ, z

(1)
(i,j),ℓ, . . .].

The method for obtaining FTs is detailed in the Appendix C.

Mechanism of Identifying Viruses in the HIS The
mechanism for virus identification in the HIS is efficiently
replicated in the domain of artificial immune systems
(AIS) (Dasgupta 2006) for viruses detection. The core pro-
cesses of AIS and the corresponding elements in GRIMM
(indicated within parentheses) are: 1) Creation of Immune
Cells (feasible FTs): Immune cells are generated indiscrim-
inately to counter all possible antigens. 2) Elimination of
Redundant Cells (reliable FTs): Immune cells responsive to
benign antigens are eradicated. 3) Virus Detection: Active
immune cells (detectors) undertake the detection of viruses.
4) Vaccine (transferred detectors) Production: Functional
immune cells synthesize vaccines, which are then dissem-
inated across various human immune systems for broader
protection. Note that AIS primarily as a conceptual tool to
integrate HIS strategies rather than as a direct implementa-
tion method.

3 The Proposed Model
3.1 Overview
The primary workflow of GRIMM encompasses 3 stages:
▶ Integrate FTs: This involves interfacing with a certain

layer of the protected GNN to monitor the feature trajecto-
ries of all nodes and edges at that layer. Specifically, for a
given layer ℓ and nodes i, j, it aims to acquire real-time up-
dated Ti,ℓ and T(i,j),ℓ.

▶ Detect abnormal FTs: This phase is dedicated to iden-
tifying abnormal edge FTs, formalized as finding a classifier:

Iedge : {T(i,j),ℓ : ∀(i, j) ∈ E} → {normal, abnormal} (2)

Edges classified as “abnormal” are suspected of attacks.
▶ Rectify perturbations: Post the detection of abnormal-

ities, the identified perturbations are rectified upon, inform-
ing further rectifications.

Motivation During the training phase of GNN, node rep-
resentations dynamically evolve, forming trajectories in an
equidimensional feature space. We hypothesize that these
trajectories can reveal adversarial entities through the ob-
served behaviors of antibodies. To investigate, we replicate
a poisoning attack on a GNN, employing the Metattack
methodology (Zügner and Günnemann 2018) on a 4-layer
GCN with the Cora dataset. We introduce a frozen decoder
(mapping from Rdi to R) to the penultimate hidden layer of
the GCN to capture one-dimensional features of this layer.
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Figure 2: FTs of attacked vs. non-attacked nodes.

The decoder distinguishes the trajectories of nodes under
attack (maliciously misclassified) from those not targeted
(correctly classified) during the GCN’s training. These tra-
jectories, along with the methodology and results, are pre-
sented in Figure 2. It is evident that adversarial edges induce
distinctive trajectory patterns in their adjacent nodes, unlike
non-attacked nodes. This observation underscores the poten-
tial of AIS in detecting and intercepting these illicit commu-
nications within the network.



3.2 Theoretical Foundations
FTs’ Discriminability We first fortify the observations
noted in Section 3.1 (Motivation) with a theoretical foun-
dation through the following theorem:
Theorem 1: Consider a GNN undergoing a poisoning at-
tack. Let Vadv and Vnon respectively denote the sets of nodes
with categories that have been compromised and those that
remain uncompromised, The following classification func-
tion exists for all layer ℓ:
Inode : Ti,ℓ → {Tj,ℓ, Tk,ℓ}, s.t.: ∀i ∈ V, ∀j ∈ Vadv,∀k ∈ Vnon.

(3)
That is, FTs of attacked and non-attacked nodes are discrim-
inable.

Proof in Appendix D. This conclusion unveils an in-
evitable consequence of the attack: once an attack occurs,
the FTs inevitably reveal the malicious activity. This finding
lays the theoretical groundwork for detecting abnormal FTs.

Lower bound of FTs’ inner products Given the opera-
tion of the MP process under M(·) with predefined hyperpa-
rameters such as the learning rate η, the fluctuation in node
signal magnitudes is inherently constrained. This constraint
ensures predictability in the oscillation range of node signals
across E , regardless of edge distribution.

Drawing on insights from Theorem 1, we observe that sig-
nal trajectories tend to stabilize during training. This stabil-
ity is demonstrated by the limited spatial angle between di-
rection vectors across successive epochs, implying that the
inner product of these vectors meets a minimum threshold.
Specifically, for node i, consider:

γnode
i,ℓ = (z

(t+1)
i,ℓ − z

(t)
i,ℓ ) · (z

(t+2)
i,ℓ − z

(t−1)
i,ℓ ),

γedge
(i,·),ℓ = (z

(t+1)
(i,·),ℓ − z

(t)
(i,·),ℓ) · (z

(t+2)
(i,·),ℓ − z

(t−1)
(i,·),ℓ), (4)

we have the following proposition.
Proposition 1: Let P(Zℓ−1; E) = L(LZℓ−1Z

⊤
ℓ−1)

⊤)⊤ be
a modular MP model, J be ones matrix, and (·)◦−1 be
Hadamard inverse. At the end of the tth epoch, for any node
i and layer ℓ, we have

γnode
i,ℓ ≥ λ and γedge

(i,·),ℓ ≥ λ, s.t.,

λ = η2 max
k

∥((P(Zℓ−1; E))((J−LZℓ−1W
(t)
ℓ )◦−1−Y))k,·∥22,

(5)

Proof in Appendix E. Note that we only gives the mathe-
matical bound for GCN since its a non-intuitive transductive
message passing model. Bound of GAT and GraphSAGE are
assigned as a empirical constant.

3.3 Detecting Abnormal FTs and Rectifying
Perturbations

The essence of detecting abnormal FTs lies in obtaining de-
tectors for these abnormal FTs based solely on reliable FTs.
This process unfolds in two steps:

1) Under the constraints set forth in Proposition 1, exhaus-
tively enumerate all feasible FTs. 2) Eliminate those FTs that
exhibit a relatively small mean squared error (MSE) in com-
parison to the reliable FTs. The remaining entities constitute
effective detectors.
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Figure 3: The general workflow of the trajectory generator.

A Cyclic Self-Supervised Generator of FTs Feasible tra-
jectories are constrained by Proposition 1. The FT generator
creates valid trajectories. However, pre-training trajectory
generation is impractical due to dynamic adversarial inter-
vention in MP of GNNs. Thus, synchronous real-time gen-
eration is essential as training epochs progress, as illustrated
in Figure 3.

Figure3 outlines two processes: training and genera-
tion, indicating the generator’s self-training and cyclic
real-time direction vector output based on the previ-
ous epoch’s vector. Specifically, for a valid vector v,
at layer p and epoch e, the optimal generator G(·; θ)
with trainable weights θ executes G(v; θ) · v ≤
γnode
i . This requires first training G(·) by addressing

the self-supervised loss derived from Proposition1, i.e.,
minθ

(
Sigmoid(G(noise; θ) · noise)− γnode

i

)
, where noise is

randomly sampled noise. Then, for a target trajectory length
ϱ, the trained generator yields a vector set:

[T init, G(T init; θ), G(G(T init; θ); θ), . . .], (6)

where T init is the initial direction vector. Finally, detectors
are reconstituted by generated vector sets. The generator
continues to produce feasible trajectories until sufficient,
i.e., they almost span the entire feasible domain of FTs.

Producing detectors Using Negative Selection Algorithm
(NSA) The NSA posits that the elimination of normal
samples from all feasible samples results in a detector Tdet
for abnormal samples. We have demonstrated the feasibil-
ity of this approach for FT samples in Section 3.2 (The-
oretical Foundations). In other words, by simply discard-
ing those feasible FTs generated by the generator, which
have a MSE with reliable FTs less than a given threshold ρ
what remains are effective detectors for abnormal FTs. This
method is straightforward yet intuitive. In the training phase
of GNNs, the dimensionality of FTs increases as the num-
ber of training epochs t increases. Hence, we define check-
points; detectors are generated when the epoch reaches this
point. Between two checkpoints, we only monitor the GNN
without taking specific actions, until the epoch reaches the
next checkpoint. The set of detector is denoted as T.

Detecting Detecting abnormal FTs. The determination
of whether a FT is abnormal is contingent upon its average
MSE in relation to all detectors. If this average MSE falls be-
low the threshold ρ, then the FT in question is classified as



an abnormal FT. In other words, given the layer ℓ, the func-
tion Inode, as delineated in Theorem 1, can be instantiated
as

∀i ∈ V, Tdet ∈ T, Inode(Ti,ℓ) =

{
Tadv, MSE(Ti,ℓ, Tdet) ≤ ρ

Tnon, otherwise,
(7)

where Tadv and Tnon are FTs formed on the attacked and non-
attacked nodes. Detecting inserted edges. As adversarial
edges pass illegal messages which may mislead the classi-
fication of the target nodes, the node FTs on their directly
connected node will act abnormally. Therefore, we can iden-
tify inserted edges according to the abnormal node FTs. As
shown in Figure 4.(a), for each Ti, we query the trajecto-
ries Ti,(i,j) of edges which directly connect to node i where
(i, j) ∈ E . If any abnormal trajectories Ti,(i,k) exist, the edge
(i, k) is detected as the inserted edge. Detecting deleted
edges. Similar to the aforementioned analysis, if all trajec-
tories of edges connect to node i are normal, while the FT
of node i is abnormal, we can confirm that one of the edges
should be connected to node i is deleted. Then, as shown
in Figure 4.(b), aiming at locating the deleted edge (i, o),
G′ can be rectified circularly until the trajectory on (i, o)
is identified as normal FT, i.e., if Ti,(i,o) is abnormal, edge
(i, o) is detected as the deleted edge.

① Normal 
      node FT

② Deleted edge

① Abnormal 

     edge FT

② Inserted edge
Query

Abnormal node FT

(a) (b)

Figure 4: The detection method for adversarial edges.

Rectifying perturbations Once the adversarial edge is
detected, GRIMM rectifies the perturbed graph and mean-
while does not terminate the training process. However, the
model is still poisoned to a certain extent despite some
adversarial edges on the graph are rectified immediately.
Therefore, after rectifying, we rollback the version of the
trainable matrix W to the previous δ epochs, to thus reduce
the harm caused by the rectified adversarial edges. For in-
stance, if an edge is detected as the inserted edge in epoch
t, the perturbed graph G′ is rectified as G′

r,t = {Z, E ′
r,t} by

deleting the corresponding edge. In the experiments, we find
that rolling back of W will cause drop in accuracy during
the training phase. Then, the limited lower accuracy caused
by the adversarial edges will be broken through after several
epochs. Pseudo-code of GRIMM is provided in Appendix B.

4 Experiments
The effectiveness of GRIMM is evaluated under multiple
aspects including: 1) global accuracy, 2) harmlessness, 3)
transferability, 4) interface position, 5) sensitivity of MSE’s
threshold, and 6) runtime comparison of robust functions,
and 7) internal rectification details (c.f. Appendix A).

Datasets. Our approaches are evaluated on six real-world
datasets widely used for studying graph adversarial at-
tacks (Liu et al. 2022, 2024). These datasets are two types:
Small graphs, which include the citation datasets Cora and
Citeseer, as well as Polblogs, representing social networking
data. Large graphs, which include Brain(Wang et al. 2017),
Pubmed, and Reddit(Hamilton, Ying, and Leskovec 2017).
For each dataset, we randomly partitioned 1/10th of the re-
gion to serve as a reliable subgraph, ensuring the absence
of perturbations within this designated area.

Baselines. The proposed GRIMM model not only protects
non-defense GNNs against poisoning attacks but also sur-
passes other defense models. Baseline models are catego-
rized into three groups:

Non-defense GNNs. To illustrate GRIMM’s efficacy
against edge-perturbing attacks, we selected representative
GNNs: 1) GCN, a prevalent architecture, 2) GAT, a typical
GNN variant, 3) GraphSAGE, effective in aggregating spa-
tial features.

Comparison defending models. We benchmark GRIMM
against defense models: 1) RGCN, using Gaussian distribu-
tions to mitigate adversarial impacts, 2) GNN-SVD, employ-
ing a truncated SVD for adjacency matrix approximation, 3)
Pro-GNN, focusing on intrinsic node properties for robust-
ness, 4) Jaccard (Wu et al. 2019), based on Jaccard similar-
ity for defense, 5) EGNN, filtering perturbations via ℓ1- and
ℓ2-based graph smoothing.

Attack methods. Experiments consider attack strate-
gies: 1) Metattack, a meta-learning based approach, 2)
CLGA (Sixiao et al. 2022), an unsupervised tactic, 3) RL-
S2V (Dai et al. 2018), leveraging reinforcement learning.

All experiments were conducted using an NVIDIA RTX
4080s GPU, an Intel i7-14700-KF CPU, and 64GB of RAM.

Accuracy After Rectification Here we evaluate the
global classification efficacy of GRIMM by applying Metat-
tack to disrupt target models and measuring the post-training
classification accuracy, with results documented in Table 1.
The evaluation captures outcomes for models shielded by
GRIMM after global rectification and once model loss sta-
bilizes. The mean accuracy and its deviation are presented.
Observations indicate that GRIMM effectively protects non-
defense GNNs under attacks and outperforms leading robust
GNNs, with few exceptions: 1) In the Pubmed dataset at
pr = 10%, EGNN, using graph smoothing for enhanced ad-
versarial robustness, handles localized perturbations effec-
tively, but such scenarios are infrequent and GRIMM’s accu-
racy improves as pr increases. 2) For the Polblogs dataset at
pr = 0%, GRIMM slightly lags behind Pro-GNN by 0.32%.
However, as pr increases, GRIMM-protected models show
the smallest decline in accuracy among baselines, maintain-
ing a leading position.

In non-adversarial settings (pr = 0%), rectification aims
to boost accuracy by optionally modifying edges, as no
changes are needed for a clean graph. When reliable FTs are
unattainable due to the absence of a dependable subgraph on
G′, we base our experiments on reliable FTs recommended
from an exogenously reliable subgraph perturbed at a 20%
rate, achieving high accuracy.



Dataset pr
Unprotected models Non-symbiotic defending models Protected by GRIMM Protected by GRIMM (E)

GCN GAT SAGE RGCN SVD Pro Jaccard EGNN GCN GAT SAGE GCN GAT SAGE

Cora 20 59.02 59.13 63.91 59.01 56.37 64.38 73.24 69.52 73.49 73.84 79.51 71.02 65.70 75.40
Citeseer 20 62.73 60.14 68.81 62.90 57.65 55.54 66.92 65.61 70.76 72.42 76.91 68.42 66.01 75.48
Pubmed 20 70.02 69.89 72.09 70.88 81.54 82.57 76.61 78.91 75.10 79.30 74.05 73.39 78.04 76.89
Polblogs 20 52.33 50.28 54.12 58.04 55.41 73.60 70.55 75.95 82.11 81.02 78.62 76.47 76.44 75.40

Table 1: Classification accuracy (%) on the attacked graph after rectifying. GRIMM (E) means producing detectors based on the
exogenous reliable FTs. SVD, Pro, and SAGE is the abbreviation of GNN-SVD, Pro- GNN and GraphSAGE.
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Figure 5: Training time under increased sample ratio.

Harmfulness of GRIMM and Other Models The impact
of a defense model can be quantitatively assessed by its
training duration, particularly when transductive models are
used where inductive methods are preferable (e.g., large-
scale graphs), leading to a significant increase in computa-
tional load. The efficiency of GRIMM is demonstrated by
its relatively shorter training duration compared to other de-
fense models. This was empirically tested across various at-
tack conditions, documenting the training times until opti-
mal performance was achieved, indicated by loss conver-
gence. The additional time burden imposed by GRIMM, ex-
pressed as a percentage increase over the original training
time, is detailed in Tables 2 and 4 (c.f. Appendix A). On
smaller graphs, traditional defense models can extend train-
ing up to 3-5 times longer than usual. In contrast, GRIMM
introduces minimal additional time, a benefit that is even
more evident in larger datasets. For example, on the Red-
dit dataset, existing models like EGNN can increase training
times by up to 18 times, whereas GRIMM maintains negligi-
ble extra time.

Real-world graphs often grow dynamically, making the
ability to learn from scale-increasing graphs crucial for
GNNs. To highlight GRIMM’s efficiency, we conducted ex-
periments on progressively larger samples of the Brain and
Reddit datasets, measuring the training time of various de-
fense models. The results, displayed in Figure 5, show that
while traditional defense methods significantly extend train-
ing times as datasets expand, GRIMM ensures minimal in-
crease, maintaining shorter overall durations across various
scales, demonstrating its harmless integration with the pro-
tected model.

Transferability of Detectors GRIMM can rectify an at-
tacked graph based on detectors transferred from another

system, thus significantly reducing the time cost of graph
rectification. In this section, we report the transferability of
the detectors. We producedetectors by adopting Metattack
on GCN, and transfer them to another GRIMM which is pro-
tecting different GNN models against different attacks. The
perturbation rate of Metattack is set to 20% and the augmen-
tation rate of CLGA is set to 10%. The transferred detectors
are produced based on a GCN model and Cora dataset un-
der the corresponding attack. The experimental results are
shown in Table 3. The observation highlights that without
any training, based on the detectors transferred from an ex-
ternal source, GRIMM can still detect and effectively rectify
perturbations.
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Figure 6: Classification accuracy of GRIMM after interfacing
to the different layers.

Interface Position for GRIMM The primary experiments
presented in the main text involve GRIMM interfacing with
the penultimate layer of the protected GNNs. This section
explores how the interface position within the GNNs af-
fects global classification accuracy. We illustrate the mean
value (central line) and standard deviation (shadow areas)



Dataset Attack Unprotected models Defending models Models protected by GRIMM

GCN GAT SAGE RGCN SVD Pro Jaccard EGNN Avg. e. t. GCN GAT SAGE

Brain
Metattack 0.34 0.26 0.08 1.36 0.57 0.63 1.02 0.87 +982.7% 0.38 [+11.3%] 0.29 [+8.4%] 0.10 [+25.4%]

CLGA 0.35 0.26 0.08 1.39 0.59 0.62 1.06 0.86 +1009.8% 0.39 [+10.8%] 0.29 [+10.4%] 0.11 [+36.9%]
RL-S2V 0.35 0.27 0.08 1.38 0.58 0.64 1.06 0.87 +1017.2% 0.38 [+8.1%] 0.30 [+11.8%] 0.10 [+28.1%]

Pubmed
Metattack 0.53 0.31 0.10 1.73 0.59 0.66 1.26 1.17 +1011.3% 0.57 [+7.7%] 0.34 [+10.4%] 0.12 [+27.7%]

CLGA 0.54 0.30 0.09 1.72 0.61 0.67 1.28 1.22 +1063.7% 0.59 [+8.5%] 0.35 [+15.0%] 0.14 [+47.3%]
RL-S2V 0.53 0.32 0.09 1.72 0.61 0.68 1.25 1.18 +1071.3% 0.58 [+8.9%] 0.36 [+14.4%] 0.13 [+38.5%]

Reddit
Metattack 1.28 0.50 0.13 3.51 1.54 2.03 2.95 1.74 +1732.6% 1.34 [+4.6%] 0.53 [+6.7%] 0.17 [+30.3%]

CLGA 1.27 0.50 0.12 \ 1.52 \ \ 1.69 +1192.4% 1.32 [+3.9%] 0.54 [+7.4%] 0.17 [+33.8%]
RL-S2V 1.29 0.50 0.13 \ 1.50 \ \ 1.70 +1167.7% 1.34 [+3.6%] 0.54 [+7.9%] 0.17 [+35.8%]

Table 2: Training time (hour) of defending models on large graphs. [+5%] indicating a 5% increase in training duration relative
to the protected GNN, and Avg.e.t. represents the mean additional runtime in comparison to GraphSAGE.

Attack Dataset Cora Citeseer Pubmed

Target GAT SAGE GAT SAGE GAT SAGE

Meta Before 59.20 62.21 61.08 68.29 69.51 71.77
After 68.71 73.94 70.32 77.69 80.37 82.64

CLGA Before 66.39 68.27 65.40 64.93 72.58 70.19
After 76.34 80.85 78.42 77.39 79.65 78.52

Table 3: Classification accuracy (%) of poisoned GNNs (be-
fore) and GRIMM-protected GNNs (after). GRIMM rectifies
perturbed graph based on transferred detectors.

of results, repeated 10 times, in Figure 6. Figure 6 shows
a clear trend: classification accuracy progressively improves
as the interfaced layer’s depth within the GNNs increases.
This pattern aligns with the operational dynamics of GNNs,
where features are extracted sequentially from graph data
across layers. Thus, interfacing deeper within the network
allows for the extraction of increasingly precise and sophis-
ticated features. This enhancement in feature representation
intrinsically boosts global classification accuracy, confirm-
ing the trend that deeper interfacing layers within the GNNs
lead to improved performance.

Sensitivity of MSE’s threshold ρ The process of identi-
fying abnormal FTs in GRIMM depends on calculating their
MSE) relative to the detectors. The choice of the threshold ρ,
which sets the MSE boundary for detecting abnormalities, is
crucial to GRIMM’s performance dynamics. We then focus
how accuracy responds to changes in ρ settings. The results
of this investigation are visually presented in Figure 7. The
graph shows that the permissible range for ρ is relatively
wide, indicating that GRIMM has low sensitivity to fluctu-
ations in ρ. This trait suggests that GRIMM’s performance
remains robust and stable, even with varying ρ values. Such
resilience to the MSE threshold not only highlights the ro-
bustness of the GRIMM framework but also provides oper-
ational flexibility, allowing for some latitude in selecting ρ
without significantly affecting the accuracy of abnormal FT
detection.

Observations and Discussions The findings are summa-
rized as follows:

1) Vulnerability of GNNs: Data from Table 1 highlights
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Figure 7: Sensibility of the threshold ρ for the affinity.

the vulnerability of unprotected GNNs (GCN, GAT, Graph-
SAGE) to perturbations, underscoring the need for robust
defense mechanisms. 2) GRIMM’s Superiority: GRIMM out-
performs other defense models in mitigating graph pertur-
bations, although minor accuracy reductions are noted in
some cases (Table 1). 3) Performance in Non-adversarial
Contexts: In scenarios without adversarial attacks (Prate =
0%), GRIMM improves GNN structure and performance
through the strategic addition of auxiliary edges (Table 1).
4) Computational Efficiency: GRIMM significantly reduces
operational time compared to baseline models, especially
noticeable in larger datasets (Table 2, Figure 5). 5) Utility
of Transferred Detectors: GRIMM effectively employs trans-
ferred detectors to rectify perturbed graphs, avoiding the ex-
tensive training of new detectors and thereby saving compu-
tational resources (Table 3).

5 Conclusion
This paper presents the first plug-and-play defense model
GRIMM against poisoning attacks for GNNs. GRIMM seam-
lessly integrates with various GNNs without disrupting their
intrinsic functions, offering a parallel, non-intrusive, and
generalizable defense mechanism. Underlying implementa-
tions of HIS are migrated to GNN. GRIMM can continu-
ously monitor the MP of GNNs, detect adversarial edges
and reflect the perturbed graph. Experiments demonstrated
GRIMM protects mainstream GNNs including GCN, GAT
and GraphSAGE from the most powerful attacks while out-
performing the state-of-the-art defenses.
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