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ABSTRACT

One main approach to reducing the massive costs of large language models
(LLMs) is the use of quantized or sparse representations for training or deploy-
ment. While post-training compression methods are very popular, obtaining even
more accurate compressed models by directly training over such representations,
i.e., Quantization-Aware Training (QAT), is still largely open. In this paper, we
advance this state-of-the-art for QAT via a new method called QuEST, which is
Pareto-competitive with FP16, that is, it provides better accuracy at lower model
size, while training models with weights and activations in 4-bits or less. More-
over, QuEST allows stable training with 1-bit weights and activations, and is
compatible with weight sparsity. Experiments on Llama-type architectures show
that QuEST induces new, stable scaling laws across the entire range of hardware-
supported compressed representations. Moreover, we provide GPU kernel support
showing that the models produced by QuEST can be efficiently executed on cur-
rent hardware.

1 INTRODUCTION

One approach to reducing the computational costs of AI has been quantization-aware training
(QAT) (Rastegari et al., 2016; Jacob et al., 2018)— where models are trained from scratch with
low-precision weights and activations on the forward pass, but with a full-precision backward pass—
offering the potential for superior accuracy-vs-compression trade-offs, as gradient optimization can
correct compression errors. Despite promising results for weight-only quantization (Wang et al.,
2023; Kaushal et al., 2024), it is currently not known whether QAT can produce accurate LLMs
with extremely low-bitwidth/sparse weights and activations. Here, the key metric is the Pareto-
optimal frontier, i.e., the minimal representation size (or inference cost) for the model to achieve a
certain accuracy under a fixed data or training budget. Recently, Kumar et al. (2024) identified 8-bit
precision as Pareto-optimal for QAT methods on LLMs.

Contribution. We present QuEST, a new QAT method that brings the Pareto-optimal frontier to
around 4-bit weights and activations and enables stable training at 1-bit precision for both operands.
As shown in Figure 1, when data and compute are scaled proportionally to model size, QuEST can
train models with 4-bit weights and activations that have superior accuracy relative to BF16 models
almost 4x in size. We achieve this by re-thinking two key aspects of QAT methods: 1) the “forward”
step, in which continuous-to-discrete tensor distribution fitting is performed on the forward pass, and
2) the “backward” step, in which gradient estimation is performed over the discrete representation.

Starting from this algorithm, we focus on the following question: assuming that training compu-
tation is not a limiting factor, what is the “optimal” precision in terms of accuracy-vs-model-size?
To address this, we implement QuEST in Pytorch (Paszke et al., 2019) and train Llama-family
models (Dubey et al., 2024) of up to 800M parameters on up to 80B tokens from the standard C4
dataset (Raffel et al., 2019), across precisions from INT1 to INT8. Results show that QuEST pro-
vides stable and accurate convergence across model sizes and precisions down to 1-bit weights and
activations. This induces new scaling laws, which we study across model sizes in the large-data
(100 tokens/parameter) regime. QuEST leads INT4 weights and activations to be Pareto-optimal
in terms of accuracy at a given model size and inference cost, suggesting that the limits of low-
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Figure 1: QuEST scaling law for training
30M to 800M Llama-family models on C4,
with quantized weights and activations from
1 to 4 bits, in the 100 tokens/parameter
regime. QuEST allows for stable training at
1-bit weights and activations (W1A1), and the
QuEST W4A4 model is Pareto-dominant rela-
tive to BF16, with lower loss at lower size.
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Figure 2: Illustration of the efficiency fac-
tors eff(P )/cost(P ), arising from our analysis,
for different numerical precisions P and for-
mats (INT, FP, INT+sparse). Higher is bet-
ter. 2:4 INT4 appears to have the highest
efficiency among hardware-supported formats.
Here, cost(P ) the inverse max throughput rela-
tive to BF16.

precision training are lower than previously thought. In addition, we provide GPU kernels showing
that models produced by QuEST can be run efficiently on commodity hardware.

2 QUEST

Background. Broadly, QAT considers the problem of finding a quantized projection over a
standard-precision tensor x, representing part of the weights or activations, minimizing output er-
ror. For symmetric uniform quantization, the projection onto the quantized tensor x̂ is defined as:

x̂ = α ·
⌊

clip(x,α)
α

⌉
, where the clip function performs a clamping operation over the value distribu-

tion for all values above the clipping parameter α, which also acts as a scaling factor, normalizing
values to x to [−1, 1], and the function ⌊·⌉ rounds each value to its nearest quantization point, de-
fined as a uniform grid whose granularity depends on the number of available bits b. Most QAT
methods propose to “learn” the factor α, for instance, via gradient-based optimization. For exam-
ple, QAT methods usually keep a standard-precision version w of the weights; the STE gradient is
computed over the quantized weights ŵ, and then added to the full-precision accumulator, possibly
also updating the clipping factor α.

Step 1: Distribution Fitting. While optimizing the quantization grid to best fit the underlying
tensor is a core idea across all quantization methods, PTQ methods traditionally use more complex
and computationally heavy approaches (Dettmers et al., 2024; Malinovskii et al., 2024). In contrast,
QAT methods rely on backpropagation through the scaling factor for error-correction (Esser et al.,
2019; Bhalgat et al., 2020) while performing re-fitting. To avoid backpropagation errors impacting
the forward pass, we do not use backpropagation for distribution fitting. Instead, we start from
the empirical observation that the distribution of weights and activations during LLM training is
sub-Gaussian but with long tails (Dettmers et al., 2022; 2023).

Specifically, we choose to optimize the grid to explicitly fit a Gaussian distribution with the same
parametrization as the empirical distribution of the underlying tensor x. Concretely, we use root
mean square (RMS) normalization to first align the empirical distribution of x with a N (0, 1) Gaus-
sian distribution. We then perform the projection operation with the scale α∗ chosen to minimize
the L2 error resulting from projecting N (0, 1). Formally:
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x̂ = α∗ · RMS(x) ·
⌊

clip (x/RMS(x), α∗)

α∗

⌉
:= projα∗(x), where

α∗ := argmin
α∈R

Eξ∼N (0,1)

∥∥∥∥ξ − α ·
⌊

clip(ξ, α)
α

⌉∥∥∥∥2
2

is the MSE-optimal scaling factor, estimated once. If x were Gaussian-distributed, this would pro-
duce an MSE-optimal projection.

Yet, the natural distribution of tensor values may not be Gaussian, especially given the emergence of
outlier values (Dettmers et al., 2022; Nrusimha et al., 2024). To mitigate this, we add a Hadamard
Transform (HT) step before Gaussian Fitting. Thus, our forward pass projection becomes:

x̂h = projα∗ HT(x). (1)

In other words, we transform the target tensor via multiplication with a Hadamard matrix of ap-
propriate shape, applied along the matrix-multiplication dimension, and then project it to an MSE-
optimal grid in the Hadamard domain. Here, we leverage 1) the fact that, roughly, multiplication
of a matrix with the Hadamard Transform leads the weight distribution to better match a Gaus-
siant (Ailon & Chazelle, 2009; Suresh et al., 2017); 2) the existence of fast Hadamard multiplication
kernels (Tri Dao), and 3) the fact that the HT is orthogonal, so it can be easily inverted. While this
HT effect has been utilized in PTQ (Tseng et al., 2024; Ashkboos et al., 2024; Malinovskii et al.,
2024), we believe we are the first to harness it for QAT.

Step 2: Trust Gradient Estimation. Next, we focus on the backward pass. For simplicity, we
first describe the variant without the Hadamard Transform step and then integrate this component.
First, assume that x̂ = projα∗(x). Since the projection operation ⌊x⌉, is not differentiable w.r.t.
x, we need a robust way to estimate our gradient. Expressed as an operator, STE can be written as
∂
∂x ≈ ∂

∂⌊x⌉ during the backward pass, allowing gradients to propagate through the network, but can
lead to large errors due to components with large quantization error.

Specifically, the factor α∗, chosen to minimize the weight fitting error, acts as a natural scale for how
far off their real value the majority of quantized values can be: for values below the scaling factor,
this error is not larger than T = α∗

2b−1
, the half-width of a quantization interval.

To mitigate the impact components with large quantization error, we choose to not trust the gradient
estimations for weights with large errors Slarge = {k : |x̂− x|k > T}. Choosing T = α∗

2b−1
and

masking gradients for those elements we obtain the gradient operator:

∂

∂x
≈ I|x̂−x|≤T ⊙ ∂

∂x̂
:= Mα∗(x; x̂)⊙ ∂

∂x̂
,

where I|x̂−x|≤T is the standard indicator operator. We will refer to Mα∗ as the “trust mask”; this
gradient estimation operator will be called the trust estimator.

Trust Estimators for the Hadamard Projection. We now interface the trust estimator with the
Hadamard Transform (HT) and its inverse (HT−1) to obtain the following forward scheme: xh =
HT(x) and x̂h = projα∗ xh. Then, the natural approach is to perform trust estimation directly in
the Hadamard domain, where quantization takes place:

∂

∂x
≈ HT−1

(
Mα∗(xh; x̂h)⊙

∂

∂x̂h

)
.

In other words, after deriving the trust mask w.r.t. distribution fitting in the Hadamard domain, we
apply the resulting mask Mα∗(xh; x̂h) onto the gradient w.r.t. quantized weights in the Hadamard
domain.

The Problem of Sparse Gradients. Notice that, in the absence of the HT or regularization effects
(e.g., weight decay), the “untrusted” weights Slarge would receive no gradient and may be perma-
nently removed from optimization. Yet, the addition of the HT means that the trust mask is no
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Figure 3: Additional scaling laws induced by QuEST: (a, left) compares INT, FP, and INT+sparse
formats at 4-bit precision, (b, middle) shows the scaling laws for weight-only quantization, where 2-
bit appears to be Pareto-dominant, while (c, right) shows that trust estimation is stable even without
Hadamard normalization.

longer binary in the “standard” domain, allowing for gradient flow towards all model weights. We
validated this effect empirically by observing that the HT reduced the final cardinality of the “un-
trusted” weights set Slarge by ≈ 4x, aligning it with the number of values we would expect to be
outside the “trust set” at every step, for weights from a normal distribution. This is investigated in
more depth in Appendix A.2.

Implementation. In practice, we use identical Hadamard Transforms along the matrix-
multiplication dimension for both the weights w and the activations x. Since the Hadamard Trans-
form is unitary, the quantized matrix multiplication output y = x̂ŵT is aligned with the full pre-
cision output xwT it approximates. We provide algorithmic description of the forward and the
backward pass in Appendix A.1.

Sparsity. QuEST can also be extended to sparsity. Then, the trust estimator will mask out sparsified
elements with absolute value above the trust mask; specifically, this covers the majority of sparsified
elements, except for the small elements within

[
− α∗

2b−1
,+ α∗

2b−1

]
. In practice, we still keep the

whole weight matrix in full precision during training. On the forward pass, we first sparsify and
then quantize. On the backward pass, we apply the trust mask as usual.

3 EXPERIMENTAL VALIDATION

We describe the experimental setup, as well as the model and the training procedure hyper-
parameters in Appendix B.1.

Scaling laws. Following Frantar et al. (2023), we modify the standard scaling laws Hoffmann et al.
(2022) assuming that the training precision P only affects the parameter count N as a multiplicative
factor eff(P ), which, for a given quantization method, depends only on the training precision. (For
eff(16) = 1.0, we recover standard precision; the fitting process is described in Appendix C.1.)

L(N,D,P ) =
A

(N · eff(P ))α
+

B

Dβ
+ E. (2)

Results. The overall results were presented in Figure 1, illustrating loss vs. model size. First,
we observe that, remarkably, QuEST provides stable training down to 1-bit weights and activations,
across model sizes, following a stable scaling law. Second, examining the Pareto frontier, we observe
that 4-bit precision is slightly superior to 3-bit, and consistently outperforms all higher precisions.
Overall, these results show that QuEST can lead to stable scaling laws, which consistently improve
upon prior results (Kumar et al., 2024), moving the Pareto-optimal line to around 4-bit.

3.1 FINDING THE “OPTIMAL” PRECISION

Runtime Cost Estimate. We now focus on the “overtraining” (OT) regime, where the training
compute is less relevant, and is only bounded by factors such as the available amount of filtered
training data, which allows us to ignore the data term D.
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In practice, runtime constraints on LLM deployment often include memory, single-user generation
speed, highly-parallelized througpht and power consumption constraints. One thing to notice is that,
for a large number of applications, all of those quantities are proportional to the model size N for
every precision P . As such, we can generalize those constraints and formalize them in a single form
of R ≤ Rmax where R = γN · cost(P ) for some constant γ and precision-dependent factor. For
example, for model size Rmem measured in Mb, we get costmem(P ) = P

16 and γmem = Mb
106 . Then,

the problem of minimizing loss while staying within a certain runtime constraint can be re-written
as:

min
N,P

LOT (N,P ) =
A(

R
γ · eff(P )

cost(P )

)α + E s.t. R ≤ Rmax.

To optimally solve this problem, one can choose

P ∗ = argmax
P

[
eff(P )

cost(P )

]
independently of the limit Rmax, and then set N = Rmax/ (γ · eff(P ∗)). Thus, cost-effectiveness
eff(P )

cost(P ) becomes the key quantity for choosing the “optimal” pre-training precision in the OT regime.
Here, eff(P ) can be found by fitting Equation 2 for a certain quantization scheme. In Figure 2, we
present those quantities for cost(P ) chosen to encode the speedup of quantized matrix multiplication
relative to BF16.

3.2 EXTENSIONS TO DIFFERENT FORMATS

The FP4 Format. We can use the same framework to compare the “effective parameter count” for
INT, INT + sparse, and the lower-precision FP format supported by NVIDIA Blackwell (NVIDIA,
2024). QuEST can be extended to this data type by replacing the ⌊·⌉ rounding operation with
rounding to the FP4 grid ⌊·⌉FP4 scaled to fit the same [−1, 1] interval. The optimal scaling factor
α∗

FP4 would be defined by simply replacing ⌊·⌉ with ⌊·⌉FP4 in the original definition. We choose the
trust factor T for Mα∗(x; x̂) = I|x̂−x|≤T as the largest half-interval of the FP4 grid.

Quantization plus sparsity. Figure 3(a) also illustrates the scaling law induced by the 50% sparse
+ INT4 of NVIDIA Ampere (Abdelkhalik et al., 2022), while Figure 2 (red cross) shows its peak
throughput parameter efficiency relative to INT and FP. With QuEST, this format can provide better
scaling than any purely quantized representation we tested. (While this format is known as 2:4
sparsity, for INT4 + 2:4 it requires a 4:8 mask with some additional constraints.)

FP sparsity. Additionally, Figure 3(a) illustrates the scaling law induced by the 50% sparse + FP4 of
NVIDIA Blackwell (Nvidia). Figure 2 (blue cross) shows its peak throughput parameter efficiency
relative to INT, FP and 2:4 INT4. This format can provide better scaling than FP4, but slightly
inferior to both INT and 2:4 INT4.

4 DISCUSSION AND FUTURE WORK

We introduced QuEST, a new QAT method that achieves stable LLM training of in extremely low
precision (down to 1-bit) weights and activations. Our results demonstrate that, if data and compute
are appropriately scaled, 4-bit models can outperform standard-precision baselines in terms of ac-
curacy and inference cost, suggesting that the fundamental limits of low-precision QAT are much
lower than previously thought. Further, our analysis provides new insights into the relationship be-
tween training precision and model efficiency, suggesting that low-precision may be a good target
for large-scale training runs in the overtrained regime. Third, we have shown that our approach can
lead to inference speedups.

Several promising directions emerge for future work. First, while we demonstrated QuEST’s ef-
fectiveness up to 800M parameters, its scaling behavior for much larger models is an interesting
direction we plan to pursue in future work. Second, our work focused primarily on decoder-only
architectures; extending QuEST to encoder-decoder models and other architectures could broaden
its applicability.
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A ADDITIONAL “TRUST” DETAILS

A.1 ALGORITHMIC DESCRIPTION

The algorithm 1 describes the forward pass over a linear layer actively quantized with QuEST for a
row-major weight representation.

The algorithm 2 describes the backward pass over the same layer using the quantized weight and
activations from the forward pass as well as error gradient w.r.t y. We note that, although the
backward computation is performed w.r.t. the quantized weights and activations, the multiplications
and gradient operands are performed in standard 16-bit precision.

Algorithm 1 QuEST Training Forward

1: Input: Input activations x, row-major weight w
2: xh = HT(x)
3: x̂h = projα∗ xh

4: wh = HT(w)
5: ŵh = projα∗ wh

6: y = x̂hŵ
T
h

7: Return: y, x̂h, ŵh, Mα∗(xh; x̂h), Mα∗(wh; ŵh)

Algorithm 2 QuEST Training Backward

1: Input: ∂L
∂y , x̂h, ŵh, Mα∗(xh; x̂h), Mα∗(wh; ŵh)

2: ∂L
∂x̂h

= ∂L
∂y ŵh

3: ∂L
∂x = HT−1

(
Mα∗(xh; x̂h)⊙ ∂L

∂x̂h

)
4: ∂L

∂ŵh
= x̂T

h
∂L
∂y

5: ∂L
∂w = HT−1

(
Mα∗(wh; ŵh)⊙ ∂L

∂ŵh

)
6: Return: ∂L

∂x , ∂L
∂w

A.2 TRUST MASK ANALYSIS

For the purposes of weight trust masks interpretation, we trained a 30M model over 3B tokens
(11,444 iterations at bs=512) with QuEST weights and activations quantization to 8-bit with and
without the Hadamard Transform (HT). We logged the trust masks every 500 iterations. Figure 4
shows the fraction of masked weights. We can see that adding the HT leads to an ≈4x decrease
in the amount of masked values, corresponding to the fraction of expected clipped weights for a
standard normal distribution. We can also see that without the HT the fraction deviates significantly
from the expected fraction under the assumption of weights normality.

Moreover, we looked at the percentage of masked elements at a fixed iteration in the past, that
remain masked at a fixed later iteration. We plot these percentages in Figure 5. As we can see, for
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Figure 4: Fraction of weights for which Mα∗ = 0 as a function of number of training iterations for
a 30M model trained with QuEST.

the run without the HT, around 69% of masked elements at iteration 6000 (roughly halfway through
training) remain masked at iteration 10000 (towards the end of the training). This percentage is
more than twice as small for the run with the HT at 30%. This implies that the HT makes masks less
persistent, as expected. In addition, we note that weight decay is applied on all weights (including
masked ones). Thus, a masked weight will slowly decay until it may “exit” the masked interval,
obtaining gradient again.
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Figure 5: Fraction of masked values retained from an old iteration to a new iteration for a 30M
model trained with QuEST W8A8.

A.3 THE 1-BIT CASE

In our original trust estimation formulation, we proposed to set the trust factor as half the quantiza-
tion interval, T = α∗

2b−1
. Thus, the trust regions increase exponentially as the bitwidth decreases. In

particular, for 1-bit weights and activations, QuEST will suffer from trust regions that extend out of
the grid by a whole α⋆. To fix this, we reduce the size of the “outermost” trust regions, outside the
clipping factor, by a scaling factor s.

To determine the optimal outer trust scaling factor s∗, discussed in Section 2, we conduct a sweep
over s, varying the outer size of the outermost trust regions as T = s · α∗

2b−1
. The results for 1-bit,

shown in Figure 6, indicate that s∗ = 1.30 for the standard QuEST setup and s∗ = 1.25 for the
setup without the Hadamard Transform (HT), corresponding to exactly a quarter of the quantization
interval.

We use this scaling factor for all the 1-bit QuEST runs in this paper (unless stated otherwise). This
modification is necessary (and leads to an improvement) only in the extreme 1-bit compression
regime.

A.4 ZERO-SHOT EVALUATION OF QUEST MODELS

To assess the effectiveness of QuEST beyond perplexity, we conducted a zero-shot evaluation on
the HellaSWAG benchmark (Zellers et al., 2019), which tests commonsense reasoning capabilities.
We compared an 800M parameter model trained with QuEST in 4-bit precision against its BF16
counterpart, both of which were trained on 80B tokens.
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Figure 6: Performance of QuEST as a function of the outer trust scaling factor s for a 30M model
pretraining.

Table 1 presents the accuracy results. The near-identical performance between the two models
indicates that QuEST’s quantization-aware training is essentially lossless, preserving the model’s
ability to generalize while significantly reducing precision and computational costs.

Model HellaSWAG Accuracy (%) ↑
BF16 (800M, 80B tokens) 39.52
QuEST 4-bit (800M, 80B tokens) 39.22

Table 1: Zero-shot evaluation on HellaSWAG comparing QuEST 4-bit to its BF16 counterpart. The
results are nearly identical, confirming that training with QuEST is lossless.

B ADDITIONAL INFORMATION ON THE EXPERIMENTAL SETUP

B.1 IMPLEMENTATION DETAILS

Models and Hyperparameters. We tested our method on pre-training decoder-only Transform-
ers (Vaswani, 2017) following the Llama architecture (Touvron et al., 2023), in the range of 30,
50, 100, 200, 430 and 800 million non-embedding parameters. We trained all models on tokens
from the C4 (Dodge et al., 2021) dataset, tokenized with the Llama 2 tokenizer. We used the
AdamW (Loshchilov & Hutter, 2019) optimizer with a cosine learning rate schedule and a 10%
warmup period, with gradient clipping (1.0 threshold, decoupled weight decay of 0.1). We identi-
fied the learning rate optimally for a 50M FP16 model via a learning-rate sweep. For other models,
as standard, we scale the learning rate inverse-proportionally to the number of non-embedding pa-
rameters. We reuse the exact learning rates for all QuEST training runs.

Unless stated otherwise, we train every model on a number of tokens equal to 100x its number of
“free” parameters, e.g., 10B tokens for a Llama 100M model, regardless of precision. This allows
us to explore the data-saturation regime. We aim for comparisons that are iso-size: That is, to
match the size / FLOPs of a 100M FP16 Llama model (trained on 10B parameters), we will train
a 400M-parameter model with 4-bit weights and activations, using 40B total tokens. This allows
us to explore accuracy for fixed model sizes, across compression ratios (see Figure 1). We discuss
different D/N regimes in Appendix C.2.

B.2 MODEL HYPER-PARAMETERS

For our experiments, we chose to use the Llama 2 (Touvron et al., 2023) model as the base archi-
tecture. For the attention block, this architecture utilizes multi-head attention (Vaswani et al., 2023)
with rotary positional embeddings (Su et al., 2023). For the MLP block, it uses additional gate
projection and SiLU (Elfwing et al., 2017) activation function. We kept the MLP intermediate di-
mension equal to 8/3 of the hidden size, padding it to 256 for increased kernel compatibility. For the
AdamW optimizer, we used β1 = 0.90 and β2 = 0.95. We did not apply weight decay to any biases
and layer normalizations. Table 2 describes size-specific models and optimizer hyper-parameters for
all model sizes used in this work.

10
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Model size 30M 50M 100M 200M 430M 800M
Num. Blocks 6 7 8 10 13 16
Hidden Size 640 768 1024 1280 1664 2048
Num. Attn. Heads 5 6 8 10 13 16
Learning Rate 0.0012 0.0012 0.0006 0.0003 0.00015 0.000075
Num. Tokens 3B 5B 10B 20B 43B 80B

Table 2: Hyper-parameters used for each model size.

B.3 TRAINING STABILITY AND CONVERGENCE

Here we present the loss curves for BF16, LSQ, PACT, and QuEST (ours) to analyze training sta-
bility and convergence. As shown in Figure 7(a), QuEST smoothly converges throughout training,
closely tracking the BF16 baseline while consistently outperforming LSQ. Meanwhile, PACT strug-
gles with much higher loss, indicating poor convergence. To better highlight the differences between
QuEST and LSQ in the later stages of training, Figure 7(b) focuses on steps after 1000, removing
PACT for clarity. This zoomed-in view shows that QuEST maintains a consistently lower loss tra-
jectory than LSQ, further reinforcing its superior stability and accuracy across training.
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Figure 7: Training loss curves for a 30M model trained on 3B tokens with W4A4 bitwidth, com-
paring QuEST (ours), LSQ, PACT, and BF16. (a) Full training loss curves, showing that QuEST
closely follows BF16 and consistently outperforms LSQ, while PACT struggles with high loss. (b)
Zoomed-in view of training steps after 1000, excluding PACT for clarity, highlighting that QuEST
maintains a lower loss than LSQ throughout training.

B.4 HYPER-PARAMETER SEARCH FOR BASELINE METHODS

Figure 8: Hyperparameter search for PACT on a 30M parameter model with 4-bit weights and
activations, trained on 10% of the dataset. The search explores different values for learning rate
scaling (LR Scale) and alpha weight decay, with validation loss indicated by the color gradient.
Lower validation loss (darker colors) corresponds to better configurations.

To ensure fair comparisons between QuEST and prior QAT methods, we conducted hyperparameter
searches for both PACT and LSQ. Given PACT’s instability at lower bitwidths, we extensively tuned
two key hyperparameters: weight decay and learning rate scaling s for the quantization parameter
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α (i.e., ηα = s × η). Figure 8 shows the loss achieved across different weight decay and LR scale
values.

For LSQ, we only tuned weight decay, as the LSQ formulation already applies scaling internally
to the gradient of α, making additional learning rate adjustments unnecessary. Table 3 summarizes
the results of the weight decay search across 2-bit, 3-bit, and 4-bit LSQ models, where the best-
performing configuration (highlighted in bold) was used for final model comparisons.

Weight Decay 2-bit PPL ↓ 3-bit PPL ↓ 4-bit PPL ↓
0.001 37.02 31.10 27.93
0.01 36.91 30.89 27.72
0.1 36.54 30.26 27.51
1.0 38.12 31.16 28.67

Table 3: Weight decay hyperparameter search results for LSQ across different bitwidths of 30M
model. The best-performing setting is highlighted in bold.

Our hyperparameter search ensured that LSQ and PACT were tuned optimally before comparing
against QuEST, leading to a fair evaluation of performance across all tested quantization methods.

C SCALING LAWS

C.1 DESCRIPTION OF THE FITTING PROCEDURE

To estimate A, B, E, α, β and eff(P ) for every quantization precision P we need, we fit Equation 2
by minimizing the Huber loss (Huber, 1964) between the predicted and the observed log loss.
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Figure 9: Scaling law (2) fit for 3 and 4
bit QuEST with tokens/parameters ratios in
{25, 50, 100}.

We closely follow the fitting procedure of Hoff-
mann et al. (2022). Specifically, we copied their
grid of initialization given by: α ∈ {0., 0.5, . . . , 2.},
β ∈ {0., 0.5, . . . , 2.}, e ∈ {−1.,−.5, . . . , 1.}, a ∈
{0, 5, . . . , 25}, and b ∈ {0, 5, . . . , 25}. We also
reuse their δ = 10−3 for the Huber loss. In addi-
tion, we fit the eff(P ) coefficient for a number of
quantization schemes described below:

• QuEST for P ∈ {1, 2, 3, 4, 8}.
• Weight-only QuEST for P ∈ {1, 2, 3, 4}.
• QuEST without the HT for P ∈
{1, 2, 3, 4, 8}.

• QuEST with FP4 grid.
• QuEST with 2:4 INT4.

Specifically, we fit the model on the range of parameters P ∈ {1, 2, 3, 4, 16}, N ∈
{30, 50, 100, 200, 430, 800} × 106 and D = 100×N . The resulting fit is presented on Figures 1, 3
and C.1. To capture a larger range of D, we fit the model on additional runs with P ∈ {2, 3, 4},
N ∈ {30, 50, 100} × 106 and D/N ∈ {25, 50}.

C.2 ANALYSIS OF THE TRANSITORY DATA REGIME

The results in Section 3.1 suggest that 4-bit training is optimal in the D/N → ∞ regime. Here,
we use the fitted scaling law (2) to verify that 4 bit is also close to optimal for D/N ratios that are
reasonable in practice. We formulate the question as follows: for a fixed model size (e.g. in Gb), for
which amount of compute is QuEST 4-bit the optimal precision?

Figure 10 demonstrates the (predicted) dependence of performance as a function of D
N · 162

P 2 . For
BF16, this quantity becomes D/N . For other P , it ensures the same amount of training computed
(∼ ND). As such, models there are compared at both the same size and the same training compute.
We can see that 4-bit quantization becomes optimal after it passes a certain compute threshold that
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Figure 10: Different QuEST precision performance as a function of tokens-to-parameters ratio at a
fixed model memory footprint. The gray line indicates a 4-bit optimality threshold.

depends on model size. We can also see that the threshold value decreases as the model size (in
Gb) grows. For a 14.0Gb model (corresponding to 7B parameters in BF16), the threshold is around
D/N ≈ 30, which is significantly below the amount of data that models of that size are currently
trained on (see Section 3). For even larger models, the threshold eventually becomes less than the
“Chinchilla-optimal” ratio of D/N ≈ 20. This validates that the regime in which 4-bit pre-training
is optimal can, in fact, be easily achieved in practice.

D GPU EXECUTION SUPPORT FOR QUEST MODELS

Kernel Overview. Finally, we describe GPU kernel support. Our forward-pass pipeline for the
quantized linear layer in QuEST consists of three main stages: (1) applying the Hadamard trans-
formation to the BF16 activations, (2) quantizing the BF16 activations and packing them into the
low-precision format, and (3) performing low-precision matrix multiplication on the quantized acti-
vations and weights, followed by dequantization of the result back to BF16.

For the first stage, we utilize an existing Hadamard kernel (Tri Dao). We developed a custom
Triton kernel for the second stage to fuse scaling, quantization and memory packing. This kernel
computes RMS-based group scales, performs centered quantization on the activations and packs the
quantized activations. The third stage involves fused matrix multiplication and dequantization using
our enhanced CUTLASS kernel. In this stage, both activations and weights are read and processed as
integers to utilize low precision tensor cores for higher throughput. The results are then dequantized
back to BF16 within the same kernel. We also apply CUDA Graph end-to-end to reduce the kernel
launching overhead.

To optimize GEMM performance, we carefully tuned the CUDA thread-block and warp tile sizes
and leveraged the high levels of the memory hierarchy to fuse the dequantization step before writing
the results back to Global Memory in a custom CUTLASS epilogue.

Runtime Results. The per-layer speedups achievable using our kernel at 4-bit precision, relative to
standard 16-bit matrix multiplications on the corresponding layers, are illustrated in Figure 11. We
provide a breakdown across layers of the same shape, for 800M (which we have already trained),
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Figure 11: Per-layer speedups for QuEST INT4 vs BF16, on a single RTX 4090 GPU. The re-
sults take into account quantization/dequantization costs for QuEST, and include the cost of the
Hadamard transform (orange bar). We present results for the 800M 4-bit QuEST model we trained,
as well as inference speedups for a proportional 7B-parameter model.

and a proportionally-scaled 7B model (which we plan to train in future work). These measure-
ments include all auxiliary overheads (e.g. quantization/dequantization) for QuEST; in addition, we
separate out the performance impact of the Hadamard transform.

For the smaller 800M model, the per-layer speedups vary between 1.2× (on the smallest layers,
with Hadamard) and 2.4× (largest down-projection layer, no Hadamard). The largest overhead of
the Hadamard transform, of around 30%, is on the down-projection layer, which presents the largest
dimension for the Hadamard. The speedups increase significantly (2.3-3.9×) when we move to the
7B-parameter model, as the MatMuls are much more expensive.
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