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Abstract

In recent years, Large Language Models001
(LLMs) have gained recognition for their abil-002
ity to encode clinical knowledge within their003
parameters. Despite their growing popularity,004
the existing literature lacks a comprehensive005
and standardized benchmark for evaluating the006
performance of these models in clinical knowl-007
edge applications. In response to this gap, we008
introduce a novel benchmark called QALM de-009
signed to harmonize the evaluation of language010
models in the context of clinical knowledge.011
Our benchmark comprises 16 Multiple-Choice012
Question (MCQ) datasets and six Abstractive013
Question Answering (AQA) datasets, offering a014
diverse range of challenges to comprehensively015
assess model capabilities.016

Our experimental results reveal intriguing in-017
sights. We find that decoder-only language018
models may not be the optimal choice for019
MCQs in clinical knowledge tasks. Addition-020
ally, our investigation demonstrates that instruc-021
tion fine-tuned language models do not neces-022
sarily outperform their counterparts in these023
evaluations, emphasizing the importance of024
carefully tailored model selection.025

To foster research and collaboration in this field,026
we make our benchmark publicly available and027
open-source the associated evaluation scripts.028
This initiative aims to facilitate further advance-029
ments in clinical knowledge representation and030
utilization within language models, ultimately031
benefiting the healthcare and natural language032
processing communities.033

1 Introduction034

Large Language Models (LLM) deployed in the035

clinical and biomedical domains have the potential036

to revolutionize the healthcare industry. They are037

employed to summarize clinical text (Veen et al.,038

2023), automatically generate notes for clinicians039

(Ben Abacha et al., 2023b), and condense dialogues040

between doctors and patients (Ben Abacha et al.,041

2023a; Toma et al., 2023). Recognizing their sig- 042

nificance, recent work (Han et al., 2023; Wu et al., 043

2023; Toma et al., 2023; Bolton et al., 2022; Li 044

et al., 2023) has focused on fine-tuning LLMs on 045

clinical and bio-medical datasets. However, the 046

evaluation of LLMs within the clinical and biomed- 047

ical domains remains incomplete and requires fur- 048

ther comprehensive evaluation. Recent models tend 049

to be evaluated on different datasets or tasks, which 050

makes fair comparison of models harder. 051

Clinical knowledge assessment in LLMs involves 052

two primary tasks (Singhal et al., 2023a): Multi- 053

ple Choice Question Answering (MCQA), where 054

answers are selected from multiple options, and 055

abstractive question answering (AQA), which en- 056

tails generating answers to questions, either with 057

or without a provided paragraph context. 058

The evaluation of LLMs regarding their clinical 059

knowledge is restricted. For instance, Singhal et al. 060

(2023a) assess proprietary models on a consoli- 061

dated dataset, but open-source LLMs are not tested 062

on such a unified benchmark. We expand Singhal 063

et al. (2023a)’s benchmark with more datasets, to 064

enable transparency and reproducibility, and to test 065

new advances in LLM research. Our benchmark 066

called QALM consolidates existing MCQA and AQA 067

datasets, featuring 16 MCQA and 6 AQA datasets. 068

With such a standardized benchmark we are able to 069

test the strengths and weaknesses of open-source 070

models using a methodological unified framework, 071

which is currently missing in the literature. 072

Our evaluation encompasses diverse zero-shot 073

and fine-tuning settings. Our findings reveal 074

that the latest decoder-only LLMs do not consis- 075

tently outperform others on reading comprehen- 076

sion datasets, where models are presented with a 077

context paragraph to answer a question. Moreover, 078

although instruction fine-tuned models have been 079

argued to surpass their non-instruction fine-tuned 080

counterparts in some contexts (Wei et al., 2021; 081

Gupta et al., 2023), our results suggest a more nu- 082
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Dataset Type Size Domain
USMLE (Jin et al., 2021) MCQA 10178/1272/1273 Medical Exam
MEDMCQA (Pal et al., 2022) MCQA 182822/4183/6150 Medical Exam
BIOASQ-MCQ (Tsatsaronis et al., 2015; Krithara
et al., 2023)

MCQA 975/173/123 Biomedical

HEADQA (Vilares and Gómez-Rodríguez, 2019) MCQA 2657/1366/2742 Medical Exam
PROCESSBANK (Berant et al., 2014) Context + MCQA 358/77/150 Biological Processes
PUBMEDQA (Jin et al., 2019) Context + MCQA 400/100/500 Biomedical
MMLU (Hendrycks et al., 2021) MCQA 30/NA/1089 Medical and Clinical
BIOMRC-Tiny A (Pappas et al., 2020) Context + MCQA NA/NA/30 Cloze Biomedical
BIOMRC-Tiny B (Pappas et al., 2020) Context + MCQA NA/NA/30 Cloze Biomedical
OPHTH (Raimondi et al., 2023; RCOphth, a,b) MCQA NA/NA/92 Ophthalmology
QA4MRE-(Alzheimer’s QA) (Morante et al., 2012) MCQA NA/NA/40 Alzheimer’s Disease
LIVEQA (Abacha et al., 2017; Ben Abacha and
Demner-Fushman, 2019)

AQA NA/NA/131 Consumer Health

MEDIQA-ANS (Savery et al., 2020) AQA NA/NA/156 Consumer Health
BIOASQ-QA (Tsatsaronis et al., 2015; Krithara
et al., 2023)

AQA 4733/697/363 Biomedical

MASHQ (Zhu et al., 2020) AQA 27728/3587/3493 Medical
MEDQUAD (Ben Abacha and Demner-Fushman,
2019)

AQA 14068/981/1358 Medical

MEDINFO (Ben Abacha et al., 2019) AQA NA/NA/663 Consumer Medication

Table 1: An overview of the QALM datasets. We present the size in terms of train/val/test splits. We create a manual
train/val split for BIOASQ-MCQ, PROCESSBANK, PUBMEDQA, BIOASQ-QA and MEDQUAD.

anced trend.083

In summary, QALM introduces a benchmark that084

consolidates datasets to assess clinical knowledge085

within LLMs. This initiative underscores the im-086

perative for a unified and comprehensive suite of087

datasets to rigorously evaluate the clinical knowl-088

edge capabilities of these models, particularly in089

light of the continuously expanding array of LLMs.090

2 QALM Datasets091

QALM represent a comprehensive collection of 22092

datasets designed to thoroughly evaluate the clin-093

ical knowledge of LLMs. These datasets are pub-094

licly accessible, and some of them have not been095

used for testing open-source LLMs before. Like096

other studies (Singhal et al., 2023a) (Singhal et al.,097

2023b), we employ Question and Answering tasks098

as a surrogate test to assess clinical knowledge of099

LLMs. We have included two types of question-100

answering datasets: Multiple Choice (MCQA) and101

Abstractive Question Answering (AQA). The com-102

plete list of these datasets is provided in Table 1.103

MCQA questions assess the model’s ability to104

select the correct option from a list of challeng-105

ing alternatives. These types of questions are fre-106

quently encountered in medical licensing exami-107

nations, such as the US Medical Licensing Exam108

(USMLE) (Jin et al., 2021), as well as in medical109

entrance exams in countries like India (Pal et al., 110

2022) and Spain (Vilares and Gómez-Rodríguez, 111

2019). Within QALM, there are a total of 216,810 112

instances of MCQA questions. On average, each 113

question has four answer choices. In some sce- 114

narios, a contextual paragraph is provided and the 115

answer must be derived from this context which 116

tests the model’s contextual reasoning abilities. 117

AQA datasets evaluate the model’s proficiency in 118

providing open-ended answers to questions. QALM 119

encompasses six AQA datasets, containing a total 120

of 57,958 questions. On average, the answers in 121

these datasets have a length of about 100 tokens. 122

Our work is distinct from Singhal et al. (2023a), 123

who only consider two AQA datasets, LiveQA and 124

MedicationQA, as they argue that these datasets 125

lack reliable sources for answers. In contrast, 126

we incorporate four additional datasets where an- 127

swers are provided from experts or sourced from 128

trusted forums, increasing their reliability. Fur- 129

thermore, we use a version of the LiveQA dataset 130

that contains expert-ranked answers (Ben Abacha 131

and Demner-Fushman, 2019). The performance of 132

LLMs on these datasets have not been previously 133

assessed in existing literature. 134

While Singhal et al. (2023a) employ only a sin- 135

gle dataset for assessing model performance in 136

reading comprehension, we introduce two more 137
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datasets: one for evaluating a model’s ability to138

predict a concealed medical entity, and another139

for assessing model proficiency in comprehending140

interactions between various entities mentioned141

in the text. Furthermore, we include four addi-142

tional general knowledge multiple-choice question143

(MCQ) datasets, broadening the range of questions144

for model testing. This expanded array of evalua-145

tion datasets enables a more comprehensive anal-146

ysis of model capabilities, potentially mitigating147

uncertainty stemming from a limited range of ob-148

servations.149

3 Empirical Evaluation150

Considering the QALM datasets, we seek evidence151

for the following key research questions in a large-152

scale empirical study:153

RQ1. How well do open-source language models154

(LLMs) recall necessary clinical knowledge155

when they are tested on QALM?156

RQ2. Does instruction fine-tuning of LLMs im-157

prove their clinical knowledge recall?158

RQ3. Does domain and task-specific finetuning on159

QALM help LLMs acquire additional clinical160

knowledge?161

RQ4. Can LLMs generalize to data unseen during162

training?163

3.1 Study Setup164

To seek evidence for RQ1 and RQ2 empirically,165

we evaluate several LLMs and their instruction-166

finetuned versions on the test splits of QALM in167

zero-shot manner. To answer RQ3 and RQ4, we168

fine-tune LLMs on the training portion of QALM169

and evaluate on test splits of datasets both seen and170

unseen during training. We complement our evalu-171

ation with additional automated and manual error172

analyses to identify causes for model successes and173

failures.174

Models: To assess the zero-shot capabilities of175

models (RQ1 and RQ2), we include a diverse array176

of open-source decoder-only models with param-177

eter scales ranging from 3B-13B. We use models178

from MPT and MPT-Instruct (7B) (MosaicML, 2023),179

Falcon and Falcon-Instruct (7B) (Almazrouei180

et al., 2023) and LLama 2 and LLama 2-chat (7B181

and 13B). In addition to these models, we also use182

two instruction fine-tuned encoder-decoder models:183

Flan-T5 (3B and 11B) (Wei et al., 2021). Mod- 184

els with Instruct or Chat appended to their names 185

are instruction fine-tuned (Ouyang et al., 2022) 186

versions of their base models. The details of the 187

models are given in Table 2.2 We initially also 188

considered OpenLLaMA (3B and 7B) (Geng and Liu, 189

2023) as well as GPT-J (6B) (Wang and Komat- 190

suzaki, 2021). However, we found that due to 191

the poor performance of OpenLLaMA on the MCQA 192

datasets and since GPT-J and OpenLLaMA did not 193

have instruction-finetuned equivalents, we did not 194

include them in our further analysis. 195

To address RQ3, we use the training set of the 196

QALM datasets. When official validation splits are 197

unavailable, we employ a random split of up to 198

around 20% of the data for validation purposes. If 199

no training datasets are available, we do not use 200

this dataset for fine-tuning and only consider the 201

test split of the respective datasets to answer RQ4. 202

Finetuning and hyperparameters: Since the 203

number of parameters for most of our models are in 204

the billions, we follow a more accepted practice of 205

using parameter-efficient fine-tuning. Specifically, 206

we use QLora and 4-bit quantization (Dettmers 207

et al., 2023) for fine-tuning. We use A100-40G 208

GPUs for all our experiments. The other hyper- 209

parameters used to train our models are reported in 210

the Appendix (Table 7). 211

Evaluation measures: We use accuracy to mea- 212

sure the performance of the model on MCQA 213

datasets; for AQA datasets, we use ROUGE-L (Lin, 214

2004), BERTScore (Zhang et al., 2020)3 and 215

METEOR (Banerjee and Lavie, 2005). METEOR 216

in particular is found to correlate better with hu- 217

man judgments than other metrics on AQA (Chen 218

et al., 2019). 219

3.2 Results and Analysis 220

In this section, we report and analyse the findings 221

of our empirical study. 222

3.2.1 Zero-shot performance of LLMs 223

Table 3 presents the zero-shot evaluation of lan- 224

guage models as evidence towards RQ1. We report 225

the average accuracies across all tasks. 226

2For MCQA evaluation in the zero-shot setting (where mod-
els are not explicitly fine-tuned on the train splits of our bench-
mark), we use a 1-shot prompt—giving an example to the
model, and find that it adheres better to the MCQA format. We
use the standard 5-shot prompt for MMLU.

3We use deberta-xlarge-mnli for calculating BERTScore.
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Model Architecture # Tokens Data Source

Base models

MPT Decoder 1T Red Pajama (Computer, 2023), The Stack (Kocetkov et al., 2022), C4 (Raffel et al., 2019), mC4 (Xue et al., 2021), S20RC (Lo et al., 2020)

Falcon Decoder 1.5T RefinedWeb (Penedo et al., 2023)

LLama 2 Decoder 2T Unknown

Instruction tuned models

Flan-T5 Encoder-Decoder 1T C4 (Raffel et al., 2019) and Flan-Collection (Wei et al., 2021)

MPT-Instruct Decoder 1T All of MPT and Databricks Dolly-15k (Conover et al., 2023), Anthropic Helpful and Harmless (Bai et al., 2022)

Falcon-Instruct Decoder 1.5T All of Falcon and baize (Xu et al., 2023), GPT4All, GPTeacher 1

LLama 2-Chat Decoder 2T All of LLama 2 and Flan Collection (Wei et al., 2021) + Private Data

Table 2: Pretrained LLMs considered in this paper. (Top rows) Open-source models that are decoder-only. (Bottom
rows) Instruction-fine-tuned language models. # Tokens: Number of tokens used in pretraining the model. Data
Source: Data used for pre-training (instruction data is italicized).

MCQA AQA

Acc RL BS MTR

B
as

e

LLama 2 (7B) 42.9 14.9 55.3 21.1
LLama 2 (13B) 47.1 15.0 56.4 22.5
MPT (7B) 27.6 13.3 52.6 21.1
Falcon (7B) 34.7 14.0 54.1 20.0

In
st

ru
ct

io
n

tu
ne

d LLama 2-chat (7B) 45.9 15.0 58.0 23.3
LLama 2-chat (13B) 50.3 15.3 58.0 23.6
MPT-Instruct (7B) 31.6 15.8 59.7 15.6
Falcon-Instruct (7B) 31.8 17.2 62.4 17.4
Flan-T5 (3B) 51.8 10.8 55.0 7.4
Flan-T5 (11B) 56.5 11.5 56.3 8.2

Table 3: Zero-shot performance of Base models
(top) and instruction-tuned models (bottom). Metrics
are Accuracy for MCQA; Rouge-L, BERTScore, and
METEOR for AQA.

LLMs are good zero/few-shot learners: Table 3227

shows that LLMs exhibit strong zero-shot capabil-228

ity on MCQA and AQA datasets, corroborating the229

findings of Singhal et al. (2023a). Across different230

LLMs of the same size, LLama 2 (7B) provides the231

best performance compared to other open source232

models like Falcon (7B). A possible reason for this233

might be the diversity in pretraining data – LLama 2234

is trained on two trillion tokens, which is double235

the amount of Falcon . Another plausible reason is236

the mixture of datasets used for pretraining them.237

Bigger LLMs have more clinical knowledge:238

Figure 1 shows the relationship between the num-239

ber of parameters and performance. It suggests that240

model performance tends to improve with scale241

(correlation between scale and performance: Spear-242

man’s ρ = 0.24, p < 0.01), and that language mod-243

els exhibit emergent abilities with scale. For exam-244

ple, LLama 2 (13B) has 23% (relative) better accu-245

racy than LLama 2 (7B) on MCQA and 6% higher246

METEOR scores. Even without further domain-247

specific adaptation of LLMs on clinical data, scale248

appears to play a major role in the amount of clini-249

cal knowledge available to LLMs. 250

Open-source LLMs do not outperform humans: 251

While the passing score for USMLE is 60% for 252

humans4, we observe the best score for USMLE 253

to be 43% (LLama 2), which is 17% short of that 254

requirement. Meanwhile, Singhal et al. (2023a) 255

report scores of 86.5% on USMLE. Similarly, for 256

the PubmedQA dataset, human performance is 78% 257

(Jin et al., 2019), compared to 60.4% of LLama 2. 258

To summarize our findings related to RQ1: 259

While LLMs have good clinical knowledge, there is 260

still a significant gap compared to humans (Singhal 261

et al., 2023a). 262

3.2.2 Effect of Instruction Fine-tuning 263

Instruction fine-tuning (Wei et al., 2022; Ouyang 264

et al., 2022) was proposed as a means to improve 265

across-the-board performance on various open- 266

domain tasks. To address RQ2, we investigate 267

whether these improvements also apply to the clin- 268

ical domain of QALM. The results are reported in 269

the bottom part of Table 3. 270

Instruction fine-tuning is key: Surprisingly, in- 271

struction fine-tuned models perform better than 272

their corresponding Base versions, despite the fact 273

that the instruction set used for fine-tuning con- 274

tains only tasks in the general domain (see Table 2). 275

Among them, Flan-T5 models show the best zero 276

shot performance on MCQA, outperforming all com- 277

parable decoder-only models. 278

We observe that the decoder-only language mod- 279

els generate longer and more verbose answers com- 280

pared to the encoder-decoder models, probably due 281

to their causal language modelling training objec- 282

tive. As such, they perform better on AQA. Instruc- 283

tion fine-tuning models can consistently improve 284

decoder-only models as well (compare LLama 2 285

with LLama 2-chat for example). 286

4https://www.usmle.org/bulletin-information/scoring-
and-score-reporting
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Figure 1: Zero-shot performance of models on MCQA (left) and AQA (right) as a function of model size. The dashed
line represents a fitted linear regression showing the correlation between the model size and the score.

Bigger models are not always better: The287

choice of model architecture and the dataset for288

instruction fine-tuning can have a bigger impact on289

performance than model size alone. For example290

the encoder-decoder Flan-T5 (3B) model outper-291

forms LLama 2-chat (13B), despite being four times292

its size.293

MCQA AQA

Acc RL BS MTR

LLama 2 (7B) 53.5 10.6 17.7 2.8 60.8 5.5 16.9 4.2

Falcon (7B) 49.3 14.6 17.4 0.2 60.4 2.0 17.1 0.3

MPT (7B) 53.2 25.6 17.3 4.0 60.0 7.4 17.2 3.9

Flan-T5 (3B) 52.9 1.1 15.9 5.1 56.8 1.8 15.6 7.4

Table 4: Caption: Model finetuning is performed either
on MCQA or their AQA datasets. Evaluation is performed
using Accuracy for MCQA, and Rouge-L, BERTScore,
and METEOR for AQA. The subscripts indicate the
improvement over the zero-shot versions.

3.2.3 Impact of Finetuning294

Given the scale of QALM, we are able to fine-tune295

models on parts of the data, to address RQ3. Specif-296

ically, we fine-tune four models on MCQA and297

AQA separately, given the different nature of these298

datasets.5299

MCQA fine-tuning improves knowledge: We300

fine-tune the models only on the MCQA subset301

of datasets first (c.f. Table 4). We find that the302

models perform better compared to their non-fine-303

tuned counter parts. Decoder-only models like MPT304

(7B) benefit more than others (+25.6 percentage305

5We also experimented with fine-tuning models on MCQA
and AQA jointly, but the results did not differ significantly
from those reported here.

points Accuracy improvement). Interestingly, fine- 306

tuning models on the data seems to close the gaps 307

introduced by different model architectures and 308

pre-training data, discussed in the previous Sec- 309

tion. Specifically, the standard deviation of the 310

model Accuracy in zero-shot setting is 9.0, while 311

after fine-tuning it is reduced to 1.7. This suggests 312

that various LLMs can benefit from task-specific 313

fine-tuning to address seemingly sub-optimal archi- 314

tecture or pre-training conditions. 315

AQA fine-tuning can improve knowledge: We 316

fine-tune the models on AQA datasets. Encoder- 317

Decoder models like Flan-T5 benefit more from 318

AQA fine-tuning compared to the decoder-only 319

models. For instance, the fine-tuned Flan-T5 320

model has significantly better METEOR (+7.8) com- 321

pared to the non fine-tuned version. 322

Fine-tuning can compensate for scale: Scal- 323

ing up brings practical problems of deploying the 324

model in real-world scenarios—smaller models 325

may be preferred to larger ones due to faster in- 326

ference times and lower memory footprints. Fine- 327

tuning helps compensate for scale. LLama 2 (7B) 328

significantly outperforms the zero-shot LLama 2 329

(13B) (+6.4 Accuracy gain on MCQA, +5.7 330

METEOR gain on AQA). Similarly, we observe that 331

a fine-tuned Flan-T5 (3B) outperforms zero shot 332

Flan-T5 (11B) on 9 out of 16 MCQA datasets and 333

also on AQA tasks considerably. 334

Fine-tuned models make similar mistakes: In 335

order to provide targeted suggestions for future per- 336

formance improvements, we analyze the types of 337

errors that fine-tuned models make on the MCQ 338

datasets. To do this, we perform entity recogni- 339

tion using SciSpacy (Neumann et al., 2019) over 340
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Question type and template Support LLama 2 (7B) Falcon (7B) MPT (7B) Flan-T5 (3B)
Scenario-Based Treatment (A
{age}-year-old person. . . )

1172 48.37% 45.31% 44.8% 40.45%

Fact-Based Discriminative
(Which of the. . . )

1053 54.9% 47.95% 53.18% 45.68%

Table 5: Analysis of the most common question types and finetuned model performance. As these questions form
a sub-set of the test set, averaging the reported scores does not correspond to the performance on the full test set
reported in Table 4.

the questions and link these entities with UMLS341

to obtain their type unique identifier (TUI). We342

map these TUIs to their semantic groups6. We re-343

place the original entities in the question with their344

respective semantic group.345

We first use an automated way of analyzing er-346

rors . We categorize the questions based on the first347

three words of the questions, similar to (Yang et al.,348

2018). The example of categories are shown in Ta-349

ble 5, where Scenario-Based Treatment Questions350

describe a real-world case, and the model needs351

to chose the right course of treatment for the case.352

The second category Fact-Based Questions forces353

the model to rely on the internal knowledge stored354

in its parameters to answer the questions.355

We find that models perform worse than average356

on Scenario-Based Treatment Questions: the per-357

formance drops when they have to combine knowl-358

edge encoded in the internal parameters with par-359

ticulars described in the scenario. Among different360

models, Flan-T5 and Falcon have a more stable361

performance across question categories, compared362

to LLama 2 and MPT (standard deviations of 2.6 and363

1.9, vs 3.4 and 3.9).364

We further analyze the errors made by the mod-365

els manually, by randomly choosing 50 samples366

where the model was correct and 50 samples where367

the model was wrong. We consider the best per-368

forming LLama 2 (7B) model for our analysis.369

We identify five categories of common errors and370

report them in Table 6, where Scenario-Based371

Treatment Questions and Fact-Based Questions372

correspond to the previously described common373

question types. Meanwhile, questions concern-374

ing Procedures, Tests and Activities require knowl-375

edge of medical procedures (e.g., the type of test376

needed to identify a certain condition), Anatomy377

and Physiology related questions require knowl-378

edge of anatomy, and Chemicals and Drugs require379

pharmaceutical knowledge.380

6https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/
documentation/SemanticTypesAndGroups.html

Category % Wrong % Correct
Scenario-Based Treatment 26% 30%
Procedures, Tests and Activities 14% 6%
Fact-based Discriminative 12% 14%
Anatomy and Physiology 10% 12%
Chemicals and Drugs 10% 10%

Table 6: Manual analysis of errors and correct predic-
tions of the best-performing fine-tuned LLama 2 (7B)
model.

The manual error analysis corroborates the previ- 381

ous finding that fine-tuned models tend to err when 382

asked about treatments given a scenario, possibly 383

because this is the most frequently occurring cate- 384

gory in the training data. Additionally, our findings 385

suggest that models struggle with procedure-based 386

questions, as these can exhibit significant complex- 387

ity. For example, to successfully select the correct 388

option for the question “Recent studies have shown 389

that the chlorhexidine-isopropyl alcohol solution 390

substantially reduces the risk of surgical site in- 391

fections compared with a povidone-iodine prepara- 392

tion without alcohol in clean-contaminated surgery. 393

Which of the following mechanisms best describes 394

the mechanism of action of chlorhexidin?”, a model 395

needs to not only possess knowledge about the 396

mechanism of action of chlorhexidin, but also re- 397

late it to research findings which suggest that it 398

reduces the risk of surgical site infections (i.e. that 399

it “[...] is greatly reduced in the presence of or- 400

ganic matter” in this case). 401

3.2.4 Generalisation to Unseen Data 402

Finally, we report the potential of LLMs fine-tuned 403

on in-domain data to generalise to medical datasets 404

unseen during training to answer RQ4. We hold 405

out 4 AQA and 10 MCQA datasets presented in Fig- 406

ures 2 and 3. 407

AQA-finetuned models generalise to unseen AQA 408

test sets: Figure 2 shows the performance of 409

LLama 2 (7B) and Flan-T5 (3B) models on the 410

four held-out AQA evaluation sets. The METEOR 411

6

https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/documentation/SemanticTypesAndGroups.html
https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/documentation/SemanticTypesAndGroups.html


scores of the fine-tuned LLama 2 model are lower412

than the zero-shot baseline (−4.2 METEOR). Mean-413

while, fine-tuning Flan-T5 improves performance414

on all four unseen datasets (+8.2 METEOR), suggest-415

ing that instruction fine-tuned models have good416

generalisation capabilities (Wei et al., 2022) com-417

pared to models that were only pre-trained on the418

language modelling task.419

AQA-finetuned models do not generalise to un-420

seen MCQA test sets: Figure 3 (comparing ZS421

with AQA-FT) shows that fine-tuning on AQA does422

not improve performance on unseen MCQA datasets.423

This suggests that higher scores on unseen AQA424

datasets might stem from better aligning genera-425

tions to the expected answer form of AQA answers,426

rather than acquiring additional medical knowledge427

during fine-tuning.428

MCQA-finetuned models do generalise to unseen429

MCQA test sets: Figure 3 (comparing ZS with430

MCQ-FT) suggests that models indeed can learn431

to extract relevant knowledge during fine-tuning,432

as MCQA-tuned models consistently perform bet-433

ter than their zero-shot counterparts. This seem-434

ingly contradicts the previous finding that models435

fail to acquire additional medical knowledge when436

fine-tuned on the AQA datasets. To investigate this437

mismatch, we conduct a manual analysis.438

Fine-tuned models may memorize rather than439

generalize: We aim to discriminate whether440

MCQA fine-tuned models’ performance on unseen441

MCQA datasets can be attributed to their ability to442

generalize in answering medical questions, or if443

their performance is influenced by memorization444

of questions from the training set. To this end,445

we examine three evaluation-only MCQ datasets446

not used in the training split of QALM: Clinical447
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AQA-finetuned LLama 2 model on ten unseen MCQA test
sets.

Knowledge Tests (MMLU-CK) and Medical Ge- 448

netics (MMLU-MG) from MMLU and the OPHTH 449

dataset. We utilize semantic similarity algorithms 450

to retrieve questions in the training sets that closely 451

resemble those in these test sets and manually fil- 452

ter the retrieved results. We identify six out of 453

92, twelve out of 265, and 17 out of 100 ques- 454

tions in the OPHTH, MMLU-CK, and MMLU- 455

MG datasets, respectively, that have similar coun- 456

terparts in the MEDMCQA dataset which was used 457

to fine-tune the LLama 2 model This suggests that 458

scores might be inflated due to train-test leakage. 459

Next, we focus on questions that the LLama 2 460

(7B) model answered wrongly, but which were 461

corrected by MCQA-fine-tuning. We then cross- 462

reference these with the closest equivalent ques- 463

tions in the MEDMCQA dataset. This allows us to 464

categorize the correct answers from near-duplicate 465

memorization or the model’s generalized learning 466

capabilities. We find five, two, and five questions in 467

the three investigated datasets, respectively, where 468

the MCQA-fine-tuned model outperformed its zero- 469

shot counterpart and identified closely related ques- 470

tions in MEDMCQA. Of these, seven questions 471

were near-duplicates with identical answers, while 472

the remaining five would have required some level 473

of clinical understanding for the model to answer 474

them correctly. These findings suggest that the im- 475

proved performance of instruction-tuned models 476

on unseen datasets can be partially attributed to ex- 477

posure to near-identical questions during training. 478

4 Related Work 479

Open source LLMs: The recent proliferation of 480

LLMs has sparked a surge of interest in their adap- 481
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tation for clinical applications. Notably, closed-482

source models like Med-PaLM and Med-PaLM2483

(Singhal et al., 2023a,b) have shown considerable484

promise in leveraging LLMs within the clinical con-485

text. Meanwhile, open-source LLMs are being re-486

leased at an astonishing pace. Nevertheless, it is487

crucial to note that these models have yet to be rig-488

orously assessed for their clinical knowledge, and489

there is currently no existing benchmark for this490

purpose, a gap that this study addresses.491

Benchmarks for clinical knowledge: The adap-492

tation of Large Language Models (LLMs) to the493

medical domain is gaining significant traction as494

they exhibit substantial potential in addressing clin-495

ical and medical issues. In their groundbreak-496

ing work, Singhal et al. (2023a) introduced Multi-497

MedQA, a benchmark that consolidates six distinct498

medical question-answering datasets, along with499

HealthSearchQA, a novel free-response dataset de-500

signed for medical inquiries. Their research in-501

volved an evaluation of Flan-PaLM (Chowdhery502

et al., 2022; Chung et al., 2022) on MultiMedQA,503

alongside the proposal of instruction prompt tun-504

ing to enhance medical reasoning and customize505

LLMs for the medical domain, ultimately giving506

rise to Med-PaLM. Med-PaLM 2 (Singhal et al.,507

2023b) extended this groundwork by incorporating508

PaLM2 (Anil et al., 2023) and leveraging medical509

domain fine-tuning, along with prompting strate-510

gies. These enhancements resulted in an impressive511

86.5% accuracy rate on the United States Medical512

Licensing Examination (USMLE). Building upon513

this foundational work, our aim is to introduce a514

more comprehensive benchmark, encompassing a515

broader range of datasets with diverse characteris-516

tics, to thoroughly evaluate LLMs.517

While most of these benchmarks assess LLMs’518

capabilities in question-answering tasks, it’s crucial519

to address the aspect of hallucination, which is520

of paramount importance in clinical and medical521

applications. In response to this concern, Umapathi522

et al. (2023) introduced Med-HALT, a benchmark523

designed to evaluate LLMs on hallucinations.524

While some of these benchmarks evaluate LLMs’525

clinical knowledge, they may fall short in assess-526

ing their competence in performing various tasks527

within real-world clinical settings. A recent devel-528

opment in this regard comes from Fleming et al.529

(2023), who introduced Med-Align. This innova-530

tive benchmark dataset comprises natural language531

directives related to electronic health record (EHR)532

data, which is a longitudinal record of a patient’s 533

medical history. Med-Align serves the vital pur- 534

pose of evaluating the efficacy of LLMs in process- 535

ing clinical instructions within a clinical context. 536

5 Conclusion 537

In this work, we introduce QALM, a compre- 538

hensive collection of clinical datasets comprising 539

16 multiple-choice and six abstractive question- 540

answering datasets. Our study encompasses an 541

extensive empirical investigation of open-source 542

language models, some of which are trained with 543

up to 13 billion parameters. We assess their clinical 544

knowledge, their capacity to acquire such knowl- 545

edge through training on QALM, and their ability 546

to generalize to previously unseen datasets. 547

Our findings reveal that while these LLMs ex- 548

hibit performance significantly superior to random 549

guessing, there remains room for enhancing their 550

performance when compared to closed-source lan- 551

guage models. Notably, fine-tuning on QALM 552

demonstrates the potential to augment a language 553

model’s clinical knowledge, especially in the con- 554

text of instruction fine-tuned models like Flan-T5. 555

However, we acknowledge that some performance 556

improvements may be attributed to the nature of 557

the test questions. 558

It is important to note that scale and decoder-only 559

language models do not serve as universal solutions 560

for all questions in clinical question-answering. To 561

pave the way for future research in this domain, we 562

emphasize the necessity of considering the archi- 563

tecture of language models, the choice of datasets 564

for instruction fine-tuning, and conducting a rigor- 565

ous evaluation of the knowledge contained within 566

LLMs. These aspects are vital for advancing the 567

state-of-the-art in clinical NLP and expanding the 568

horizon. 569

We make the dataset, experiment code and eval- 570

uation protocol publicly available under https: 571

//anonymized. This will allow future LLM de- 572

velopers to perform a fine-grained analysis of their 573

models clinical and biomedical knowledge. 574
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Limitations575

In this paper, we evaluate the medical or clinical576

knowledge of LLMs by measuring their capability577

of answering test questions. While this can be a578

useful proxy-measure of a model’s domain knowl-579

edge, it is insufficient to gauge its potential applica-580

tion in a real-world scenario. A multi-dimensional581

analysis of a model’s behaviour, including judging582

the completeness, harmlessness and usefulness of583

generated answers, is required in addition to solely584

evaluating their correctness.585

Furthermore, the aggregated resource presented586

in this paper might be seen as lacking diversity,587

as all collected datasets are in English. To make588

inferences about the capabilities of evaluated mod-589

els in other languages, a more diverse dataset with590

examples in other languages is required.591

For our finetuning experiments, we only use592

parameter-efficient finetuning methods (PEFT)593

with QLora due to the high compute requirements594

for full-finetuning. We have not investigate the im-595

pact of the full-finetuning of these LLMs on our596

benchmark.597
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Appendix930

Parameter Flan-T5 XL Llama-2 7B Falcon 7B MPT 7B
lora_r 16 16 16 16
lora_alpha 16 16 16 16
lora_dropout 0.05 0.05 0.05 0.05
bias none none none none
optimizer adamw adamw adamw adamw
epochs 4 4 4 4
batch size 8 8 8 8
model_max_length 256 384 384 384

Table 7: Hyper-parameters used to train our models

Parameter Decoder LLMs Encoder-Decoder LLMs
Beam Size 3 3
Repetition Penalty 1.5 1.5
Max Output Length 200 200

Table 8: Inference time parameters used for abstractive
question answering
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