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Abstract

In recent years, Large Language Models
(LLMs) have gained recognition for their abil-
ity to encode clinical knowledge within their
parameters. Despite their growing popularity,
the existing literature lacks a comprehensive
and standardized benchmark for evaluating the
performance of these models in clinical knowl-
edge applications. In response to this gap, we
introduce a novel benchmark called QALM de-
signed to harmonize the evaluation of language
models in the context of clinical knowledge.
Our benchmark comprises 16 Multiple-Choice
Question (MCQ) datasets and six Abstractive
Question Answering (AQA) datasets, offering a
diverse range of challenges to comprehensively
assess model capabilities.

Our experimental results reveal intriguing in-
sights. We find that decoder-only language
models may not be the optimal choice for
MCQs in clinical knowledge tasks. Addition-
ally, our investigation demonstrates that instruc-
tion fine-tuned language models do not neces-
sarily outperform their counterparts in these
evaluations, emphasizing the importance of
carefully tailored model selection.

To foster research and collaboration in this field,
we make our benchmark publicly available and
open-source the associated evaluation scripts.
This initiative aims to facilitate further advance-
ments in clinical knowledge representation and
utilization within language models, ultimately
benefiting the healthcare and natural language
processing communities.

1 Introduction

Large Language Models (LLM) deployed in the
clinical and biomedical domains have the potential
to revolutionize the healthcare industry. They are
employed to summarize clinical text (Veen et al.,
2023), automatically generate notes for clinicians
(Ben Abacha et al., 2023b), and condense dialogues
between doctors and patients (Ben Abacha et al.,

2023a; Toma et al., 2023). Recognizing their sig-
nificance, recent work (Han et al., 2023; Wu et al.,
2023; Toma et al., 2023; Bolton et al., 2022; Li
et al., 2023) has focused on fine-tuning LLMs on
clinical and bio-medical datasets. However, the
evaluation of LLMs within the clinical and biomed-
ical domains remains incomplete and requires fur-
ther comprehensive evaluation. Recent models tend
to be evaluated on different datasets or tasks, which
makes fair comparison of models harder.

Clinical knowledge assessment in LLMSs involves
two primary tasks (Singhal et al., 2023a): Multi-
ple Choice Question Answering (MCQA), where
answers are selected from multiple options, and
abstractive question answering (AQA), which en-
tails generating answers to questions, either with
or without a provided paragraph context.

The evaluation of LLMs regarding their clinical
knowledge is restricted. For instance, Singhal et al.
(2023a) assess proprietary models on a consoli-
dated dataset, but open-source LLMs are not tested
on such a unified benchmark. We expand Singhal
et al. (2023a)’s benchmark with more datasets, to
enable transparency and reproducibility, and to test
new advances in LLM research. Our benchmark
called QALM consolidates existing MCQA and AQA
datasets, featuring 16 MCQA and 6 AQA datasets.
With such a standardized benchmark we are able to
test the strengths and weaknesses of open-source
models using a methodological unified framework,
which is currently missing in the literature.

Our evaluation encompasses diverse zero-shot
and fine-tuning settings. Our findings reveal
that the latest decoder-only LLMs do not consis-
tently outperform others on reading comprehen-
sion datasets, where models are presented with a
context paragraph to answer a question. Moreover,
although instruction fine-tuned models have been
argued to surpass their non-instruction fine-tuned
counterparts in some contexts (Wei et al., 2021;
Gupta et al., 2023), our results suggest a more nu-



Dataset Type Size Domain

USMLE (Jin et al., 2021) MCQA 10178/1272/1273 Medical Exam

MEDMCQA (Pal et al., 2022) MCQA 182822/4183/6150 Medical Exam

BI0ASQ-MCQ (Tsatsaronis et al., 2015; Krithara MCQA 975/173/123 Biomedical

et al., 2023)

HEADQA (Vilares and Gémez-Rodriguez, 2019) MCQA 2657/1366/2742 Medical Exam

PROCESSBANK (Berant et al., 2014) Context + MCQA 358/77/150 Biological Processes

PUBMEDQA (Jin et al., 2019) Context + MCQA 400/100/500 Biomedical

MMLU (Hendrycks et al., 2021) MCQA 30/NA/1089 Medical and Clinical

B1OMRC-Tiny A (Pappas et al., 2020) Context + MCQA NA/NA/30 Cloze Biomedical

BI1OMRC-Tiny B (Pappas et al., 2020) Context + MCQA NA/NA/30 Cloze Biomedical

OPHTH (Raimondi et al., 2023; RCOphth, a,b) MCQA NA/NA/92 Ophthalmology

QA4MRE-(Alzheimer’s QA) (Morante et al., 2012) MCQA NA/NA/40 Alzheimer’s Disease
" LIVEQA (Abacha et al., 2017; Ben Abacha and AQA  NA/NA/I31  Consumer Health

Demner-Fushman, 2019)

MEDIQA-ANS (Savery et al., 2020) AQA NA/NA/156 Consumer Health

BIOASQ-QA (Tsatsaronis et al., 2015; Krithara AQA 4733/697/363 Biomedical

et al., 2023)

MASHQ (Zhu et al., 2020) AQA 27728/3587/3493 Medical

MEDQUAD (Ben Abacha and Demner-Fushman, AQA 14068/981/1358 Medical

2019)

MEDINFO (Ben Abacha et al., 2019) AQA NA/NA/663 Consumer Medication

Table 1: An overview of the QALM datasets. We present the size in terms of train/val/test splits. We create a manual
train/val split for BIOASQ-MCQ, PROCESSBANK, PUBMEDQA, BIOASQ-QA and MEDQUAD.

anced trend.

In summary, QALM introduces a benchmark that
consolidates datasets to assess clinical knowledge
within LLMs. This initiative underscores the im-
perative for a unified and comprehensive suite of
datasets to rigorously evaluate the clinical knowl-
edge capabilities of these models, particularly in
light of the continuously expanding array of LLMs.

2 QALM Datasets

QALM represent a comprehensive collection of 22
datasets designed to thoroughly evaluate the clin-
ical knowledge of LLMs. These datasets are pub-
licly accessible, and some of them have not been
used for testing open-source LLMs before. Like
other studies (Singhal et al., 2023a) (Singhal et al.,
2023b), we employ Question and Answering tasks
as a surrogate test to assess clinical knowledge of
LLMs. We have included two types of question-
answering datasets: Multiple Choice (MCQA) and
Abstractive Question Answering (AQA). The com-
plete list of these datasets is provided in Table 1.
MCQA questions assess the model’s ability to
select the correct option from a list of challeng-
ing alternatives. These types of questions are fre-
quently encountered in medical licensing exami-
nations, such as the US Medical Licensing Exam
(USMLE) (Jin et al., 2021), as well as in medical

entrance exams in countries like India (Pal et al.,
2022) and Spain (Vilares and Gémez-Rodriguez,
2019). Within QALM, there are a total of 216,810
instances of MCQA questions. On average, each
question has four answer choices. In some sce-
narios, a contextual paragraph is provided and the
answer must be derived from this context which
tests the model’s contextual reasoning abilities.

AQA datasets evaluate the model’s proficiency in
providing open-ended answers to questions. QALM
encompasses six AQA datasets, containing a total
of 57,958 questions. On average, the answers in
these datasets have a length of about 100 tokens.

Our work is distinct from Singhal et al. (2023a),
who only consider two AQA datasets, LiveQA and
MedicationQA, as they argue that these datasets
lack reliable sources for answers. In contrast,
we incorporate four additional datasets where an-
swers are provided from experts or sourced from
trusted forums, increasing their reliability. Fur-
thermore, we use a version of the LiveQA dataset
that contains expert-ranked answers (Ben Abacha
and Demner-Fushman, 2019). The performance of
LLMs on these datasets have not been previously
assessed in existing literature.

While Singhal et al. (2023a) employ only a sin-
gle dataset for assessing model performance in
reading comprehension, we introduce two more



datasets: one for evaluating a model’s ability to
predict a concealed medical entity, and another
for assessing model proficiency in comprehending
interactions between various entities mentioned
in the text. Furthermore, we include four addi-
tional general knowledge multiple-choice question
(MCQ) datasets, broadening the range of questions
for model testing. This expanded array of evalua-
tion datasets enables a more comprehensive anal-
ysis of model capabilities, potentially mitigating
uncertainty stemming from a limited range of ob-
servations.

3 Empirical Evaluation

Considering the QALM datasets, we seek evidence
for the following key research questions in a large-
scale empirical study:

RQ1. How well do open-source language models
(LLMs) recall necessary clinical knowledge
when they are tested on QALM?

RQ2. Does instruction fine-tuning of LLMs im-

prove their clinical knowledge recall?

RQ3. Does domain and task-specific finetuning on
QALM help LLMSs acquire additional clinical

knowledge?

RQ4. Can LLMs generalize to data unseen during

training?

3.1 Study Setup

To seek evidence for RQ1 and RQ2 empirically,
we evaluate several LLMs and their instruction-
finetuned versions on the test splits of QALM in
zero-shot manner. To answer RQ3 and RQ4, we
fine-tune LLMs on the training portion of QALM
and evaluate on test splits of datasets both seen and
unseen during training. We complement our evalu-
ation with additional automated and manual error
analyses to identify causes for model successes and
failures.

Models: To assess the zero-shot capabilities of
models (RQ1 and RQ2), we include a diverse array
of open-source decoder-only models with param-
eter scales ranging from 3B-13B. We use models
from MPT and MPT-Instruct (7B) (MosaicML, 2023),
Falcon and Falcon-Instruct (7B) (Almazrouei
et al., 2023) and LLama 2 and LLama 2-chat (7B
and 13B). In addition to these models, we also use
two instruction fine-tuned encoder-decoder models:

Flan-T5 (3B and 11B) (Wei et al., 2021). Mod-
els with Instruct or Chat appended to their names
are instruction fine-tuned (Ouyang et al., 2022)
versions of their base models. The details of the
models are given in Table 2.> We initially also
considered OpenLLaMA (3B and 7B) (Geng and Liu,
2023) as well as GPT-J (6B) (Wang and Komat-
suzaki, 2021). However, we found that due to
the poor performance of OpenLLaMA on the MCQA
datasets and since GPT-J and OpenLLaMA did not
have instruction-finetuned equivalents, we did not
include them in our further analysis.

To address RQ3, we use the training set of the
QALM datasets. When official validation splits are
unavailable, we employ a random split of up to
around 20% of the data for validation purposes. If
no training datasets are available, we do not use
this dataset for fine-tuning and only consider the
test split of the respective datasets to answer RQ4.

Finetuning and hyperparameters: Since the
number of parameters for most of our models are in
the billions, we follow a more accepted practice of
using parameter-efficient fine-tuning. Specifically,
we use QLora and 4-bit quantization (Dettmers
et al., 2023) for fine-tuning. We use A100-40G
GPUs for all our experiments. The other hyper-
parameters used to train our models are reported in
the Appendix (Table 7).

Evaluation measures: We use accuracy to mea-
sure the performance of the model on MCQA
datasets; for AQA datasets, we use ROUGE-L (Lin,
2004), BERTScore (Zhang et al., 2020)° and
METEOR (Banerjee and Lavie, 2005). METEOR
in particular is found to correlate better with hu-
man judgments than other metrics on AQA (Chen
et al., 2019).

3.2 Results and Analysis

In this section, we report and analyse the findings
of our empirical study.

3.2.1 Zero-shot performance of LLMs

Table 3 presents the zero-shot evaluation of lan-
guage models as evidence towards RQ1. We report
the average accuracies across all tasks.

2For MCQA evaluation in the zero-shot setting (where mod-
els are not explicitly fine-tuned on the train splits of our bench-
mark), we use a 1-shot prompt—giving an example to the
model, and find that it adheres better to the MCQA format. We
use the standard 5-shot prompt for MMLU.

3We use deberta-xlarge-mnli for calculating BERTScore.



Model Architecture # Tokens Data Source

Base models
MPT Decoder IT

Red Pajama (Computer, 2023), The Stack (Kocetkov et al., 2022), C4 (Raffel et al., 2019), mC4 (Xue et al., 2021), S20RC (Lo et al., 2020)

All of MPT and Databricks Dolly-15k (Conover et al., 2023), Anthropic Helpful and Harmless (Bai et al., 2022)

Falcon Decoder 1.5T RefinedWeb (Penedo et al., 2023)
LLama 2 Decoder 2T Unknown

 nstruction uned models
Flan-T5 Encoder-Decoder 1T C4 (Raffel et al., 2019) and Flan-Collection (Wei et al., 2021)
MPT-Instruct Decoder 1T
Falcon-Instruct Decoder 1.5T All of Falcon and baize (Xu et al., 2023), GPT4All, GPTeacher !
LLama 2-Chat Decoder 2T All of LLama 2 and Flan Collection (Wei et al., 2021) + Private Data

Table 2: Pretrained LLMs considered in this paper. (Top rows) Open-source models that are decoder-only. (Bottom
rows) Instruction-fine-tuned language models. # Tokens: Number of tokens used in pretraining the model. Data
Source: Data used for pre-training (instruction data is italicized).

MCQA
Acc  RL BS

LLama 2 (7B) 429 : 149 553 21.1
® LLama 2 (13B) 47.1 1150 564 22.5
& MPT (7B) 276 133 526 211
Falcon (7B) 347 1140 54.1 200
- Llama2-chat(7B) | 459 150 580 233
§ LLama 2-chat (13B) 50.3 : 15.3 58.0 23.6
g MPT-Instruct (7B) 316 | 158 59.7 15.6
§ Falcon-Instruct (7B) | 31.8 | 17.2 62.4 17.4
§ Flan-T5 (3B) 51.8 | 108 550 7.4
= Flan-T5 (11B) 565 1115 563 82
Table 3: Zero-shot performance of Base models

(top) and instruction-tuned models (bottom). Metrics
are Accuracy for MCQA; Rouge-L, BERTScore, and
METEOR for AQA.

LLMs are good zero/few-shot learners: Table 3
shows that LLMs exhibit strong zero-shot capabil-
ity on MCQA and AQA datasets, corroborating the
findings of Singhal et al. (2023a). Across different
LLMs of the same size, LLama 2 (7B) provides the
best performance compared to other open source
models like Falcon (7B). A possible reason for this
might be the diversity in pretraining data — LLama 2
is trained on two trillion tokens, which is double
the amount of Falcon . Another plausible reason is
the mixture of datasets used for pretraining them.

Bigger LLMs have more clinical knowledge:
Figure 1 shows the relationship between the num-
ber of parameters and performance. It suggests that
model performance tends to improve with scale
(correlation between scale and performance: Spear-
man’s p = 0.24, p < 0.01), and that language mod-
els exhibit emergent abilities with scale. For exam-
ple, LLama 2 (13B) has 23% (relative) better accu-
racy than LLama 2 (7B) on MCQA and 6% higher
METEOR scores. Even without further domain-
specific adaptation of LLMs on clinical data, scale
appears to play a major role in the amount of clini-

cal knowledge available to LLMs.

Open-source LLMs do not outperform humans:
While the passing score for USMLE is 60% for
humans®*, we observe the best score for USMLE
to be 43% (LLama 2), which is 17% short of that
requirement. Meanwhile, Singhal et al. (2023a)
report scores of 86.5% on USMLE. Similarly, for
the PubmedQA dataset, human performance is 78%
(Jin et al., 2019), compared to 60.4% of LLama 2.

To summarize our findings related to RQI:
While LLMs have good clinical knowledge, there is
still a significant gap compared to humans (Singhal
et al., 2023a).

3.2.2 Effect of Instruction Fine-tuning

Instruction fine-tuning (Wei et al., 2022; Ouyang
et al., 2022) was proposed as a means to improve
across-the-board performance on various open-
domain tasks. To address RQ2, we investigate
whether these improvements also apply to the clin-
ical domain of QALM. The results are reported in
the bottom part of Table 3.

Instruction fine-tuning is key: Surprisingly, in-
struction fine-tuned models perform better than
their corresponding Base versions, despite the fact
that the instruction set used for fine-tuning con-
tains only tasks in the general domain (see Table 2).
Among them, Flan-T5 models show the best zero
shot performance on MCQA, outperforming all com-
parable decoder-only models.

We observe that the decoder-only language mod-
els generate longer and more verbose answers com-
pared to the encoder-decoder models, probably due
to their causal language modelling training objec-
tive. As such, they perform better on AQA. Instruc-
tion fine-tuning models can consistently improve
decoder-only models as well (compare LLama 2
with LLama 2-chat for example).

*https://www.usmle.org/bulletin-information/scoring-
and-score-reporting



0.6 T
X
X o |
o ---B"7
> 0_--- -
2 O Z=-
- [ J
ot °
Q
< ¢ ® Falcon
X Flan-T5
02 J LLama 2
o MPT
| |
) 10 15

Model Parameters in Billions

METEOR score

0.3

m] H |
0.2 - s
o
.- 3
0.1 ® Falcon | |
) % X | x Flan-T5
J LLama 2
o MPT
| |

5

10

15

Model Parameters in Billions

Figure 1: Zero-shot performance of models on MCQA (left) and AQA (right) as a function of model size. The dashed
line represents a fitted linear regression showing the correlation between the model size and the score.

Bigger models are not always better: The
choice of model architecture and the dataset for
instruction fine-tuning can have a bigger impact on
performance than model size alone. For example
the encoder-decoder Flan-T5 (3B) model outper-
forms LLama 2-chat (13B), despite being four times
its size.

MCQA AQA

Acc RL BS  MTR
LLama2 (7B) | 535100 | 17.725 60.8:5 169 .
Falcon (7B) | 49.3 11¢ | 17405 6040 17.104
MPT (7B) 53.2 056 i 17310 6007, 17240
Flan-T5 (3B) | 52911 115951 56.8:5 1567,

Table 4: Caption: Model finetuning is performed either
on MCQA or their AQA datasets. Evaluation is performed
using Accuracy for MCQA, and Rouge-L, BERTScore,
and METEOR for AQA. The subscripts indicate the
improvement over the zero-shot versions.

3.2.3 Impact of Finetuning

Given the scale of QALM, we are able to fine-tune
models on parts of the data, to address RQ3. Specif-
ically, we fine-tune four models on MCQA and
AQA separately, given the different nature of these
datasets.’

MCQA fine-tuning improves knowledge: We
fine-tune the models only on the MCQA subset
of datasets first (c.f. Table 4). We find that the
models perform better compared to their non-fine-
tuned counter parts. Decoder-only models like MPT
(7B) benefit more than others (425.6 percentage

SWe also experimented with fine-tuning models on MCQA
and AQA jointly, but the results did not differ significantly
from those reported here.

points Accuracy improvement). Interestingly, fine-
tuning models on the data seems to close the gaps
introduced by different model architectures and
pre-training data, discussed in the previous Sec-
tion. Specifically, the standard deviation of the
model Accuracy in zero-shot setting is 9.0, while
after fine-tuning it is reduced to 1.7. This suggests
that various LLMs can benefit from task-specific
fine-tuning to address seemingly sub-optimal archi-
tecture or pre-training conditions.

AQA fine-tuning can improve knowledge: We
fine-tune the models on AQA datasets. Encoder-
Decoder models like Flan-T5 benefit more from
AQA fine-tuning compared to the decoder-only
models. For instance, the fine-tuned Flan-T5
model has significantly better METEOR (+7.8) com-
pared to the non fine-tuned version.

Fine-tuning can compensate for scale: Scal-
ing up brings practical problems of deploying the
model in real-world scenarios—smaller models
may be preferred to larger ones due to faster in-
ference times and lower memory footprints. Fine-
tuning helps compensate for scale. LLama 2 (7B)
significantly outperforms the zero-shot LLama 2
(13B) (+6.4 Accuracy gain on MCQA, +5.7
METEOR gain on AQA). Similarly, we observe that
a fine-tuned Flan-T5 (3B) outperforms zero shot
Flan-T5 (11B) on 9 out of 16 MCQA datasets and
also on AQA tasks considerably.

Fine-tuned models make similar mistakes: In
order to provide targeted suggestions for future per-
formance improvements, we analyze the types of
errors that fine-tuned models make on the MCQ
datasets. To do this, we perform entity recogni-
tion using SciSpacy (Neumann et al., 2019) over



Question type and template Support LLama 2 (7B) Falcon (7B) MPT (7B) Flan-T5(3B)
Scenario-Based Treatment (A 1172 48.37 % 45.31% 44.8% 40.45%
{age}-year-old person. . .)

Fact-Based  Discriminative 1053 54.9% 47.95% 53.18% 45.68%

(Which of the. . .)

Table 5: Analysis of the most common question types and finetuned model performance. As these questions form
a sub-set of the test set, averaging the reported scores does not correspond to the performance on the full test set

reported in Table 4.

the questions and link these entities with UMLS
to obtain their type unique identifier (TUI). We
map these TUIs to their semantic groups®. We re-
place the original entities in the question with their
respective semantic group.

We first use an automated way of analyzing er-
rors . We categorize the questions based on the first
three words of the questions, similar to (Yang et al.,
2018). The example of categories are shown in Ta-
ble 5, where Scenario-Based Treatment Questions
describe a real-world case, and the model needs
to chose the right course of treatment for the case.
The second category Fact-Based Questions forces
the model to rely on the internal knowledge stored
in its parameters to answer the questions.

We find that models perform worse than average
on Scenario-Based Treatment Questions: the per-
formance drops when they have to combine knowl-
edge encoded in the internal parameters with par-
ticulars described in the scenario. Among different
models, Flan-T5 and Falcon have a more stable
performance across question categories, compared
to LLama 2 and MPT (standard deviations of 2.6 and
1.9, vs 3.4 and 3.9).

We further analyze the errors made by the mod-
els manually, by randomly choosing 50 samples
where the model was correct and 50 samples where
the model was wrong. We consider the best per-
forming LLama 2 (7B) model for our analysis.
We identify five categories of common errors and
report them in Table 6, where Scenario-Based
Treatment Questions and Fact-Based Questions
correspond to the previously described common
question types. Meanwhile, questions concern-
ing Procedures, Tests and Activities require knowl-
edge of medical procedures (e.g., the type of test
needed to identify a certain condition), Anatomy
and Physiology related questions require knowl-
edge of anatomy, and Chemicals and Drugs require
pharmaceutical knowledge.

6h'ctps ://1lhncbc.nlm.nih.gov/ii/tools/MetaMap/
documentation/SemanticTypesAndGroups.html

Category % Wrong % Correct
Scenario-Based Treatment 26% 30%
Procedures, Tests and Activities 14% 6%
Fact-based Discriminative 12% 14%
Anatomy and Physiology 10% 12%
Chemicals and Drugs 10% 10%

Table 6: Manual analysis of errors and correct predic-
tions of the best-performing fine-tuned LLama 2 (7B)
model.

The manual error analysis corroborates the previ-
ous finding that fine-tuned models tend to err when
asked about treatments given a scenario, possibly
because this is the most frequently occurring cate-
gory in the training data. Additionally, our findings
suggest that models struggle with procedure-based
questions, as these can exhibit significant complex-
ity. For example, to successfully select the correct
option for the question “Recent studies have shown
that the chlorhexidine-isopropyl alcohol solution
substantially reduces the risk of surgical site in-
fections compared with a povidone-iodine prepara-
tion without alcohol in clean-contaminated surgery.
Which of the following mechanisms best describes
the mechanism of action of chlorhexidin?”, a model
needs to not only possess knowledge about the
mechanism of action of chlorhexidin, but also re-
late it to research findings which suggest that it
reduces the risk of surgical site infections (i.e. that
it “[...] is greatly reduced in the presence of or-
ganic matter” in this case).

3.2.4 Generalisation to Unseen Data

Finally, we report the potential of LLMs fine-tuned
on in-domain data to generalise to medical datasets
unseen during training to answer RQ4. We hold
out 4 AQA and 10 MCQA datasets presented in Fig-
ures 2 and 3.

AQA-finetuned models generalise to unseen AQA
test sets: Figure 2 shows the performance of
LLama 2 (7B) and Flan-T5 (3B) models on the
four held-out AQA evaluation sets. The METEOR
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scores of the fine-tuned LLama 2 model are lower
than the zero-shot baseline (—4.2 METEOR). Mean-
while, fine-tuning Flan-T5 improves performance
on all four unseen datasets (48.2 METEOR), suggest-
ing that instruction fine-tuned models have good
generalisation capabilities (Wei et al., 2022) com-
pared to models that were only pre-trained on the
language modelling task.

AQA-finetuned models do not generalise to un-
seen MCQA test sets: Figure 3 (comparing ZS
with AQA-FT) shows that fine-tuning on AQA does
not improve performance on unseen MCQA datasets.
This suggests that higher scores on unseen AQA
datasets might stem from better aligning genera-
tions to the expected answer form of AQA answers,
rather than acquiring additional medical knowledge
during fine-tuning.

MCQA-finetuned models do generalise to unseen
MCQA test sets: Figure 3 (comparing ZS with
MCQ-FT) suggests that models indeed can learn
to extract relevant knowledge during fine-tuning,
as MCQA-tuned models consistently perform bet-
ter than their zero-shot counterparts. This seem-
ingly contradicts the previous finding that models
fail to acquire additional medical knowledge when
fine-tuned on the AQA datasets. To investigate this
mismatch, we conduct a manual analysis.

Fine-tuned models may memorize rather than
generalize: We aim to discriminate whether
MCQA fine-tuned models’ performance on unseen
MCQA datasets can be attributed to their ability to
generalize in answering medical questions, or if
their performance is influenced by memorization
of questions from the training set. To this end,
we examine three evaluation-only MCQ datasets
not used in the training split of QALM: Clinical
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Figure 2: Performance of base and AQA-finetuned
LLama 2 and Flan-T5 models on four unseen AQA test
sets.
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Figure 3: Performance of base, MCQA-fine-tuned and
AQA-finetuned LLama 2 model on ten unseen MCQA test
sets.

Knowledge Tests (MMLU-CK) and Medical Ge-
netics (MMLU-MG) from MMLU and the OPHTH
dataset. We utilize semantic similarity algorithms
to retrieve questions in the training sets that closely
resemble those in these test sets and manually fil-
ter the retrieved results. We identify six out of
92, twelve out of 265, and 17 out of 100 ques-
tions in the OPHTH, MMLU-CK, and MMLU-
MG datasets, respectively, that have similar coun-
terparts in the MEDMCQA dataset which was used
to fine-tune the LLama 2 model This suggests that
scores might be inflated due to train-test leakage.
Next, we focus on questions that the LLama 2
(7B) model answered wrongly, but which were
corrected by MCQA-fine-tuning. We then cross-
reference these with the closest equivalent ques-
tions in the MEDMCQA dataset. This allows us to
categorize the correct answers from near-duplicate
memorization or the model’s generalized learning
capabilities. We find five, two, and five questions in
the three investigated datasets, respectively, where
the MCQA-fine-tuned model outperformed its zero-
shot counterpart and identified closely related ques-
tions in MEDMCQA. Of these, seven questions
were near-duplicates with identical answers, while
the remaining five would have required some level
of clinical understanding for the model to answer
them correctly. These findings suggest that the im-
proved performance of instruction-tuned models
on unseen datasets can be partially attributed to ex-
posure to near-identical questions during training.

4 Related Work

Open source LLMs: The recent proliferation of
LLMs has sparked a surge of interest in their adap-



tation for clinical applications. Notably, closed-
source models like Med-PalLM and Med-PalLM2
(Singhal et al., 2023a,b) have shown considerable
promise in leveraging LLMs within the clinical con-
text. Meanwhile, open-source LLMS are being re-
leased at an astonishing pace. Nevertheless, it is
crucial to note that these models have yet to be rig-
orously assessed for their clinical knowledge, and
there is currently no existing benchmark for this
purpose, a gap that this study addresses.

Benchmarks for clinical knowledge: The adap-
tation of Large Language Models (LLMs) to the
medical domain is gaining significant traction as
they exhibit substantial potential in addressing clin-
ical and medical issues. In their groundbreak-
ing work, Singhal et al. (2023a) introduced Multi-
MedQA, a benchmark that consolidates six distinct
medical question-answering datasets, along with
HealthSearchQA, a novel free-response dataset de-
signed for medical inquiries. Their research in-
volved an evaluation of Flan-PaLM (Chowdhery
et al., 2022; Chung et al., 2022) on MultiMedQA,
alongside the proposal of instruction prompt tun-
ing to enhance medical reasoning and customize
LLMs for the medical domain, ultimately giving
rise to Med-PaLM. Med-PalLM 2 (Singhal et al.,
2023b) extended this groundwork by incorporating
PalLM2 (Anil et al., 2023) and leveraging medical
domain fine-tuning, along with prompting strate-
gies. These enhancements resulted in an impressive
86.5% accuracy rate on the United States Medical
Licensing Examination (USMLE). Building upon
this foundational work, our aim is to introduce a
more comprehensive benchmark, encompassing a
broader range of datasets with diverse characteris-
tics, to thoroughly evaluate LLMs.

While most of these benchmarks assess LLMs’
capabilities in question-answering tasks, it’s crucial
to address the aspect of hallucination, which is
of paramount importance in clinical and medical
applications. In response to this concern, Umapathi
et al. (2023) introduced Med-HALT, a benchmark
designed to evaluate LLMs on hallucinations.

While some of these benchmarks evaluate LLMs’
clinical knowledge, they may fall short in assess-
ing their competence in performing various tasks
within real-world clinical settings. A recent devel-
opment in this regard comes from Fleming et al.
(2023), who introduced Med-Align. This innova-
tive benchmark dataset comprises natural language
directives related to electronic health record (EHR)

data, which is a longitudinal record of a patient’s
medical history. Med-Align serves the vital pur-
pose of evaluating the efficacy of LLMs in process-
ing clinical instructions within a clinical context.

5 Conclusion

In this work, we introduce QALM, a compre-
hensive collection of clinical datasets comprising
16 multiple-choice and six abstractive question-
answering datasets. Our study encompasses an
extensive empirical investigation of open-source
language models, some of which are trained with
up to 13 billion parameters. We assess their clinical
knowledge, their capacity to acquire such knowl-
edge through training on QALM, and their ability
to generalize to previously unseen datasets.

Our findings reveal that while these LLMs ex-
hibit performance significantly superior to random
guessing, there remains room for enhancing their
performance when compared to closed-source lan-
guage models. Notably, fine-tuning on QALM
demonstrates the potential to augment a language
model’s clinical knowledge, especially in the con-
text of instruction fine-tuned models like F1lan-T5.
However, we acknowledge that some performance
improvements may be attributed to the nature of
the test questions.

It is important to note that scale and decoder-only
language models do not serve as universal solutions
for all questions in clinical question-answering. To
pave the way for future research in this domain, we
emphasize the necessity of considering the archi-
tecture of language models, the choice of datasets
for instruction fine-tuning, and conducting a rigor-
ous evaluation of the knowledge contained within
LLMs. These aspects are vital for advancing the
state-of-the-art in clinical NLP and expanding the
horizon.

We make the dataset, experiment code and eval-
uation protocol publicly available under https:
//anonymized. This will allow future LLM de-
velopers to perform a fine-grained analysis of their
models clinical and biomedical knowledge.


https://anonymized
https://anonymized
https://anonymized

Limitations

In this paper, we evaluate the medical or clinical
knowledge of LLMs by measuring their capability
of answering test questions. While this can be a
useful proxy-measure of a model’s domain knowl-
edge, it is insufficient to gauge its potential applica-
tion in a real-world scenario. A multi-dimensional
analysis of a model’s behaviour, including judging
the completeness, harmlessness and usefulness of
generated answers, is required in addition to solely
evaluating their correctness.

Furthermore, the aggregated resource presented
in this paper might be seen as lacking diversity,
as all collected datasets are in English. To make
inferences about the capabilities of evaluated mod-
els in other languages, a more diverse dataset with
examples in other languages is required.

For our finetuning experiments, we only use
parameter-efficient finetuning methods (PEFT)
with QLora due to the high compute requirements
for full-finetuning. We have not investigate the im-
pact of the full-finetuning of these LLMs on our
benchmark.
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Appendix

Parameter Flan-T5 XL Llama-2 7B  Falcon 7B MPT 7B
lora_r 16 16 16 16
lora_alpha 16 16 16 16
lora_dropout 0.05 0.05 0.05 0.05
bias none none none none
optimizer adamw adamw adamw adamw
epochs 4 4 4 4
batch size 8 8 8 8
model_max_length 256 384 384 384

Table 7: Hyper-parameters used to train our models

Parameter Decoder LLMs  Encoder-Decoder LLMs
Beam Size 3 3

Repetition Penalty 1.5 1.5

Max Output Length 200 200

Table 8: Inference time parameters used for abstractive
question answering
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