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Abstract

The field of women’s endocrinology has trailed behind data-driven medical solu-
tions, largely due to concerns over the privacy of patient data. Valuable datapoints
about hormone levels or menstrual cycling could expose patients who suffer from
comorbidities or terminate a pregnancy, violating their privacy. We explore the
application of Federated Learning (FL) to predict the optimal drug for patients
with polycystic ovary syndrome (PCOS). PCOS is a serious hormonal disorder
impacting millions of women worldwide, yet it’s poorly understood and its research
is stunted by a lack of patient data. We demonstrate that a variety of FL approaches
succeed on a synthetic PCOS patient dataset. Our proposed FL models are a
tool to access massive quantities of diverse data and identify the most effective
treatment option while providing PCOS patients with privacy guarantees. Our code
is open-sourced at https://github.com/toriqiu/fl-pcos.

1 Introduction

1.1 Privacy Concerns with PCOS Patient Data

Biologic hyperandrogenism is a key criterion for polycystic ovary syndrome (PCOS) diagnosis and is
determined by blood work. These blood panels measure various hormones associated with PCOS
and provide a snapshot of the patient’s overall reproductive health. Blood panel results are sensitive,
as they can be used to extract information about pregnancies, abortions, and miscarriages. For
example, using the hormone levels revealed by blood panel data, it’s possible to access a patient’s
pregnancy history by detecting menstrual irregularities and using luteinizing hormone (LH) and
follicle-stimulating hormone (FSH) to diagnose pregnancy [1], [2]. These hormone levels are
especially distinct during early pregnancy [3]. A patient file containing reports of mood disorders
or comorbidities, if extracted, could also impact the patient’s job prospects and insurance rates [4].
Considering the intimate information PCOS data can reveal about a patient’s medical history, privacy
is essential when handling it. In situations where medical providers are no longer the sole repositories
of patient data, it is not difficult for a third-party server to obtain medical records [5].

1.2 Federated Learning Meets the Challenges of PCOS Research

The field of gynecology research largely relies on primary data collection methods and randomized
controlled trials (RCTs) for studying diagnosis and treatment. Both these modes of inquiry suffer
from a lack of large-scale data. RCTs conducted in OB/GYN studies typically enroll an average study
population of 200 female patients [6], which is miniscule compared to the millions of data points
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available in aggregated databases, even after filtering for a study’s inclusion criteria. However, RCTs
are particularly informative because randomizing exposure to treatment eliminates selection bias
and rules out confounding variables, establishing causality of a treatment. Despite the advantages
of randomization, RCT findings are not generalizable. Their small sample sizes preclude analysis
of correlations between hormonal levels and treatment, and they lack guarantees on non-IID data.
HIPAA Privacy Rule prohibits U.S. healthcare providers and insurance companies from using or
disclosing protected health information without explicit patient consent [7]. Voluntary disclosures are
unlikely as widespread anxieties of data security and privacy persist within the patient population [8],
and even anonymized data can be re-identifiable via triangulation with other data sets [9], [10]. Not
only does the need for patient consent severely limit data availability, it is only practical for cases in
which consent granted by the patient is unconditional, since recalling data from those who obtained it
is practically unenforceable. These factors complicate the study of PCOS treatment. Ideally, study
of PCOS treatment can be conducted at scale with minimal data retention to protect the privacy of
subjects.

We propose federated learning (FL) as a method for improving PCOS treatment outcomes. In
particular, we develop models to learn optimal oral contraceptive pill (OCP) treatments based on
blood panel data and historical success of treatment for similar hormone profiles. We argue that FL
is a promising solution to improve the PCOS treatment process given the privacy concerns around
patient blood panel data and the lack of comprehensive datasets relevant to PCOS [11]. Isolated
data from smaller studies can introduce sample bias in which demographics (e.g. ethnicity, age,
etc.) skew the predictions, affecting the accuracy of treatment prediction for certain sites. FL allows
access to thousands of valuable data points across a wide geographic area without the need for a
centralized database or sharing of data between institutions. Using FL to determine personalized
medical treatment bypasses the high risks of direct intervention on patients and the expenses of
conducting clinical trials [12]. With FL, the advantages of large datasets can be harnessed for PCOS
research without the security threats historically associated with learning at this scale.

1.3 Contributions of Our Approach

Current ML research on PCOS focuses on its diagnosis [13], [14],[15], with much of this research
employing the same publicly available dataset of 541 points from Kerala, India [16] [17]. Our key
contributions are as follows:

• We devise the first application of ML to PCOS drug recommendation, focusing on treatment
rather than diagnosis. We learn correlations between seven hormonal metrics associated
with PCOS and their compatibility with five common OCPs. Using these correlations, our
models predict the most effective intervention.

• We generate synthetic data to reflect the client pool of a deployed FL model, significantly
expanding the dataset size from existing studies. The larger dataset helps avoid overfitting
to a small group and captures the complete demographics of patients who are impacted by
predictive care.

• We demonstrate a variety of FL approaches achieve excellent performance on the task of
drug recommendation. Our models are evaluated on IID data, non-IID data, clients with
identical dataset sizes, and clients with differing dataset sizes.

2 Background and Related Work

2.1 PCOS Lacks a Clear Treatment Process

PCOS is the most common hormonal disorder in women of reproductive age, impacting an estimated
10% of women worldwide. PCOS is named for the painful, fluid-filled cysts that form on the ovaries,
which can damage organ function and in some cases require surgical removal. Other common
symptoms of PCOS include irregular menstruation, infertility, hirsutism, acne, mood disorders,
weight gain, and an increased risk for Type II diabetes and heart disease [18].

The precise cause of PCOS is unknown and no cure exists. Using OCPs to regulate hormone levels
is the primary method of symptom management among patients [19]. OCPs suppress secretion of
luteinizing hormone (LH) and increase sex hormone-binding globulin levels to decrease androgen
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and testosterone levels, correlating with fewer PCOS symptoms [20]. The American Society of
Reproductive Medicine recommends OCPs as the primary treatment option but provides no guidelines
as to which OCPs are effective for various presentations of the disease [21]. There are over 200 OCPs
on the market, and the birth control industry has an estimated value of over $13 billion [22]. OCPs
containing progestins with lower androgenic activity are most effective in treating PCOS symptoms
[19]; examples include Apri, Cyclen, Tri-cyclen, Yaz, and Diane-35.

Typically, a PCOS patient will use a trial and error approach to test various OCPs for a 3-month period
each before she hopefully finds a solution [23]. The U.S. healthcare system spends approximately $4
billion diagnosing and treating PCOS annually, and patients can spend over a year finding treatment
[18]. While gynecologists consult with the patient to provide the best OCP recommendation, the
highly variable presentation of PCOS, particularly across ethnic groups, in conjunction with how
poorly understood the condition is, can make selecting an effective OCP seem arbitrary. Prescribing
the most effective OCP option for PCOS patients is a frustrating and expensive process in need of a
more streamlined solution.

2.2 Federated Learning Overview

FL is a subfield of privacy-preserving ML which enables multiple clients to train a model collabora-
tively without exchanging datasets with one another. Training consists of a number of communication
rounds. In each communication round, a central server randomly selects a subset of the clients and
broadcasts the global model to each of them. Each selected client trains on its local dataset and sends
its newly learned model parameters back to the server. Then, the server selects global parameters by
aggregating the local parameters in a manner that approximately minimizes overall loss.

We consider four FL approaches: FedAvg [24], FedAvgM [25], FedProx [26], and FedAdam [27]. We
designate the first approach as a baseline and select the latter three approaches to handle heterogeneous
client datasets. Technical details of these approaches can be found in the Appendix.

2.3 Federated Learning Applied to Medicine

FL models optimize dataset diversity, prediction accuracy, and data privacy, making FL the ideal
method to harness medical data for improving patient outcomes. The highly distributed nature of
medical data limits the application of non-federated ML algorithms, which require storage of data
on a central server for training. In practice, this means non-federated models have smaller datasets
to train on and lack sufficient training signal. FL models offer improved accuracy by aggregating
training results from local datasets into a global model. Importantly, the local data storage units —
i.e., client devices — in FL models only exchange summary statistics such as each local model’s
parameters and dataset size. Privacy is facilitated because local devices can train on their data and
transfer training results back to the central server without directly uploading the underlying data. In
contrast, non-federated ML approaches house the model and data on a single server, meaning they
require access to a massive, central dataset in order to train. These datasets are typically provided by
telemedicine companies, such as GoodRx, which are unregulated by HIPAA security rules, and health
information companies, which collect proprietary medical data to achieve clinical data interoperability
[28], [29]. By sending the model to clients instead of sending the data to the server, FL reduces risk
of corruption from a central data controller.

3 Experiments

As a proof of concept, we develop FL models which learn OCP treatments based on synthetic patient
data. Evaluation of this model is designed to serve as a stepping stone for future FL models learned
on real patient data. Using synthetic data is necessary as currently no real patient datasets exist for
the task of predicting PCOS treatment.

3.1 Generation of Synthetic Data

3.1.1 Patient Profiles

For each dataset, we randomly generate patient profiles for 12 clients. These clients represent
gynecology practices or hospitals. Each patient profile contains blood test results of seven key metrics
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Figure 1: Accuracies observed across FL algorithms. From left to right, these plots depict accuracy
on IID data with the same dataset size, non-IID data with the same dataset size, and non-IID data
with different dataset sizes. Accuracies for each communication round are obtained by taking the
weighted average of accuracies across all clients.

associated with PCOS: luteinizing hormone (LH) to follicle-stimulating hormone (FSH) ratio, total
testosterone level, dehydroepiandrosterone (DHEA-S) level, prolactin level, androstenedione level,
estradiol level, and anti-müllerian hormone (AMH) level [30]. The profile also includes which OCP
was effective in treating the patient. For each metric, we identified the range associated with PCOS
diagnosis (see Table 6, column 2) and then split the total range into various sub-ranges to be correlated
with one of five OCP options (see Table 7). These sub-ranges were determined arbitrarily as existing
literature lacks data on metric distribution. Not every OCP correlates with a specific metric; for
example, Apri works best for patients with a LH-FSH ratio within 2− 2.5, but lacks correlation with
the patient’s prolactin or estradiol levels.

3.1.2 Generation of Random IID and Non-IID Data

We consider datasets where distribution across each client is IID and datasets where distribution is
non-IID. Investigating effects of non-IID data is necessary due to demographic differences across
gynecology practices and the varied distribution of PCOS phenotypes [31]. To generate IID data,
we assume that clients prescribe each OCP with equal probability. To create synthetic patient
profiles, we first select an OCP for each patient independently and uniformly at random. We then
sample hormone metrics uniformly at random for each profile using the range associated with the
patient’s designated OCP (see Table 7). To generate non–IID data, for each client, we first sample a
multinomial probability distribution using a Dirichlet distribution with α = 1 as the conjugate prior,
as in [25]. For each patient, we sample an OCP from this multinomial probability distribution and, as
in the IID case, sample hormone metrics uniformly at random using the range associated with the
selected OCP. Using a different probability distribution over OCPs for each client allows us to model
differences between practices and hospitals.

We inject random noise into our data to mimic confounding variables that impact the optimal OCP
treatment. With probability 0.1, after sampling all hormone levels for a patient, we change their
assigned OCP to one sampled uniformly at random from all 5 available OCP options. This makes
our dataset more difficult, capping a model’s maximum accuracy at 0.92. A model achieves this
maximum accuracy if it correctly predicts treatment for all unchanged patients and randomly guesses
for the 10% of changed patients (with 0.2 accuracy).

3.1.3 Variation in Dataset Size

Clientele and patient numbers vary between gynecology practices. We generate training datasets
containing 12,500 patient profiles per client and training datasets of varying sizes per client, where
the number of patients is sampled randomly from Uniform(200, 20000). Additionally, we create
validation and test datasets for each client that are 25% the size of the test dataset.
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Table 1: Accuracies recorded after the last communication round

Dataset/Algorithm FedAvg FedAvgM FedProx FedAdam

IID data + same dataset size 0.9211 0.9200 0.873 0.9201
Non-IID data + same dataset size 0.9181 0.9186 0.8606 0.8676
Non-IID data + dif dataset size 0.9214 0.9209 0.9105 0.9220

4 Results

4.1 Discussion of Results

We train a model on four different FL algorithms: FedAvg, FedAvgM, FedProx, and FedAdam,
which are described in Tables 2, 3, 4, and 5, respectively. First, all four approaches achieve the
maximum performance of 92% accuracy on most datasets (see Table 1), meaning the model correctly
solves the drug prediction task and randomly guesses on the 10% of noisy patients. Performance
is also comparable between IID and non-IID data, despite FL performance traditionally degrading
on non-IID data. This shows promise for training on real-world gynecology data, which is likely to
consist of non-IID datasets of different sizes. In all four algorithms we test, non-IID data distributions
with identical dataset sizes consistently perform slightly worse than the other two dataset types.

Second, only a limited amount of training is needed to achieve the maximum performance of 92%
accuracy (see Figure 4). While some algorithms (FedProx) are slower than others (FedAvg) to
converge, all tend to converge by the eighth round of training. This demonstrates that the task can be
solved with limited computational resources. With approximately 92% accuracy, these basic models
predict an OCP that is 4.6 times more likely to be effective for the patient than randomly selecting a
treatment (see Random Assignment in Figure 4). This provides a sufficient proof of concept that FL
can significantly improve PCOS patient outcomes, reducing the need for patients to try out multiple
drugs and incur the associated costs.

5 Conclusions

5.1 Limitations

Our results should be interpreted cautiously since we learn on synthetic data. This data may not
match that of real gynecology practices, particularly with respect to the number of clients, size of
client datasets, and feature distributions. In comparison to our 12 clients and eight communication
rounds (with six clients randomly selected per round), typical cross-device FL systems select around
50− 5, 000 clients per round and take 500− 10, 000 rounds to converge [32].

The models must begin naively as currently no substantial research exists linking these hormone
metrics with OCP performance. When deployed, the model can reveal features which consistently
demonstrate low correlations with OCP effectiveness, and this non-correlation can be validated by
analysis of medical professionals. The patient profile can be enhanced to include additional factors
such as age, BMI, and the presence or absence of PCOS-associated symptoms such as mood disorders,
acne, hirsutism, and irregular menstrual cycles. Including patient-reported features into the model
improves predictions to better reflect patient disposition and key symptom concerns.

Finally, what the model considers to be the best OCP for the patient — the last option they tried at
least six months ago — may be an incorrect assumption for some patient profiles. High healthcare
costs can prevent the patient from scheduling a follow-up appointment when their initial OCP is
ineffective, or they may forego the optimal OCP because of insurance and pricing constraints.

5.2 Further Directions

Challenges that may hinder model performance in realistic settings include partially labeled data
and adversarial attacks. Patient data supplied by multiple sites may contain missing or incomplete
observations, and deciding how to discard or note absence of an observation during training is a
relevant area to explore next [33], [34], [35]. While our selected algorithms address data heterogeneity,
they assume the clients and server are trustworthy actors. Algorithms which address privacy, such as
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FedPerm [36], can handle a server which attempts to extract clients’ data by inspecting model updates
sent by participants. A client may also reconstruct another client’s private data via gradient inversion
attacks [37] or poison the global model by sending manipulated parameter updates. FL is highly
compatible with additional privacy features such as homomorphic encryption and secure aggregation,
which prevent the server or clients from inferring information about data based on model updates
[38], [39], [40]. The security of PCOS patient data in our model can be improved by incorporating
these techniques; for example, Salvia is an extension that can securely aggregate updates received
from clients and tolerate various percentages of corrupt users [41] [42].

Our work reports only aggregated model performance across all local clients. In a deployment setting,
it is important to consider how performance varies among demographic groups. Approaches such
as q-FedAvg [43], which we did not consider, handle situations in which the model underperforms
on certain clients. Assuming certain hormonal metrics vary by demographic, models must ensure
equitable outcomes for each client’s patient population. Our aggregation function obtains a global
accuracy by weighting each client’s accuracy by its dataset size, meaning each patient profile is
equally influential to training and the overall classification error is prioritized. Incorporating an
algorithm to improve subpopulation accuracy, such as MultiAccuracyBoost [44], offers our model a
fairness guarantee [45].

There is also the question of system heterogeneity, which our experiments do not address. Resource-
constrained devices may lag due to connectivity issues or variable speeds, and hardware constraints
limit the amount of data that can be stored in memory. Given FedAvg’s policy of dropping client
devices that fail to complete the required number of epochs within a certain timeframe, important
data is excluded during training and fair resource distribution across devices is compromised. Further
testing should be conducted to ensure the model accurately accommodates devices with varying
computational capacities; for example, testing can employ a complete implementation of FedProx,
which incorporates partial updates made by “straggler” devices [24].

Women’s reproductive health is an area of medicine with massive amounts of untapped data and
serious privacy requirements. Even if our model, when deployed on real PCOS patient data, does not
detect pertinent correlations between hormone metrics and the effectiveness of OCP treatments, we
hope to illuminate FL as an approach to address the many other frontiers in women’s health research.
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“Adaptive Federated Optimization,” in International Conference on Learning Representations, 2021.

[28] J. Brookman, “Direct-to-Consumer Genetic Testing: The Law Must Protect Consumers’ Genetic Privacy,”
Consumer Reports, July 2020.

[29] M. Schlossberg, “Availity to Acquire Diameter Health, a Leader in Clin-
ical Data Interoperability.” https://www.availity.com/News/2022/August/
Availity-to-Acquire-Diameter-Health-a-Leader-in-Clinical-Data-Interoperability,
Aug. 2022. Accessed September 2022.

7

https://www.fortunebusinessinsights.com/industry-reports/contraceptive-pills-market-101802
https://www.fortunebusinessinsights.com/industry-reports/contraceptive-pills-market-101802
https://www.availity.com/News/2022/August/Availity-to-Acquire-Diameter-Health-a-Leader-in-Clinical-Data-Interoperability
https://www.availity.com/News/2022/August/Availity-to-Acquire-Diameter-Health-a-Leader-in-Clinical-Data-Interoperability


[30] M. T. Sheehan, “Polycystic ovarian syndrome: diagnosis and management,” Journal of Clinical Medicine
Research, pp. 13–27, Feb. 2004.

[31] G. Sachdeva, S. Gainder, V. Suri, N. Sachdeva, and S. Chopra, “Comparison of the Different PCOS
Phenotypes Based on Clinical Metabolic, and Hormonal Profile, and their Response to Clomiphene,”
Indian Journal of Endocrinology and Metabolism, pp. 326–331, 2019.

[32] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, and et al., “Advances and
Open Problems in Federated Learning,” 2019.

[33] M. Ghassemi, T. Naumann, P. Schulam, A. L. Beam, I. Y. Chen, and R. A. Ranganath, “Review of
Challenges and Opportunities in Machine Learning for Health,” AMIA Joint Summits on Translational
Science Proceedings, May 2020.

[34] N. Dong, M. Kampffmeyer, X. Liang, M. Xu, I. Voiculescu, and E. Xing, “Towards Robust Partially
Supervised Multi-Structure Medical Image Segmentation on Small-Scale Data,” vol. 114, pp. 1568–4946,
Jan. 2022.

[35] X. Xu and P. Yan, “Federated Multi-organ Segmentation with Partially Labeled Data.” June 2022.

[36] H. Mozaffari, V. J. Marathe, and D. Dice, “FedPerm: Private and Robust Federated Learning by Parameter
Permutation.” Aug. 2022.

[37] Y. Huang, S. Gupta, Z. Song, K. Li, and S. Arora, “Evaluating Gradient Inversion Attacks and Defenses
in Federated Learning,” 35th Conference on Neural Information Processing Systems (NeurIPS 2021),
pp. 247–254, Nov. 2021.

[38] S. Bharati, M. R. H. Mondal, P. Podder, and V. B. S. Prasath, “Federated learning: Applications, challenges
and future directions,” vol. 18, pp. 19–35, May 2022.

[39] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee, J. Lee, D. Yoo, Y.-S. Kim, and J.-S. No,
“Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network,”
IEEE Access, vol. 10, pp. 30039–30054, May 2022.

[40] H. Roth, M. Zephyr, and A. Harouni, “Federated Learning with Homomorphic Encryption,” June 2021.

[41] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani, K. L. Li, T. Parcollet,
P. R. B. de Gusmão, and N. D. Lane, “Flower: A Friendly Federated Learning Research Framework,”
March 2022.

[42] K. H. Li, P. P. Buarque de Gusmão, D. J. Beutel, and N. D. Lane, “Secure Aggregation for Federated
Learning in Flower,” pp. 8–14, Dec. 2021.

[43] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair Resource Allocation in Federated Learning,” International
Conference on Learning Representations (ICLR) 2020, Feb. 2020.

[44] M. Kim, A. Ghorbani, and J. Zou, “Multiaccuracy: Black-Box Post-Processing for Fairness in Classi-
fication,” AIES ’19: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, Jan.
2019.

[45] A. Ghorbani, Model Interpretation and Data Valuation for Machine Learning. PhD thesis, Stanford
University, May 2021.

[46] D. E. Rumelhart and J. L. McClelland, Learning Internal Representations by Error Propagation, pp. 318–
362. 1987.

[47] D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” in ICLR 2015: 3rd International
Conference on Learning Representations, p. 18261–18271, May 2015.

[48] Z. Saadia, “Follicle Stimulating Hormone (LH: FSH) Ratio in Polycystic Ovary Syndrome (PCOS) - Obese
vs. Non- Obese Women,” Medical Archives, pp. 289–293, Aug. 2020.

[49] M. R. Richardson, “Current Perspectives in Polycystic Ovary Syndrome,” American Family Physician,
pp. 697–705, Aug. 2003.

[50] C. Morán, E. Knochenhauer, L. R. Boots, and R. Azziz, “Adrenal androgen excess in hyperandrogenism:
relation to age and body mass,” Fertility and sterility, vol. 71, no. 4, pp. 671–674, 1999.

8



[51] Z. Davoudi, F. Araghi, M. Vahedi, N. Mokhtari, and M. Gheisari, “Prolactin level in polycystic ovary
syndrome (pcos): An approach to the diagnosis and management,” Acta Bio Medica: Atenei Parmensis,
vol. 92, no. 5, 2021.

[52] E. Cakir, “The relationship between LH and thyroid volume in patients with PCOS,” Journal of Ovarian
Research, vol. 5, Dec. 2012.

[53] A. Abbara, “Anti-Müllerian Hormone (AMH) in the Diagnosis of Menstrual Disturbance Due to Polycystic
Ovarian Syndrome,” Frontiers in Endocrinology, Sept. 2019.

A Appendix

A.1 Federated Learning Algorithms

In our work, we explore four FL approaches to robustly evaluate the applications of FL to PCOS
patient data. All FL approaches that we consider follow the procedure described in the “FL Overview”
section and summarized in Algorithm 1 below. Some notation is adapted from [27].

Algorithm 1 Federated Learning Approaches
Require: T , the number of communication rounds, N , the total number of training examples across

all clients, and K, the number of local SGD epochs.

Initialize W , the global model weights
for t = 0, ..., T − 1 do

Sample a set C of clients
for client i ∈ C do

Broadcast W to client i
Let Li be the loss function
Let ni be the number of local training examples
wi,opt = optimize(Li,K) ▷ Run SGD locally for K epochs
∆i = wi,opt −W ▷ Delta from global model
pi = ni/N

end for
∆ =

∑|C|
i=1 pi∆i ▷ Average the deltas

Update the global model W using ∆
end for
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Table 2: Steps required for one communication round of FedAvg. Notation defined in Algorithm 1.

Loss function on ith client Li = fi(wi)

Optimal weights on ith client wi,opt = optimize(Li,K)

Delta from the global model on ith client ∆i = wi,opt −W

Delta averaged across all clients ∆ =
∑|C|

i=1 pi∆i

Global model update W ←W +∆

Table 3: Steps required for one communication round of FedAvgM. Notation defined in Algorithm 1.
Steps that differ from those of FedAvg are bolded.

Loss function on ith client Li = fi(wi)

Optimal weights on ith client wi,opt = optimize(Li,K)

Delta from the global model on ith client ∆i = wi,opt −W

Delta averaged across all clients ∆ =
∑|C|

i=1 pi∆i

Global model update

v ← βv +∆
W ←W + v
where β is a hyperparameter

A.1.1 FedAvg (see Table 2)

FedAvg (Federated Averaging) is the simplest FL approach, in which a single global model is
broadcast from a server to a randomly selected subset of clients in each communication round [24].
Each client performs a few epochs of stochastic gradient descent (SGD) using its own local data
on its own copy of the global model. Finally, the updated global models are broadcast back to the
server, which updates the global model as an average of all client models, weighted by the number of
training examples on each client.

We use FedAvg as our baseline approach for minimizing loss across clients. While FedAvg demon-
strates strong performance on the average distribution of all clients, the technique does not explicitly
address cases of non-IID data between clients. This approach raises concern because patient data
distributions likely differ across clients, particularly due to patient demographics. We therefore
experiment with three additional approaches designed to address data heterogeneity. Note that in our
setting, fi(wi) refers to a cross entropy loss.

A.1.2 FedAvgM (see Table 3)

Inspired by the success of applying momentum updates to SGD [46], FedAvgM (Federated Averaging
with Server Momentum) updates the global model by accumulating the gradients broadcast from
the clients with a momentum term (Equation 3) [25]. FedAvgM is applicable to our setting as the
momentum term potentially makes global updates less susceptible to noisy variations in local model
updates caused by non-IID data.

Table 4: Steps required for one communication round of FedProx. Notation defined in Algorithm 1.
Steps that differ from those of FedAvg are bolded.

Loss function on ith client
Li = fi(wi) +

µ
2 ||W − wi||2

where µ is a hyperparameter

Optimal weights on ith client wi,opt = optimize(Li,K)

Delta from the global model on ith client ∆i = wi,opt −W

Delta averaged across all clients ∆ =
∑|C|

i=1 pi∆i

Global model update W ←W +∆

10



Table 5: Steps required for one communication round of FedAdam. Notation defined in Algorithm 1.
Steps that differ from those of FedAvg are bolded.

Loss function on ith client Li = fi(wi)

Optimal weights on ith client wi,opt = optimize(Li,K)

Delta from the global model on ith client ∆i = wi,opt −W

Delta averaged across all clients ∆ =
∑|C|

i=1 pi∆i

Global model update

m← β1m+ (1− β1)∆

v ← β2v + (1− β2)∆
2

W ←W + η m√
v+τ

where β1, β2, η, and τ are hyperparameters

A.1.3 FedProx (see Table 4)

FedProx improves on FedAvg’s tendency to favor certain devices’ performance, introducing a
proximal term in the loss that penalizes large changes to weights in the global model [26]. This
prevents any single client from deviating from the global model too much, making global updates less
susceptible to noisy variations between non-IID clients. The original FedProx algorithm also includes
a mechanism for incorporating partial updates from client device failures due to system heterogeneity,
but for our purposes, we only consider the proximal term which handles data heterogeneity.

A.1.4 FedAdam (see Table 5)

FedAdam belongs to a family of FL algorithms, termed FedOpt, which improve on FedAvg [27].
FedAdam uses global updates inspired by the Adam optimizer [47] as opposed to SGD updates, and
it applies to our use case because adaptive optimization methods respond well to mild heterogeneity
between clients.

A.2 Synthetic Data Correlations

Tables 6 and 7 contain the correlation ranges that we used to generate our synthetic data.

A.3 Experimental Details

We use the Flower framework [41], a scalable FL framework that handles heterogeneous data sources
and offers several built-in FL algorithms. We implement a simple fully-connected neural network as
our backbone architecture. The architecture consists of two hidden layers, each of which contains
between 10 and 20 neurons. We apply a ReLU nonlinearity between each layer, and after the final
layer, we apply a softmax function to normalize the predicted class scores. We train the model for
eight communication rounds in total. In the first communication round, two randomly-selected clients
participate, and in later communication rounds, half of the clients are randomly selected to participate.
Participating clients train for three epochs on their local datasets per round. Each client’s copy of
the neural network trains using a cross entropy loss and SGD with momentum with the following
hyperparameters: learning rate of 0.0008, momentum of 0.87, and batch size of 32.

The FedProx algorithm adds a proximal term to the loss when training each client. We set the
coefficient on this proximal term to 0.3. Additionally, we set β = 0.8 in FedAvgM. In FedAdam, we
set β1 = 0.9, β2 = 0.99, η = 0.1, and τ = 1e−9.
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Table 6: Chart of synthetic correlation for each blood panel. Each blood panel metric from the patient
profile is mapped to the typical range of that metric in a PCOS patient, followed by the synthetic
correlation of the metric with its most effective OCP option.

Patient Profile Metric Range of PCOS Diagnosis Implanted Correlations

LH-FSH Ratio 2-3.5 [48]

Apri: 2-2.5
Yaz: 2.6-3
Cyclen: 3.1-3.5

Total Testosterone 86-150 ng/dl [49]

Cyclen: 86-100.9 ng/dl
Tri-cyclen: 101-110.9 ng/dl
Diane-35: 111-120.9 ng/dl
Apri: 121-130.9 ng/dl
Yaz: 131-150 ng/dl

DHEA-S 200-430 ug/dl [50]

Apri: 200-300.9 ug/dl
Cyclen: 301-350.9 ug/dl
Tri-cyclen: 351-400.9 ug/dl
Diane-35: 401-430 ug/dl

Prolactin 25-40 ng/ml [51]

Diane-35: 25-30.9 ng/ml
Cyclen: 31-35.9 ng/ml
Yaz: 36-40 ng/ml

Androstenedione 0.4-2.7 ng/ml [49]

Tri-cyclen: 0.4-0.7 ng/ml
Yaz: 0.8-1.0 ng/ml
Apri: 1.1-1.5 ng/ml
Cyclen: 1.6-2.0 ng/ml
Diane-35: 2.1-2.7 ng/ml

Estradiol 60-120 pg/ml [52]

Yaz: 60-80.9 pg/ml
Cyclen: 81-100.9 pg/ml
Tri-cyclen: 101-120 pg/ml

Anti-Mullerian Hormone (AMH) 5-10 mcg/L [53]

Yaz: 5-6.5 mcg/L
Diane-35: 6.6-8 mcg/L
Apri: 8.1-10 mcg/L

We report results of our approaches on multiple datasets to evaluate the effects of both IID and
non-IID data distributions and differing dataset sizes. These datasets include:

1. IID data among all 12 clients where each client has 12, 500 (train) patients and a quarter as
many test patients.

2. Non-IID data where each client has 12, 500 (train) patients and a quarter as many test
patients.

3. Non-IID data where each client has between 200 and 20, 000 (train) patients and a quarter
as many test patients.

We normalized all hormone levels to a range between −0.5 and 0.5 to facilitate stable training.
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Table 7: Chart of synthetic correlation for each OCP option. Each OCP option is mapped to the range
of blood panel metrics used for synthetic data generation. [NC] denotes no synthetic correlation
exists in this dataset between the OCP and hormonal metric.

OCP Model Correlation Ranges

Apri

LH-FSH ratio: 2-2.5
Total testosterone: 121-130.9 ng/dl
DHEA-S: 200-300.9 ug/dl
Prolactin: [NC] 25-40 ng/ml
Androstenedione: 1.1-1.5 ng/ml
Estradiol: [NC] 60-120 pg/ml
Anti-Mullerian (AMH): 8.1-10 mcg/L

Cyclen

LH-FSH ratio: 3.1-3.5
Total testosterone: 86-100.9 ng/dl
DHEA-S: 301-350.9 ug/dl
Prolactin: 31-35.9 ng/ml
Androstenedione: 1.6-2.0 ng/ml
Estradiol: 81-100.9 pg/ml
Anti-Mullerian (AMH): [NC] 5-10 mcg/L

Tri-cyclen

LH-FSH ratio: [NC] 2-3.5
Total testosterone: 101-110.9 ng/dl
DHEA-S: 351-400.9 ug/dl
Prolactin: [NC] 25-40 ng/ml
Androstenedione: 0.4-0.7 ng/ml
Estradiol: 101-120 pg/ml
Anti-Mullerian (AMH): [NC] 5-10 mcg/L

Yaz

LH-FSH ratio: 2.6-3
Total testosterone: 131-150 ng/dl
DHEA-S: [NC] 200-430 ug/dl
Prolactin: 36-40 ng/ml
Androstenedione: 0.8-1.0 ng/ml
Estradiol: 60-80.9 pg/ml
Anti-Mullerian (AMH): 5-6.5 mcg/L

Diane-35

LH-FSH ratio: [NC] 2-3.5
Total testosterone: 111-120.9 ng/dl
DHEA-S: 401-430 ug/dl
Prolactin: 25-30.9 ng/ml
Androstenedione: 2.1-2.7 ng/ml
Estradiol: [NC] 60-120 pg/ml
Anti-Mullerian (AMH): 6.6-8 mcg/L
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