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Abstract— Line extraction is a preliminary step in various
visual robotic tasks performed in low textured scenes such as
city and indoor settings. Several efficient line segment detection
algorithms such as LSD and EDLines have recently emerged.
However, the state of the art segment grouping methods are
not robust enough or not amenable for detecting lines in real-
time. In this paper we present FSG, a fast and robust line
detection algorithm. It is based on two independent components.
A proposer that greedily cluster segments suggesting plausible
line candidates and a probabilistic model that decides if a group
of segments is an actual line. In the experiments we show that
our procedure is more robust and faster than the best methods
in the literature and achieves state-of-the art performance in
a high level robot localization task such as vanishing points
detection.

I. INTRODUCTION

It is well known that state of the art geometric computer

vision algorithms fail dramatically in low textured scenes.

However, in some settings, like for example in man-made

environments, aligned structures such as windows, balconies

and doors abound. These structures produce short and dis-

connected line segment that computer vision algorithms

may leverage on to obtain geometric information used for

solving fundamental robotic problems such as Simultaneous

Localization and Mapping (SLAM) and Vanishing Points

(VPs) Detection.

There is a growing interest in using points and lines in

Visual Odometry (VO) [5], [9], [13], [16], [26], [27] and

SLAM [20], [30]. Some of these algorithms [5], [10], [16],

[20] work directly with segments detected with LSD [23]

or EDLines [1] and match them using the Line Band De-

scriptors (LBD) [29] or the Mean–Standard deviation Line

Descriptor (MSLD) [24]. Other algorithms try to match

full lines by performing segment grouping as a preliminary

step [26], [30] with heuristics mainly aimed at achieving a

very fast execution.

The input to many VPs estimation algorithms are line seg-

ments [12], [14], [25], [28]. Although some of them directly

use these segments [18], most of them have a preliminary

segment grouping step [12], [14], [25], [28]. State-of-the-art

VP estimation algorithms are very slow. Kulger et al. [12]

takes 45 seconds to process a single image and Lezama et

al. [14] takes around 30 seconds. Another state-of-the-art
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Fig. 1: Problem statement: Detected line segments are not

usually collinear. Left: Line segments detected in an image

using LSD (magenta lines). Right: Detected segments are

not strictly aligned with straight scene lines (green lines). The

smallest bounding box containing the segments of a scene

line is plotted in yellow.

method, Zhai et al. [28], takes 1 second but requires a GPU.

Computing with a GPU could be a problem in battery limited

devices such as smartphones or drones.

Recently some developments in SLAM aim to use si-

multaneously heterogeneous features with different level of

complexity: points, lines, planes and VPs. Lu et al. [17] use

LSD segments to detect VPs and also to detect full lines

with RANSAC. Camposeco et al. [6] use also VPs in VO

being the inputs the LSD segments and the measurements

from an IMU. They remove some steps in LSD to achieve

faster execution.

Large and well connected groups of segments produce

accurate line estimations that computer vision may leverage

on to solve geometric problems in low textured contexts.

As far as we know there is no line estimation algorithm

that is both fast and robust. In this paper we propose the

Fast Segment Grouping (FSG) algorithm that satisfies both

requirements. The contributions of our paper are:

1) A very efficient greedy procedure for generating can-

didate lines from groups of image segments.

2) A probabilistic test to check if a group of segments is

an actual line.

3) A segment grouping benchmark built on the York

Urban Data-set. We use LSD [23] for segment detec-

tion and manually mark segments that belong to full

lines. This database is used in our experiments and

it is publicly available at https://github.com/

graffter/fsg-benchmark.

II. PREVIOUS WORK

Classic methods for line segment detection first apply a

Canny edge detector [7] followed by a Hough transform

[3] or its probabilistic and efficient variant [19]. Recently



LSD [23] and EDLines [1] use local approaches for link-

ing the edge pixels generating isolated segments in a fast

and accurate way. However, LSD and EDLines, being lo-

cal aproaches, extract short segments. A recent approach,

MCMLSD [2], finds longer segments by combining the

advantages of global probabilistic Hough methods for line

detection with spatial analysis in the image domain.

On the other hand, tasks as VP estimation and VO will

benefit from the detection of full lines. So, we address the

problem by extracting short segments with LSD or EDLines,

that are further grouped into full lines. In this section we

review the most prominent algorithms for line segment

grouping. We organize them into heuristic, clustering, prob-

abilistic, and geometric-based methods.

One of the first fast heuristic methods, Jang et al. [11],

uses a line segment voting scheme. Segments are assigned to

different candidate lines and, using some heuristics, the most

likely lines are returned with their associated segments. Zuo

et al. [30] group two segments if some distances from their

middle and end points are small. Yang et al. [26] organize the

candidates into buckets with similar middle point locations

and orientations. They merge segments whose angles and

distance are below a threshold.

Clustering-based methods for segment grouping usually

work in the line parameter space such as the Hough trans-

form. The work of Bandera et al. [4] starts with a Canny

edge detection followed by a Randomized Hough Transform

for detecting segments. The segments are clustered using the

Variable Bandwidth Mean Shift algorithm in the space of line

parameters.

The most prominent approaches based on probabilistic

models use the a contrario methodology [15] to validate a

hypothesis based on the expected number of false detections

or false alarms. Rajaei et al. [21], [22] propose an approach

to detect "non-local alignments." Lezama et al. [14] use

segment end points within an a contrario point alignment

detector. While this criteria can be valid, they propose

candidates by brute force, checking all the possible point

pairs in [14] or with an adjacency matrix in [22], both

approaches are computationally demanding and, hence, not

adequate for real-time settings.

III. FAST SEGMENTS GROUPING (FSG)

Our line detection algorithm takes as its starting point

the segments detected in an image. It is based on (1) a

probabilistic criteria to accept a group of segments as a line,

and (2) a greedy algorithm that proposes clusters of segments

as line hypotheses. In this section we present both elements.

A. Probabilistic Segments Group Validation

Let S be the set of segments detected in an image of n×m

pixels and H a set of s segments randomly distributed in the

same image. Let Cs be a group of c segments from S and B
the smallest bounding box that encloses all segments in Cs.

Let EH(S, Cs) be the expected number of boxes of size

equal or smaller than B that enclose c segments of the same

length as those in Cs in H. We accept the group of segments
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Fig. 2: Probability that a random segment falls in the

Box: Statistical method to calculate the probability that the

segments in Ch are bounded by B ( P [Ch ∈ B] ).

Cs as a line if EH(S, Cs) is below a certain threshold, ǫ. The

intuition behind this criterion is simple. If the segments in

Cs are well aligned then B will be very thin and the chances

that a set of c segments from H fall into B will be very

small.

We assume that the segment’s endpoints position in H fol-

low a uniform distribution, U(n,m). Under this assumption,

EH(S, Cs) =

(

s

c

)

P [Ch ∈ B], (1)

where Ch is a set of segments in H with the same cardinality

and lengths as those in Cs and P [Ch ∈ B] is the probability

that the segments in Ch are bounded by B. This probability

is given by:

P [Ch ∈ B] =
s
∏

i=0

P [b(si)] · P [e(si)|b(si), l(si)], (2)

where si is the i-th segment in Ch, b(si) and e(si) are,

respectively, the beginning and ending points of segment si,
P [b(si)] =

w·l
n·m is the probability of the first point of segment

si falling into a box B of size w× l and P [e(si)|b(si), l(si)]
is the probability of e(si) falling into B given that b(si) is

already in B and segment si has length l(si). For simplicity,

if we assume that B has infinite length, then

P [e(si)|b(si), l(si)] =
θ̄i
π
,

where θ̄i is the average angle of a sector within B with radius

l(si) and subtended by B (see Fig. 2).

Finally, θ̄i is given by

θ̄i =
1

w/2

∫ w/2

0

(g1(x) + g2(x))dx, (3)

where (see Fig. 2)

g1(x) = arcsin

(

min

(

1,
w/2 + x

l(si)

))



and

g2(x) = arcsin

(

min

(

1,
w/2− x

l(si)

))

.

Hence, we accept as a good line the set of segments Cs
such that EH(S, Cs) < ǫ. The acceptance threshold ǫ may

be established by cross-validation.

Once we have this criterion, we could find the lines in an

image by just enumerating all possible groups of segments

Cs and accept as lines the non-overlapping set of groups with

smallest EH(S, Cs). However, this would be computationally

very demanding, preventing our approach from being used

in real robotics applications. To speed this process, in the

following section we introduce an efficient group proposer.

B. Segments Groups Proposer

The proposer is based on the fact that line segment

detectors [1], [23] produce segments with some error in the

location of endpoints caused by glitters, shadows, occlusions,

etc. Our algorithm starts with the endpoints of the longest

segments (the most stable ones) and greedily tries to enlarge

the group by including new segments that fall inside a cone

defined by the uncertainty in the location of the group end

points (See Fig. 3). For improving the efficiency candidate

segments are organized by length and orientation (see algo-

rithm 1).

The input to the algorithm is a set of segments, S , with

|S| = n. The first step is to build a partially ordered list, L,

of the segments in S by length. The second step is to build

a histogram of segment orientations Pθ. Both of these steps

have complexity O(n). Next, the greedy procedure begins

traversing L from longest to shortest segment:

1) For each si ∈ L, if it is not already in a group, using

Pθ find the set of similar orientation segments, N .

2) Initialize a new candidate group of segments with only

one segment, Cs = {si}.
3) We define a circle of uncertainty on each of the

endpoints of group Cs that delineate a cone where

candidates must lie (see purple lines in Fig. 3). This

cone is defined by two lines l1 and l2 calculated with

the function computeTangentLines(Cs) (see line 11 in

algorithm 1).

4) Each segment, sk, in N is checked in turn as a

candidate to be added to Cs. First of all a fast test

is performed over the middle point of sk, m(sk) to

check if the segment is in the cone (D1[j] and D2[j]
have the same sign in line 17 of algorithm 1). Then we

use the probabilistic test EH(S, (Cs+{sk}) to include

it in Cs.

5) Go to step 1) to process the next segment in L.

The partial ordering of segments, the histogram of ori-

entations and the fast cone-shaped region check are the

cornerstones of the greedy algorithm. In the experiments we

show that it is both fast and accurate.

IV. EXPERIMENTS

We evaluate the proposed FSG approach by using quanti-

tative comparisons to the state of the art. We accordingly

Fig. 3: Segments groups proposer: Greedy process of

segments proposing based on the endpoint error circles.

Purple lines l1 and l2 define the cone-shaped search region,

red segments are discarded by orientation, orange are dis-

carded because being out of the search region, blues are the

candidates and green are the already selected as part of the

base segment.

introduce a ground truth data-set to specifically evaluate

line segment grouping methods. Also, we provide statistical

validation, and a comparison of FSG with the state of art for

estimating the vanishing points of an image.

Fig. 4: Ground truth data-set for segment grouping: We

annotate the YUD with positive and negative examples of

image segments clusters. Top: Some images from the YUD

with line segments detected using LSD (magenta lines).

Middle: Positive clusters, i.e. image segments that belong

to straight lines in the scene. Bottom: Negative clusters, i.e.

segment groups that are not collinear in the scene. We plot

segments in the same cluster with the same color. Also, we

plot a line using this color between the cluster extrema.

A. Ground truth database generation

To the best of our knowledge, there are no specific data-

sets for evaluating line segments clustering methods. To that

purpose, we augment a well-established data-set, the York

Urban Database (YUD) [8]. It comprises a set of images of

buildings, each with its camera orientation and calibration.



Algorithm 1 Greedy Groups Proposer Pseudo-code

Input: S (LSD Segments), ǫ
Output: S∗ (the set of segments groups)

1: S∗ = ∅
2: L← semiSortByLength(S)

3: Pθ ← createOrientationHistogram(S)

4: for all si ∈ L do

5: if si ∈ S∗ then Continue end if

6: Cs = {si}
7: N ← getSegmentsInNearestBins(Pθ, si)
8: M ← getMiddlePoints(N )

9: searching = true

10: while searching do

11: l1, l2 ← computeTangentLines(Cs)

12: if lT
1
· b(Cs) < 0 6= lT

2
· b(Cs) < 0 then l1 = −l1

end if

13: D1 = lT
1
·M ; D2 = lT

2
·M

14: BestSeg = ∅ ; BestSegA = MaxVal

15: Mnew = ∅ ; Nnew = ∅
16: for j = 0 to |N | do

17: if sameSign(D1[j], D2[j]) then

18: Mnew = Mnew +M [j]
19: Nnew = Nnew +N [j]
20: A = EH(S, Cs + {N [j]})
21: if (A < ǫ) and (A < BestSegA) then

22: BestSegA = A
23: BestSeg = N [j]
24: end if

25: end if

26: end for

27: if BestSeg = ∅ then

28: searching = false

29: else

30: M = Mnew ; N = Nnew

31: Cs = Cs + {BestSeg}
32: Delete BestSeg from M , N and Pθ

33: end if

34: end while

35: S∗ = S∗ + {Cs}
36: end for

It also provides a few lines in each image, to estimate the

Manhattan frame relative to the camera (see [8] for further

details).

In our annotation we cluster segments that belong to

straight structures in the scene into longer, meaningful, lines.

Thus, for each image we detect segments using LSD (actu-

ally, its OpenCV1 implementation, with LSD_REFINE_ADV

enabled). Fig. 4 shows the detected line segments in some

images.

We have developed a C++ application that allows us to

cluster the detected segments into straight lines. To this end

the user picks each segment in an interactive manner, so that

1
https://docs.opencv.org/3.4.1/db/d73classcv_1_1LineSegmentDetector.html

segments belonging to distinctive parts of the scene can be

easily grouped. Fig. 4 shows some sample segment clusters.

We have mainly grouped segments corresponding to long

lines of the scene (e.g., buildings) leaving out non-collinear

detections (e.g. cars, people, or similar items in the scene).

Furthermore, in order to provide a statistical validation of

our method, we also annotate a set of negative examples.

Thus, instead of grouping segments belonging to straight

lines in the scene, we intentionally cluster segments using

the opposite criterion, i.e., manually select segments that are

not strictly collinear. Fig. 4 shows some segments that have

been clustered as negative examples. Some of them do not

even belong to the same structure in the scene.

B. Validation of segment clusters

We approach the validation of a segment cluster as a

classification binary problem where the clustered segments

can be aligned (POSITIVE Label) or not (NEGATIVE

Label). In this experiment our results are compared with

those in [15]. Note that since this method is based on a

point alignment detector, we define that a segment cluster is

labeled POSITIVE if the method returns an alignment and

at least half of the points contained in that alignment come

from some ground truth labeled segment.

We have generated the ROC curve (see Fig. 6) by chang-

ing the rarity threshold of both algorithms. We generate

Lezama’s et al. [15] curve varying ǫ in the interval [0, 107].
We were not able to evaluate larger values because of the

computational cost. In our method we fix the ǫ = 1 and vary

the number of segments s in H as rarity threshold.

Fig. 6 shows that our statistical criteria significantly

outperforms Lezama’s et al. [15] a contrario model. The

main reason is that our method considers entire segments

instead of alignments of the segments endpoints. As the

two endpoints of every segment are used independently,

accidental alignments of points can be found in Lezama’s

method (see bottom row in Fig. 5).

In Fig. 5 we show our results compared with Lezama et

al. [15] for segment grouping. Our method works fine in

indoor and outdoor environments robustly detecting all the

meaningful lines in the image. Nevertheless, Lezama et al.

detects some non existent lines and miss other important

ones.

Fig. 5: Top: FSG versus Bottom: Lezama et al. [15]. Com-

parison of the lines generated from the clustered segments.
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Fig. 6: Line segment cluster classification: ROC curve

where we compare how well our statistical criteria performs

compared to Lezama et al. [15] for the first 10 images labeled

in the York Urban Database.

C. Vanishing Point estimation

We also compare FSG with other line detectors applying

them to a high-level task, such as estimating the VPs of a

scene. To this end we compare our approach using Lezama et

al.’s framework [14] that, to the best of our knowledge, is

the state of the art VPs detector. Lezama’s algorithm consists

of three main steps: 1) detect line segments with LSD; 2)

after some heuristic filtering, feed the a contrario model

with these segments to estimate full lines (i.e. segments

groups); and 3) compute the VPs. In Fig. 7 we show the VPs

estimation results obtained when feeding step 3) in Lezama’s

algorithm with image lines computed with five approaches:

• ground-truth: using annotated ground truth lines;

• Lezama et al. [14]: original approach in [14], including

the heuristic segment filter (LSD + heuristic segment

filter + a contrario decision);

• Lezama et al. (basic): approach in [14], with no

heuristic segment filter (LSD + a contrario decision);

• MCMLSD: segments from the method in [2];

• FSG: segments resulting from our method, (LSD +

FSG).

The ground-truth approach provides our experimentation

with an upper bound on VP estimation. We also include

Lezama et al. (basic) to evaluate the impact of the filtering

heuristics in the results of this approach.

Fig. 7 shows the cumulative histograms of the horizon line

detection error for each approach. The horizon line error is

computed as the Euclidean distance between the extremes

of the estimated and ground-truth horizon line segments,

weighted by the image height. We provide an overall score,

that can be quantitatively compared, by measuring the area

under the curve (AUC) of the cumulative histogram curves.

In terms of the AUC score, all three approaches provide

similar results, very close to the upper bound provided by

the VPs estimated with the ground truth lines. FSG performs

Local Segment
Detectors

Segments Grouping
Algorithms

Global Segment
Detectors

LSD EDLines FSG Lezama et al. PPHT MCMLSD

32 6 6 14961 22 4686

TABLE I: Average execution times for line segment

detection (ms) in the York Urban Dataset.

marginally better than [14]. Meanwhile, MCMLSD also

performs marginally better than FSG, because of its global

approach.

Table I shows the average execution times for various

algorithms measured on an Intel(R) Core(TM) i7-6700HQ

CPU @ 2.60GHz with 16 GB of RAM. The fastest algorithm

in the global segment detector group is PPHT, the OpenCV

Probabilistic Hough Line Transform [19] with a Canny edge

detector [7]. However it has some important drawbacks

(see [23]). The alternative, MCMLSD [2] is very accurate,

however, its computational cost prevents it from being used

in a real-time robotic system.

Similarly, if we analyze the segment grouping algorithms,

the computational cost of Lezama et al. [14] is so high, that

it cannot be used in real-time, no matter what local segment

detector is used. The computational cost of FSG is three

orders of magnitude smaller than its competitor. The fastest

configuration, EDLines [1] + FSG, could be used to extract

image lines at 83 frames per second, in the computer that

we used for our experiments.

Finally, from the results in Fig. 7 and Table I, we can

conclude that LSD + FSG has an accuracy comparable to

the state of the art, but with an execution speed three orders

of magnitude faster.

V. CONCLUSIONS

In this work we present FSG, an accurate real-time line

detection algorithm based on grouping line segments. FSG

offers: 1) a very efficient greedy segment group candidate

proposer, and 2) a statistical validation criteria to accept a

group of segments as a line.

To experimentally evaluate our statistical validation cri-

teria we propose a new data set generated by augmenting

the York Urban Database (YUD) [8] with new line labels.

With this data set we have experimentally proved that our

validation criteria is better than the state-of-the-art 2D a

contrario point alignment algorithm [15].

We have compared the accuracy of VPs estimated with

an LSD segment detector and FSG line extractor with the

best in the literature. The LSD + FSG approach achieved

results comparable to the state-of-the-art techniques in terms

of accuracy in the estimation of the horizon line, but with

an execution speed three orders of magnitude faster.

So, the proposed segment grouping approach, a seemingly

small element in a robotic system, may have a big impact in

the overall performance of higher level robotics task, such

as VO through VPs estimation.
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of [14](black). Each method has been annotated with its AUC

score (see legend).
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