

000 DAL: A PRACTICAL PRIOR-FREE BLACK-BOX 001 FRAMEWORK FOR PIECEWISE STATIONARY BANDITS 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 We introduce a practical, black-box framework termed Detection Augmented
010 Learning (DAL) for the problem of [piecewise](#) stationary bandits without knowl-
011 edge of the underlying non-stationarity. DAL accepts any stationary bandit al-
012 gorithm [with order-optimal regret](#) as input and augments it with a change de-
013 tector, enabling applicability to all common bandit variants. Extensive experi-
014 mentation demonstrates that DAL consistently surpasses current state-of-the-art
015 methods across diverse non-stationary scenarios, including synthetic benchmarks
016 and real-world datasets, underscoring its versatility and scalability. We provide
017 theoretical insights into DAL’s strong empirical performance, complemented by
018 thorough experimental validation.
019

020 1 INTRODUCTION 021

022 Bandit models underpin a wide range of engineering systems, from recommendation and ads to dy-
023 namic pricing and real-time bidding (Lefortier et al., 2014; Li et al., 2010; Schwartz et al., 2017;
024 Sertan et al., 2012; Tajik et al., 2024; Flajolet & Jaillet, 2017). [Many variants of bandits have](#)
025 [emerged](#) since the work of (Robbins, 1952), which fall into parametric bandits (PB) (Auer, 2002;
026 Faury et al., 2020; Filippi et al., 2010), non-parametric bandits (NPB) (Srinivas et al., 2010) and
027 contextual bandits (CB) (Woodroffe, 1979; Langford & Zhang, 2007). In the general bandit prob-
028 lem, in each round, an agent receives a context C_t randomly sampled from a set \mathcal{C} , and selects a
029 policy π_t from a policy set Π —a set of mappings from \mathcal{C} to a compact action set $\mathcal{A} \subseteq \mathbb{R}^d$. Then, the
030 agent chooses action $A_t = \pi_t(C_t)$ and receives reward
031

$$032 X_t = f_t(C_t, A_t) + \varepsilon_t,$$

033 where $f_t : \mathcal{C} \times \mathcal{A} \rightarrow \mathbb{R}$ is the reward function and ε_t is the zero-mean sub-Gaussian noise. The goal
034 is to minimize the dynamic regret, using a causal policy π_t based on past interactions:
035

$$036 R_T := \mathbb{E}_{\substack{A_t \sim \pi_t \\ C_t \sim \mathcal{P}_t}} \left[\sum_{t=1}^T \max_{\pi \in \Pi} f_t(C_t, \pi(C_t)) - f_t(C_t, A_t) \right].$$

037 CBs follow the general formulation above, where the context C_t is independently sampled from
038 \mathcal{P}_t and $|\mathcal{A}|$ is finite. In PB and NPB settings, the context is fixed across time and $|\mathcal{A}|$ can be
039 infinite. With slight abuse of notation, we write $f_t(C_t, A_t) = f_t(A_t)$ in PBs and NPBs. For PBs,
040 $f_t(A_t) = \mu(\langle \theta_t, A_t \rangle)$, where θ_t is a bounded unknown parameter and $\mu : \mathbb{R} \rightarrow \mathbb{R}$ is injective.
041 These include linear bandits (LBs), with μ as identity, generalized linear bandits (GLBs), and self-
042 concordant bandits (SCBs), where μ is self-concordant and the noise variance may depend on the
043 mean (Russac et al., 2021). For NPB, we consider kernelized bandits (KBs), where $f_t \in H_k$, a
044 reproducing kernel Hilbert space (RKHS) induced by a continuous positive semi-definite kernel
045 $k : \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}$ with $k(x, x) \leq 1$ and $\|f_t\|_{H_k} \leq B$. In KBs, a central complexity measure is the
046 maximum information gain γ_T (worst-case mutual information between f and T noisy evaluations).
047 For compact $\mathcal{A} \subset \mathbb{R}^d$: $\gamma_T = \mathcal{O}((\log T)^{d+1})$ for the Squared Exponential (SE) kernel, and $\gamma_T =$
048 $\mathcal{O}(T^\beta \log T)$ with $\beta = d(d+1)/[2\nu + d(d+1)]$ for Matérn(ν) kernels.
049

050 Bandits remain practically relevant today: recent deployments span A/B testing (Zhang et al., 2025),
051 clinical trials (Varatharajah & Berry, 2022), large language models (Shin et al., 2025), diffusion
052 models (Aouali, 2024), and computer architecture (Gerogiannis & Torrellas, 2023), which even
053

leverage the canonical formulations as the core decision engine. Accordingly, the key challenge is developing bandit methods that perform reliably under real-world constraints—aimed at practical effectiveness, not just analysis. The lion’s share of the literature on bandits assumes *stationarity*—i.e., fixed $f_t, \theta_t, \mathcal{P}_t$ —but this rarely holds in practice due to evolving conditions (Agrawal & Jia, 2019; Cai et al., 2017; Chen et al., 2020; Lu et al., 2019). Non-stationary (NS) settings are often categorized into two types—*gradual drifts* and *abrupt changes*. In the drifting model, f_t and \mathcal{P}_t evolve slowly under a variation budget constraint (Besbes et al., 2014; Wei & Luo, 2021). In contrast, piecewise stationary (PS) models assume abrupt shifts at unknown change-points:

$$1 =: \nu_0 < \nu_1 < \dots < \nu_{N_T} < \nu_{N_T+1} := T + 1, \quad N_T : \text{total number of changes}$$

with $f_t = f_{t'}$ and $\mathcal{P}_t = \mathcal{P}_{t'}$ for $t, t' \in \{\nu_k, \dots, \nu_{k+1} - 1\}$ and different across change-points.

NS bandit algorithms are typically either *adaptive*—adjusting continuously, or *restarting*—choosing to unlearn and kickstart the learning process at certain times. They may also be *prior-based* (assuming knowledge of the non-stationarity) or *prior-free*. Prior-based adaptive methods (discounting/sliding window) weigh recent observations more heavily: **NS multi-armed bandits (NS-MABs)** (Garivier & Moulines, 2011; Kocsis & Szepesvári, 2006), NS-LBs (Cheung et al., 2019; Russac et al., 2019), NS-GLBs (Faury et al., 2021; Russac et al., 2020), NS-SCBs (Russac et al., 2021; Wang et al., 2023), NS-KBs (Deng et al., 2022; Zhou & Shroff, 2021). Prior-based restarting approaches use budgeted restarts: NS-MABs (Besbes et al., 2014), NS-LBs/GLBs (Zhao et al., 2020), NS-KBs (Zhou & Shroff, 2021). Detection-based restarting methods exist in both flavors: prior-based for NS-MABs (Cao et al., 2019b; Liu et al., 2018) and NS-CBs (Luo et al., 2018); prior-free for NS-MABs (Auer et al., 2019; Besson et al., 2022; Huang et al., 2025), for NS-LBs/KBs (Hong et al., 2023) and for NS-CBs (Chen et al., 2019). The most closely related work is Huang et al. (2025), which addresses PS-MABs and introduces techniques that we build upon in establishing our theory.

Among prior-free methods, *black-box* approaches are particularly appealing: they equip *any* stationary bandit algorithm with non-stationarity handling capabilities. MASTER (Wei & Luo, 2021) is the only known order-optimal black-box method for general bandit and reinforcement learning settings. Importantly, although MASTER is order-optimal, it is not practically applicable (Gerogiannis et al., 2025). More broadly, the literature emphasizes theory over evidence, as empirical validation of order-optimal methods is scarce: NS-NPBs and NS-PBs are evaluated almost exclusively on synthetic data (Wang et al., 2023; Hong et al., 2023; Gerogiannis et al., 2025), and NS-CBs lack experiments altogether (Chen et al., 2019). We close these gaps with a theoretically grounded, practical black-box framework and comprehensive real-world evaluation in standard benchmarks.

Contributions. We present (to our knowledge) the first *practical* prior-free, black-box detection-based framework for general **PS** bandits. The design is motivated by three pragmatic insights: (i) prior knowledge of non-stationarity is rarely available, (ii) restart-style methods can have lower worst-case complexity than fully adaptive schemes (Peng & Papadimitriou, 2024), and (iii) a black-box reduction simplifies NS algorithm design to specifying when to restart a stationary learner. Our method is simple—combining a change detector with any stationary bandit algorithm—modular, and easy to implement. Empirically, extensive synthetic and real-world evaluations in standard datasets show consistent gains over both prior-free and prior-based baselines, and (to our knowledge) provide the first comprehensive real-world assessment of order-optimal baselines previously lacking empirical study. Theoretically, under mild assumptions, our regret matches the state-of-the art for PS-LBs, PS-GLBs and PS-CBs and *improves* the best known bounds for PS-SCBs and PS-KBs; for drifting regimes we identify conditions for good performance and validate them empirically.

2 THE DAL FRAMEWORK

The DAL framework is a black-box characterized by a modular structure of three components: a non-stationarity detector, a forced exploration scheme, and a bandit algorithm. We provide high-level ideas of the structure of our approach and formally present our framework in Algorithm 1.

Non-Stationarity Detector To identify changes in the environment, DAL uses a general-purpose detector \mathcal{D} for monitoring shifts in the distribution of judiciously chosen reward observation sequences obtained through forced exploration. This distinguishes our approach from methods like

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
MASTER, which rely on detecting violations of stationary regret guarantees. We adopt a detector aligned with Besson et al. (2022); Huang et al. (2025), grounded in the well-established theory of quickest change detection (Veeravalli & Banerjee, 2013; Xie et al., 2021). Given any arbitrary context, DAL samples rewards from actions within a carefully selected finite subset, and detects changes in the mean reward associated with the context-action pair.

Alg. 1 Detection Augmented Learning (**DAL**)

Input: bandit \mathcal{B} , detector \mathcal{D} , covering set size N_e , covering set $\mathcal{A}_e = \{a^{(i)} : i \in [N_e]\}$, context set \mathcal{C} , frequencies $\{\alpha_k\}_{k=1}^T$, horizon T
Initialize: histories $\mathcal{H}_{(c,a)} \leftarrow \emptyset \forall (c,a) \in \mathcal{C} \times \mathcal{A}_e$, detection $\tau \leftarrow 0$, counter $k \leftarrow 1$

- 1: **for** $t = 1, 2, \dots, T$ **do**
- 2: Observe context C_t
- 3: **if** $(t - \tau + 1 \bmod \lceil N_e / \alpha_k \rceil) + 1 = i \in [N_e]$ **then**
- 4: Play action $a^{(i)}$ and receive reward X_t
- 5: Add reward X_t into history $\mathcal{H}_{(C_t, a^{(i)})}$
- 6: **if** $\mathcal{D}(\mathcal{H}_{(C_t, a^{(i)})}) = \text{detection}$ **then**
- 7: Reset the bandit algorithm \mathcal{B}
- 8: Clear all $\mathcal{H}_{(c,a)} \forall (c,a) \in \mathcal{C} \times \mathcal{A}_e$,
- 9: $\tau \leftarrow t$, $k \leftarrow k + 1$
- 10: **end if**
- 11: **else**
- 12: Run the stationary bandit algorithm \mathcal{B}
- 13: **end if**
- 14: **end for**

Forced Exploration In stationary bandit settings, effective algorithms quickly concentrate on (near-)optimal actions for each context, rarely exploring suboptimal actions. In NS environments, however, this behavior may lead to missed changes on these rarely sampled actions, and thus, *forced exploration* on these actions is essential. When the action space is large or infinite, exploring all actions becomes infeasible. Therefore, DAL only does extra exploration on a finite *covering set*, $\mathcal{A}_e = \{a^{(i)} : i \in [N_e]\} \subseteq \mathcal{A}$, in which $a^{(i)}$ denotes the i -th action in \mathcal{A}_e . \mathcal{A}_e is designed such that the mean reward of at least one context-action pair in $\mathcal{C} \times \mathcal{A}_e$ changes whenever a change occurs. In particular, after the $(k - 1)^{\text{th}}$ restart, DAL is forced to play each action in \mathcal{A}_e once for N_e steps, followed by the bandit algorithm for the next $\lceil N_e / \alpha_k \rceil - N_e$ steps, repeatedly, until the k^{th} restart. Here, $\alpha_k \in (0, 1)$ is the exploration frequency, striking a balance between detection delay and regret from extra exploration.

Bandit Algorithm With a detector \mathcal{D} and forced exploration, DAL augments a (stationary) bandit algorithm \mathcal{B} : It resets \mathcal{B} entirely whenever \mathcal{D} detects changes in a reward distribution associated with any context-action pair in $\mathcal{C} \times \mathcal{A}_e$ (Line 6), and runs \mathcal{B} with periodic forced exploration otherwise. Essentially, the purpose of the detector is to identify shifts in the mean of the rewards, i.e., changes in the environment. Line 6 and \mathcal{D} are fully elaborated in Sections 3, 4.1 and in the Appendix. A key advantage of DAL is its ability to translate strong stationary performance into robust performance under NS conditions. Therefore, by selecting a well-performing bandit algorithm, the DAL framework inherently achieves effective adaptation to NS environments. In fact, the only requirement for DAL’s input stationary algorithm is to attain optimal stationary regret performance bounds.

3 PRACTICAL PERFORMANCE

3.1 EXPERIMENTAL BASELINES

In our experiments, we evaluate *all* methods referenced in Section 1, highlighting the strongest state-of-the-art algorithms applicable to PS and drifting settings across both synthetic and real-world benchmarks. These baselines include MASTER (Wei & Luo, 2021), the only other black-box method with order-optimal regret. MASTER lacks guarantees for SCBs, but empirical evidence (Wang et al., 2023) supports using it with Log-UCB-1 (Faury et al., 2020) in NS-SCBs. We additionally include two prior-free, order-optimal algorithms: ADA-OPKB (Hong et al., 2023) for NS-LBs/NS-KBs and ADA-ILCTB+ (Chen et al., 2019) for NS-CBs. ADA-OPKB requires extensive tuning (7 hyperparameters), which is incompatible with a fully prior-free setting; nevertheless, we tune it (and MASTER’s single parameter n) for best performance in our evaluation. We also compare against two prior-based discounted approaches—WeightUCB (Wang et al., 2023) for drifting PBs and PS-SCBs, and WGP-UCB (Deng et al., 2022) for drifting KBs. All remaining methods are *prior-based*. To maintain figure readability, we group algorithms by paradigm (discounted, sliding-window, budget-restart) while keeping distinct methods separate when they differ meaningfully. In real-world experiments, we focus on the strongest current state-of-the-art methods, as the remaining algorithms are less competitive. We use the hyperparameters specified in the original works.

162 3.2 PRACTICAL TUNING OF DAL
163

164 Across all settings, DAL uses the *Generalized Likelihood Ratio (GLR)* and the *Generalized Shiryaev-
165 Roberts (GSR)* tests (Huang & Veeravalli, 2025) as the detector \mathcal{D} , which are given in Algorithms 2
166 and 3. For the detectors, we set their thresholds $\beta_{\text{GLR}}(n, \delta_F) = \log(n^{3/2}/\delta_F)$ and $\beta_{\text{GSR}}(n, \delta_F) =$
167 $n^{5/2}/\delta_F$, with $\delta_F = 1/\sqrt{T}$, as per Huang et al. (2025); Besson et al. (2022). Concretely: In
168 NS-LBs, LinUCB (Abbasi-yadkori et al., 2011) pairs with Gaussian GLR and GSR. In NS-GLBs,
169 GLM-UCB (Filippi et al., 2010) pairs with Gaussian GLR and GSR. In NS-SCBs, OFUGLB (Lee
170 et al., 2024) pairs with Bernoulli GLR and GSR. In NS-KBs, REDS (Salgia et al., 2024) pairs with
171 Gaussian GLR and GSR. In NS-CBs, SquareCB (Foster & Rakhlin, 2020) pairs with Bernoulli GLR
172 and GSR. We implement the stationary bandit algorithms as provided in their original works. For all
173 settings, we set $\alpha_k = \sqrt{k|\mathcal{C}|N_e}/(2\sqrt{T} \log^2 T)$ as per Theorem 4.8. A crucial advantage of DAL is
174 that it is *hyperparameter-free*, guided entirely by our theoretical principles.

175 To construct \mathcal{A}_e , for NS-PBs we follow Proposition 4.2: we greedily select linearly independent
176 actions until collecting d such vectors, or as many as exist if fewer than d are available. In our
177 experiments, actions are sampled from a multivariate Gaussian, which always yields d such vectors.
178 For NS-KBs, \mathcal{A}_e is from a δ_T -cover by selecting the centers of the covering balls according to
179 Proposition 4.3 and Corollary 4.9. In finite action spaces, we compute γ_T ; if $|\mathcal{A}| \leq \gamma_T$, then by
180 Corollary 4.9 the action set already forms a valid cover and we take $\mathcal{A}_e = \mathcal{A}$, otherwise we select
181 the γ_T actions closest to the cover centers. In all our NS-KB experiments, γ_T is larger than $|\mathcal{A}|$, so
182 we always have $\mathcal{A}_e = \mathcal{A}$. In PS-CBs, the action space is finite, and as noted in Remark 4.4, both
183 the theory and our experiments take $\mathcal{A}_e = \mathcal{A}$. DAL’s exploration burden is $N_e = |\mathcal{A}_e|$, which is
184 determined by the structural complexity of the reward class. In PBs and KBs $|\mathcal{A}_e|$ is independent
185 of the infinite \mathcal{A} , while in CBs all *finite* actions must be explored. DAL limits N_e to the minimum
186 needed to characterize the reward function for detection and learning. DAL is driven by structural
187 complexity, not $|\mathcal{A}|$. An extended discussion on \mathcal{A}_e and its implications appears in the Appendix.

188 3.3 SYNTHETIC EXPERIMENTS
189

206 Figure 1: Dynamic regret vs. environment steps for synthetic experiments (lower=better). First
207 three rows correspond to the geometric change-points and the final one to the drifting case.

208 3.3.1 EXPERIMENTAL PARAMETERS
209

211 **Common parameters** In all synthetic experiments, the action space comprises 100 unique actions
212 with dimension $d = 10$. These actions are sampled independently from $\mathcal{N}(0, I)$. The horizon is
213 fixed to $T = 50000$ and we average the results over 15 independent trials.

214 **Remark 3.1.** *In Algorithm 1, when $|\mathcal{A}|$ is finite, change-detection can be performed on the actions
215 selected by \mathcal{B} that are not in \mathcal{A}_e , which improves performance. This does not affect the theoretical
properties of the algorithm, and we employ this variation for our experiments.*

216 **NS-PBs** The actions are scaled to lie within an L -ball and the underlying parameters θ_t belong
 217 to an S -ball. Specifically, for NS-LBs and NS-GLBs we have that $S = L = 1$, while for NS-
 218 SCBs, we have that $L = 1$ but $S = 3$. Every time a θ_t is initialized or changed, its elements are
 219 chosen independently and uniformly in $[-1, 1]$, and then are scaled to the S -ball. For both NS-
 220 GLBs and NS-SCBs, we select $\mu(x) := \sigma(x) = (1 + e^{-x})^{-1}$ (sigmoid). The additive noise ε_t
 221 is sampled according to $\mathcal{N}(0, 0.01)$ at each time-step, while for NS-SCBs, we sample the random
 222 reward according to $\text{Bernoulli}(\mu(\langle \theta_t, A_t \rangle))$ at time t . To set \mathcal{A}_e in NS-PBs, we use Corollary 4.9.

223 **NS-KBs** Actions are scaled in the \sqrt{d} -ball and $\varepsilon_t \sim \mathcal{N}(0, 0.01)$. We employ the SE kernel with
 224 $\ell = 0.2$. We follow a procedure similar to Chowdhury & Gopalan (2017); Deng et al. (2022).
 225 Specifically, every time we initialize or change the reward function, f_t is generated from the RKHS
 226 obtained by a discretization of $[-1, 1]$ into 200 evenly spaced points. The reward function is set as
 227 $f(\cdot) = \sum_{i=1}^M \alpha_i k(\cdot, x_i)$, $\alpha_i \sim \text{Unif}[-1, 1]$ and $M = 200$. For \mathcal{A}_e , we use Corollary 4.9.
 228

229 **NS-CBs** The context $C_t \in \mathbb{R}^{d_c}$ is drawn at each round from a fixed pool of 1000 normalized vectors
 230 with $d_c = 10$, according to a categorical distribution. At every initialization or change, at least one
 231 of the f_t or \mathcal{P}_t changes, **while Π is fixed in each run**. For $a \in \mathcal{A}$ and context C_t , f_t is clipped in
 232 $[0, 1]$, and is given by

$$233 \quad f_t(C_t, a) = \left[b_a + z^{(\text{sig})} \sigma(u_a^\top C_t) + z^{(\text{sin})} \sin(v_a^\top C_t) + z^{(\text{xpr})} C_{t,2} C_{t,3} \right]_{[0,1]},$$

235 where $u_a, v_a \sim \mathcal{N}(0, I)$, $b_a \sim \text{Unif}[0.3, 0.7]$, and $z^{(\text{sig})}, z^{(\text{sin})}, z^{(\text{xpr})}$ are drawn uniformly from
 236 $[0.25, 0.45]$, $[0.15, 0.35]$, $[0.10, 0.25]$, respectively. Rewards are sampled as $\text{Bernoulli}(f_t(C_t, A_t))$.
 237 Since the reward function lacks any arm-related structure, here we set $\mathcal{A} = \mathcal{A}_e$ (see Remark 4.4).
 238

239 3.3.2 EXPERIMENTAL BENCHMARKS

241 **Piecewise Stationarity** In the PS setting, we adopt the geometric change-point model proposed
 242 in Gerogiannis et al. (2025), and independently sample the intervals between the change-points
 243 according to a geometric distribution with parameter $\rho = T^{-\xi}$, for $\xi \in \{0.4, 0.6, 0.8\}$. We do not
 244 impose any restriction on the lengths of the intervals between change-points in our experiments.

245 **Drifting Non-Stationarity** Regarding comparisons in drifting non-stationarity, we adopt the fol-
 246 lowing drift model: in each run, the reward structure changes linearly over T rounds from an initial
 247 value to a final value, where the end-points are chosen as in the beginning of the section. Specifically,

$$248 \quad \text{PBs: } \theta_t = (1 - t/T) \theta_{\text{init}} + (t/T) \theta_{\text{final}}, \quad \text{KBs: } f_t = (1 - t/T) f_{\text{init}} + (t/T) f_{\text{final}},$$

$$249 \quad \text{CBS: } \phi_t = (1 - t/T) \phi_{\text{init}} + (t/T) \phi_{\text{final}}, \quad \phi_t := (u_{a,t}, v_{a,t}, b_{a,t}, \mathbf{z}_t), \quad \mathbf{z}_t := (z_t^{(\text{sig})}, z_t^{(\text{sin})}, z_t^{(\text{xpr})}).$$

252 **Experimental Results** Per the results in Figure 1, DAL outperforms the current state-of-art methods
 253 in every synthetic experiment **for both choices of detectors**. DAL only abandons the actions chosen
 254 by the stationary bandit algorithm and restarts learning when an efficient change detector flags a
 255 mean-shift in rewards; hence, it avoids unnecessary restarts, especially when the intervals between
 256 the change-points are long enough for such detectors to correctly flag said changes without false
 257 alarms. Regarding drifting non-stationarity, DAL significantly outperforms all other methods. In
 258 fact, it fares better than both WeightUCB and ADA-OPKB, which not only are known to attain the
 259 optimal regret bound in the drift setup, but have also been shown to perform well in practice.

260 3.4 REAL-WORLD EXPERIMENTS

262 **Microarchitecture Prefetcher Selection Benchmark.** We introduce a novel dataset for NS bandit
 263 evaluation using the data of Gerogiannis & Torrellas (2023).¹ The dataset includes 11 prefetcher
 264 configurations (actions) that trade aggressiveness against efficiency. At each time-step, the reward is
 265 the normalized instructions per cycle in $[0, 1]$, and the horizon is $T = 26224$. Following Gerogiannis
 266 & Torrellas (2023), we also evaluate D-UCB (Kocsis & Szepesvári, 2006) in its native form; while
 267 for our baselines we model the task as an NS-SCB. D-UCB hyperparameters follow its original
 268 paper and Gerogiannis & Torrellas (2023). Evaluation is by cumulative reward.

269 ¹We aim to release the dataset to facilitate real-world experimentation by the bandit research community.

Figure 2: Results for real-world experiments of Section 3.4, averaged over 15 independent runs. Top: dynamic regret (lower=better); Bottom: cumulative reward (higher=better).

Stock Market Benchmarks. NS-KBs have been applied to stock market prediction, and we follow the procedure of (Deng et al., 2022) to simulate two environments: one using their original data (Quandl stocks) and one constructed from NASDAQ-100 stocks retrieved via the `yfinance` Python package.² In the Yahoo-based dataset, we retain stocks with sufficient history ($T=2000$, approx. 5.5 years) and select the 50 most volatile as actions. Daily closing prices define the reward function, and the empirical price covariance matrix is used as the kernel. To increase difficulty, we add Gaussian noise $\mathcal{N}(0, 0.01)$ to the reward at each time-step. Evaluation is by dynamic regret.

COVID-NMA Clinical Benchmark. We construct an NS-SCB benchmark from the open COVID-NMA database (Boutron et al., 2025). To maximize coverage while retaining clinical meaning, we form a *UNION* endpoint: for each bucketed-treatment arm and month, we include both Clinical Improvement at Day 28 (when reported) and Survival at Day 28 (1=mortality) as separate contributions, leading to binary rewards (1=success). Treatments (actions) are mapped into 13 classes and month counts are expanded exactly (s successes and $n-s$ failures per bin) and concatenated in a fixed chronological order (month, `clinD28` then `mortD28`, then bucket) to yield a long non-stationary sequence with $T \approx 7.4 \times 10^4$. Evaluation is based on cumulative reward.

Click Log Benchmarks. We use the Yahoo! R6A click log dataset.³ Following (Cao et al., 2019b; Seznec et al., 2020), we compute smoothed click-through rates (CTRs) via rolling averages over 2000 rounds, average CTRs within each subperiod, and suppress fluctuations below 0.005. We combine actions across 5 days, leading to 64 actions, compress the horizon to 50000, and multiply final CTRs by 10. We model the resulting environment as an NS-SCB problem, reflecting the logistic reward structure typical in such settings (Russac et al., 2021). Evaluation is by dynamic regret.

Alongside the R6A, we build a fixed-arm replay benchmark from the additional Yahoo! R6B click logs, as an NS-CB problem.³ We select the highest-CTR articles to form an action set of 51 actions, round-robin interleave days and then select $T = 50000$. For each visit, we intersect the candidate set with this vocabulary, keep rounds where the displayed item remains, and record the binary click as the raw reward ($X_t \in \{0, 1\}$). We rely on R6B's uniform-random logging for unbiased replay/IPS evaluation (Li et al., 2011). Our metric is (replay) cumulative reward.

Live Traffic Benchmark. We construct an NS bandit environment based on the Criteo live traffic dataset (Diemert et al., 2017), following the preprocessing approach of Russac et al. (2019) but modeling the problem as an NS-GLB rather than an NS-LB. We estimate the underlying parameter θ^* using logistic regression. Unlike Russac et al. (2019), in which the authors employ a single change, we introduce shifts in θ^* via a geometric change-point model with parameter $\xi = 0.8$ and extend the horizon to $T = 50000$. The metric here is the dynamic regret.

Sensor Correlation Benchmark. We use the Bioliq dataset provided by Komiyama et al. (2024), which contains a week of measurements from 20 sensors in a power plant. We process the reward as Komiyama et al. (2024) and construct an NS-SCB environment with 190 actions. At each time-

²Data retrieved from Yahoo Finance using the publicly available `yfinance` package. Used solely for non-commercial, academic research purposes.

³Yahoo! Front Page Today Module User Click Log Datasets: <https://webscope.sandbox.yahoo.com>.

324 step, the reward is 1 if the last 1000 measurements exceed a threshold of 2.04, and 0 otherwise.
 325 Evaluation is based on cumulative reward.

326 **Ad Recommendation Benchmark.** We evaluate on the Zozo environment, a real-world ad
 327 recommender system deployed on an e-commerce platform, introduced by Saito et al. (2021). Using
 328 the dataset preprocessed by Komiyama et al. (2024), we construct an NS-GLB environment that
 329 captures the dynamics of online ad recommendation. Unlike Komiyama et al. (2024), in which the
 330 authors limit the setup to 10 actions due to sparsity, we keep all 80 ads as actions. Following their
 331 setup, we assign a reward of 1 to any ad that received at least one user click within a one-second
 332 window, and 0 to ads with no clicks. Here, evaluation is based on cumulative reward.

333 Based on the results in Figure 2, DAL consistently outperforms all state-of-the-art baselines across
 334 real-world benchmarks, in both dynamic regret and cumulative reward **with both GLR and GSR**.
 335 We attribute this strong performance to the robustness DAL demonstrates in the synthetic settings,
 336 which captured a range of challenging NS scenarios. These findings underscore DAL’s practical
 337 effectiveness. In what follows, we provide a theoretical explanation for its performance.

339 4 THEORETICAL INSIGHTS

341 4.1 ON EFFECTIVE DETECTION

343 When selecting a non-stationarity detector, accuracy and efficiency are essential for ensuring optimal
 344 regret growth. Any detector aiming to identify distribution shifts inherently requires a certain
 345 number of samples, both before and after the change. Ideally, this sample complexity should scale
 346 appropriately to avoid negatively impacting the total regret. To this end, the GLR **and GSR** tests
 347 have been shown to achieve a pre- and post-change sample complexity of the order $\log T$ (Huang &
 348 Veeravalli, 2025). Since logarithmic terms are disregarded in dynamic regret analyses, it suggests
 349 that integrating such detection mechanisms could achieve optimal regret growth.

350 The stopping time τ of a change detector \mathcal{D} denotes the time-step at which a change is identified.
 351 Let \mathbb{P}_ν and \mathbb{E}_ν be the probability and expectation with change-point at ν , and \mathbb{P}_∞ and \mathbb{E}_∞ be the
 352 ones with no change-point. The *latency* $\ell_{\mathcal{D}}$ is the length of time post-change within which a change
 353 is declared with a probability $1 - \delta_{\mathcal{D}}$, i.e.,

$$354 \ell_{\mathcal{D}} := \inf\{t \in [T] : \mathbb{P}_\nu(\tau \geq \nu + t) \leq \delta_{\mathcal{D}}, \forall \nu \in [m_{\mathcal{D}} + 1, T - t]\}$$

356 where $m_{\mathcal{D}}$ is the length of the pre-change window at which no changes occur. A good detector seeks
 357 to minimize $\ell_{\mathcal{D}}$ while ensuring low false-alarm probability over horizon T , namely $\mathbb{P}_\infty(\tau \leq T) \leq$
 358 δ_F with $\delta_F \in (0, 1)$. To ensure order-optimal regret for DAL, the detector \mathcal{D} must satisfy:

359 **Property 4.1.** $\ell_{\mathcal{D}} + m_{\mathcal{D}} = \mathcal{O}(\log T + \log(1/\delta_F) + \log(1/\delta_{\mathcal{D}}))$.

361 This condition is crucial in the proof of Theorem 4.8 in the Appendix. We employ the GLR and GSR
 362 tests since they satisfy Property 4.1 (Huang & Veeravalli, 2025), with thresholds $\beta_{\text{GLR}}(n, \delta_F) =$
 363 $\mathcal{O}(\log(n^{3/2}/\delta_F))$ and $\beta_{\text{GSR}}(n, \delta_F) = \mathcal{O}(n^{5/2}/\delta_F)$. In experiments, GSR performs slightly better
 364 than GLR, but the difference is minor since both satisfy Property 4.1. This shows that the good
 365 performance is due to the *design* of DAL rather than the specifics of a single detector.

366 **Alg. 2 Generalized Likelihood Ratio Test**

367 **Input:** History $\mathcal{H} = \{X_1, \dots, X_n\}$, δ_F , $\delta_{\mathcal{D}}$, KL divergence $\text{kl}(\cdot, \cdot)$

368 1: **for** $k = 1$ to $n - 1$ **do**

369 2: Compute empirical means $\hat{\mu}_{1:k}, \hat{\mu}_{k+1:n}, \hat{\mu}_{1:n}$

370 3: $\text{GLR}_k \leftarrow k \text{kl}(\hat{\mu}_{1:k}, \hat{\mu}_{1:n})$

371 4: $+ (n - k) \text{kl}(\hat{\mu}_{k+1:n}, \hat{\mu}_{1:n})$

372 5: **if** $\text{GLR}_k \geq \beta_{\text{GLR}}(n, \delta_F)$ **then**

373 6: **return** detection

374 7: **end if**

375 8: **end for**

366 **Alg. 3 Generalized Shiryaev–Roberts Test**

367 **Input:** History $\mathcal{H} = \{X_1, \dots, X_n\}$, δ_F , $\delta_{\mathcal{D}}$, KL divergence $\text{kl}(\cdot, \cdot)$, $\text{GSR}_k \leftarrow 0$

368 1: **for** $k = 1$ to $n - 1$ **do**

369 2: Compute empirical means $\hat{\mu}_{1:k}, \hat{\mu}_{k+1:n}, \hat{\mu}_{1:n}$

370 3: Compute GLR_k according to Alg. 2

371 4: $\text{GSR}_k \leftarrow \text{GSR}_k + \exp(\text{GLR}_k)$

372 5: **if** $\text{GSR}_k \geq \beta_{\text{GSR}}(n, \delta_F)$ **then**

373 6: **return** detection

374 7: **end if**

375 8: **end for**

376 The Bernoulli GLR and GSR are used for sub-Bernoulli rewards with $\text{kl}(x, y) = x \ln(x/y) + (1 -$
 377 $x) \ln\left(\frac{1-x}{1-y}\right)$, and the Gaussian variants are for σ^2 -sub-Gaussian rewards with $\text{kl}(x, y) = \frac{(x-y)^2}{2\sigma^2}$.

To select which samples should be fed into the detector, one needs to properly select the covering set \mathcal{A}_e , so that it contains actions that can capture changes in the reward function for any context. However, changes cannot be arbitrarily small, as no change detector may be able to identify them. Hence, \mathcal{A}_e should be designed such that whenever a change occurs, reward sequences associated with at least one context-action pair in $\mathcal{C} \times \mathcal{A}_e$ exhibit an *appreciable* mean-shift. Define

$$\Delta_c := \inf_{f \neq f'} \max_{(c,a) \in \mathcal{C} \times \mathcal{A}_e} |f(c,a) - f'(c,a)|.$$

Then, Δ_c captures how well the context-action pairs in $\mathcal{C} \times \mathcal{A}_e$ can discern between candidate reward functions. According to Huang et al. (2025), Δ_c crucially affects the performance of the GLR and GSR tests, as their pre- and post- change sample complexity grows with $1/\Delta_c^2$. The more discernible the changes are, the easier the detection becomes. Since forced exploration incurs regret, \mathcal{A}_e should be chosen to minimize N_e while maximizing Δ_c . However, this cannot be done since the function f_t is unknown. Hence, we provide the ways with which one can ensure appreciable mean-shift (i.e., $\Delta_c > 0$) in settings where the reward function has a certain *structure* (e.g., linear dependence on the arms or prescribed smoothness). Specifically, the NS-PB and NS-KB settings satisfy such conditions. Using these choices of \mathcal{A}_e , one can guarantee order-optimal regret in certain cases, as shown in the next section. The proofs of the following propositions are given in the Appendix.

Proposition 4.2. *In NS-PBs, \mathcal{A}_e can be any arbitrary maximal linearly independent subset of \mathcal{A} .*

Proposition 4.3. *In NS-KBs, assume that $\mathcal{A} \subseteq [0, R]^d$ w.l.o.g., and that there exists an $\tilde{a} \in \mathcal{A}$ s.t.*

$$\inf_{f \neq f'} |f(\tilde{a}) - f'(\tilde{a})| > L_T,$$

for some $L_T > 0$. Let $\delta_T := L_T/(2BL_u)$, where BL_u is the Lipschitz constant of all $f \in H_k(\mathcal{A})$ and let $\mathcal{V}_T \subset \mathcal{A}$ be the set of the centers of the balls of an arbitrary δ_T -cover. Then, \mathcal{A}_e can be taken as \mathcal{V}_T , with $|\mathcal{V}_T| \leq \lceil \sqrt{d}R/2\delta_T \rceil^d = \lceil \sqrt{d}BL_uR/L_T \rceil^d$.

Remark 4.4. *In NS-CBs, if f_t and \mathcal{A} satisfy the structural assumptions of the preceding propositions for any fixed context, we can set \mathcal{A}_e similarly. Without such structure, we set $\mathcal{A}_e = \mathcal{A}$, as \mathcal{A} is finite.*

4.2 ON ORDER-OPTIMALITY IN PIECEWISE STATIONARY ENVIRONMENTS

In the PS setting, the minimax regret lower bound under bandit feedback is $\tilde{\Omega}(\sqrt{N_T T})$ (Garivier & Moulines, 2011),⁴ which applies across all settings considered in this work, differing only in problem-dependent constants. Under certain conditions on the minimum spacing between change-points, our algorithm matches this bound with state-of-the-art dependence on these constants. Specifically, the assumption states that $\nu_k - \nu_{k-1}$ should be large enough to acquire enough samples to trigger restarts. For brevity, we first define the relevant quantities and then state the assumption.

Definition 4.5. For PS-PBs and PS-KBs, let $m_k := \lceil N_e/\alpha_k \rceil m_D$ and $\ell_k := \lceil N_e/\alpha_k \rceil \ell_D$ for $k \in [N_T]$. For PS-CBs, let $m_k := \lceil N_e/\alpha_k \rceil \lceil m_D/s + \log T/4s^2 + \sqrt{m_D \log(T)/2s^3 + (\log T)^2/16s^4} \rceil$ and $\ell_k := \lceil N_e/\alpha_k \rceil \lceil \ell_D/s + \log(T)/4s^2 + \sqrt{\ell_D \log T/2s^3 + (\log T)^2/16s^4} \rceil$ for $k \in [N_T]$, with $s := \min_{c \in \mathcal{C}, t \in [T]: \mathcal{P}_t(c) > 0} \mathcal{P}_t(c)$.

Assumption 4.6. Assume $\nu_1 \geq m_1$ and $\nu_k - \nu_{k-1} \geq \ell_{k-1} + m_k$ for $k \in \{2, \dots, N_T\}$.

In PS-PBs and PS-KBs, DAL performs round-robin forced exploration on each arm every $\lceil N_e/\alpha_k \rceil$ rounds. Thus, the scaling of m_D and ℓ_D in Definition 4.5 is necessary for Assumption 4.6 to guarantee that the change detector in each arm observes at least m_D pre-change samples and ℓ_D post-change samples. In PS-CBs, each context-action pair is only seen in expectation (not deterministically) at least once every $\lceil N_e/\alpha_k \rceil/s$ rounds due to randomness. Thus, in Assumption 4.6, we increase the change-point separation, as shown in Definition 4.5, to collect the m_D and ℓ_D samples with high probability. These conditions allow \mathcal{D} to reliably detect a change (Property 4.1).

The assumption on the minimum separation between change-points essentially requires scaling as $\tilde{\mathcal{O}}(\sqrt{T/k})$. However, this condition primarily emerges from a conservative proof technique, where missed detections are aggregated into a single adverse event. Practically, and as corroborated by our experiments, this assumption is often violated without negatively impacting the regret performance—even under scenarios with frequent and arbitrarily placed change-points (e.g. $\xi = 0.4$).

⁴We use the \sim in $\tilde{\Omega}(\cdot)$ to hide polylogarithmic factors.

We suspect that this resilience arises because any detector satisfying [Property 4.1](#), while potentially missing isolated short intervals, reliably detects subsequent changes when stationary segments exceed the threshold length. Even if a change is entirely missed during a segment shorter than $\tilde{\mathcal{O}}(\sqrt{T}/k)$, the resulting regret remains under that order. Conversely, when the assumption holds, optimal regret is provably guaranteed. Thus, the required separation threshold acts as a practical "sweet spot": segments longer than this threshold are detected reliably, ensuring optimal performance, while shorter segments incur minimal regret, thereby preserving overall optimal regret.

Remark 4.7. *Assumption 4.6* is necessary to prove the order-optimality, but it is not for practical performance. None of our experiments enforced this assumption, and DAL dominated in both the synthetic and the real-world simulations as shown in Section 3.

Based on Algorithm 1, DAL can incorporate any stationary bandit algorithm. Since different algorithms yield different regret guarantees, DAL attains order-optimal regret in PS environments only when the stationary component has optimal minimax regret, namely $\tilde{\mathcal{O}}(d\sqrt{T})$ in PBs, $\tilde{\mathcal{O}}(\sqrt{\gamma_T T})$ in KBs, and $\tilde{\mathcal{O}}(\sqrt{|\mathcal{A}| \log |\Pi| T})$ in CBs. This requirement is formalized in [Theorem 4.8](#).

Thus, to characterize DAL's performance under piecewise stationarity, we employ the methodology of [Huang et al. \(2025\)](#), incorporating the regret analysis of the stationary bandit algorithm and that of the change detector. Since we are studying general bandits, additional novel analysis is required. Due to space constraints, the full analysis and proof of [Theorem 4.8](#) is deferred to the Appendix.

Theorem 4.8. For the PS setting, consider DAL with a detector \mathcal{D} that satisfies [Property 4.1](#), a stationary bandit algorithm \mathcal{B} with regret upper bound $R_{\mathcal{B}}$ concave and increasing with T , a covering set \mathcal{A}_e and forced exploration frequencies $(\alpha_k)_{k=1}^T$. If [Assumption 4.6](#) holds, $\alpha_k = \sqrt{k|\mathcal{C}|N_e}/(2\sqrt{T}\log^2 T)$, $\delta_F = \delta_D = T^{-\gamma}$, with $\gamma > 1$, and $R_{\mathcal{B}}(T) = \tilde{\mathcal{O}}(d^p\gamma_T^q(|\mathcal{A}| \log |\Pi|)^r \sqrt{T})$ with $p, q, r \geq 0$, then DAL's regret satisfies, $R_T = \tilde{\mathcal{O}}(d^p\gamma_T^q(|\mathcal{A}| \log |\Pi|)^r \sqrt{N_T T} + \sqrt{|\mathcal{C}|N_e N_T T})$.

Using [Theorem 4.8](#), [Propositions 4.2, 4.3](#) and [Remark 4.4](#) we present the optimal regret of DAL.

Corollary 4.9. Assume that the conditions of [Theorem 4.8](#) hold. In PS-PBs, select \mathcal{A}_e as in [Proposition 4.2](#). In PS-KBs, select \mathcal{A}_e as in [Proposition 4.3](#) with $\delta_T := \frac{Rd^{1/2-2p/d}}{2(C\gamma_T^{2q})^{1/d}}$ for some $C > 0$. In PS-CBs, set \mathcal{A}_e as in [Remark 4.4](#). Then, DAL attains

$$R_T = \tilde{\mathcal{O}}(d^p\gamma_T^q(|\mathcal{A}| \log |\Pi|)^r \sqrt{N_T T}).$$

If the base stationary algorithm has order-optimal regret, DAL retains optimality in PS-PBs, PS-KBs and PS-CBs. This also holds when $N_e < d$ or $|\mathcal{A}| < d$ in PS-PBs, when $N_e < \gamma_T$ or $|\mathcal{A}| < \gamma_T$ in PS-KBs, and when Π is the universal set of all mappings from \mathcal{C} to \mathcal{A} .

State-of-the-art Regret. In line with the black-box philosophy, [Corollary 4.9](#) enables regret bounds across all settings considered, with flexibility in the choice of stationary bandit algorithms. When using specific stationary algorithms from [Section 3](#), which attain the optimal stationary regret mentioned above, DAL matches the state-of-the-art regret bounds in PS-LBs and PS-GLBs at $\tilde{\mathcal{O}}(d\sqrt{N_T T})$. In PS-CBs, DAL achieves the state-of-the-art regret bound of $\tilde{\mathcal{O}}(\sqrt{|\mathcal{A}|N_T T \log |\Pi|})$. More notably, DAL improves the best known bounds in the PS-SCB and PS-KB settings. For PS-SCBs, the strongest, prior-based, bound is due to WeightUCB, which achieves $\tilde{\mathcal{O}}(d^{2/3}T^{2/3}N_T^{1/3})$.⁵ DAL improves this to $\tilde{\mathcal{O}}(d\sqrt{N_T T})$ with our algorithmic choices. Although this matches the bound in [Russac et al. \(2021\)](#), their analysis relies on substantially stronger assumptions than ours. For PS-KBs, the prior-free ADA-OPKB achieves $\tilde{\mathcal{O}}(\sqrt{d\gamma_T N_T T})$, while DAL improves this to $\tilde{\mathcal{O}}(\sqrt{\gamma_T N_T T})$. This highlights the interesting feature of DAL: the order-wise dependence on problem parameters from the stationary setting seamlessly transfers to the PS setting without degradation. A detailed comparison of regret bounds is given in the Appendix.

4.3 ON DRIFTING ENVIRONMENTS

Based on the previous section, at first glance, one can expect that DAL is not able to handle drifting non-stationarity. Our results in [Section 3](#) naturally lead us to ask when and why DAL performs well in drifting environments.

⁵While MASTER may be extendable to PS-SCBs, no regret bound is currently known.

486 As a first step to study this, we perform another experiment with LBs. Specifically, the parameter θ_t in
 487 each time-step t evolves randomly as follows,
 488
 489

$$\theta_{t+1} := \theta_t + \zeta_{t+1}$$

490 where $\zeta_{t+1} \in \mathbb{R}^d$ is chosen uniformly over a δ -ball. If the resulting θ_{t+1} violates the norm-bound S ,
 491 we disregard that choice of ζ_{t+1} and sample again.
 492 We sample $\varepsilon_t \sim \mathcal{N}(0, 0.1)$ at each t . We compare the cumulative dynamic regret up to time T of
 493 DAL+LinUCB with GLR, and WeightUCB over a
 494 range of δ 's in Figure 3. The remaining parameters
 495 are chosen to be the same as those in Section 3, with
 496 the exception of $d = 5$. The DAL algorithm per-
 497 forms better than WeightUCB for smaller values of δ , but the conclusion reverses upon increasing δ .
 498 We now shed light into our hypothesis behind the observations from Figure 3. For playing an action
 499 $a \in \mathcal{A}$ at time $t + 1$, we get the random reward,
 500
 501

$$X_{t+1} = \langle \theta_t, a \rangle + \langle \zeta_{t+1}, a \rangle + \varepsilon_{t+1}.$$

502 If the governing parameter does not change, then the reward from playing action a would have been
 503 $X'_{t+1} = \langle \theta_t, a \rangle + \varepsilon'_{t+1}$, where ε'_{t+1} is another realization of the noise. Statistically, a specific instance
 504 of $\langle \zeta_{t+1}, a \rangle + \varepsilon_{t+1}$ and ε'_{t+1} are close to each other, when δ is small, albeit the resulting (small)
 505 mean-shift due to the drift in the governing parameter. For practical purposes, the impact of the
 506 drift can be absorbed into the noise term ε_{t+1} when δ is small. As a result, one expects an algorithm
 507 tailored to handle piecewise stationarity to perform reasonably well for slowly drifting environments.
 508 Conversely, if δ is large, the bias induced by ζ_{t+1} is large enough to disallow absorbing it into the
 509 noise term. Over a few time-steps, the cumulative effect of this compounding bias is then large
 510 enough to completely violate the stationarity assumption. With large enough δ , the change in θ_t
 511 over a few time-steps can be considered large enough to trigger a restart.
 512
 513

5 SUMMARY AND OUTLOOK

514 We introduced DAL, a practical, prior-free black-box framework for general PS bandits. Its plug-
 515 and-play design integrates seamlessly with a wide range of stationary bandit algorithms and different
 516 detectors. Through extensive experiments in both PS and drifting settings—spanning synthetic and
 517 real-world benchmarks, DAL consistently outperforms all prior-free baselines, including the black-
 518 box gold standard MASTER and the state-of-the-art methods ADA-OPKB and ADA-ILCTB+, and
 519 even surpasses leading prior-based methods like WeightUCB and WGP-UCB. Its leading perfor-
 520 mance in real-world scenarios highlights its value as a practical and effective solution.
 521
 522

523 On the theoretical side, using existing results and providing novel techniques, we showed that DAL
 524 inherits and adapts the regret guarantees of its stationary input algorithm, achieving order-optimal
 525 regret under piecewise stationarity, with mild change-point separation. As a result, it matches the
 526 best existing bounds in PS-LBs, PS-GLBs and PS-CBs while improving the best known bounds
 527 for PS-SCBs and PS-KBs. Regarding drifting non-stationarity, we hypothesized key conditions
 528 under which DAL excels—an insight further validated through additional experiments under drifting
 529 settings. Our results suggest that a well-designed algorithm for the PS setting can extend to a broad
 530 range of drifting scenarios, bridging the gap between these two regimes.
 531

532 While DAL advances both theory and practice, it opens new directions. First, regret guarantees
 533 for detection-based methods in drifting environments remain unexplored. Second, the current re-
 534 gret bounds for DAL rely on a separation condition between change-points—a standard assump-
 535 tion in the detection-based literature (see e.g., (Auer et al., 2019; Besson et al., 2022; Huang et al.,
 536 2025))—which nonetheless limits the extent to which DAL achieves fully prior-free theoretical
 537 optimality. Addressing these gaps would deepen our understanding of detection-based methods in more
 538 continuous forms of non-stationarity. Finally, DAL’s modular nature invites extensions to broader
 539 settings, including general non-stationary reinforcement learning. We believe that deepening the
 540 study of piecewise stationarity may be the key to tackling these broader challenges and DAL can
 541 serve as a solid foundation towards that goal.

Figure 3: Final dynamic regret vs. radius of change δ : Drifting LBs.

540 REFERENCES
541

542 Yasin Abbasi-yadkori, Dávid Pál, and Csaba Szepesvári. Improved Algorithms for Linear Stochas-
543 tic Bandits. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger
544 (eds.), *Advances in Neural Information Processing Systems*, volume 24. Curran Associates, Inc.,
545 2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf.

546 Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. Taming
547 the monster: A fast and simple algorithm for contextual bandits. In Eric P. Xing and Tony Jebara
548 (eds.), *Proceedings of the 31st International Conference on Machine Learning*, volume 32 of
549 *Proceedings of Machine Learning Research*, pp. 1638–1646, Bejing, China, 22–24 Jun 2014.
550 PMLR. URL <https://proceedings.mlr.press/v32/agarwalb14.html>.

551 Shipra Agrawal and Navin Goyal. Thompson Sampling for Contextual Bandits with Linear Pay-
552 offs. In Sanjoy Dasgupta and David McAllester (eds.), *Proceedings of the 30th International
553 Conference on Machine Learning*, volume 28 of *Proceedings of Machine Learning Research*, pp.
554 127–135, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL <https://proceedings.mlr.press/v28/agrawal13.html>.

555 Shipra Agrawal and Randy Jia. Learning in Structured MDPs with Convex Cost Functions: Im-
556 proved Regret Bounds for Inventory Management. In *Proceedings of the 2019 ACM Conference
557 on Economics and Computation*, 2019.

558 Imadou Aouali. Diffusion models meet contextual bandits with large action spaces, 2024. URL
559 <https://arxiv.org/abs/2402.10028>.

560 Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. *Journal of Machine
561 Learning Research*, 3(Nov):397–422, 2002.

562 Peter Auer, Pratik Gajane, and Ronald Ortner. Adaptively Tracking the Best Bandit Arm with
563 an Unknown Number of Distribution Changes. In Alina Beygelzimer and Daniel Hsu (eds.),
564 *Proceedings of the Thirty-Second Conference on Learning Theory*, volume 99 of *Proceedings of
565 Machine Learning Research*, pp. 138–158. PMLR, 25–28 Jun 2019.

566 Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic Multi-Armed-Bandit Problem with
567 Non-stationary Rewards. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q.
568 Weinberger (eds.), *Advances in Neural Information Processing Systems*, volume 27. Curran
569 Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/file/903ce9225fc3e988c2af215d4e544d3-Paper.pdf.

570 Lilian Besson, Emilie Kaufmann, Odalric-Ambrym Maillard, and Julien Seznec. Efficient Change-
571 Point Detection for Tackling Piecewise-Stationary Bandits. *Journal of Machine Learning Re-
572 search*, 23(77):1–40, 2022.

573 Isabelle Boutron, Anna Chaimani, Lina Ghosn, Theodoros Evrenoglou, Gabriel Ferrand, Alexander
574 Jarde, Hillary Bonnet, Carolina Riveros, Ruba Assi, Carolina Graña, Nicholas Henschke, Declan
575 Devane, Jörg J. Meerpolh, Gabriel Rada, Giacomo Grasselli, Asbjørn Hróbjartsson, David Tovey,
576 and Philippe Ravaud. Covid-nma initiative: Living systematic review on covid-19 treatments and
577 vaccines — dataset. Zenodo, March 2025. URL <https://doi.org/10.5281/zenodo.1496587>. Dataset.

578 Han Cai, Kan Ren, Weinan Zhang, Kleanthis Malialis, Jun Wang, Yong Yu, and Defeng Guo. Real-
579 Time Bidding by Reinforcement Learning in Display Advertising. In *Proceedings of the Tenth
580 ACM International Conference on Web Search and Data Mining (WSDM)*, 2017.

581 Yang Cao, Zheng Wen, Branislav Kveton, and Yao Xie. Nearly Optimal Adaptive Procedure
582 with Change Detection for Piecewise-Stationary Bandit. In Kamalika Chaudhuri and Masashi
583 Sugiyama (eds.), *Proceedings of the Twenty-Second International Conference on Artificial Intel-
584 ligence and Statistics*, volume 89 of *Proceedings of Machine Learning Research*, pp. 418–427.
585 PMLR, 16–18 Apr 2019a. URL <https://proceedings.mlr.press/v89/cao19a.html>.

594 Yang Cao, Zheng Wen, Branislav Kveton, and Yao Xie. Nearly Optimal Adaptive Procedure
 595 with Change Detection for Piecewise-Stationary Bandit. In Kamalika Chaudhuri and Masashi
 596 Sugiyama (eds.), *Proceedings of the Twenty-Second International Conference on Artificial Intel-
 597 ligence and Statistics*, volume 89 of *Proceedings of Machine Learning Research*, pp. 418–427.
 598 PMLR, 16–18 Apr 2019b. URL <https://proceedings.mlr.press/v89/cao19a.html>.

600 Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao Xiong, Kai Xu, and Zhenhui.
 601 Toward A Thousand Lights: Decentralized Deep Reinforcement Learning for Large-Scale Traffic
 602 Signal Control. In *AAAI Conference on Artificial Intelligence*, 2020.

603

604 Yifang Chen, Chung-Wei Lee, Haipeng Luo, and Chen-Yu Wei. A new algorithm for non-
 605 stationary contextual bandits: Efficient, optimal and parameter-free. In Alina Beygelzimer and
 606 Daniel Hsu (eds.), *Proceedings of the Thirty-Second Conference on Learning Theory*, volume 99
 607 of *Proceedings of Machine Learning Research*, pp. 696–726. PMLR, 25–28 Jun 2019. URL
 608 <https://proceedings.mlr.press/v99/chen19b.html>.

609 Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Learning to Optimize under Non-
 610 Stationarity. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), *Proceedings of the Twenty-
 611 Second International Conference on Artificial Intelligence and Statistics*, volume 89 of *Pro-
 612 ceedings of Machine Learning Research*, pp. 1079–1087. PMLR, 16–18 Apr 2019. URL
 613 <https://proceedings.mlr.press/v89/cheung19b.html>.

614

615 Sayak Ray Chowdhury and Aditya Gopalan. On Kernelized Multi-armed Bandits. In Doina Precup
 616 and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on Machine Learn-
 617 ing*, volume 70 of *Proceedings of Machine Learning Research*, pp. 844–853. PMLR, 06–11 Aug
 618 2017. URL <https://proceedings.mlr.press/v70/chowdhury17a.html>.

619 Nando De Freitas, Alex J. Smola, and Masrour Zoghi. Exponential regret bounds for Gaussian pro-
 620 cess bandits with deterministic observations. In *Proceedings of the 29th International Conference on
 621 International Conference on Machine Learning*, ICML’12, pp. 955–962, Madison, WI, USA,
 622 2012. Omnipress. ISBN 9781450312851.

623

624 Yuntian Deng, Xingyu Zhou, Baekjin Kim, Ambuj Tewari, Abhishek Gupta, and Ness Shroff.
 625 Weighted Gaussian Process Bandits for Non-stationary Environments . In Gustau Camps-Valls,
 626 Francisco J. R. Ruiz, and Isabel Valera (eds.), *Proceedings of The 25th International Confer-
 627 ence on Artificial Intelligence and Statistics*, volume 151 of *Proceedings of Machine Learning
 628 Research*, pp. 6909–6932. PMLR, 28–30 Mar 2022. URL <https://proceedings.mlr.press/v151/deng22b.html>.

629

630 Eustache Diemert, Julien Meynet, Pierre Galland, and Damien Lefortier. Attribution Modeling
 631 Increases Efficiency of Bidding in Display Advertising. In *Proceedings of the ADKDD’17,
 632 ADKDD’17*, New York, NY, USA, 2017. Association for Computing Machinery. ISBN
 633 9781450351942. doi: 10.1145/3124749.3124752. URL <https://doi.org/10.1145/3124749.3124752>.

634

635 Louis Faury, Marc Abeille, Clement Calauzenes, and Olivier Fercoq. Improved Optimistic Algo-
 636 rithms for Logistic Bandits. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th
 637 International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learn-
 638 ing Research*, pp. 3052–3060. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/faury20a.html>.

639

640 Louis Faury, Yoan Russac, Marc Abeille, and Clément Calauzènes. Regret Bounds for General-
 641 ized Linear Bandits under Parameter Drift, 2021. URL <https://arxiv.org/abs/2103.05750>.

643

644 Louis Faury, Marc Abeille, Kwang-Sung Jun, and Clement Calauzenes. Jointly Efficient and Opt-
 645 imal Algorithms for Logistic Bandits . In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel
 646 Valera (eds.), *Proceedings of The 25th International Conference on Artificial Intelligence and
 647 Statistics*, volume 151 of *Proceedings of Machine Learning Research*, pp. 546–580. PMLR, 28–
 648 30 Mar 2022. URL <https://proceedings.mlr.press/v151/faury22a.html>.

648 Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric Bandits:
 649 The Generalized Linear Case. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and
 650 A. Culotta (eds.), *Advances in Neural Information Processing Systems*, volume 23. Curran
 651 Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper_files/paper/2010/file/c2626d850c80ea07e7511bbae4c76f4b-Paper.pdf.

653 Arthur Flajolet and Patrick Jaillet. Real-Time Bidding with Side Information. In I. Guyon,
 654 U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
 655 *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 656 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/0bed45bd5774ffddc95ffe500024f628-Paper.pdf.

658 Dylan Foster and Alexander Rakhlin. Beyond UCB: Optimal and efficient contextual bandits with
 659 regression oracles. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International
 660 Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp.
 661 3199–3210. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/foster20a.html>.

664 Aurélien Garivier and Eric Moulines. On Upper-Confidence Bound Policies for Switching Bandit
 665 Problems. In Jyrki Kivinen, Csaba Szepesvári, Esko Ukkonen, and Thomas Zeugmann (eds.), *Al-
 666 gorithmic Learning Theory*, pp. 174–188, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
 667 ISBN 978-3-642-24412-4.

668 Argyrios Gerogiannis, Yu-Han Huang, and Venugopal Veeravalli. Is Prior-Free Black-Box Non-
 669 Stationary Reinforcement Learning Feasible? In Yingzhen Li, Stephan Mandt, Shipra Agrawal,
 670 and Emtiyaz Khan (eds.), *Proceedings of The 28th International Conference on Artificial Intel-
 671 ligence and Statistics*, volume 258 of *Proceedings of Machine Learning Research*, pp. 2692–
 672 2700. PMLR, 03–05 May 2025. URL <https://proceedings.mlr.press/v258/gerogiannis25a.html>.

674 Gerasimos Gerogiannis and Josep Torrellas. Micro-armed bandit: Lightweight & reusable rein-
 675 forcement learning for microarchitecture decision-making. In *Proceedings of the 56th Annual
 676 IEEE/ACM International Symposium on Microarchitecture*, MICRO ’23, pp. 698–713, New
 677 York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400703294. doi:
 678 [10.1145/3613424.3623780](https://doi.org/10.1145/3613424.3623780). URL <https://doi.org/10.1145/3613424.3623780>.

680 Kihyuk Hong, Yuhang Li, and Ambuj Tewari. An Optimization-based Algorithm for Non-stationary
 681 Kernel Bandits without Prior Knowledge. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de
 682 Meent (eds.), *Proceedings of The 26th International Conference on Artificial Intelligence and
 683 Statistics*, volume 206 of *Proceedings of Machine Learning Research*, pp. 3048–3085. PMLR,
 684 25–27 Apr 2023. URL <https://proceedings.mlr.press/v206/hong23b.html>.

685 Yu-Han Huang and Venugopal V. Veeravalli. Sequential Change Detection for Learning in Piecewise
 686 Stationary Bandit Environments, 2025. URL <https://arxiv.org/abs/2501.10974>.

687 Yu-Han Huang, Argyrios Gerogiannis, Subhomesh Bose, and Venugopal V. Veeravalli. Change
 688 Detection-Based Procedures for Piecewise Stationary MABs: A Modular Approach, 2025. URL
 689 <https://arxiv.org/abs/2501.01291>.

691 Levente Kocsis and Csaba Szepesvári. Discounted ucb. In *2nd PASCAL Challenges Workshop*,
 692 volume 2, pp. 51–134, 2006.

693 Junpei Komiyama, Edouard Fouché, and Junya Honda. Finite-time Analysis of Globally Nonsta-
 694 tionary Multi-Armed Bandits. *Journal of Machine Learning Research*, 25(112):1–56, 2024. URL
 695 <http://jmlr.org/papers/v25/21-0916.html>.

697 Branislav Kveton, Manzil Zaheer, Csaba Szepesvari, Lihong Li, Mohammad Ghavamzadeh, and
 698 Craig Boutilier. Randomized Exploration in Generalized Linear Bandits. In Silvia Chiappa and
 699 Roberto Calandra (eds.), *Proceedings of the Twenty Third International Conference on Artifi-
 700 cial Intelligence and Statistics*, volume 108 of *Proceedings of Machine Learning Research*, pp.
 701 2066–2076. PMLR, 26–28 Aug 2020. URL <https://proceedings.mlr.press/v108/kveton20a.html>.

702 John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits
 703 with side information. In J. Platt, D. Koller, Y. Singer, and S. Roweis (eds.), *Ad-*
 704 *vances in Neural Information Processing Systems*, volume 20. Curran Associates, Inc.,
 705 2007. URL https://proceedings.neurips.cc/paper_files/paper/2007/file/4b04a686b0ad13dce35fa99fa4161c65-Paper.pdf.

706

707 Tor Lattimore and Csaba Szepesvári. *Bandit Algorithms*. Cambridge University Press, 2020.

708

709 Jungyuhn Lee, Se-Young Yun, and Kwang-Sung Jun. A Unified Confidence Sequence for
 710 Generalized Linear Models, with Applications to Bandits. In A. Globerson, L. Mackey,
 711 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural*
 712 *Information Processing Systems*, volume 37, pp. 124640–124685. Curran Associates, Inc.,
 713 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/e17af5784c442d178744533c16d3c96-Paper-Conference.pdf.

714

715 Damien Lefortier, Pavel Serdyukov, and Maarten de Rijke. Online Exploration for Detecting Shifts
 716 in Fresh Intent. In *Proceedings of the 23rd ACM International Conference on Conference on*
 717 *Information and Knowledge Management*, CIKM ’14, pp. 589–598, New York, NY, USA, 2014.
 718 Association for Computing Machinery. ISBN 9781450325981. doi: 10.1145/2661829.2661947.
 719 URL <https://doi.org/10.1145/2661829.2661947>.

720

721 Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to
 722 personalized news article recommendation. In *Proceedings of the 19th International Conference on*
 723 *World Wide Web*, WWW ’10, pp. 661–670, New York, NY, USA, 2010. Association
 724 for Computing Machinery. ISBN 9781605587998. doi: 10.1145/1772690.1772758. URL
 725 <https://doi.org/10.1145/1772690.1772758>.

726

727 Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline evaluation of contextual-
 728 bandit-based news article recommendation algorithms. In *Proceedings of the Fourth ACM*
 729 *International Conference on Web Search and Data Mining*, WSDM ’11, pp. 297–306, New
 730 York, NY, USA, 2011. Association for Computing Machinery. ISBN 9781450304931. doi:
 10.1145/1935826.1935878. URL <https://doi.org/10.1145/1935826.1935878>.

731

732 Lihong Li, Yu Lu, and Dengyong Zhou. Provably Optimal Algorithms for Generalized Linear Con-
 733 textual Bandits. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International*
 734 *Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp.
 735 2071–2080. PMLR, 06–11 Aug 2017. URL <https://proceedings.mlr.press/v70/li17c.html>.

736

737 Fang Liu, Joohyun Lee, and Ness Shroff. A Change-Detection Based Framework for Piecewise-
 738 Stationary Multi-Armed Bandit Problem. *Proceedings of the AAAI Conference on Artificial Intel-*
 739 *ligence*, 32(1), Apr. 2018. doi: 10.1609/aaai.v32i1.11746. URL <https://ojs.aaai.org/index.php/AAAI/article/view/11746>.

740

741 Junwei Lu, Chaoqi Yang, Xiaofeng Gao, Liubin Wang, Changcheng Li, and Guihai Chen. Rein-
 742 forcement Learning with Sequential Information Clustering in Real-Time Bidding. In *Proceed-*
 743 *ings of the 28th ACM International Conference on Information and Knowledge Management*,
 744 2019.

745

746 Haipeng Luo, Chen-Yu Wei, Alekh Agarwal, and John Langford. Efficient contextual bandits in
 747 non-stationary worlds. In Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet (eds.), *Pro-*
 748 *ceedings of the 31st Conference On Learning Theory*, volume 75 of *Proceedings of Machine*
 749 *Learning Research*, pp. 1739–1776. PMLR, 06–09 Jul 2018. URL <https://proceedings.mlr.press/v75/luo18a.html>.

750

751 Binghui Peng and Christos Papadimitriou. The complexity of non-stationary reinforcement learning.
 752 In Claire Vernade and Daniel Hsu (eds.), *Proceedings of The 35th International Conference on*
 753 *Algorithmic Learning Theory*, volume 237 of *Proceedings of Machine Learning Research*, pp.
 754 972–996. PMLR, 25–28 Feb 2024.

755

Herbert Robbins. Some aspects of the sequential design of experiments. *Bulletin of the American*
Mathematical Society, 58(5):527 – 535, 1952.

756 Yoan Russac, Claire Vernade, and Olivier Cappé. Weighted Linear Bandits for Non-Stationary
 757 Environments. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
 758 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran
 759 Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/263fc48aae39f219b4c71d9d4bb4aed2-Paper.pdf.

760
 761 Yoan Russac, Olivier Cappé, and Aurélien Garivier. Algorithms for Non-Stationary Generalized
 762 Linear Bandits, 2020. URL <https://arxiv.org/abs/2003.10113>.

763
 764 Yoan Russac, Louis Faury, Olivier Cappé, and Aurélien Garivier. Self-Concordant Analysis of
 765 Generalized Linear Bandits with Forgetting . In Arindam Banerjee and Kenji Fukumizu (eds.),
 766 *Proceedings of The 24th International Conference on Artificial Intelligence and Statistics*, volume
 767 130 of *Proceedings of Machine Learning Research*, pp. 658–666. PMLR, 13–15 Apr 2021. URL
 768 <https://proceedings.mlr.press/v130/russac21a.html>.

769
 770 Yuta Saito, Shunsuke Aihara, Megumi Matsutani, and Yusuke Narita. Open Bandit Dataset and
 771 Pipeline: Towards Realistic and Reproducible Off-Policy Evaluation. In *Thirty-fifth Conference
 772 on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021.
 773 URL https://openreview.net/forum?id=tyn3MYS_uDT.

774 Sudeep Salgia, Sattar Vakili, and Qing Zhao. Random Exploration in Bayesian Optimization:
 775 Order-Optimal Regret and Computational Efficiency. In Ruslan Salakhutdinov, Zico Kolter,
 776 Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.),
 777 *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Pro-
 778 ceedings of Machine Learning Research*, pp. 43112–43141. PMLR, 21–27 Jul 2024. URL
 779 <https://proceedings.mlr.press/v235/salgia24a.html>.

780
 781 Eric M Schwartz, Eric T Bradlow, and Peter S Fader. Customer acquisition via display advertising
 782 using multi-armed bandit experiments. *Marketing Science*, 36(4):500–522, 2017.

783
 784 Girgin Sertan, Mary Jérémie, Preux Philippe, and Nicol Olivier. Managing advertising cam-
 785 paigns—an approximate planning approach. *Frontiers of Computer Science*, 6(2):209, 2012.
 786 doi: 10.1007/s11704-012-2873-5. URL https://journal.hep.com.cn/fcs/EN/abstract/article_3688.shtml.

787
 788 Julien Seznec, Pierre Menard, Alessandro Lazaric, and Michal Valko. A single algorithm for both
 789 restless and rested rotting bandits. In Silvia Chiappa and Roberto Calandra (eds.), *Proceedings of
 790 the Twenty Third International Conference on Artificial Intelligence and Statistics*, volume 108 of
 791 *Proceedings of Machine Learning Research*, pp. 3784–3794. PMLR, 26–28 Aug 2020.

792
 793 Suho Shin, Chenghao Yang, Haifeng Xu, and MohammadTaghi Hajiaghayi. Tokenized bandit for
 794 LLM decoding and alignment. In *Forty-second International Conference on Machine Learning*,
 795 2025. URL <https://openreview.net/forum?id=TFXXarWZzv>.

796 Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimiza-
 797 tion in the bandit setting: no regret and experimental design. In *Proceedings of the 27th Interna-
 798 tional Conference on International Conference on Machine Learning*, ICML'10, pp. 1015–1022,
 799 Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

800
 801 Mahmoud Tajik, Babak Mohamadpour Tosarkani, Ahmad Makui, and Rouzbeh Ghousi. A novel
 802 two-stage dynamic pricing model for logistics planning using an exploration–exploitation frame-
 803 work: A multi-armed bandit problem. *Expert Systems with Applications*, 246:123060, 2024.
 804 ISSN 0957-4174. doi: <https://doi.org/10.1016/j.eswa.2023.123060>. URL <https://www.sciencedirect.com/science/article/pii/S0957417423035625>.

805
 806 Yogatheesan Varatharajah and Brent Berry. A contextual-bandit-based approach for informed
 807 decision-making in clinical trials. *Life*, 12(8):1277, 2022.

808
 809 V. V. Veeravalli and T. Banerjee. Quickest Change Detection. In *Academic press library in signal
 processing: Array and statistical signal processing*. Academic Press, Cambridge, MA, 2013.

810 Jing Wang, Peng Zhao, and Zhi-Hua Zhou. Revisiting Weighted Strategy for Non-stationary Para-
 811 metric Bandits. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent (eds.), *Proceed-
 812 ings of The 26th International Conference on Artificial Intelligence and Statistics*, volume 206
 813 of *Proceedings of Machine Learning Research*, pp. 7913–7942. PMLR, 25–27 Apr 2023. URL
 814 <https://proceedings.mlr.press/v206/wang23k.html>.

815 Chen-Yu Wei and Haipeng Luo. Non-stationary Reinforcement Learning without Prior Knowledge:
 816 an Optimal Black-box Approach. In Mikhail Belkin and Samory Kpotufe (eds.), *Proceedings of
 817 Thirty Fourth Conference on Learning Theory*, volume 134 of *Proceedings of Machine Learning
 818 Research*, pp. 4300–4354. PMLR, 15–19 Aug 2021. URL <https://proceedings.mlr.press/v134/wei21b.html>.

819 Michael Woodroffe. A one-armed bandit problem with a concomitant variable. *Journal of
 820 the American Statistical Association*, 74(368):799–806, 1979. doi: 10.1080/01621459.1979.
 821 10481033. URL [https://www.tandfonline.com/doi/abs/10.1080/01621459.
 822 1979.10481033](https://www.tandfonline.com/doi/abs/10.1080/01621459.1979.10481033).

823 Liyan Xie, Shaofeng Zou, Yao Xie, and Venugopal V. Veeravalli. Sequential (Quickest) Change
 824 Detection: Classical Results and New Directions. *IEEE Journal on Selected Areas in Information
 825 Theory*, 2(2):494–514, 2021. doi: 10.1109/JSAIT.2021.3072962.

826 Yu Zhang, Shanshan Zhao, Bokui Wan, Jinjuan Wang, and Xiaodong Yan. Strategic a/b testing
 827 via maximum probability-driven two-armed bandit. In *Forty-second International Conference on
 828 Machine Learning*, 2025. URL <https://openreview.net/forum?id=BwYQ1MTrCR>.

829 Yu-Jie Zhang and Masashi Sugiyama. Online (Multinomial) Logistic Bandit: Improved Regret and
 830 Constant Computation Cost. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
 831 S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 29741–
 832 29782. Curran Associates, Inc., 2023.

833 Peng Zhao, Lijun Zhang, Yuan Jiang, and Zhi-Hua Zhou. A Simple Approach for Non-stationary
 834 Linear Bandits. In Silvia Chiappa and Roberto Calandra (eds.), *Proceedings of the Twenty
 835 Third International Conference on Artificial Intelligence and Statistics*, volume 108 of *Proceed-
 836 ings of Machine Learning Research*, pp. 746–755. PMLR, 26–28 Aug 2020. URL <https://proceedings.mlr.press/v108/zhao20a.html>.

837 Huozhi Zhou, Lingda Wang, Lav Varshney, and Ee-Peng Lim. A Near-Optimal Change-Detection
 838 Based Algorithm for Piecewise-Stationary Combinatorial Semi-Bandits. *Proceedings of the AAAI
 839 Conference on Artificial Intelligence*, 34(04):6933–6940, Apr. 2020. doi: 10.1609/aaai.v34i04.
 840 6176. URL <https://ojs.aaai.org/index.php/AAAI/article/view/6176>.

841 Xingyu Zhou and Ness Shroff. No-Regret Algorithms for Time-Varying Bayesian Optimization. In
 842 *2021 55th Annual Conference on Information Sciences and Systems (CISS)*, pp. 1–6, 2021. doi:
 843 10.1109/CISS50987.2021.9400292.

844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **A EXPERIMENTAL DETAILS**
865866 **A.1 ON FORCED EXPLORATION IN FINITE ACTION SPACES**
867

868 **Covering Set Construction.** In practice, the covering set \mathcal{A}_e is selected according to Propositions 4.2, 4.3, and Remark 4.4 together with the specifications of Corollary 4.9. However, in finite-
869 action settings, the full construction may not be feasible: the action set \mathcal{A} may not contain enough
870 elements to satisfy the required conditions. For instance, in the NS-PB setting, \mathcal{A} may not include
871 d linearly independent actions, while in the NS-KB case, it may lack a full δ_T -covering net for the
872 chosen δ_T in Corollary 4.9. One might expect that when $|\mathcal{A}_e| < d$ in PS-PBs or $|\mathcal{A}_e| < \gamma_T$ in
873 PS-KBs, the inability to detect all possible changes would degrade DAL’s performance. In practice,
874 however, DAL does not need to restart when changes in the reward function leave the mean reward
875 of each action unchanged. Crucially, as discussed in Appendix B.6, DAL retains order-optimality
876 even in these constrained regimes. Accordingly, whenever $|\mathcal{A}| < d$ or $|\mathcal{A}| < \gamma_T$, we simply set
877 $\mathcal{A}_e = \mathcal{A}$. In our experiments, the action set is finite (typically in the hundreds). For PS-PBs, the
878 random generation of actions almost always guarantees d linearly independent vectors. For PS-KBs,
879 since γ_T is typically large, we also use the full action set \mathcal{A} as \mathcal{A}_e without impacting performance.
880 On the other hand, since the regret bounds in PS-CBs include $|\mathcal{A}|$, as it is finite, in any PS-CB setting
881 we can simply set $\mathcal{A}_e = \mathcal{A}$.

882 **Practical Implementations.** For NS-PBs, we construct \mathcal{A}_e by greedily selecting linearly inde-
883 pendent actions until we obtain d such vectors, where d is the dimension of the action space. In the
884 NS-KB setting, \mathcal{A}_e is formed by building a δ_T -cover over the bounded action space and choosing
885 the centers of the covering balls. If the action space is continuous and bounded, these centers suffice
886 to cover the space. If the action space is finite and $N_e < d^{2p}\gamma_T^{2q}$, then the entire set \mathcal{A} serves as
887 the covering set, as established in Corollary 4.9. Otherwise, if $N_e > d^{2p}\gamma_T^{2q}$, we select the $d^{2p}\gamma_T^{2q}$
888 actions closest to the covering-ball centers. Finally, in the NS-CB setting, selecting a smaller \mathcal{A}_e
889 compared to \mathcal{A} does not affect regret, but improves practical performance due to less forced ex-
890 ploration. Thus, depending on the reward function and action set structures, it is recommended to
891 decrease the cardinality of \mathcal{A}_e as much as possible.

892 **Sensitivity of \mathcal{A}_e** As shown in Algorithm 1, DAL’s forced exploration depends on N_e , the car-
893 dinality of \mathcal{A}_e . Intuitively, a larger N_e increases the exploration burden, since DAL must select more
894 actions to detect changes. In all cases, DAL limits the cardinality of \mathcal{A}_e to the minimum number
895 of actions needed to characterize the reward function for detection and learning. These cardinalities
896 match the quantities appearing in the minimax stationary regret bounds (e.g., d for PBs, γ_T for KBs,
897 and $|\mathcal{A}|$ for CBs). This principle guided our design of the covering-set selection procedures.

- 900 **• NS-PBs.** In the NS-PB setting, Proposition 4.2 shows that the cardinality of a suitable
901 covering set is at most d . Thus, even if the underlying action space is infinite, DAL only
902 needs to explore at most d actions in \mathcal{A}_e . In this sense, DAL is not sensitive to the size
903 of the continuous action space: it pays only a d -dependent cost. If there are multiple
904 choices of d linearly independent actions, the practical performance depends on the induced
905 change magnitude Δ_c (as discussed in Section 4.1). For a fixed non-stationarity model,
906 some choices of d actions may yield larger Δ_c , improving pre- and post-change sample
907 complexity. However, our regret analysis accounts for the worst case over Δ_c , so, at the
908 theoretical level, DAL is not sensitive to which particular d actions are chosen.
- 909 **• NS-KBs.** In the NS-KB setting, the sensitivity of DAL is governed by the smoothness of
910 the RKHS. If the Lipschitz constant BL_u is small, the RKHS contains smooth functions,
911 so we can use a relatively large δ_T , leading to a smaller covering set \mathcal{A}_e (and thus a smaller
912 N_e). If the RKHS contains less smooth functions (larger BL_u), we require a smaller δ_T to
913 detect changes reliably, which increases N_e . Nevertheless, to attain order-optimality DAL
914 only needs to explore at most γ_T actions, which is finite and significantly smaller than
915 the (possibly infinite) original action space. As in NS-PBs, DAL is more sensitive to the
916 underlying function class (smoothness) than to the raw size of the continuous action space.
- 917 **• NS-CBs.** In the NS-CB case, the action set is finite, and one must fully explore all actions
918 in order to characterize changes in the reward function, since the rewards can be completely
919 uninformative about structural properties beyond their realized values.

918 **Experimental Choices.** In our experiments, for NS-PBs the action set is sampled from a multi-
 919 variate Gaussian distribution, which ensures the existence of d linearly independent actions. Thus,
 920 we always set $N_e = d$ using the greedy selection procedure described above. For NS-KBs, the
 921 regret bound for N_e obtained from Theorem 4.8 and Corollary 4.9 is extremely large for our horizons,
 922 implying that $|\mathcal{A}| < \gamma_T$. Consequently, in all NS-KB experiments we simply take $\mathcal{A}_e = \mathcal{A}$ and set
 923 N_e equal to the number of available actions, which yielded optimal performance. Finally, since the
 924 reward does not exhibit any structure with the arms in PS-CBs, we simply set $\mathcal{A} = \mathcal{A}_e$.
 925

926 A.2 REAL-WORLD DATA PREPROCESSING

927 **Microarchitecture Prefetcher Selection Benchmark.** We introduce a non-stationary bandit
 928 dataset derived from the MICRO’23 study of Gerogiannis & Torrellas (2023), built on the
 929 SPEC06/17 benchmark suites. Each action corresponds to one of 11 L2 prefetcher configurations
 930 (next-line on/off, stream degree, stride degree). The sequence spans $T=26224$ rounds; at round
 931 t , the reward is the trace-level normalized instructions-per-cycle in $[0, 1]$, computed from perfor-
 932 mance counters. We obtained the data directly from the original authors, and note that reproducing
 933 the exact series from scratch is not feasible without the same stack, microarchitectural parameters,
 934 and arm schedules described in the paper. We aim to release the dataset to facilitate real-world
 935 experimentation by the bandit research community.
 936

937
 938 Figure 4: IPC of the prefetchers of the dataset over time.
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952

953 **Stock Market Data Construction.** Regarding the stock market experiments we follow the pro-
 954 cedure of Deng et al. (2022). For the first experiment, we use the data provided in Deng et al. (2022).
 955 For the other experiment, we collect daily closing prices of NASDAQ-100 companies using the Ya-
 956 hoo Finance API.⁶ We filter out stocks with fewer than $T = 2000$ trading days and align all time
 957 series over the most recent T dates. From this pool, we remove stocks with extremely high volatil-
 958 ity or mean price to make the problem non-trivial, then select the top K most volatile stocks from
 959 the remainder. In both cases, the stock prices are scaled accordingly to lie in $[0, 1]$. Each selected
 960 company’s scaled closing price series defines the mean-reward sequence for one arm in a K -armed
 961 bandit problem. Finally, we corrupt the reward at each time step with $\mathcal{N}(0, 0.01)$ noise.
 962

963 **COVID-NMA Clinical Dataset Construction.** For the clinical benchmark based on the public
 964 COVID-NMA pharmacological RCT database (Boutron et al., 2025),⁷ we use only released arm-
 965 level counts and metadata and discretize time into calendar months, assigning each trial arm to

966 ⁶Data retrieved from Yahoo Finance using the publicly available `yfinance` package. Used solely for
 967 non-commercial, academic research purposes.
 968

969 ⁷Data available at: <https://doi.org/10.5281/zenodo.14965887>

Figure 5: Daily closing prices from the dataset of Deng et al. (2022).

Figure 6: Daily closing prices obtained from Yahoo Finance.

its `Start_date` (falling back to `Pub_date_online`); rows with invalid or missing dates are discarded. We deterministically map case-insensitive rules on treatment type into 13 actions: *Antivirals (any)*, *Anti-inflammatory (steroids/NSAIDs)*, *Interleukin inhibitors*, *Monoclonal antibodies (other)*, *Immunoglobulins/Plasma*, *Antithrombotics*, *Antimicrobials*, *Immunomodulators (non-steroid)*, *Kinase inhibitors*, *Metabolic agents*, *Supportive care*, *Control/Standard care*, and *Other/Unknown*. At the bucket-month level we compute two endpoints: (i) *Clinical Improvement @ D28* (successes = number improved; trials = reported denominator, or baseline N if missing) and (ii) *Survival @ D28* derived from mortality (successes = denominator - deaths). To form a long non-stationary sequence, we adopt a union construction: for each $(k, t, \text{endpoint})$ bin we emit exactly $s_{k,t}$ ones and $n_{k,t} - s_{k,t}$ zeros and concatenate all bins in a fixed order (month, `clinD28`, `mortD28`, bucket). The sequence is fully deterministic; in our run it comprises $T \approx 7.4 \times 10^4$ rounds with 13 actions.

Figure 7: Raw rewards for COVID-NMA Clinical dataset (Boutron et al., 2025).

1042 **Yahoo! R6A Dataset Construction.** For the NS bandit benchmark based on the Yahoo! R6A
1043 click log dataset⁸, we follow the main procedure provided in Cao et al. (2019a); Zhou et al. (2020).
1044 We merge ten consecutive days of logs and we group the data by article ID and compute smoothed
1045 click-through rates (CTRs) using centered rolling averages over a 100-round window. This generates
1046 a time series of empirical CTRs for each article. We segment the dataset into ten distinct subperiods
1047 (each spanning half a day), filtering out actions with missing data or high noise. We further select
1048 a set of common actions present in all segments to ensure consistent tracking. We average CTRs
1049 within each subperiod and smoothing small deviations below a threshold 0.005. We stack selected
1050 actions across multiple days into a single $K \times T$ matrix, where K is the number of valid actions and
1051 T the compressed time horizon. To reduce spurious noise and compress the time scale, we apply
1052 local smoothing. Finally, we apply post-processing filters to remove (i) globally high-value actions
1053 (outliers with inflated CTRs), and (ii) actions that persist as best for too many segments.

1054
1055
1056

Figure 8: Mean rewards for the Yahoo! R6A dataset.

⁸Yahoo! Front Page Today Module User Click Log Dataset: <https://webscope.sandbox.yahoo.com>.

1080
 1081 **Yahoo! R6B Dataset Construction.** We follow a two-stage pipeline tailored to the Yahoo! R6B
 1082 logs.⁸ *Stage 1 (action vocabulary):* we scan the logs to count displays and clicks per article and
 1083 select the top items using the click-through rate with a minimum display threshold of 2, yielding a
 1084 fixed action set with mapping $id \mapsto k \in \{0, \dots, K-1\}$ with $K = 51$, chosen on the same window as
 1085 the evaluation files. *Stage 2 (replay log):* we reprocess the files and, for each round t , form a feature
 1086 vector \mathbf{x}_t from the given features, restrict the candidate set to the Top- K vocabulary to obtain \mathcal{A}_t ,
 1087 locate the displayed item’s index $j_t^* \in \{0, \dots, |\mathcal{A}_t| - 1\}$, and record the binary click $X_t \in \{0, 1\}$;
 1088 we drop rounds where the displayed item lies outside Top- K or $|\mathcal{A}_t| < 2$. To increase coverage at a
 1089 fixed horizon $T = 50000$, days are merged in a round-robin fashion before truncation. The resulting
 1090 dataset stores $\{\mathbf{x}_t, \mathcal{A}_t, j_t^*, r_t, t_t\}_{t=1}^T$. For offline *replay* evaluation, a policy π observes $(\mathbf{x}_t, \mathcal{A}_t)$ and
 1091 proposes $A_t \in \{0, \dots, |\mathcal{A}_t| - 1\}$; we credit the outcome only when $a_t = j_t^*$, and report cumulative
 1092 reward $C_T = \sum_{t=1}^T \mathbb{1}\{a_t = j_t^*\} r_t$.
 1093

Figure 9: Rewards for the Yahoo! R6B dataset.

1104
 1105 **Sensor Correlation Data Construction.** We use the Bioliq dataset from Komiyama et al. (2024),
 1106 comprising a week of readings from 20 power plant sensors. Following their setup, we construct an
 1107 NS-SCB environment with 190 actions: the reward is 1 if the last 1000 measurements exceed 2.04,
 1108 and 0 otherwise. Evaluation is based on cumulative reward. Data available at <https://github.com/edouardfouche/G-NS-MAB/tree/master/data>.
 1109
 1110
 1111
 1112

Figure 10: Raw rewards obtained from the Bioliq dataset (Komiyama et al., 2024).

1126
 1127 **Ad Recommendation Data Construction.** We evaluate on the Zozo environment, a real-world
 1128 ad recommender system from Saito et al. (2021), using the preprocessed dataset of Komiyama et al.
 1129 (2024). We construct an NS-GLB environment with all 80 ads (unlike their 10-action setup), as-
 1130 signing reward 1 to any ad clicked within one second, and 0 otherwise. Evaluation is based on cu-
 1131 mulative reward. Data available at [https://github.com/edouardfouche/G-NS-MAB/](https://github.com/edouardfouche/G-NS-MAB/tree/master/data)
 1132 tree/master/data.
 1133

Figure 11: Raw rewards obtained from the Zozo dataset (Komiyama et al., 2024).

Live Traffic Data Construction. We construct a NS bandit environment based on the Criteo live traffic dataset (Diemert et al., 2017), following the preprocessing approach of Russac et al. (2019) but modeling the problem as an NS-GLB rather than an NS-LB. Specifically, the dataset includes banners shown to users, associated contextual variables, and whether each banner was clicked. We retain the categorical variables `cat1` through `cat9`, along with `campaign`, which uniquely identifies each campaign. These categorical features are one-hot encoded, and a dimensionality reduction via Singular Value Decomposition selects 50 resulting features. The parameter vector θ^* is estimated using logistic regression. Rewards are then generated from this regression model with added Gaussian noise of variance $\sigma^2 = 0.01$. Unlike Russac et al. (2019), in which the authors employ a single change, we introduce shifts in θ^* via a geometric change-point model with parameter $\xi = 0.8$, changing 60% of the θ^* coordinates at each time-step to $-\theta^*$ and extend the horizon to $T = 50000$.

A.3 HARDWARE SPECIFICATIONS

All experiments were employed on a desktop using an Intel(R) Xeon(R) W-2245 processor with 32 GB RAM. Each experiment had a total runtime below one hour.

B THEORETICAL RESULTS

B.1 GENERAL FORMULATIONS OF GLR AND GSR

For completeness we provide the general mathematical forms of the Generalized Likelihood Ratio (GLR) and the Generalized Shiryaev-Robers (GSR) tests. Specifically, the GLR test declares a change at time-step τ , such that,

$$\tau := \inf \{n \in \mathbb{N} : G_n \geq \beta(n, \delta_F)\}$$

where the GLR statistic G_n is

$$G_n := \sup_{t \in [n]} \log \left(\frac{\sup_{\theta_0 \in \mathbb{R}} \sup_{\theta_1 \in \mathbb{R}} \prod_{i=1}^t f_{\theta_0}(X_i) \prod_{i=t+1}^n f_{\theta_1}(X_i)}{\sup_{\theta \in \mathbb{R}} \prod_{i=1}^n f_{\theta}(X_i)} \right),$$

while the GSR test declares a change at,

$$\tau := \inf \{n \in \mathbb{N} : \log W_n \geq \beta(n, \delta_F) + \log n\}$$

and the GSR statistic W_n is given by

$$W_n := \frac{1}{n} \sum_{t=1}^n \left(\frac{\sup_{\theta_0 \in \mathbb{R}} \sup_{\theta_1 \in \mathbb{R}} \prod_{i=1}^t f_{\theta_0}(X_i) \prod_{i=t+1}^n f_{\theta_1}(X_i)}{\sup_{\theta \in \mathbb{R}} \prod_{i=1}^n f_{\theta}(X_i)} \right).$$

For both cases, f_{θ} can be the density of a Gaussian random variable with mean $\theta\sigma^2$ and variance σ^2 or the density of a Bernoulli random variable with the same mean. Finally, in the general case, we

1188 have that for any false alarm probability $\delta_F \in (0, 1)$, the threshold is given by
 1189

$$1190 \quad \beta(n, \delta_F) = 6 \log(1 + \log(n)) + \frac{5}{2} \log\left(\frac{4n^{3/2}}{\delta_F}\right) + 11.$$

1192 Finally, for the practical implementation of the GLR and GSR in Algorithms 2 and 3, as per Besson
 1193 et al. (2022); Huang et al. (2025) we have that, for any $n \in \mathbb{N}$ and any $t \in \{1, \dots, n\}$:

$$1194 \quad \log\left(\frac{\sup_{\theta_0 \in \mathbb{R}} \prod_{i=1}^t f_{\theta_0}(X_i) \sup_{\theta_1 \in \mathbb{R}} \prod_{i=t+1}^n f_{\theta_1}(X_i)}{\sup_{\theta \in \mathbb{R}} \prod_{i=1}^n f_{\theta}(X_i)}\right) \\ 1195 \\ 1196 \\ 1197 \quad = t \text{kl}(\hat{\mu}_{1:t}; \hat{\mu}_{1:n}) + (n - t) \text{kl}(\hat{\mu}_{t+1:n}; \hat{\mu}_{1:n})$$

1198 where $\hat{\mu}_{t_1:t_2}$ denotes the empirical mean of the reward samples from sample X_{t_1} to sample X_{t_2} with
 1199 $t_1 < t_2$ and $\text{kl}(x; y)$ is KL-divergence between two Gaussian or Bernoulli distributions, depending
 1200 on the rewards.

1202 B.2 REGRET BOUNDS OF DAL IN PIECEWISE STATIONARY ENVIRONMENTS

1204 As discussed in Section 4.2 of the paper, using Corollary 4.9, we can select different algorithms
 1205 as input for DAL to attain or improve the state-of-the-art regret bounds in PS environments. Com-
 1206 bining DAL with different bandit algorithms leads to the results in Table 1. It is evident that DAL
 1207 matches the state-of-the-art regret bounds in PS-LBs, PS-GLBs and PS-CBs, and DAL improves
 1208 the best known bounds in the PS-SCB and PS-KB settings. Note that for PS-SCBs, the strongest
 1209 result corresponds to the prior-based WeightUCB Wang et al. (2023). As demonstrated in the final
 1210 columns of the table, the order-wise dependence on problem parameters from the stationary setting
 1211 seamlessly transfers to the PS setting without degradation.

1212 Table 1: Regret bound comparison of algorithms for PS bandits, under the Assumption 4.6. “ \dagger ”
 1213 denotes settings with finite number of actions, while MASTER, ADA-OPKB and SCB-WeightUCB
 1214 also recover the appropriate bounds in this setting. “ \bullet ” indicates prior-based algorithms.

1216 1217 PS Setting	1218 Non-Stationary Algorithm	1219 NS Algorithm Regret	
		1220 Bound in $\tilde{\mathcal{O}}(\cdot)$	1221 DAL Input Regret
1222 PS-LB	MASTER (Wei & Luo, 2021) + LinUCB	$d\sqrt{NT}$	-
	ADA-OPKB (Hong et al., 2023)	$d\sqrt{NT}$	-
	DAL (ours) + LinUCB (Abbasi-yadkori et al., 2011)	$d\sqrt{NT}$	$d\sqrt{T}$
	DAL (ours) + LinTS (Agrawal & Goyal, 2013)	$d^{3/2}\sqrt{NT}$	$d^{3/2}\sqrt{T}$
1223 PS-GLB	DAL (ours) + PEGE † (Lattimore & Szepesvári, 2020)	\sqrt{dNT}	\sqrt{dT}
	MASTER (Wei & Luo, 2021) + GLM-UCB	$d\sqrt{NT}$	-
	DAL (ours) + GLM-UCB (Filippi et al., 2010)	$d\sqrt{NT}$	$d\sqrt{T}$
	DAL (ours) + GLM-TSL (Kveton et al., 2020)	$d^{3/2}\sqrt{NT}$	$d^{3/2}\sqrt{T}$
1226 PS-SCB	DAL (ours) + SupCB-GLM † (Li et al., 2017)	\sqrt{dNT}	\sqrt{dT}
	MASTER (Wei & Luo, 2021) + GLPUCB	$d^{2/3}T^{2/3}N_T^{1/3}$	-
	DAL (ours) + OFU-ECOLog (Faury et al., 2022)	$d\sqrt{NT}$	$d\sqrt{T}$
	DAL (ours) + OFUL-MLLogB (Zhang & Sugiyama, 2023)	$d\sqrt{NT}$	$d\sqrt{T}$
1229 PS-KB	DAL (ours) + OFUGLB (Lee et al., 2024)	$d\sqrt{NT}$	$d\sqrt{T}$
	MASTER (Wei & Luo, 2021) + GPUUCB	$\gamma_T\sqrt{NT}$	-
	ADA-OPKB (Hong et al., 2023)	$\sqrt{d\gamma_T NT}$	-
	DAL (ours) + GPUUCB (Chowdhury & Gopalan, 2017)	$\gamma_T\sqrt{NT}$	$\gamma_T\sqrt{T}$
1233 PS-CB	DAL (ours) + REDS (Salgia et al., 2024)	$\sqrt{\gamma_T NT}$	$\sqrt{\gamma_T T}$
	MASTER (Wei & Luo, 2021) + ILTCB	$\sqrt{ \mathcal{A} NT \log \Pi }$	-
	ADA-ILTCB+ (Chen et al., 2019)	$\sqrt{ \mathcal{A} NT \log \Pi }$	-
	DAL (ours) + ILTCB (Agarwal et al., 2014)	$\sqrt{ \mathcal{A} NT \log \Pi }$	$\sqrt{ \mathcal{A} T \log \Pi }$
1236 1237	DAL (ours) + SquareCB (Foster & Rakhlin, 2020)	$\sqrt{ \mathcal{A} NT \log \Pi }$	$\sqrt{ \mathcal{A} T \log \Pi }$

1238 B.3 PROOF OF PROPOSITION 4.2

1240 In the NS-PB setting, the reward at time t is given by $f_t(a) = \mu(\langle \theta_t, a \rangle)$ for all $a \in \mathcal{A}$, where μ is
 1241 injective and $\theta_t \in \mathbb{R}^d$. To detect any changes in θ_t , it suffices to detect changes in the values $\langle \theta_t, a \rangle$
 for a suitable set of actions.

1242 Since μ is injective, each observation $y_{t,i} = \mu(\langle \theta_t, a_i \rangle)$ can be inverted to recover the inner product:
 1243

$$\langle \theta_t, a_i \rangle = \mu^{-1}(y_{t,i}).$$

1244 Hence, observing $y_{t,i}$ is equivalent to observing $\langle \theta_t, a_i \rangle$.
 1245

1246 Suppose that $\mathcal{A}_e \subseteq \mathcal{A}$ is the maximal linearly independent subset of \mathcal{A} . Then, the vector θ_t is
 1247 uniquely determined by the inner products $\langle \theta_t, a \rangle$ for $a \in \mathcal{A}_e$. Therefore, any change in θ_t results
 1248 in a detectable change in the vector of observations $(y_{t,i})_{a_i \in \mathcal{A}_e}$, meaning that \mathcal{A}_e can be taken to be
 1249 any maximal linearly independent subset of \mathcal{A} , with $|\mathcal{A}_e| \leq d$.
 1250

1251 B.4 PROOF OF PROPOSITION 4.3

1252 In this subsection, we establish the construction of \mathcal{A}_e in the NS-KB setting. According to Lemma 5
 1253 from De Freitas et al. (2012), we have that every $f \in H_k$ with $\|f\|_{H_k} \leq B$ is Lipschitz continuous,
 1254 satisfying the following,
 1255

$$1257 |f(x) - f(y)| \leq B L_u \|x - y\|_2, \forall x, y \in \mathcal{A}, \quad \text{where } L_u := \sup_{z \in \mathcal{D}} \max_{i,j \leq d} \left[\frac{\partial^2 k(p, q)}{\partial p_i \partial q_j} \right]_{p=q=z}^{1/2}.$$

1258 Recall that \mathcal{V}_T corresponds to the set of centers of the balls of an arbitrary δ_T -cover of $\mathcal{A} \subseteq [0, R]^d$,
 1259 with $\delta_T = L_T/(2BL_u)$ for some arbitrary $L_T > 0$. Let $[a]_e$ denote the action in \mathcal{V}_T that is the
 1260 closest to $a \in \mathcal{A}$, i.e., $[a]_e = \operatorname{argmin}_{x \in \mathcal{P}_T} \|a - x\|_2$. Then, we can leverage the Lipschitz property
 1261 of functions in the RKHS to obtain the following upper bound: For any $a \in \mathcal{A}$ and $f \in H_k$ with
 1262 $\|f\|_{H_k} \leq B$,
 1263

$$1264 |f(a) - f([a]_e)| \stackrel{(a)}{\leq} BL_u \|a - [a]_e\|_2 \stackrel{(b)}{\leq} BL_u \delta_T. \quad (1)$$

1265 Step (a) follows from the Lipschitz property in Lemma 5 of De Freitas et al. (2012), and step (b)
 1266 results from the definition of a δ_T -cover. Then, for any arbitrary functions f and f' in H_k with
 1267 $\|f\|_{H_k}, \|f'\|_{H_k} \leq B$ and action $\tilde{a} \in \mathcal{A}$, we have
 1268

$$1269 |f([\tilde{a}]_e) - f'([\tilde{a}]_e)| \geq |f(\tilde{a}) - f'(\tilde{a})| - |f(\tilde{a}) - f([\tilde{a}]_e)| - |f'(\tilde{a}) - f'([\tilde{a}]_e)| \\ 1270 \stackrel{(a)}{\geq} |f(\tilde{a}) - f'(\tilde{a})| - 2BL_u \delta_T = |f(\tilde{a}) - f'(\tilde{a})| - L_T \stackrel{(b)}{>} 0$$

1271 where step (a) is due to equation 1, and step (b) is due to the assumption in Proposition 4.3. This
 1272 indicates that the value of the reward function at $[\tilde{a}]_e$ must change by a non-zero amount. Thus, one
 1273 can use observations from action $[\tilde{a}]_e$ in order to deduce whether the reward function has changed
 1274 its value in action \tilde{a} . In addition, by the upper bound on the covering number, the cardinality of \mathcal{V}_T
 1275 is upper bounded by $\lceil \sqrt{d}R/2\delta_T \rceil^d = \lceil \sqrt{d}BL_uR/L_T \rceil^d$.
 1276

1277 B.5 PROOF OF THEOREM 4.8

1278 For PS-PBs and PS-KBs, the proof of Theorem 4.8 follows exactly the same as those of Theorem
 1279 1 and Corollary 1 in Huang et al. (2025), with the number of arms replaced by N_e , due to the
 1280 different number of actions in the covering set. For completeness, we provide a proof sketch of
 1281 Theorem 4.8: First, we partition the regret into two cases. If no false alarm occurs and all changes
 1282 are detected within a short delay, we can separate the regret into three components: the regret due to
 1283 forced exploration, the regret during the short detection (restart) delay after changes, and the regret
 1284 incurred by the stationary bandit algorithm after the change is detected. If not, we use a crude linear
 1285 bound to bound the regret and show that the probability of false alarm and that of late detection are
 1286 low, which ensures that the regret due to detection failure is small.
 1287

1288 For PS-CBs, the proof of Theorem 4.8 the definition of successful detection events should be modi-
 1289 fied as follows:
 1290

1291 Consider a PS-CB environment satisfying the change-point separation condition in Theorem 4.8,
 1292 and recall that \mathcal{D} is the change detector of DAL. Let τ_k be the k^{th} detection point for $k \in \mathbb{N}$, i.e.,
 1293

$$1294 \tau_k := \inf \{t > \tau_{k-1} : \mathcal{D}(H_{c,a}) = \text{Detection at time-step } t \text{ for some } (c, a) \in \mathcal{C} \times \mathcal{A}_e\}, \quad (2)$$

1296 where $\tau_0 = 0$. Recall that $\nu_0 := 1$ and $\nu_{N_T+1} := T + 1$. We define the following events:
1297

$$1298 \quad \mathcal{G}_k := \{\forall l \in [k-1], \tau_l \in \{\nu_l, \dots, \nu_l + \ell_l - 1\} \} \cap \{\tau_k > \nu_k\}, k \in [N_T]. \quad (3)$$

1299 The event \mathcal{G}_k represents the “good event” up to the k^{th} detection point \mathcal{G}_k in which the first k changes
1300 are detected within the latency. For notational convenience, we define \mathcal{G}_0 to be the universal space.
1301 Then, we have the following:
1302

$$\begin{aligned} 1303 \quad R_T &= \mathbb{E} \left[\sum_{k=1}^{N_T+1} \sum_{t=\nu_{k-1}}^{\nu_k-1} \max_{\pi \in \Pi} f_t(C_t, \pi(C_t)) - f_t(C_t, A_t) \right] \\ 1304 \\ 1305 \quad &= \sum_{k=1}^{N_T+1} \mathbb{E} \left[\sum_{t=\nu_{k-1}}^{\nu_k-1} \max_{\pi \in \Pi} f_t(C_t, \pi(C_t)) - f_t(C_t, A_t) \right] \\ 1306 \\ 1307 \quad &= \sum_{k=1}^{N_T+1} \mathbb{P}(\mathcal{G}_k^c) \mathbb{E} \left[\sum_{t=\nu_{k-1}}^{\nu_k-1} \max_{\pi \in \Pi} f_t(C_t, \pi(C_t)) - f_t(C_t, A_t) \middle| \mathcal{G}_k^c \right] \\ 1308 \\ 1309 \quad &\quad + \sum_{k=1}^{N_T+1} \mathbb{E} \left[\mathbb{1}\{\mathcal{G}_k\} \sum_{t=\nu_{k-1}}^{\nu_k-1} \max_{\pi \in \Pi} f_t(C_t, \pi(C_t)) - f_t(C_t, A_t) \right] \\ 1310 \\ 1311 \quad &\stackrel{(a)}{\leq} \sum_{k=1}^{N_T+1} \bar{\Delta} (\nu_k - \nu_{k-1}) \mathbb{P}(\mathcal{G}_k^c) + \sum_{k=1}^{N_T+1} \mathbb{E} \left[\mathbb{1}\{\mathcal{G}_k\} \sum_{t=\nu_{k-1}}^{\nu_k-1} \max_{\pi \in \Pi} f_t(C_t, \pi(C_t)) - f_t(C_t, A_t) \right] \end{aligned} \quad (4)$$

1320 where $\bar{\Delta}$ in step (a) is the maximum gap between the mean rewards of two actions, over all contexts, actions, and time-steps, i.e., $\bar{\Delta} := \max_{c \in \mathcal{C}, a \in \mathcal{A}, t \in [T]} (\max_{\pi \in \Pi} f_t(c, \pi(c)) - f_t(c, a))$. For convenience in the proof of the upper bound on the probability of bad event $\mathbb{P}(\mathcal{G}_k^c)$, define
1321
1322
1323

$$1324 \quad \mathcal{E}_k := \{\forall l \in [k-1], \tau_l \in \{\nu_l, \dots, \nu_l + \ell_l - 1\}, k \in [N_T]\}. \quad (5)$$

1325 $\mathbb{P}(\mathcal{G}_k^c)$ is upper bounded by the following modified union bound, which decomposes the bad event
1326 into false alarm events and late detection events:
1327

$$\begin{aligned} 1328 \quad \mathbb{P}(\mathcal{G}_k^c) &= \mathbb{P}(\{\exists l \in [k-1], \tau_l \notin \{\nu_l, \dots, \nu_l + \ell_l - 1\}\} \cup \{\tau_k \leq \nu_k\}) \\ 1329 \\ 1330 \quad &= \sum_{l=1}^{k-1} \mathbb{P}(\tau_l \notin \{\nu_s, \dots, \nu_l + \ell_l - 1\}, \mathcal{E}_{l-1}) + \mathbb{P}(\tau_k \leq \nu_k, \mathcal{E}_{k-1}) \\ 1331 \\ 1332 \quad &= \sum_{l=1}^{k-1} \mathbb{P}(\mathcal{E}_{l-1}) \mathbb{P}(\tau_l \notin \{\nu_l, \dots, \nu_l + \ell_l - 1\} | \mathcal{E}_{l-1}) + \mathbb{P}(\mathcal{E}_{k-1}) \mathbb{P}(\tau_k \leq \nu_k | \mathcal{E}_{k-1}) \\ 1333 \\ 1334 \quad &\stackrel{(a)}{\leq} \sum_{l=1}^{k-1} \mathbb{P}(\tau_l \notin \{\nu_l, \dots, \nu_l + \ell_l - 1\} | \mathcal{E}_{l-1}) + \mathbb{P}(\tau_k \leq \nu_k | \mathcal{E}_{k-1}) \\ 1335 \\ 1336 \quad &= \sum_{l=1}^k \underbrace{\mathbb{P}(\tau_l < \nu_l | \mathcal{E}_{l-1})}_{\Phi_1} + \sum_{l=1}^{k-1} \underbrace{\mathbb{P}(\tau_l \geq \nu_l + \ell_l | \mathcal{E}_{l-1})}_{\Phi_2} \end{aligned} \quad (6)$$

1342 where (a) is due to the fact that $\mathbb{P}\{\mathcal{E}_{k-1}\} \leq 1$. We then separately bound Φ_1 and Φ_2 .
1343

1344 • **Upper-Bounding Φ_1 :** Recall that $\mathcal{A}_e = \{a^{(i)}, i \in [N_e]\}$ is the covering set, and that $H_{(c, a^{(i)})}$ is
1345 the change detector history list associated with the context-action pair $(c, a^{(i)})$. For any context
1346 $c \in \mathcal{C}$, $i \in [N_e]$, and $u \in \mathbb{N}$, we define $t'_{(c, i), u}$ to be the u^{th} time-step after τ_{l-1} at which $C_t = c$ and
1347 $(t - \tau_{l-1} - 1) \bmod \lceil N_e / \alpha_l \rceil = i - 1$, i.e.,
1348

$$1349 \quad t'_{(c, i), u} := \inf \left\{ t > t'_{(c, i), u-1} : C_t = c, (t - \tau_{l-1} - 1) \bmod \left\lceil \frac{N_e}{\alpha_l} \right\rceil = i - 1 \right\} \quad (7)$$

1350 where $t'_{(c,i),0} = \tau_{l-1}$. Then, we define $n_{c,i}(t)$ to be the number of time-steps between $\tau_{l-1} + 1$ and
 1351 t at which $C_t = c$ and $(t - \tau_{l-1} - 1) \bmod \lceil N_e/\alpha_l \rceil = i - 1$, which is the number of samples
 1352 obtained due to force exploration and added in the history $H_{(c,a^{(i)})}$ if there are no restarts after τ_{l-1} ,
 1353 i.e.,
 1354

$$1355 \quad n_{(c,i)}(t) := \sum_{s=\tau_{l-1}+1}^t \mathbf{1} \left\{ C_t = c, (t - \tau_{l-1} - 1) \bmod \left\lceil \frac{N_e}{\alpha_l} \right\rceil = i - 1 \right\}. \quad (8)$$

1357 We also use $\tau_{(c,i)}$ to denote the stopping time of the change detector associated with arm $a^{(i)} \in \mathcal{A}_e$
 1358 after the $(l-1)^{th}$ detection point τ_{l-1} , i.e.,
 1359

$$1360 \quad \tau_{(c,i)} := \inf \left\{ u \in \mathbb{N} : \mathcal{D}(H_{c,a^{(i)}}) = \text{Detection at time-step } t'_{(c,i),u} \right\}. \quad (9)$$

1361 The stopping time $\tau_{(c,i)}$ operates independently from other stopping times, and does not stop if
 1362 other stopping times get triggered earlier. Let \mathbb{P}_∞ denote the probability measure at which $f_t = f_{\nu_l}$
 1363 for all $t > \nu_l$, i.e., the probability measure under which the CB becomes stationary after the k^{th}
 1364 change-point. Then, for all $l \in [N_T + 1]$, we have

$$\begin{aligned} 1365 \quad \mathbb{P}(\tau_l < \nu_l | \mathcal{E}_{l-1}) &= \mathbb{P}\left(\exists (c, a^{(i)}) \in \mathcal{C} \times \mathcal{A}_e : \tau_{(c,i)} \in [n_{(c,i)}(\nu_l - 1)] | \mathcal{E}_{l-1}\right) \\ 1366 \\ 1367 \quad &\stackrel{(a)}{\leq} \sum_{c \in \mathcal{C}} \sum_{i=1}^{N_e} \mathbb{P}(\tau_{(c,i)} \in [n_{(c,i)}(\nu_l - 1)] | \mathcal{E}_{l-1}) \\ 1368 \\ 1369 \quad &\stackrel{(b)}{\leq} \sum_{c \in \mathcal{C}} \sum_{i=1}^{N_e} \mathbb{P}(\tau_{(c,i)} \leq T | \mathcal{E}_{l-1}) \\ 1370 \\ 1371 \quad &\stackrel{(c)}{\leq} \sum_{c \in \mathcal{C}} \sum_{i=1}^{N_e} \delta_F \\ 1372 \\ 1373 \quad &= |\mathcal{C}| N_e \delta_F \end{aligned} \quad (10)$$

1377 where step (a) results from a union bound. Due to the fact that the rewards between τ_{l-1} and ν_l are
 1378 i.i.d. across time-steps and actions given the past event \mathcal{E}_{l-1} (as there are no changes between τ_{l-1}
 1379 and ν_l), we can change the measure to \mathbb{P}_∞ in step (b). In addition, because $[n_a(\nu_l - 1)] \subseteq [T]$, the
 1380 event $\{\tau_{a,l} \in [n_a(\nu_l - 1)]\} \subseteq \{\tau_{a,l} \leq T\}$. In step (c), since the reward samples $\{X_{t'_{(c,i),u}}\}_{u \geq 1}$ are
 1381 i.i.d. sub-Gaussian for each $(c, i) \in \mathcal{C} \times [N_e]$, we can apply the false alarm probability upper bound
 1382 for the GLR and GSR tests in Huang & Veeravalli (2025) (see Section 4.1).

1383 • **Upper Bounding Φ_2 :** Let (c^*, i^*) be the context-action pair at which the mean reward function
 1384 changes the most at ν_l , i.e.,
 1385

$$1386 \quad (c^*, i^*) = \arg \max_{c \in \mathcal{C}, i \in [N_e]} \left| f_{\nu_l}(c, a^{(i)}) - f_{\nu_{l-1}}(c, a^{(i)}) \right|. \quad (11)$$

1387 We define the events \mathcal{M}_l and \mathcal{L}_l as follows:

$$1389 \quad \mathcal{M}_l := \left\{ \sum_{t=\tau_{l-1}+1}^{\nu_l-1} \mathbf{1} \left\{ C_t = c^*, (t - \tau_{l-1} - 1) \bmod \left\lceil \frac{N_e}{\alpha_l} \right\rceil = i^* - 1 \right\} \geq m_D \right\}, \quad (12)$$

$$1392 \quad \mathcal{L}_l := \left\{ \sum_{t=\nu_l}^{\nu_l+\ell_l-1} \mathbf{1} \left\{ C_t = c^*, (t - \tau_{l-1} - 1) \bmod \left\lceil \frac{N_e}{\alpha_l} \right\rceil = i^* - 1 \right\} \geq \ell_D \right\}. \quad (13)$$

1393 When $\tau_l \geq \nu_l + \ell_l$, there are at least m_D reward samples following $f_{\nu_{l-1}}$ in $H_{(c^*, a^{(i^*)})}$ under the
 1394 event \mathcal{M}_l , and there are at least ℓ_D reward samples following f_{ν_l} in $H_{(c^*, a^{(i^*)})}$ under the event \mathcal{L}_l .
 1395 Then, we have,

$$\begin{aligned} 1396 \quad &\mathbb{P}(\tau_l \geq \nu_l + \ell_l | \mathcal{E}_{l-1}) \\ 1397 \\ 1398 \quad &\leq \mathbb{P}(\{\tau_l \geq \nu_l + \ell_l\} \cup \mathcal{M}_l^c \cup \mathcal{L}_l^c | \mathcal{E}_{l-1}) \\ 1399 \\ 1400 \quad &= \mathbb{P}(\mathcal{M}_l^c \cup \mathcal{L}_l^c | \mathcal{E}_{l-1}) + \mathbb{P}(\{\tau_l \geq \nu_l + \ell_l\} \cap \mathcal{M}_l \cap \mathcal{L}_l | \mathcal{E}_{l-1}) \\ 1401 \\ 1402 \quad &= \mathbb{P}(\mathcal{M}_l^c \cup \mathcal{L}_l^c | \mathcal{E}_{l-1}) + \mathbb{P}(\mathcal{M}_l \cap \mathcal{L}_l | \mathcal{E}_{l-1}) \mathbb{P}(\tau_l \geq \nu_l + \ell_l | \mathcal{M}_l \cap \mathcal{L}_l \cap \mathcal{E}_{l-1}) \\ 1403 \\ 1404 \quad &\stackrel{(a)}{\leq} \mathbb{P}(\mathcal{M}_l^c | \mathcal{E}_{l-1}) + \mathbb{P}(\mathcal{L}_l^c | \mathcal{E}_{l-1}) + \mathbb{P}(\tau_l \geq \nu_l + \ell_l | \mathcal{M}_l \cap \mathcal{L}_l \cap \mathcal{E}_{l-1}) \end{aligned} \quad (14)$$

1404 where step (a) follows from a union bound and the fact that $\mathbb{P}(\mathcal{M}_l \cap \mathcal{L}_l | \mathcal{E}_{l-1}) \leq 1$. For upper
 1405 bounding the first two terms, we use the fact that given \mathcal{E}_{l-1} , for any $i \in [N_e]$ and $u, v > \tau_{l-1}$
 1406 where $v < u$,

1407

$$\sum_{t=v+1}^u \mathbb{1} \left\{ (t - \tau_k - 1) \mod \left\lceil \frac{N_e}{\alpha_l} \right\rceil = i - 1 \right\} \geq \left\lfloor \frac{u - v}{\lceil N_e / \alpha_l \rceil} \right\rfloor. \quad (15)$$

1408

1409 The inequality in equation 15 holds with equality when $u - v$ is divisible by $\lceil N_e / \alpha_l \rceil$. Recall
 1410 that $n_{(c,i)}(t)$ is the number of time-steps between $\tau_{l-1} + 1$ and t at which $C_t = c$ and
 1411 $(t - \tau_{l-1} - 1) \mod \lceil N_e / \alpha_l \rceil = i - 1$ (see equation 8). Then, we have

1412

$$\begin{aligned} & \mathbb{E} [n_{(c^*,i^*)}(\nu_l - 1) - n_{(c^*,i^*)}(\tau_{l-1}) | \mathcal{E}_{l-1}] \\ & \stackrel{(a)}{\geq} \mathbb{E} [n_{(c^*,i^*)}(\nu_l - 1) - n_{(c^*,i^*)}(\nu_l - m_l - 1) | \mathcal{E}_{l-1}] \\ & = \mathbb{E} \left[\sum_{t=\nu_l-m_l}^{\nu_l-1} \mathbb{1} \left\{ C_t = c^*, (t - \tau_k - 1) \mod \left\lceil \frac{N_e}{\alpha_l} \right\rceil = i^* - 1 \right\} \middle| \mathcal{E}_{l-1} \right] \\ & = \sum_{t=\nu_l-m_l}^{\nu_l-1} \mathbb{P}(C_t = c^* | \mathcal{E}_{l-1}) \mathbb{1} \left\{ (t - \tau_k - 1) \mod \left\lceil \frac{N_e}{\alpha_l} \right\rceil = i^* - 1 \right\} \\ & \stackrel{(b)}{=} \sum_{t=\nu_l-m_l}^{\nu_l-1} \mathcal{P}_t(c) \mathbb{1} \left\{ (t - \tau_k - 1) \mod \left\lceil \frac{N_e}{\alpha_l} \right\rceil = i - 1 \right\} \\ & \stackrel{(c)}{\geq} s \sum_{t=\nu_l-m_l}^{\nu_l-1} \mathbb{1} \left\{ (t - \tau_k - 1) \mod \left\lceil \frac{N_e}{\alpha_l} \right\rceil = i - 1 \right\} \\ & \stackrel{(d)}{=} s \left\lfloor \frac{m_l}{\lceil N_e / \alpha_l \rceil} \right\rfloor \\ & = s \left\lfloor \frac{m_D}{s} + \frac{\log T}{4s^2} + \sqrt{\frac{m_D \log T}{2s^3} + \frac{(\log T)^2}{16s^4}} \right\rfloor, \end{aligned} \quad (16)$$

1413

1414 and

1415

$$\begin{aligned} & \mathbb{E} [n_{(c^*,i^*)}(\nu_l + \ell_l - 1) - n_{(c^*,i^*)}(\nu_l - 1)] \\ & = \mathbb{E} \left[\sum_{t=\nu_l}^{\nu_l+\ell_l-1} \mathbb{1} \left\{ C_t = c^*, (t - \tau_k - 1) \mod \left\lceil \frac{N_e}{\alpha_l} \right\rceil = i^* - 1 \right\} \right] \\ & = \sum_{t=\nu_l}^{\nu_l+\ell_l-1} \mathbb{P}(C_t = c^* | \mathcal{E}_{l-1}) \mathbb{1} \left\{ (t - \tau_k - 1) \mod \left\lceil \frac{N_e}{\alpha_l} \right\rceil = i^* - 1 \right\} \\ & \stackrel{(e)}{=} \sum_{t=\nu_l}^{\nu_l+\ell_l-1} \mathcal{P}_t(c) \mathbb{1} \left\{ (t - \tau_k - 1) \mod \left\lceil \frac{N_e}{\alpha_l} \right\rceil = i - 1 \right\} \\ & \stackrel{(f)}{\geq} s \sum_{t=\nu_l}^{\nu_l+\ell_l-1} \mathbb{1} \left\{ (t - \tau_k - 1) \mod \left\lceil \frac{N_e}{\alpha_l} \right\rceil = i - 1 \right\} \\ & \stackrel{(g)}{=} s \left\lfloor \frac{\ell_l}{\lceil N_e / \alpha_l \rceil} \right\rfloor \\ & = s \left\lfloor \frac{\ell_D}{s} + \frac{\log T}{4s^2} + \sqrt{\frac{\ell_D \log T}{2s^3} + \frac{(\log T)^2}{16s^4}} \right\rfloor. \end{aligned} \quad (17)$$

1416

1417 In step (a), since $\tau_{l-1} \leq \nu_{l-1} + \ell_{l-1} - 1$ given \mathcal{E}_{l-1} and $\nu_l - \nu_{l-1} \geq \ell_{l-1} + m_l$ by Assumption 4.6,
 1418 $\tau_{l-1} \leq \nu_l - m_l - 1$ and thus $n_{(c^*,i^*)}(\nu_l - 1) \leq n_{(c^*,i^*)}(\nu_l - m_l - 1)$. Steps (b) and (e) follow
 1419 from the independence between $(C_t)_{t > \tau_l}$ and \mathcal{E}_{l-1} . Steps (c) and (f) stem from the definition of s

1458 in Theorem 4.6 ($s = \min_{c \in \mathcal{C}, t \in [T]: \mathcal{P}_t(c) > 0} \mathcal{P}_t(c)$). Steps (d) and (g) result from equation 15, as m_l
1459 and ℓ_l are divisible by $\lceil N_e / \alpha_l \rceil$. Therefore,
1460

$$\begin{aligned}
1461 \quad & \mathbb{P}(\mathcal{M}_l^c | \mathcal{E}_{l-1}) \\
1462 \quad &= \mathbb{P}\left(\sum_{t=\tau_l+1: (t-\tau_{k-1}) \bmod \lceil N_e / \alpha_l \rceil = i^*-1}^{\nu_l-1} \mathbb{1}\{C_t = c^*\} \leq m_D \middle| \mathcal{E}_{l-1}\right) \\
1463 \quad &\stackrel{(a)}{\leq} \exp\left(\frac{-2(\mathbb{E}[n_{(c^*, i^*)}(\nu_l-1) - n_{(c^*, i^*)}(\tau_{l-1})] - m_D)^2}{\sum_{t=\tau_l+1}^{\nu_l-1} \mathbb{1}\{(t-\tau_{k-1}) \bmod \lceil N_e / \alpha_l \rceil = i^*-1\}}\right) \\
1464 \quad &\stackrel{(b)}{\leq} \exp\left(\frac{-2\left(s\left[\ell_D/s + \log(T)/4s^2 + \sqrt{\ell_D \log T/2s^3 + (\log T)^2/16s^4}\right] - \ell_D\right)^2}{\left[\ell_D/s + \log(T)/4s^2 + \sqrt{\ell_D \log T/2s^3 + (\log T)^2/16s^4}\right]}\right) \\
1465 \quad &\leq T^{-1}, \\
1466 \quad &\leq T^{-1}, \\
1467 \quad &\leq T^{-1}, \\
1468 \quad &\leq T^{-1}, \\
1469 \quad &\leq T^{-1}, \\
1470 \quad &\leq T^{-1}, \\
1471 \quad &\leq T^{-1}, \\
1472 \quad &\leq T^{-1}, \\
1473 \quad &\text{and} \\
1474 \quad &\mathbb{P}(\mathcal{L}_l^c | \mathcal{E}_{l-1}) \\
1475 \quad &= \mathbb{P}\left(\sum_{t=\nu_l: (t-\tau_{k-1}) \bmod \lceil N_e / \alpha_l \rceil = i^*-1}^{\nu_l+\ell_l-1} \mathbb{1}\{C_t = c^*\} \leq \ell_D \middle| \mathcal{E}_{l-1}\right) \\
1476 \quad &\stackrel{(c)}{\leq} \exp\left(\frac{-2(\mathbb{E}[n_{(c^*, i^*)}(\nu_l+\ell_l-1) - n_{(c^*, i^*)}(\nu_l-1)] - \ell_D)^2}{\sum_{t=\nu_l}^{\nu_l+\ell_l-1} \mathbb{1}\{(t-\tau_{k-1}) \bmod \lceil N_e / \alpha_l \rceil = i^*-1\}}\right) \\
1477 \quad &\stackrel{(d)}{\leq} \exp\left(\frac{-2\left(s\left[\ell_D/s + \log(T)/4s^2 + \sqrt{\ell_D \log T/2s^3 + (\log T)^2/16s^4}\right] - \ell_D\right)^2}{\left[\ell_D/s + \log(T)/4s^2 + \sqrt{\ell_D \log T/2s^3 + (\log T)^2/16s^4}\right]}\right) \\
1478 \quad &\leq T^{-1}, \\
1479 \quad &\leq T^{-1}, \\
1480 \quad &\leq T^{-1}, \\
1481 \quad &\leq T^{-1}, \\
1482 \quad &\leq T^{-1}, \\
1483 \quad &\leq T^{-1}, \\
1484 \quad &\leq T^{-1}, \\
1485 \quad &\leq T^{-1}, \\
1486 \quad &\leq T^{-1}, \\
1487 \quad &\leq T^{-1}, \\
1488 \quad &\text{In steps (a) and (c), we apply Hoeffding's inequality, as } \{\mathbb{1}\{C_t = c^*\}\}_{t \geq \tau_l} \text{ is a sequence of i.i.d.} \\
1489 \quad &\text{Bernoulli random variables with parameter } \mathcal{P}_t(c). \text{ In steps (b) and (d), we apply equation 17.} \\
1490 \quad &\text{Before bounding the third term in equation 14, recall the definition of the stopping time of the change} \\
1491 \quad &\text{detector associated with arm } a^{(i)} \text{ after the } (l-1)^{\text{th}} \text{ detection point in equation 9. Without loss of} \\
1492 \quad &\text{generality, we assume that } \nu_l \leq T - \ell_l; \text{ otherwise, there is no need to detect the change because the} \\
1493 \quad &\text{horizon will end soon after the change occurs. We can derive that} \\
1494 \quad &\mathbb{P}(\tau_l \geq \nu_l + \ell_l | \mathcal{E}_{l-1} \cap \mathcal{M}_l \cap \mathcal{L}_l) \\
1495 \quad &= \mathbb{P}(\forall (c, i) \in \mathcal{C} \times [N_e], \tau_{(c, i)} > n_{(c, i)}(\nu_l + \ell_l - 1) | \mathcal{E}_{l-1} \cap \mathcal{M}_l \cap \mathcal{L}_l) \\
1496 \quad &\stackrel{(a)}{\leq} \mathbb{P}(\tau_{(c^*, i^*)} > n_{(c^*, i^*)}(\nu_l + \ell_l - 1) | \mathcal{E}_{l-1} \cap \mathcal{M}_l \cap \mathcal{L}_l) \\
1497 \quad &\stackrel{(b)}{\leq} \mathbb{P}(\tau_{(c^*, i^*)} > n_{(c^*, i^*)}(\nu_l - 1) + \ell_D | \mathcal{E}_{l-1} \cap \mathcal{M}_l \cap \mathcal{L}_l) \\
1498 \quad &\stackrel{(c)}{\leq} \sup_{\nu \in \{m_D+1, \dots, T-\ell_D\}} \mathbb{P}(\tau_{(c^*, i^*)} \geq \nu + \ell_D | \mathcal{E}_{l-1} \cap \mathcal{M}_l \cap \mathcal{L}_l) \\
1499 \quad &\stackrel{(d)}{\leq} \delta_D
\end{aligned} \tag{18}$$

1505 where step (a) comes from the fact that $\{(c^*, i^*)\} \subseteq \mathcal{C} \times [N_e]$, and step (b) stems from the fact
1506 that $n_{(c^*, i^*)}(\nu_l + \ell_l - 1) - n_{(c^*, i^*)}(\nu_l - 1) \geq \ell_D$ given \mathcal{L}_l . Step (c) results from the fact that
1507 $n_{(c^*, i^*)}(\nu_l - 1) \geq m_D$ given \mathcal{M}_l and $\nu_l \leq T - \ell_l$. Recall the definition of $t'_{(c, i), u}$ in equation 7. Step
1508 (d) follows from the definition of latency in Section 4.1, as the reward sequence $\{X_{t'_{(c^*, i^*), u}}\}_{u \geq 1}$
1509 are independent sub-Gaussian whose distribution changes at ν , given \mathcal{E}_{l-1} and the context sequence
1510 $\{C_t\}_{t \geq 1}$. Plugging equation 18, equation 19, and equation 20 into equation 14, we have
1511

$$\mathbb{P}(\tau_l \geq \nu_l + \ell_l | \mathcal{E}_{l-1}) \leq 2T^{-1} + \delta_D. \tag{21}$$

1512 This completes bounding Φ_1 and Φ_2 . Plugging equation 10 and equation 20 into equation 6, we
 1513 obtain

$$1514 \mathbb{P}\{\mathcal{G}_k^c\} \leq |\mathcal{C}|N_e k \delta_F + (k-1)(2T^{-1} + \delta_D). \quad (22)$$

1515 This bounds the first term in equation 4.

1517 For convenience in bounding the second term in equation 4, we define $\bar{\alpha} := \max_{k=1, \dots, N_T+1} \alpha_k$.
 1518 Recall that $\bar{\Delta} = \max_{c \in \mathcal{C}, a \in \mathcal{A}, t \in [T]} (\max_{\pi \in \Pi} f_t(c, \pi(c)) - f_t(c, a))$. For any $k \in [N_T+1]$, if
 1519 $(t - \tau_{k-1} - 1 \bmod \lceil N_e/\alpha_k \rceil) \geq N_e$, then A_t follows the stationary CB algorithm \mathcal{B} . Thus, the
 1520 second term in equation 4 can then be decomposed as follows:

$$\begin{aligned} 1521 & \mathbb{E} \left[\mathbb{1}\{\mathcal{G}_k\} \sum_{t=\nu_{k-1}}^{\nu_k-1} \max_{\pi \in \Pi} f_t(C_t, \pi(C_t)) - f_t(C_t, A_t) \right] \\ 1522 & \stackrel{(a)}{\leq} \bar{\Delta} \ell_{k-1} + \bar{\Delta} N_e \left[\frac{\nu_k - \nu_{k-1}}{\lceil N_e/\alpha_k \rceil} \right] \\ 1523 & + \mathbb{E} \left[\mathbb{1}\{\mathcal{G}_k\} \sum_{t=\tau_{k-1}+1: (t-\tau_{k-1}-1) \bmod \lceil N_e/\alpha_k \rceil \geq N_e}^{\nu_k-1} \left(\max_{\pi \in \Pi} f_t(C_t, \pi(C_t)) - f_t(C_t, A_t) \right) \right] \\ 1524 & \stackrel{(b)}{\leq} \bar{\Delta} \ell_{k-1} + \bar{\Delta} [\alpha_k (\nu_k - \nu_{k-1}) + N_e] + R_{\mathcal{B}} (\nu_k - \nu_{k-1}) \\ 1525 & \leq \bar{\Delta} \ell_{k-1} + \bar{\Delta} [\bar{\alpha} (\nu_k - \nu_{k-1}) + N_e] + R_{\mathcal{B}} (\nu_k - \nu_{k-1}) \end{aligned} \quad (23)$$

1531 where in step (a), the first term bounds the regret due to the delay of the change detector, and the
 1532 second term bounds the regret incurred due to forced exploration. In step (b), as the reward samples
 1533 in the history of the stationary bandit algorithm \mathcal{B} are independent of those in $\cup_{(c,i) \in \mathcal{C} \times [N_e]} \mathcal{H}_{(c,i)}$,
 1534 and that \mathcal{G}_k only depends on samples in $\cup_{(c,i) \in \mathcal{C} \times [N_e]} \mathcal{H}_{(c,i)}$, the regret bound of the stationary bandit
 1535 We also apply the fact that $R_{\mathcal{B}}(T)$ is increasing with T . Then, we can plug equation 23 and
 1536 equation 22 into equation 4 and obtain:

$$\begin{aligned} 1540 & R_T \\ 1541 & \leq \sum_{k=1}^{N_T+1} \bar{\Delta} (\nu_k - \nu_{k-1}) (|\mathcal{C}|N_e k \delta_F + (k-1)(2T^{-1} + \delta_D)) \\ 1542 & + \sum_{k=1}^{N_T+1} (\bar{\Delta} \ell_{k-1} + \bar{\Delta} [\bar{\alpha} (\nu_k - \nu_{k-1}) + N_e] + R_{\mathcal{B}} (\nu_k - \nu_{k-1})) \\ 1543 & \leq \sum_{k=1}^{N_T+1} \bar{\Delta} (\nu_k - \nu_{k-1}) (|\mathcal{C}|N_e (N_T+1) \delta_F + N_T (2T^{-1} + \delta_D)) \\ 1544 & + \sum_{k=1}^{N_T+1} (\bar{\Delta} \ell_{k-1} + \bar{\Delta} [\bar{\alpha} (\nu_k - \nu_{k-1}) + N_e] + R_{\mathcal{B}} (\nu_k - \nu_{k-1})) \\ 1545 & = \bar{\Delta} T |\mathcal{C}| N_e (N_T+1) \delta_F + 2\bar{\Delta} N_T + \bar{\Delta} T N_T \delta_D + \bar{\Delta} \sum_{k=1}^{N_T} \ell_k + \bar{\Delta} [\bar{\alpha} T + (N_T+1) N_e] \\ 1546 & + \sum_{k=1}^{N_T+1} R_{\mathcal{B}} (\nu_k - \nu_{k-1}) \\ 1547 & \stackrel{(a)}{\leq} \bar{\Delta} T |\mathcal{C}| N_e (N_T+1) \delta_F + 2\bar{\Delta} N_T + \bar{\Delta} T N_T \delta_D + \bar{\Delta} \sum_{k=1}^{N_T} \ell_k + \bar{\Delta} [\bar{\alpha} T + (N_T+1) N_e] \\ 1548 & + (N_T+1) R_{\mathcal{B}} \left(\frac{T}{N_T+1} \right). \end{aligned} \quad (24)$$

1549 In step (a), we apply Jensen's inequality to the concave function $R_{\mathcal{B}}$. This concludes the proof of
 1550 Theorem 4.8.

1566 B.6 PROOF OF COROLLARY 4.9
15671568 In PS-PBs, $N_e = d$, $p \geq 1/2$, and $q = r = 0$. Thus, $R_T = \tilde{\mathcal{O}}(\sqrt{dN_T T} + d^p \sqrt{N_T T}) =$
1569 $\tilde{\mathcal{O}}(d^p \gamma_T^q (\log |\Pi|)^r \sqrt{N_T T})$.1570 In PS-KBs, $q \geq 1/2$, $p \geq 0$ and $r = 0$. We can upper bound N_e using the fact that $|\mathcal{V}_T| \leq$
1571 $\lceil \sqrt{dR}/2\delta_T \rceil^d$. Thus, $N_e \leq \lceil C\gamma_T^{2q/d} \rceil^d$ with $\delta_T = \frac{Rd^{1/2-2p/d}}{2(C\gamma_T^{2q})^{1/d}}$ and $R_T = \tilde{\mathcal{O}}((d^{2p} \gamma_T^{2q} N_T T)^{1/2} +$
1573 $d^p \gamma_T^q \sqrt{N_T T}) = \tilde{\mathcal{O}}(d^p \gamma_T^q (\log |\Pi|)^r \sqrt{N_T T})$.1574 We emphasize that when the number of action is smaller than the covering number, i.e., $|\mathcal{A}| <$
1575 $\lceil C\gamma_T^{2q/d} \rceil^d \leq \gamma_T$, then we can set \mathcal{A}_e to be the entire action set \mathcal{A} . In this case, $N_e < \gamma_T$, guaranteeing
1577 order-optimal regret.1578 In PS-CBs, $N_e \leq |\mathcal{A}|$, $r \geq 1/2$, $p = q = 0$, and $|\Pi| = |\mathcal{A}|^{|\mathcal{C}|}$. Thus, $R_T =$
1579 $\tilde{\mathcal{O}}((|\mathcal{A}| \log |\Pi|)^r \sqrt{N_T T} + \sqrt{|\mathcal{C}||\mathcal{A}| N_T T}) = \tilde{\mathcal{O}}(d^p \gamma_T^q (|\mathcal{A}| \log |\Pi|)^r \sqrt{N_T T})$.
15801581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619