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ABSTRACT

We introduce a practical, black-box framework termed Detection Augmented
Learning (DAL) for the problem of non-stationary bandits without prior knowl-
edge of the underlying non-stationarity. DAL accepts any stationary bandit algo-
rithm as input and augments it with a change detector, enabling applicability to all
common bandit variants. Extensive experimentation demonstrates that DAL con-
sistently surpasses current state-of-the-art methods across diverse non-stationary
scenarios, including synthetic benchmarks and real-world datasets, underscoring
its versatility and scalability. We provide theoretical insights into DAL’s strong
empirical performance, complemented by thorough experimental validation.

1 INTRODUCTION

Bandit models underpin a wide range of engineering systems, from recommendation and ads to dy-
namic pricing and real-time bidding (Lefortier et al.| [2014; |L1 et al.| 2010; Schwartz et al., 2017}
Sertan et al., 2012} |Tajik et al., 2024} |[Flajolet & Jaillet, 2017). Many variants of multi-armed ban-
dits (MABs) have emerged since the work of (Robbins| [1952)), which fall into parametric bandits
(PB) (Auer, 2002; [Faury et al., 20205 [Filippi et al.l [2010), non-parametric bandits (NPB) (Srinivas
et al.| 2010) and contextual bandits (CB) (Woodroofe, |1979; |Langford & Zhang| 2007)). In the gen-
eral bandit problem, in each round, an agent receives a context C; randomly sampled from a set
C, and selects a policy 7; from a policy set II—a set of mappings from C to a compact action set
A C R?. Then, the agent chooses action A; = 7;(C;) and receives reward

X = fi(Cy, Ap) + ¢4,

where f; : C x A — R is the reward function and ¢, is the zero-mean sub-Gaussian noise. The goal
is to minimize the dynamic regret, using a causal policy 7; based on past interactions:

T
=FEa,n , — VA
Rr épri ;?gﬁ(ft(ct 7T(Ct)) J:(Cy, Ay)

CBs follow the general formulation above, where the context C; is independently sampled from
P, and |A| is finite. In PB and NPB settings, the context is fixed across time and |.A| can be
infinite. With slight abuse of notation, we write f;(Cy, A;) = fi(A:) in PBs and NPBs. For PBs,
fe(Ar) = wu((0s, As)), where 6; is a bounded unknown parameter and 4 : R — R is injective.
These include linear bandits (LBs), with p as identity, generalized linear bandits (GLBs), and self-
concordant bandits (SCBs), where p is self-concordant and the noise variance may depend on the
mean (Russac et al} 2021). For NPB, we consider kernelized bandits (KBs), where f; € Hyg, a
reproducing kernel Hilbert space (RKHS) induced by a continuous positive semi-definite kernel
k: Ax A— Rwith k(z,2) < 1and || f|lg, < B. In KBs, a central complexity measure is the
maximum information gain vy (worst-case mutual information between f and 7" noisy evaluations).
For compact A C R%: v = O((log T)4*+1) for the Squared Exponential (SE) kernel, and y7 =
O(T?log T) with B = d(d + 1)/[2v + d(d + 1)] for Matérn(v) kernels.

Bandits remain practically relevant today: recent deployments span A/B testing (Zhang et al.,|2025)),
clinical trials (Varatharajah & Berry, [2022), large language models (Shin et al., |2025), diffusion
models (Aoualil [2024), and computer architecture (Gerogiannis & Torrellas, 2023), which even
leverage the canonical formulations as the core decision engine. Accordingly, the key challenge is



Under review as a conference paper at ICLR 2026

developing bandit methods that perform reliably under real-world constraints—aimed at practical ef-
fectiveness, not just analysis. The lion’s share of the literature on bandits assumes stationarity—i.e.,
fixed fy, 6, P;—but this rarely holds in practice due to evolving conditions (Agrawal & Jial 2019
Cai et al, 2017 |Chen et al. [2020; [Lu et al.l 2019). Non-stationary (NS) settings are often cate-
gorized into two types—gradual drifts and abrupt changes. In the drifting model, f; and P; evolve
slowly under a variation budget constraint (Besbes et al., 2014; Wei & Luo, 2021). In contrast,
piecewise stationary (PS) models assume abrupt shifts at unknown change-points:

l=1yy <1 < - <vny <Vnp41:=T+1, Nr :total number of changes

with f; = fv and P = Py fort,t' € {vg,...,vr41 — 1} and different across change-points.

NS bandit algorithms are typically either adaptive—adjusting continuously, or restarting—choosing
to unlearn and kickstart the learning process at certain times. They may also be prior-based (assum-
ing knowledge of the non-stationarity) or prior-free. Prior-based adaptive methods (discounting/s-
liding window) weigh recent observations more heavily: NS-MABs (Garivier & Moulines, 2011}
Kocsis & Szepesvari, [2006), NS-LBs (Cheung et al., [2019; [Russac et al., [2019), NS-GLBs (Faury
et al.,2021; Russac et al.;[2020), NS-SCBs (Russac et al., 2021; Wang et al., 2023), NS-KBs (Deng
et al.| [2022; Zhou & Shroff} |2021). Prior-based restarting approaches use budgeted restarts: NS-
MABSs (Besbes et al., 2014}, NS-LBs/GLBs (Zhao et al., 2020), NS-KBs (Zhou & Shroft], [2021)).
Detection-based restarting methods exist in both flavors: prior-based for NS-MABs (Cao et al.}
2019b; Liu et al.;,[2018)) and NS-CBs (Luo et al.,[2018); prior-free for NS-MABs (Auer et al., 2019
Besson et al., 2022} [Huang et al., [2025)), for NS-LBs/KBs (Hong et al., 2023) and for NS-CBs
(Wu et al.l 2018} |Chen et al., 2019). The most closely related work is that of [Huang et al.| (2025)),
which addresses PS-MABs and introduces techniques that we build upon in establishing our theory.
However, our setting is much more complex, as it extends to general NS bandits.

Among prior-free methods, black-box approaches are particularly appealing: they equip any sta-
tionary bandit algorithm with non-stationarity handling capabilities. MASTER (Wei & Luo, [2021)
is the only known order-optimal black-box method for general bandit and reinforcement learning
settings. Importantly, although MASTER is order-optimal, it is not practically applicable (Gero-
giannis et al.l 2025). More broadly, the literature emphasizes theory over evidence, as empirical
validation of order-optimal methods is scarce: NS-NPBs and NS-PBs are evaluated almost exclu-
sively on synthetic data (Wang et al.| 2023} Hong et al., 2023} |Gerogiannis et al., 2025)), and NS-CBs
lack experiments altogether (Chen et al., 2019). We close these gaps with a theoretically grounded,
practical black-box framework and comprehensive real-world evaluation in standard benchmarks.

Contributions. We present (to our knowledge) the first practical prior-free, black-box detection-
based framework for general NS bandits. The design is motivated by three pragmatic insights: (i)
prior knowledge of non-stationarity is rarely available, (ii) restart-style methods can have lower
worst-case complexity than fully adaptive schemes (Peng & Papadimitriou, 2024), and (iii) a black-
box reduction simplifies NS algorithm design to specifying when to restart a stationary learner. Our
method is simple—combining a change detector with any stationary bandit algorithm—modular,
and easy to implement. Empirically, extensive synthetic and real-world evaluations in standard
datasets show consistent gains over both prior-free and prior-based baselines, and (to our knowledge)
provide the first comprehensive real-world assessment of order-optimal baselines previously lacking
empirical study. Theoretically, under mild assumptions, our regret matches the state-of-the art for
PS-LBs, PS-GLBs and PS-CBs and improves the best known bounds for PS-SCBs and PS-KBs; for
drifting regimes we identify conditions for good performance and validate them empirically.

2 THE DAL FRAMEWORK

The DAL framework is a black-box characterized by a modular structure of three components: a
non-stationarity detector, a forced exploration scheme, and a bandit algorithm. We provide high-
level ideas of the structure of our approach and formally present our framework in Alg. [1}

Non-Stationarity Detector To identify changes in the environment, DAL uses a general-purpose
detector D for monitoring shifts in the distribution of judiciously chosen reward observation se-
quences obtained through forced exploration. This distinguishes our approach from methods like
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MASTER, which rely on detecting violations of stationary regret guarantees. We adopt a detec-
tor aligned with |Besson et al.[ (2022); Huang et al.| (2025)), grounded in the well-established theory
of quickest change detection (Veeravalli & Banerjeel |2013; |Xie et al., [2021). Given any arbitrary
context, DAL samples rewards from actions within a carefully selected finite subset, and detects
changes in the mean reward associated with the context-action pair.

Forced Exploration In stationary bandit set-
tings, effective algorithms quickly concentrate
on (near-)optimal actions for each context,
rarely exploring suboptimal actions. In NS en-
vironments, however, this behavior may lead
to missed changes on these rarely sampled ac-

Alg. 1 Detection Augmented Learning (DAL)

Input: bandit 55, detector D, covering set A, con-
text set C, horizon T', frequencies {ak};f:l
Initialize: histories H (. )0 V(c,a)e CxA.,
detection 7 < 0, counter k < 1

1: fort=1,2,...,7 do tions, and thus, forced exploration on these ac-

2:  Observe context C; tions is essential. When the action space is large

3: if (t—7+1 mod [Ne/oy])+1 =1 € [Ne] or infinite, exploring all actions becomes infea-

then ) sible. Therefore, DAL only does extra explo-

4: Play action a(¥) and receive reward X;  ration on a finite covering set, A, = {a) :

5 Addsample X, into history H(c,.a0)  j € [N,]} C A, in which a(?) denotes the i-

6: if D (H (¢, q()) = detection then th action in A.. A. is designed such that the

7 Reset the bandit algorithm B mean reward of at least one context-action pair

8: Clear all H(. o) V(c,a) € CxAe, in C x A, changes whenever a change occurs.

9: Tt kek+1 In particular, after the (k — 1)'! restart, DAL

10: end if is forced to play each action in A, once for N,
11:  else steps, followed by the bandit algorithm for the
12: Run the stationary bandit algorithm B next [ No/ay] — N, steps, repeatedly, until the
13:  endif kB restart. Here, aj, € (0, 1) is the exploration
14: end for frequency, striking a balance between detection

delay and regret from extra exploration.

Bandit Algorithm With a detector D and forced exploration, DAL augments a (stationary) bandit
algorithm B: It resets I3 entirely whenever D detects changes in a reward distribution associated with
any context-action pair in C x A, and runs B with periodic forced exploration otherwise. A key
advantage of DAL is its ability to translate strong stationary performance into robust performance
under NS conditions. Therefore, by selecting a well-performing bandit algorithm, the DAL frame-
work inherently achieves effective adaptation to NS environments. In fact, the only requirement for
DAL’s input stationary algorithm is to attain optimal stationary regret performance bounds.

3 PRACTICAL PERFORMANCE

We evaluate DAL on piecewise-stationarity and drifting non-stationarity across synthetic and real-
world benchmarks. Baselines include: MASTER (Wei & Luol 2021), the only other black-box
algorithm with order-optimal regret. While MASTER has no formal guarantees for SCBs, empirical
evidence (Wang et al.| 2023)) supports pairing it with Logistic-UCB-1 (Faury et al., |2020) for NS-
SCBs. We also include two state-of-the-art prior-free, order-optimal methods: ADA-OPKB (Hong
et al.,[2023)) for NS-LBs/NS-KBs and ADA-ILCTB+ (Chen et al.,|2019) for NS-CBs. ADA-OPKB
requires extensive parameter tuning for strong performance (7 hyper-parameters), posing a chal-
lenge in a truly prior-free environment. For fair comparison, however, we tune its parameters to
optimize its performance in our evaluation. We also tune MASTER’s single hyperparameter (n) for
best performance. Finally, two prior-based discounted methods are used for comparison: Weigh-
tUCB (Wang et al., [2023) (drifting PBs and PS-SCBs) and WGP-UCB (Deng et al., [2022) (drifting
KBs). Unless noted otherwise, we adopt the hyperparameters in the prior works in our experiments.

Across all settings, DAL uses the Generalized Likelihood Ratio (GLR) test (Huang & Veeravalli,
2025)) as the detector D. Concretely: In NS-LBs, LinUCB (Abbasi-yadkori et al.l [2011) pairs with
Gaussian GLR. In NS-GLBs, GLM-UCB (Filippi et al., 2010) pairs with Gaussian GLR. In NS-
SCBs, OFUGLB (Lee et al.;[2024) pairs with Bernoulli GLR. In NS-KBs, REDS (Salgia et al., 2024)
pairs with Gaussian GLR. In NS-CBs, SquareCB (Foster & Rakhlin} [2020) pairs with Bernoulli
GLR. The GLR test implementation follows |Huang et al.| (2025)), and we provide their structure in
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the Appendix. For all settings, we set o, = \/k[|C|N./(2v/T log® T) as per Theorem A crucial
advantage of DAL is that it is hyperparameter-free, guided entirely by our theoretical principles.
Due to space constraints, the selection of A, is discussed more analytically in the Appendix.

3.1 SYNTHETIC EXPERIMENTS
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Figure 1: Dynamic regret vs. environment steps for synthetic experiments (lower=better). First
three rows correspond to the geometric change-points and the final one to the drifting case.

3.1.1 EXPERIMENTAL PARAMETERS

Common parameters In all synthetic experiments, the action space comprises 100 unique actions
with dimension d = 10. These actions are sampled independently from A(0, I). The horizon is
fixed to T" = 50000 and we average the results over 15 independent trials.

Remark 3.1. In Alg. [I| when | A| is finite, change-detection can be performed on the actions selected
by B that are not in A., which improves performance. This does not affect the theoretical properties
of the algorithm, and we employ this variation for our experiments.

NS-PBs The actions are scaled to lie within an L-ball and the underlying parameters 6; belong
to an S-ball. Specifically, for NS-LBs and NS-GLBs we have that S = L = 1, while for NS-
SCBs, we have that L. = 1 but S = 3. Every time a 6, is initialized or changed, its elements are
chosen independently and uniformly in [—1, 1], and then are scaled to the S-ball. For both NS-
GLBs and NS-SCBs, we select () := o(z) = (1 + e ®)~! (sigmoid). The additive noise &,
is sampled according to A(0,0.01) at each time-step, while for NS-SCBs, we sample the random
reward according to Bernoulli(u((6;, A;))) at time ¢. To set A, in NS-PBs, we use Corollary [4.5]

NS-KBs Actions are scaled in the v/d-ball and £, ~ N(0,0.01). Regarding the choice of kernel
for NS-KBs, we employ the SE kernel with ¢ = 0.2. We follow a procedure similar to|Chowdhury
& Gopalan| (2017); Deng et al.| (2022)). Specifically, every time we initialize or change the reward
function, f; is generated from the RKHS obtained by a discretization of [—1, 1] into 200 evenly
spaced points. The reward function is generated as f(-) = Zf\il a;k(-, x;) with a; uniformly
distributed in [—1,1] and M = 200. To identify A, we use Corollary [4.5]

NS-CBs The context C; € R? is drawn at each round from a fixed pool of 1000 normalized

vectors with d. = 10, according to a categorical distribution. At every initialization or change, at

least one of the f; or P; changes. For a € A and context Cy, f; is clipped in [0, 1], and is given by
ft(Ct7 a) = [ba + Z(Sig) O—(u,—ll—ct) + Z(Sin) Sin(v;rC’t) + Z(Xpr) Ct,2ct,3:| [ ]7

0,1

where uq,v, ~ N(0,1), by ~ Unif[0.3,0.7], and 2(®) 25 2(<Pr) are drawn uniformly from

[0.25,0.45], [0.15,0.35], [0.10, 0.25], respectively. Rewards are sampled as Bernoulli(f;(CY, Ay)).

Since the reward function lacks any arm-related structure, here we set A = A, (see Remark [4.3).
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3.1.2 EXPERIMENTAL BENCHMARKS

Piecewise Stationarity In the PS setting, we adopt the geometric change-point model proposed
in (Gerogiannis et al.| (2025), and independently sample the intervals between the change-points
according to a geometric distribution with parameter p = T~¢, for ¢ € {0.4,0.6,0.8}. We do not
impose any restriction on the lengths of the intervals between change-points in our experiments.

Drifting Non-Stationarity Regarding comparisons in drifting non-stationarity, we adopt the fol-
lowing drift model: in each run, the reward structure changes linearly over 7' rounds from an initial
value to a final value, where the end-points are chosen as in the beginning of the section. Specifically,

PBs: 0y = (1 —t/T) binit + (t/T) Ofinar, KBs: fy = (1 —t/T) finit + (t/T) foinals
CBs: ¢ = (1 - t/T) Ginit + (t/T) @finals Ot = (ua,tyva,h ba,t; Zt)7 Zy = (ZIESig), Z)ESin)7 Zlgxpr))

Experimental Results Per the results in Figure[I] DAL outperforms the current state-of-art meth-
ods in every synthetic experiment. DAL only abandons the actions chosen by the stationary bandit
algorithm and restarts learning when an efficient change detector flags a mean-shift in rewards;
hence, it avoids unnecessary restarts, especially when the intervals between the change-points are
long enough for such detectors to correctly flag said changes without false alarms. Regarding drift-
ing non-stationarity, DAL significantly outperforms all other methods. In fact, it fares better than
both WeightUCB and ADA-OPKB, which not only are known to attain the optimal regret bound in
the drift setup, but have also been shown to perform well in practice.

3.2 REAL-WORLD EXPERIMENTS

B avahoo! R6A Click Logs . 2Yahoo Finance Stocks

1es Criteo Live Traffic 1e2 Quandl Stocks

9% 20

w10t w10t 10t ¢ :
Yahoo! R6B Click Logs COVID-NMA Clinical Trials Micro-Prefetcher Selection Zozo Ad Recommend.
12 45 164 1 108 1e3

v
00 05 10 1s 20 25 o 2 3 4 5 6
Environment Steps *10 Environment Steps *10°

R I
o

o £
00 02 o 10
Environment Steps *10

12 3 a4 s 2 4 6
Environment Steps *10 Environment Steps *10

-~ MASTER WeightUCB  —— DAL —— ADA-OPKB ---- WGP-UCB ADA-ILTCB+ D-ucB

Figure 2: Results for real-world experiments of Section averaged over 15 independent runs.
Top: dynamic regret (lower=better); Bottom: cumulative reward (higher=better).

Microarchitecture Prefetcher Selection Benchmark. We introduce a novel dataset for NS ban-
dit evaluation using the data of |Gerogiannis & Torrellas| (2023). The dataset is derived from the
SPECO06/17 benchmark suites, the gold standard in evaluating computer microarchitectural mod-
els. The dataset includes 11 prefetcher configurations (actions) that trade aggressiveness against
efficiency. At each time-step, the reward is the normalized instructions per cycle in [0, 1], and the
horizon is T' = 26224. We obtained the data directly from the authorsE] Following |Gerogiannis &
Torrellas| (2023)), we also evaluate D-UCB (Kocsis & Szepesvari,2000) in its native form; while for
our baselines we model the task as an NS-SCB. For reproducibility, D-UCB hyperparameters follow
its original paper and |Gerogiannis & Torrellas| (2023). Evaluation is by cumulative reward.

Stock Market Benchmarks. NS-KBs have been applied to stock market prediction, and we fol-
low the procedure of (Deng et al., 2022) to simulate two environments: one using their original
data (Quandl stocks) and one constructed from NASDAQ-100 stocks retrieved via the yfinance
Python packageE] In the Yahoo-based dataset, we retain stocks with sufficient history (7'=2000,

"'We aim to release the dataset to facilitate real-world experimentation by the bandit research community.
’Data retrieved from Yahoo Finance using the publicly available yfinance package. Used solely for
non-commercial, academic research purposes.
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approx. 5.5 years) and select the 50 most volatile as actions. Daily closing prices define the reward
function, and the empirical price covariance matrix is used as the kernel. To increase difficulty, we
add Gaussian noise A/(0, 0.01) to the reward at each time-step. Evaluation is by dynamic regret.

COVID-NMA Clinical Benchmark. We construct an NS-SCB benchmark from the open
COVID-NMA database (Boutron et al., 2025). To maximize coverage while retaining clinical mean-
ing, we form a UNION endpoint: for each bucketed-treatment arm and month, we include both
Clinical Improvement at Day 28 (when reported) and Survival at Day 28 (1-mortality) as sepa-
rate contributions, leading to binary rewards (1=success). Treatments (actions) are mapped into 13
classes and month counts are expanded exactly (s successes and n—s failures per bin) and concate-
nated in a fixed chronological order (month, c1inD28 then mortD28, then bucket) to yield a long
non-stationary sequence with 7' = 7.4x10*. Evaluation is based on cumulative reward.

Click Log Benchmarks. We use the Yahoo! R6A click log dataset Following prior works (Cao
et al.l 2019b; Seznec et al [2020), we compute smoothed click-through rates (CTRs) via rolling
averages over 2000 rounds, average CTRs within each subperiod, and suppress fluctuations below
0.005. To increase difficulty, we combine actions across 5 days, leading to 64 actions, compress the
horizon to 50000, and multiply final CTRs by 10. We model the resulting environment as an NS-
SCB problem, reflecting the logistic reward structure typical in such settings (Russac et al., |2021)).
Evaluation is by dynamic regret.

Alongside the first benchmark, we build a fixed-arm replay benchmark from the additional Yahoo!
R6B click logs and cast it as an NS-CB problem.m We select the highest-CTR articles to form an
action set of 51 actions. To improve coverage at a fixed horizon, we round-robin interleave days
and then select 7' = 50000. For each visit, we intersect the candidate set with this vocabulary,
keep rounds where the displayed item remains, and record the binary click as the raw reward (X; €
{0,1}). We rely on R6B’s uniform-random logging for unbiased replay/IPS evaluation (Li et al.,
2011). Our metric is (replay) cumulative reward.

Live Traffic Benchmark. We construct an NS bandit environment based on the Criteo live traffic
dataset (Diemert et al., |2017), following the preprocessing approach of Russac et al.| (2019) but
modeling the problem as an NS-GLB rather than an NS-LB. We estimate the underlying parameter
0* using logistic regression. Unlike Russac et al.| (2019), in which the authors employ a single
change, we introduce shifts in 6* via a geometric change-point model with parameter £ = 0.8 and
extend the horizon to 7" = 50000. The metric here is the dynamic regret.

Sensor Correlation Benchmark. We use the Bioliq dataset provided by [Komiyama et al.| (2024)),
which contains a week of measurements from 20 sensors in a power plant. We process the reward
as [Komiyama et al.| (2024) and construct an NS-SCB environment with 190 actions. At each time-
step, the reward is 1 if the last 1000 measurements exceed a threshold of 2.04, and O otherwise.
Evaluation is based on cumulative reward.

Ad Recommendation Benchmark. We evaluate on the Zozo environment, a real-world ad rec-
ommender system deployed on an e-commerce platform, introduced by |Saito et al.| (2021). Using
the dataset preprocessed by Komiyama et al.| (2024), we construct an NS-GLB environment that
captures the dynamics of online ad recommendation. Unlike Komiyama et al.| (2024)), in which the
authors limit the setup to 10 actions due to sparsity, we keep all 80 ads as actions. Following their
setup, we assign a reward of 1 to any ad that received at least one user click within a one-second
window, and O to ads with no clicks. Here, evaluation is based on cumulative reward.

Based on the results in Figure [2) DAL consistently outperforms all state-of-the-art baselines across
real-world benchmarks, in both dynamic regret and cumulative reward. We attribute this strong
performance to the robustness DAL demonstrates in the synthetic settings, which captured a range
of challenging NS scenarios. These findings underscore DAL’s practical effectiveness. In what
follows, we provide a theoretical explanation for its performance.

3Yahoo! Front Page Today Module User Click Log Datasets: https:/webscope.sandbox.yahoo.com.
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4 THEORETICAL INSIGHTS

4.1 ON EFFECTIVE DETECTION

When selecting a non-stationarity detector, accuracy and efficiency are essential for ensuring opti-
mal regret growth. Any detector aiming to identify distribution shifts inherently requires a certain
number of samples, both before and after the change. Ideally, this sample complexity should scale
appropriately to avoid negatively impacting the total regret. To this end, GLR tests have been shown
to achieve a pre- and post-change sample complexity of the order log T' (Huang & Veeravallil, [2025).
Since logarithmic terms are disregarded in dynamic regret analyses, it suggests that integrating this
detection mechanism can achieve optimal regret growth.

To select which samples should be fed into the detector, one needs to properly select the covering
set A, so that it contains actions that can capture changes in the reward function for any context.
However, changes cannot be arbitrarily small, as no change detector may be able to identify them.
Hence, A, should be designed such that whenever a change occurs, reward sequences associated
with at least one context-action pair in C x A, exhibit an appreciable mean-shift. Define
— 3 !
A= ]g;l]fc, e |f(c,a) — f'(c,a)l.

Then, A. captures how well the context-action pairs in C x A4, can discern between candidate reward
functions. According to[Huang et al.| (2025)), A, crucially affects the performance of the GLR test,
as its pre- and post- change sample complexity grows with 1/A2. The more discernible the changes
are, the easier the detection becomes. Since forced exploration incurs regret, A, should ideally be
chosen to minimize N, while maximizing A.. However, this cannot be done since the function
ft is unknown. Hence, we provide the ways with which one can ensure appreciable mean-shift
(i.e., A¢ > 0) in settings where the reward function has a certain structure (e.g., linear dependence
on the arms or prescribed smoothness). Specifically, the NS-PB and NS-KB settings satisfy such
conditions. Using these choices of A., one can guarantee order-optimal regret in certain cases, as
shown in the next section. The proofs of the following propositions are given in the Appendix.

Proposition 4.1. In NS-PBs, A. can be any arbitrary maximal linearly independent subset of A.
Proposition 4.2. In NS-KBs, assume that A C [0, R]? w.l.o.g., and that there exists an a € A s.t.

inf |f(@)— f'(@)| > 2BLyor,
int (/@) - /(@) r

where BL,, is the Lipschitz constant of all f € Hy(A). Let Vr C A be the set of the centers of the
balls of an arbitrary dr-cover. Then, A, can be taken as Vr, with |Vr| < [VdR/267]%

Remark 4.3. In NS-CBs, if f; and A satisfy the structural assumptions of the preceding propositions
for any fixed context, we can set A, similarly. Without such structure, we set A, = A, as A is finite.

4.2 ON ORDER-OPTIMALITY IN PIECEWISE STATIONARY ENVIRONMENTS

In the PS setting, the minimax regret lower bound under bandit feedback is Q(v/NpT') (Garivier
& Moulines, ZOII)EI which applies across all settings considered in this work, differing only in
problem-dependent constants. Under certain conditions on the minimum spacing between change-
points stated in [Huang et al.| (2025)), our algorithm matches this bound with state-of-the-art depen-
dence on these constants. Specifically, the assumption states that v, — v, should be large enough
for the change detector to acquire enough samples for triggering restarts.

Let /p and mp be the latency and the pre-change window length of the detector D (Huang et al.,
2025)), respectively. To characterize DAL’s performance under piecewise stationarity, we employ
the methodology of [Huang et al.| (2025), incorporating the regret analysis of the stationary bandit
algorithm and that of the change detector. Theorem is based on Theorem 1 from |[Huang et al.
(2025)), however, since we are studying general bandits, additional novel analysis is required. Thus,
a proof sketch and the new analysis are provided in the Appendix.

Theorem 4.4. For the PS setting in Section|l| consider Alg. |I|using the GLR test with parameters
0 and 0p, a stationary bandit algorithm B with regret upper bound Rg, a covering set A, and

*We use the ~ in Q(-) to hide polylogarithmic factors.
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forced exploration frequencies (ak);‘g:l. Assume v1 > my and vy — vp_1 > b1 + my for k €
{2,..., N1}, where my, = [No/ay|mp and £, = [No/ay1€p for k € [Nr] in PS-PBs and PS-
KBs, and my, = [Ne/ay|[log(T) + mp/s] and £, = [No/ay|[log(T) + €p/s] for k € [Nr] with
§ = mincEC,tE[T]:Pt(c)>0 Pt(C) in PS-CBs. IfRB(T) = O(dp’Y%(VU log |HDT\/T) with D, g, T > 0,
op = 0p = T~ for v > 1, and oy, = /k|C|N./(2V/Tog® T), then DAL’s regret satisfies,
Rp = O(dPy4(|Allog [I|)"/NrT + \/|CI NNz T).

In PS-PBs and PS-KBs, since the context is fixed, the minimum change-point separation £,_1 + my,
is smaller. However, in PS-CBs, a context may appear with a low probability, and thus, the minimum
change-point separation requires an extra log 7" term and an extra s factor. Using Theorem 4.4 and
Propositions and we now present the optimal regret DAL attains.

Corollary 4.5. Assume that the conditions of Theorem[d.4hold. In PS-PBs, select A, as in Propo-

1/2—2p/d
Rd for some C > 0. In

sition 4.1\ In PS-KBs, select A, as in Proposition 4.2\ with 1 = S(CEDT
T

PS-CBs, set A as in Remark[d.3] Then, DAL attains

Ry = O(d*y(| A log [TI])" /N7 T).

If the base stationary algorithm has order-optimal regret, DAL retains optimality in PS-PBs, PS-KBs
and PS-CBs. This also holds when N, < d or |A| < d in PS-PBs, when N, < v or |A| < 7 in
PS-KBs, and when 11 is the universal set of all mappings from C to A.

Remark 4.6. The assumption on the change-points is necessary to prove the order-optimality, but
it is not for practical performance. None of our experiments enforced this assumption, and DAL
dominated in both the synthetic and the real-world simulations as shown in Section 3]

The assumption on the minimum separation between change-points essentially requires scaling as
O(+/T/k). However, this condition primarily emerges from a conservative proof technique used in
Huang et al.| (2025)), where missed detections are aggregated into a single adverse event. Practically,
and as corroborated by our experiments, this assumption is often violated without negatively impact-
ing the regret performance—even under scenarios with frequent and arbitrarily placed change-points
(e.g. £ = 0.4). We suspect that this resilience arises because the GLR test, while potentially missing
isolated short intervals, reliably detects subsequent changes when stationary segments exceed the
threshold length. Even if a change is entirely missed during a segment shorter than @(\ /T/k), the
resulting regret remains under that order. Conversely, when the assumption holds, optimal regret is
provably guaranteed. Thus, the required separation threshold acts as a practical ’sweet spot”: seg-
ments longer than this threshold are detected reliably, ensuring optimal performance, while shorter
segments incur minimal regret, thereby preserving overall optimal regret guarantees.

State-of-the-art Regret. In line with the black-box design philosophy, Corollary enables re-
gret upper bounds across all settings considered, with flexibility in the choice of stationary bandit
algorithms. When using specific stationary algorithms from Section [3] DAL matches the state-of-

the-art regret bounds in PS-LBs and PS-GLBs at @(d\/NTT). In PS-CBs, DAL achieves the state-

of-the-art regret bound of O(+/] ANy T log|TI[). More notably, DAL improves the best known
bounds in the PS-SCB and PS-KB settings. For PS-SCBs, the strongest, rior—based, bound is due

to WeightUCB (Wang et al., [2023), which achieves @(dz/ 372/ SN}/ 3) DAL improves this to

(’N)(d\/NTT) with our algorithmic choices. Although this matches the bound in/Russac et al.|(2021)),
their analysis relies on substantially stronger assumptions than those inHuang et al.|(2025). For PS-

KBs, the prior-free ADA-OPKB (Hong et al.,[2023)) achieves (’j(\/ dyr NTT), while DAL improves

this to @(\/fyTNTT). This highlights the interesting feature of DAL: the order-wise dependence
on problem parameters from the stationary setting seamlessly transfers to the PS setting without
degradation. A more detailed comparison of regret bounds is provided in the Appendix.

4.3  ON DRIFTING ENVIRONMENTS

Based on the previous section, at first glance, one can expect that DAL is not able to handle drifting
non-stationarity. Our results in Section [3|naturally lead us to ask when and why DAL performs well

>While MASTER may be extendable to PS-SCBs, no regret bound is currently known.
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in drifting environments. As a first step to study this, we perform another experiment with LBs.
Specifically, the parameter 6; in each time-step ¢ evolves randomly as follows,

Orr1 = 0t + G

where ;1 € R? is chosen uniformly over a §-ball. If the resulting ;1 violates the norm-bound
S, we disregard that choice of ;11 and sample again. We sample £, ~ AN(0,0.1) at each t. We
compare the cumulative dynamic regret up to time 7" of DAL+LinUCB and WeightUCB over arange
of 0’s in Figure[3] The remaining parameters are chosen to be the same as those in Section [3] with
the exception of d = 5. The DAL algorithm performs better than WeightUCB for smaller values of

d, but the conclusion reverses upon increasing 6. 225 1e;
DAL

We now shed light into our hypothesis behind the , ** ~#- Weiohtucs
observations from Figure [3] For playing an action
a € Aattime t + 1, we get the random reward, & 150

Xir1 = (0, a) + (Ci41,0) + €141

If the governing parameter does not change, then the
corresponding reward from playing action a would
have been X/ | = (0y,a) + €, ,, where ¢}, is
another realization of the noise. Statistically, a spe-
cific instance of ((y41,a) + €441 and €}, are close 6

to each other, when ¢ is small, albeit the resulting ) ] )
(small) mean-shift due to the drift in the governing Figure 3: Final dynamic regret vs. radius of
parameter. For practical purposes, the impact of the change ¢: Drifting LBs.

drift can be absorbed into the noise term €41 when ¢ is small. As a result, one expects an algorithm
tailored to handle piecewise stationarity to perform reasonably well for slowly drifting environments.
On the other hand, if § is large, the bias induced by (;41 is large enough to disallow absorbing it
into the zero-mean noise term. Over a few time-steps, the cumulative effect of this compounding
bias is then large enough to completely violate the stationarity assumption. With large enough 4, the
change in 6; over a few time-steps can be considered large enough to trigger a restart.

Final Dynamic Reg
g

5 SUMMARY AND OUTLOOK

We introduced DAL, a practical, prior-free black-box framework for general non-stationary bandits.
Its plug-and-play design mtegrates seamlessly with a wide range of stationary bandit algorithms.
Through extensive experiments in both PS and drlftlng settings—spanning synthetic and real-world
benchmarks, DAL consistently outperforms all prior-free baselines, including the black-box gold
standard MASTER and the state-of-the-art methods ADA-OPKB and ADA-ILCTB+, and even sur-
passes leading prior-based methods like WeightUCB and WGP-UCB. Its leading performance in
real-world scenarios highlights its value as a practical and effective solution.

On the theoretical side, using existing results and providing novel techniques, we showed that DAL
inherits and adapts the regret guarantees of its stationary input algorithm, achieving order-optimal
regret under piecewise stationarity, with mild change-point separation. As a result, it matches the
best existing bounds in PS-LBs, PS-GLBs and PS-CBs while improving the best known bounds
for PS-SCBs and PS-KBs. Regarding drifting non-stationarity, we hypothesized key conditions
under which DAL excels—an insight further validated through additional experiments under drifting
settings. Our results suggest that a well-designed algorithm for the PS setting can extend to a broad
range of drifting scenarios, bridging the gap between these two regimes.

While DAL advances both theory and practice, it opens new directions. First, regret guarantees
for detection-based methods in drifting environments remain unexplored. Second, the current re-
gret bounds for DAL rely on a separation condition between change-points—a standard assump-
tion in the detection-based literature (see e.g., (Auer et al., 2019; Besson et al., 2022; |Huang et al.,
2025)))—which nonetheless limits the extent to which DAL achieves fully prior-free theoretical opti-
mality. Addressing these gaps would deepen our understanding of detection-based methods in more
continuous forms of non-stationarity. Finally, DAL’s modular nature invites extensions to broader
settings, including general non-stationary reinforcement learning. We believe that deepening the
study of piecewise stationarity may be the key to tackling these broader challenges and DAL can
serve as a solid foundation towards that goal.
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A EXPERIMENTAL DETAILS

A.1 CHANGE DETECTORS

Below, we provide the algorithmic implementation of the Generalized Likelihood Ratio (GLR) test,
including the necessary information for both its Gaussian and Bernoulli versions.

Alg. 2 Generalized Likelihood Ratio (GLR) Test
Input:observations X, ..., X, false alarm probabililty ér, missed detection probability op
Output:detection if achange-pointis detected, else no-detection

1: fors=1ton —1do

2:  Compute empirical means fi1.s, fls+1:n, and fi1.n.

3:  Compute test statistic:

GLRs <~ 8- kl(ﬂ1:87 ,alzn) + (n - 5) : kl(ﬂs-&-l:na ﬂl:n)

4 if GLR, > 6log (1+log(n)) + 2 log (473‘;/2) +11. then
5: return detection

6: endif

7: end for

8:

return no—-detection

In the case of the Bernoulli GLR version we have that,

Kl(z,y) = zIn (”y”) +(1—2)n G_z) .

The Bernoulli GLR test is used in the case of sub-Bernoulli distributions (Besson et al.| [2022), e.g.,
distributions bounded in [0,1].

On the other hand, for the case of the Gaussian GLR version, assuming variance o2, we have that,

(z—y)*

202
The Gaussian GLR test is employed in the case of 02> —sub-Gaussian distributions, e.g., bounded
distributions in [a, a 4+ 20] for some a € R.

kl(.’lﬁ, y) =

For the practical tuning of the detector, we follow the information provided in [Huang et al.| (2025).

A.2 ON FORCED EXPLORATION IN FINITE ACTION SPACES

Covering Set Construction. In practice, the covering set A, is selected according to Proposi-
tions 4.1, 4.2, and Remark 4.3 together with the specifications of Corollary 4.4. However, in finite-
action settings, the full construction may not be feasible: the action set .A may not contain enough
elements to satisfy the required conditions. For instance, in the NS-PB setting, .A may not include
d linearly independent actions, while in the NS-KB case, it may lack a full Jp-covering net for the
chosen o7 in Corollary 4.4. One might expect that when |A.| < d in PS-PBs or |A.| < vr in
PS-KBs, the inability to detect all possible changes would degrade DAL’s performance. In practice,
however, DAL does not need to restart when changes in the reward function leave the mean reward
of each action unchanged. Crucially, as discussed in Appendix [B.5] DAL retains order-optimality
even in these constrained regimes. Accordingly, whenever |A| < d or |A| < 7, we simply set
Ae = A. In our experiments, the action set is finite (typically in the hundreds). For PS-PBs, the
random generation of actions almost always guarantees d linearly independent vectors. For PS-KBs,
since ~yr is typically large, we also use the full action set A as .4, without impacting performance.
On the other hand, since the regret bounds in PS-CBs include |.4|, as it is finite, in any PS-CB setting
we can simply set A, = A.

Practical Implementations. For NS-PBs, we construct A, by greedily selecting linearly inde-
pendent actions until we obtain d such vectors, where d is the dimension of the action space. In the
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NS-KB setting, A, is formed by building a d7-cover over the bounded action space and choosing the
centers of the covering balls. If the action space is continuous and bounded, these centers suffice to

cover the space. If the action space is finite and N, < d2p'y§q*yT, then the entire set A serves as the

covering set, as established in Corollary 4.4. Otherwise, if N, > de%zpqu, we select the d2p’y%q*yT
actions closest to the covering-ball centers. Finally, in the NS-CB setting, selecting a smaller A,
compared to A does not affect regret, but improves practical performance due to less forced ex-
ploration. Thus, depending on the reward function and action set structures, it is recommended to
decrease the cardinality of .4, as much as possible.

Experimental Choices. In our experiments, for NS-PBs the action set is sampled from a multi-
variate Gaussian distribution, which ensures the existence of d linearly independent actions. Thus,
we always set N, = d using the greedy selection procedure described above. For NS-KBs, the re-
gret bound for IV, obtained from Theorem 4.3 and Corollary 4.4 is extremely large for our horizons,
implying that | 4| < ~r. Consequently, in all NS-KB experiments we simply take A, = A and set
N, equal to the number of available actions, which yielded optimal performance. Finally, since the
reward does not exhibit any structure with the arms in PS-CBs, we simply set A = A,.

A.3 REAL-WORLD DATA PREPROCESSING

Microarchitecture Prefetcher Selection Benchmark. We introduce a non—stationary bandit
dataset derived from the MICRO’23 study of |Gerogiannis & Torrellas (2023), built on the
SPEC06/17 benchmark suites. Each action corresponds to one of 11 L2 prefetcher configurations
(next-line on/off, stream degree, stride degree). The sequence spans 7=26224 rounds; at round
t, the reward is the trace-level normalized instructions—per—cycle in [0, 1], computed from perfor-
mance counters. We obtained the data directly from the original authors, and note that reproducing
the exact series from scratch is not feasible without the same stack, microarchitectural parameters,
and arm schedules described in the paper. We aim to release the dataset to facilitate real-world
experimentation by the bandit research community.

Micro-Architecture Prefetcher Selection - IPC Over Time
462.libquantum-714B

—— Prefetcher 0
—— Prefetcher 1
—— Prefetcher 2
Prefetcher 3
Prefetcher 4
Prefetcher 5
Prefetcher 6

144 oy i I ]
" I —— Prefetcher 7
’ —— Prefetcher 8
1 ‘ | —— Prefetcher 9
! o —— Prefetcher 10
i | \ ‘
W |
‘ l
i 1 T N M -,! ‘M " 4l.v\‘ o Al 4 N h

In
N

|
o

o
=)

=3
Y

Reward (Instructions Per Cycle - IPC)

0.4

IS

0.2 4

T T T T T T
0 5000 10000 15000 20000 25000
Time Step

Figure 4: IPC of the prefetchers of the dataset over time.

Stock Market Data Construction. Regarding the stock market experiments we follow the proce-
dure of (2022). For the first experiment, we use the data provided in (2022).
For the other experiment, we collect daily closing prices of NASDAQ-100 companies using the Ya-
hoo Finance APIE| We filter out stocks with fewer than 7" = 2000 trading days and align all time
series over the most recent I' dates. From this pool, we remove stocks with extremely high volatil-
ity or mean price to make the problem non-trivial, then select the top K most volatile stocks from

SData retrieved from Yahoo Finance using the publicly available yfinance package. Used solely for
non-commercial, academic research purposes.
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the remainder. In both cases, the stock prices are scaled accordingly to lie in [0, 1]. Each selected
company’s scaled closing price series defines the mean-reward sequence for one arm in a K -armed
bandit problem. Finally, we corrupt the reward at each time step with A/(0,0.01) noise.

Deng et al. (2022) Stocks (29 Companies)

300

Daily Closing Price

100 e NI e

Figure 5: Daily closing prices from the dataset of |Deng et al.| (2022).
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Figure 6: Daily closing prices obtained from Yahoo Finance.

COVID-NMA Clinical Dataset Construction. For the clinical benchmark based on the public
COVID-NMA pharmacological RCT database (Boutron et al.| ZOZS)E we use only released arm-
level counts and metadata and discretize time into calendar months, assigning each trial arm to
its Start_date (falling back to Pub_date_online); rows with invalid or missing dates are dis-
carded. We deterministically map case-insensitive rules on treatment type into 13 actions: Antivirals
(any), Anti—inflammatory (steroids/NSAIDs), Interleukin inhibitors, Monoclonal antibodies (other),
Immunoglobulins/Plasma, Antithrombotics, Antimicrobials, Immunomodulators (non—steroid), Ki-
nase inhibitors, Metabolic agents, Supportive care, Control/Standard care, and Other/Unknown. At
the bucket-month level we compute two endpoints: (i) Clinical Improvement @ D28 (successes
= number improved; trials = reported denominator, or baseline N if missing) and (ii) Survival @
D28 derived from mortality (successes = denominator — deaths). To form a long non—stationary
sequence, we adopt a union construction: for each (k, t, endpoint) bin we emit exactly s, ; ones and
Nkt —Sk,t zeros and concatenate all bins in a fixed order (month, c1inD28, mortD28, bucket).
The sequence is fully deterministic; in our run it comprises 7'~ 7.4 x 10* rounds with 13 actions.

"Data available at: https://doi.org/10.5281/zenodo. 14965887
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COVID-NMA Clinical Trials

Supportive care
Other/Unknown - « emwm o=
Anti-inflammatory (steroids/NSAIDs) -
Monoclonal antibodies (other) -
Antimicrobials (anti-parasitic/malarial/etc.) - . - - -
Kinase inhibitors - -
Immunomodulators (non-steroid) = - - e -
Metabolic agents - -

Antithrombotics —_ - - - .-

Reward (Success)

Immunoglobulins / plasma = - = e -
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Control / Standard care 4= =
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Figure 7: Raw rewards for COVID-NMA Clinical dataset (Boutron et al., 2025).

Yahoo! R6A Dataset Construction. For the NS bandit benchmark based on the Yahoo! R6A
click log dataseff] we follow the main procedure provided in|Cao et al. (2019a); [Zhou et al|(2020).
We merge ten consecutive days of logs and we group the data by article ID and compute smoothed
click-through rates (CTRs) using centered rolling averages over a 100-round window. This generates
a time series of empirical CTRs for each article. We segment the dataset into ten distinct subperiods
(each spanning half a day), filtering out actions with missing data or high noise. We further select
a set of common actions present in all segments to ensure consistent tracking. We average CTRs
within each subperiod and smoothing small deviations below a threshold 0.005. We stack selected
actions across multiple days into a single K x 7" matrix, where K is the number of valid actions and
T the compressed time horizon. To reduce spurious noise and compress the time scale, we apply
local smoothing. Finally, we apply post-processing filters to remove (i) globally high-value actions
(outliers with inflated CTRs), and (ii) actions that persist as best for too many segments.
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Figure 8: Mean rewards for the Yahoo! R6A dataset.

$Yahoo! Front Page Today Module User Click Log Dataset: https://webscope.sandbox.yahoo.com.
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Yahoo! R6B Dataset Construction. We follow a two-stage pipeline tailored to the Yahoo! R6B
logs.E Stage 1 (action vocabulary): we scan the logs to count displays and clicks per article and
select the top items using the click-through rate with a minimum display threshold of 2, yielding a
fixed action set with mapping id— k& € {0, ..., K —1} with K = 51, chosen on the same window as
the evaluation files. Stage 2 (replay log): we reprocess the files and, for each round ¢, form a feature
vector x; from the given features, restrict the candidate set to the Top—K vocabulary to obtain A,
locate the displayed item’s index j; € {0, ..., |A;] — 1}, and record the binary click X; € {0,1};
we drop rounds where the displayed item lies outside Top—K or |.4;| < 2. To increase coverage at a
fixed horizon T' = 50000, days are merged in a round-robin fashion before truncation. The resulting
dataset stores {x;, Ay, j5, 74, t; }i_, . For offline replay evaluation, a policy 7 observes (x¢, A;) and
proposes A; € {0,...,|A:| — 1}; we credit the outcome only when a; = j7, and report cumulative
reward Cr = Zle 1{a; = j}}re.

Yahoo R6B: Click Events for 51 articles

1

Reward (Click)
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Time-Steps

Figure 9: Rewards for the Yahoo! R6B dataset.

Sensor Correlation Data Construction. We use the Bioliq dataset from Komiyama et al.[(2024),
comprising a week of readings from 20 power plant sensors. Following their setup, we construct an
NS-SCB environment with 190 actions: the reward is 1 if the last 1000 measurements exceed 2.04,
and 0 otherwise. Evaluation is based on cumulative reward. Data available at https://github.
com/edouardfouche/G-NS—-MAB/tree/master/data.
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Figure 10: Raw rewards obtained from the Bioliq dataset (Komiyama et al.| [2024).

Ad Recommendation Data Construction. We evaluate on the Zozo environment, a real-world
ad recommender system from [Saito et al.|(2021), using the preprocessed dataset of[Komiyama et al.
(2024). We construct an NS-GLB environment with all 80 ads (unlike their 10-action setup), as-
signing reward 1 to any ad clicked within one second, and 0 otherwise. Evaluation is based on cu-
mulative reward. Data available at https://github.com/edouardfouche/G-NS-MAB/
tree/master/datal
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Figure 11: Raw rewards obtained from the Zozo dataset (Komiyama et al., [2024).

Live Traffic Data Construction. We construct a NS bandit environment based on the Criteo live
traffic dataset (Diemert et al.l [2017)), following the preprocessing approach of Russac et al.| (2019)
but modeling the problem as an NS-GLB rather than an NS-LB. Specifically, the dataset includes
banners shown to users, associated contextual variables, and whether each banner was clicked. We
retain the categorical variables cat 1 through cat 9, along with campa i gn, which uniquely identi-
fies each campaign. These categorical features are one-hot encoded, and a dimensionality reduction
via Singular Value Decomposition selects 50 resulting features. The parameter vector 6* is esti-
mated using logistic regression. Rewards are then generated from this regression model with added
Gaussian noise of variance o2 = 0.01. Unlike Russac et al. (2019), in which the authors employ a
single change, we introduce shifts in 8* via a geometric change-point model with parameter £ = 0.8,
chaging 60% of the 8* coordinates at each time-step to —6* and extend the horizon to 7' = 50000.

A.4 HARDWARE SPECIFICATIONS

All experiments were employed on a desktop using an Intel(R) Xeon(R) W-2245 processor with 32
GB RAM. Each experiment had a total runtime below one hour.

B THEORETICAL RESULTS

B.1 REGRET BOUNDS OF DAL IN PIECEWISE STATIONARY ENVIRONMENTS

As discussed in Section 4.2 of the paper, using Corollary 4.5, we can select different algorithms
as input for DAL to attain or improve the state-of-the-art regret bounds in PS environments. Com-
bining DAL with different bandit algorithms leads to the results in Table [T} It is evident that DAL
matches the state-of-the-art regret bounds in PS-LBs, PS-GLBs and PS-CBs, and DAL improves
the best known bounds in the PS-SCB and PS-KB settings. Note that for PS-SCBs, the strongest
result corresponds to the prior-based WeightUCB [Wang et al.|(2023)). As demonstrated in the final
columns of the table, the order-wise dependence on problem parameters from the stationary setting
seamlessly transfers to the PS setting without degradation.

B.2 PROOF OF PROPOSITION 4.1

In the NS-PB setting, the reward at time ¢ is given by f;(a) = u({6, a)) for all @ € A, where p is
injective and #; € R<. To detect any changes in 6, it suffices to detect changes in the values (f;, a)
for a suitable set of actions.

Since p is injective, each observation y; ; = p((¢, a;)) can be inverted to recover the inner product:

(O, ai) = 1 (ye,0)-

Hence, observing y; ; is equivalent to observing (6, a;).
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Table 1: Regret bound comparison of algorithms for PS bandits, under the assumption of Huang
et al.| (2025). “t” denotes settings with finite number of actions, while MASTER, ADA-OPKB

and SCB-WeightUCB also recover the appropriate bounds in this setting. “e” indicates prior-based
algorithms.

PS Non-Stationary NS Algorithm Regret DAL Input Regret
Setting Algorithm Bound in O(-) Bound in @(-)
MASTER (Wei & Luo}[2021) + LinUCB dvTNr -
ADA-OPKB (Hong et al.}|2023) d/NtT -
PS-LB DAL (ours) + LinUCB (Abbasi-yadkori et al.,[2011) dv/NtT dvT
DAL (ours) + LinTS (Agrawal & Goyal, 2013) d*/2\ /Nt T d3/2T
DAL (ours) + PEGET (Lattimore & Szepesvari, 2020) dNTT \/ﬁ
MASTER (Wei & Luo|[2021) + GLM-UCB dv/NrT -
PS-GLB DAL (ours) + GLM-UCB (Filippi et al.}[2010) dv/N7T dvT
DAL (ours) + GLM-TSL (Kveton et al.|2020) d®/2\/NyT d3/2\T
DAL (ours) + SupCB-GLM (Li et al.}[2017) AN T \VdT
SCB-WeightUCB® (Wang et al..2023) a2/3T2/3 N3 -
PS-SCB DAL (ours) + OFU-ECOLog (Faury et al.}|2022) dvNrT dvT
DAL (ours) + OFUL-MLogB (Zhang & Sugiyama}|[2023) d/NrT dvT
DAL (ours) + OFUGLB (Lee et al.}[2024) dvNtT dvT
MASTER (Wei & Luo, 2021) + GPUCB ~yrv/NrT -
PS-KB ADA-OPKB (Hong et al.}|2023) Vdyr NTT -
DAL (ours) + GPUCB (Chowdhury & Gopalan}|2017) yrvV Nt T ~r VT
DAL (ours) + REDS (Salgia et al.|[2024) Vyr Nt T VAyrT
MASTER (Wei & Luo}[2021) + ILTCB V]A[NTT log ] -
PS-CB ADA-ILTCB+ (Chen et al.,[2019) V| A|NTT log |I1] -
DAL (ours) + ILTCB (Agarwal et al.,[2014) V]A|INTT log |TT| V] AT log [TI]|
DAL (ours) + SquareCB (Foster & Rakhlin|[2020) V] A[NTT log |II]| V]A|T log [T

Suppose that A, C A is the maximal linearly independent subset of A. Then, the vector 6; is
uniquely determined by the inner products (f;, a) for a € A,. Therefore, any change in 6; results
in a detectable change in the vector of observations (¥ ;)q,e.4,, meaning that A, can be taken to be
any maximal linearly independent subset of A, with | A4.| < d.

B.3 PROOF OF PROPOSITION 4.2

In this subsection, we establish the construction of A, in the NS-KB setting. According to Lemma 5
from De Freitas et al.|(2012), we have that every f € Hy, with || f| zz, < B is Lipschitz continuous,
satisfying the following,

lf(x) = fly)] < BLy,||lz—y|2, Vz,y € A, where L,, := sup max
2eD4J<d

[3216(19, q)} 1/2
Op; 8%‘ p=q==

Recall that V' corresponds to the set of centers of the balls of an arbitrary d,-cover of A C [0, R}d.
Let [a]. denote the action in V7 that is the closest to a € A, i.e., [a]c = argmin,cp_[la — 2]
Then, we can leverage the Lipschitz property of functions in the RKHS to obtain the following
upper bound: For any a € Aand f € Hy, with || f||z, < B,

(a) (b)
(@) — F((a)o)] € BLulla — [alo]l2 € BL.or. 0

Step (a) follows from the Lipschitz property in Lemma 5 of |De Freitas et al.| (2012), and step (b)
results from the definition of a dr-cover. Then, for any arbitrary functions f and f’ in Hy with
1f e, | f' )| e, < B and action @ € A, we have

[f([ale) — f([ale) = | f(a) — f(@)] — | f(a) — f(lale)] — (@) — f'([ale)]
2@ - 1@ - 28187 20
where step (a) is due to equation [1} and step (b) is due to the assumption in Proposition 4.2. This

indicates that the value of the reward function at [a], must change by a non-zero amount. Thus, one
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can use observations from action [d]. in order to deduce whether the reward function has changed
its value in action a. In addition, by the upper bound on the covering number, the cardinality of Vr

is upper bounded by [vVdR/207]%.

B.4 SKETCH OF PROOF OF THEOREM 4.3

For PS-PBs and PS-KBs, the proof of Theorem 4.3 follows exactly the same as those of Theorem
1 and Corollary 1 in [Huang et al.| (2025), with the number of arms replaced by N,, due to the
different number of actions in the covering set. For completeness, we provide a proof sketch of
Theorem 4.3: First, we partition the regret into two cases. If no false alarm occurs and all changes
are detected within a short delay, we can separate the regret into three components: the regret due to
forced exploration, the regret during the short detection (restart) delay after changes, and the regret
incurred by the stationary bandit algorithm after the change is detected. If not, we use a crude linear
bound to bound the regret and show that the probability of false alarm and that of late detection are
low, which ensures that the regret due to detection failure is small.

For PS-CBs, the proof of Theorem 4.3 follows similar to those of NS-KBs and NS-PBs, except that
the definition of successful detection events should be modified as follows: For any k € [Nr],

Mk =

V[*l
Viek—1],ceC,i €[N, : Z 1{6} =c¢,(t—7-1 —1)mod [Nﬂ :i—l}z mpy, (2)
t=11—1 x
Ly =
vi+4;—1 N
{w €lk—1],c€C,i€ [N : Z I{Ct =¢ (t—m-1—1)mod {ﬂ = il} > fo}, (3)
t:l/l al
Eo=Nlek-1:ne{v,...,vy+ £ —1}} N MgN Ly, and 4)
G =& N {1 > 1}, &)

where 7; denotes the [*" detection point, and recall that £; = [N, /a;][21og(T) + ¢p/s] with s =
mingec ie[r):p; (c)>0 Pt(c) for I € [Nr]. For convenience in notations, we denote 7o = 0 and
[0] = 0. In the new definition of the detection success event, the number of reward samples for each
context-action pair obtained from forced exploration is lower bounded, ensuring enough pre- and
post-change samples for change detection. With these new successful detection events, the proof
follows exactly the same as those of Theorem 1 in|Huang et al.[(2025)), except for a new modified

union bound on the detection failure event Gy, derived as follows: For any k € {2,..., Np},
P(G5)
:IE”({HZ € [k— 1], T ¢ {l/l,...7l/l + 4 — 1}}U{Tk < V}C}UMEU,CE)

k-1

—

< P(r ¢ {vs,....vi 4+ =1}, &) + P (1 < v, Ep—r) + P (MG, Ex1) + P (L, Er—1)
=1

k-1
=) PE)P(m¢{v,....u+b—1} &)

=

+ T

P(Ek_l)lp (Tk < Vk‘|gk;—1) +P(5k_1)ﬂp (Mmgk'—l) + ]P)(gk,_l)P (Ei’gk—l)
—1

P (Tl ¢ {l/l7 R 4 1} ’glfl) +P (Tk < Uk}g}cfl) +P (Mz’g}cfl) +P (ﬂ%‘gkfl)
1

A
INS
=

~

k—1
P (Tl < Vg’gl_l) + Z]P’ (Tl >+ 51‘51_1) +P (Mz‘gk—l) +P (Cz‘gk—l) (6)

o, =1 >, i o,

[
™=

Il
_

where step (a) is due to the union bound, and step (b) is owing to the fact that P (£;_1) < 1. The
upper bounds on ¢; and P, follows the same as those in|Huang et al.| (2025). For terms ®3 and ®4,
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we can upper bound them as follows: For any k € {2,..., N},
P (M§|Er—1) =
vi—1 N
P(Ell<k,c €C,i €[N : Z 1 {C’t =c¢,(t—7-1—1) mod {ae—‘ = — 1} <mp €k_1>
t=711_1 !
l/k,1—1
= ]P’(ﬂc €C,i €[N : Z 1{Ci=c,(t —1—1 —1) mod [No/oy] =i—1} <mp 5k1>
t=Tk_2

vip_1—1
(S) Z Z P( Z 1{C;=c¢,(t—1—1 —1) mod [N,/oq] =i—1} <mp

ceC i€[N,]

5k1>

©) .
< [CIN.T (7)

t=Tk_2

(2 Z Z exp (—2mp(log T')?)

c€C i€[N,]

where step (a) stems from the union bound. In step (b), since 1 {C}; = ¢} arei.i.d. 1/4-sub-Gaussian
for t > 71,_o given £;_1, we can apply Chernoff bound to obtain the inequality. In step (c), we sim-
ply use the fact that mp > 0 and log T > 1 for T' > 3. Note that M = @ and thus Pr(M¢§|&y) = 0.
The derivation of the upper bound of ®4 follows the exact same steps as in the ones in equation
The rest of the proof follows exactly the same as those in [Huang et al.[(2025).

B.5 PROOF OF COROLLARY 4.4

InPS-PBs, N. = d, p > 1/2, and ¢ = r = 0. Thus, Ry = O(VAN7T + dP\/N7T) =
O(dP~4 (log |T1])" /N1 T).

In PS-KBs, g > 1/2, p > O and r =
[VdR/267]%. Thus, N, < [C729/")? with 67 =

dPy$/NrT) = O(dP~f (log [I1|)"/N1T).

We emphasize that when the number of action is smaller than the covering number, i.e., |A| <

0. We can upper bound N, using the fact that [Vp| <

/2=2p/ A
75&%/5 and Ry = O((d*P~3NrT)/? +

[C’y;q/ d]d < ~r, then we can set A, to be the entire action set .A. In this case, N, < 7, guaran-
teeing order-optimal regret.

In PS-CBs, No < |A, r > 1/2, p = ¢ = 0, and [I] = JA[Il. Thus, Ry =
O((|A log [TI))"v/N7T + /IC[JAIN7T) = O(dPy7(|Allog |11])" /N7 T).
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