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ABSTRACT

We introduce a practical, black-box framework termed Detection Augmented
Learning (DAL) for the problem of piecewise stationary bandits without knowl-
edge of the underlying non-stationarity. DAL accepts any stationary bandit al-
gorithm with order-optimal regret as input and augments it with a change de-
tector, enabling applicability to all common bandit variants. Extensive experi-
mentation demonstrates that DAL consistently surpasses current state-of-the-art
methods across diverse non-stationary scenarios, including synthetic benchmarks
and real-world datasets, underscoring its versatility and scalability. We provide
theoretical insights into DAL’s strong empirical performance, complemented by
thorough experimental validation.

1 INTRODUCTION

Bandit models underpin a wide range of engineering systems, from recommendation and ads to dy-
namic pricing and real-time bidding (Lefortier et al., 2014; Li et al., 2010; Schwartz et al., 2017;
Sertan et al., 2012; Tajik et al., 2024; Flajolet & Jaillet, 2017). Many variants of bandits have
emerged since the work of (Robbins, 1952), which fall into parametric bandits (PB) (Auer, 2002;
Faury et al., 2020; Filippi et al., 2010), non-parametric bandits (NPB) (Srinivas et al., 2010) and
contextual bandits (CB) (Woodroofe, 1979; Langford & Zhang, 2007). In the general bandit prob-
lem, in each round, an agent receives a context Ct randomly sampled from a set C, and selects a
policy πt from a policy set Π—a set of mappings from C to a compact action setA ⊆ Rd. Then, the
agent chooses action At = πt(Ct) and receives reward

Xt = ft(Ct, At) + εt,

where ft : C ×A → R is the reward function and εt is the zero-mean sub-Gaussian noise. The goal
is to minimize the dynamic regret, using a causal policy πt based on past interactions:

RT := EAt∼πt
Ct∼Pt

[
T∑

t=1

max
π∈Π

ft(Ct, π(Ct))− ft(Ct, At)

]
.

CBs follow the general formulation above, where the context Ct is independently sampled from
Pt and |A| is finite. In PB and NPB settings, the context is fixed across time and |A| can be
infinite. With slight abuse of notation, we write ft(Ct, At) = ft(At) in PBs and NPBs. For PBs,
ft(At) = µ(⟨θt, At⟩), where θt is a bounded unknown parameter and µ : R → R is injective.
These include linear bandits (LBs), with µ as identity, generalized linear bandits (GLBs), and self-
concordant bandits (SCBs), where µ is self-concordant and the noise variance may depend on the
mean (Russac et al., 2021). For NPB, we consider kernelized bandits (KBs), where ft ∈ Hk, a
reproducing kernel Hilbert space (RKHS) induced by a continuous positive semi-definite kernel
k : A × A → R with k(x, x) ≤ 1 and ∥ft∥Hk

≤ B. In KBs, a central complexity measure is the
maximum information gain γT (worst-case mutual information between f and T noisy evaluations).
For compact A ⊂ Rd: γT = O((log T )d+1) for the Squared Exponential (SE) kernel, and γT =
O(T β log T ) with β = d(d+ 1)/[2ν + d(d+ 1)] for Matérn(ν) kernels.

Bandits remain practically relevant today: recent deployments span A/B testing (Zhang et al., 2025),
clinical trials (Varatharajah & Berry, 2022), large language models (Shin et al., 2025), diffusion
models (Aouali, 2024), and computer architecture (Gerogiannis & Torrellas, 2023), which even
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leverage the canonical formulations as the core decision engine. Accordingly, the key challenge is
developing bandit methods that perform reliably under real-world constraints—aimed at practical ef-
fectiveness, not just analysis. The lion’s share of the literature on bandits assumes stationarity—i.e.,
fixed ft, θt, Pt—but this rarely holds in practice due to evolving conditions (Agrawal & Jia, 2019;
Cai et al., 2017; Chen et al., 2020; Lu et al., 2019). Non-stationary (NS) settings are often cate-
gorized into two types–gradual drifts and abrupt changes. In the drifting model, ft and Pt evolve
slowly under a variation budget constraint (Besbes et al., 2014; Wei & Luo, 2021). In contrast,
piecewise stationary (PS) models assume abrupt shifts at unknown change-points:

1 =: ν0 < ν1 < · · · < νNT
< νNT+1 := T + 1, NT : total number of changes

with ft = ft′ and Pt = Pt′ for t, t′ ∈ {νk, . . . , νk+1 − 1} and different across change-points.

NS bandit algorithms are typically either adaptive—adjusting continuously, or restarting—choosing
to unlearn and kickstart the learning process at certain times. They may also be prior-based (assum-
ing knowledge of the non-stationarity) or prior-free. Prior-based adaptive methods (discounting/slid-
ing window) weigh recent observations more heavily: NS multi-armed bandits (NS-MABs) (Gariv-
ier & Moulines, 2011; Kocsis & Szepesvári, 2006), NS-LBs (Cheung et al., 2019; Russac et al.,
2019), NS-GLBs (Faury et al., 2021; Russac et al., 2020), NS-SCBs (Russac et al., 2021; Wang
et al., 2023), NS-KBs (Deng et al., 2022; Zhou & Shroff, 2021). Prior-based restarting approaches
use budgeted restarts: NS-MABs (Besbes et al., 2014), NS-LBs/GLBs (Zhao et al., 2020), NS-
KBs (Zhou & Shroff, 2021). Detection-based restarting methods exist in both flavors: prior-based
for NS-MABs (Cao et al., 2019b; Liu et al., 2018) and NS-CBs (Luo et al., 2018); prior-free for NS-
MABs (Auer et al., 2019; Besson et al., 2022; Huang et al., 2025), for NS-LBs/KBs (Hong et al.,
2023) and for NS-CBs (Chen et al., 2019). The most closely related work is Huang et al. (2025),
which addresses PS-MABs and introduces techniques that we build upon in establishing our theory.

Among prior-free methods, black-box approaches are particularly appealing: they equip any sta-
tionary bandit algorithm with non-stationarity handling capabilities. MASTER (Wei & Luo, 2021)
is the only known order-optimal black-box method for general bandit and reinforcement learning
settings. Importantly, although MASTER is order-optimal, it is not practically applicable (Gero-
giannis et al., 2025). More broadly, the literature emphasizes theory over evidence, as empirical
validation of order-optimal methods is scarce: NS-NPBs and NS-PBs are evaluated almost exclu-
sively on synthetic data (Wang et al., 2023; Hong et al., 2023; Gerogiannis et al., 2025), and NS-CBs
lack experiments altogether (Chen et al., 2019). We close these gaps with a theoretically grounded,
practical black-box framework and comprehensive real-world evaluation in standard benchmarks.

Contributions. We present (to our knowledge) the first practical prior-free, black-box detection-
based framework for general PS bandits. The design is motivated by three pragmatic insights: (i)
prior knowledge of non-stationarity is rarely available, (ii) restart-style methods can have lower
worst-case complexity than fully adaptive schemes (Peng & Papadimitriou, 2024), and (iii) a black-
box reduction simplifies NS algorithm design to specifying when to restart a stationary learner. Our
method is simple—combining a change detector with any stationary bandit algorithm—modular,
and easy to implement. Empirically, extensive synthetic and real-world evaluations in standard
datasets show consistent gains over both prior-free and prior-based baselines, and (to our knowledge)
provide the first comprehensive real-world assessment of order-optimal baselines previously lacking
empirical study. Theoretically, under mild assumptions, our regret matches the state-of-the art for
PS-LBs, PS-GLBs and PS-CBs and improves the best known bounds for PS-SCBs and PS-KBs; for
drifting regimes we identify conditions for good performance and validate them empirically.

2 THE DAL FRAMEWORK

The DAL framework is a black-box characterized by a modular structure of three components: a
non-stationarity detector, a forced exploration scheme, and a bandit algorithm. We provide high-
level ideas of the structure of our approach and formally present our framework in Algorithm 1.

Non-Stationarity Detector To identify changes in the environment, DAL uses a general-purpose
detector D for monitoring shifts in the distribution of judiciously chosen reward observation se-
quences obtained through forced exploration. This distinguishes our approach from methods like
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MASTER, which rely on detecting violations of stationary regret guarantees. We adopt a detec-
tor aligned with Besson et al. (2022); Huang et al. (2025), grounded in the well-established theory
of quickest change detection (Veeravalli & Banerjee, 2013; Xie et al., 2021). Given any arbitrary
context, DAL samples rewards from actions within a carefully selected finite subset, and detects
changes in the mean reward associated with the context-action pair.

Alg. 1 Detection Augmented Learning (DAL)
Input: bandit B, detectorD, covering set size Ne,
covering set Ae = {a(i) : i ∈ [Ne]}, context set
C, frequencies {αk}Tk=1, horizon T
Initialize: histories H(c,a)←∅ ∀(c, a)∈ C×Ae,
detection τ ← 0, counter k← 1

1: for t = 1, 2, . . . , T do
2: Observe context Ct

3: if (t−τ+1 mod ⌈Ne/αk⌉)+1 = i ∈ [Ne]
then

4: Play action a(i) and receive reward Xt

5: Add reward Xt into historyH(Ct,a(i))

6: if D
(
H(Ct,a(i))

)
= detection then

7: Reset the bandit algorithm B
8: Clear allH(c,a) ∀(c, a) ∈ C×Ae,
9: τ ← t, k ← k + 1

10: end if
11: else
12: Run the stationary bandit algorithm B
13: end if
14: end for

Forced Exploration In stationary bandit set-
tings, effective algorithms quickly concentrate
on (near-)optimal actions for each context,
rarely exploring suboptimal actions. In NS en-
vironments, however, this behavior may lead
to missed changes on these rarely sampled ac-
tions, and thus, forced exploration on these ac-
tions is essential. When the action space is large
or infinite, exploring all actions becomes infea-
sible. Therefore, DAL only does extra explo-
ration on a finite covering set, Ae = {a(i) :
i ∈ [Ne]} ⊆ A, in which a(i) denotes the i-
th action in Ae. Ae is designed such that the
mean reward of at least one context-action pair
in C × Ae changes whenever a change occurs.
In particular, after the (k − 1)th restart, DAL
is forced to play each action in Ae once for Ne

steps, followed by the bandit algorithm for the
next ⌈Ne/αk⌉ −Ne steps, repeatedly, until the
kth restart. Here, αk ∈ (0, 1) is the exploration
frequency, striking a balance between detection
delay and regret from extra exploration.

Bandit Algorithm With a detector D and forced exploration, DAL augments a (stationary) bandit
algorithm B: It resets B entirely wheneverD detects changes in a reward distribution associated with
any context-action pair in C × Ae (Line 6), and runs B with periodic forced exploration otherwise.
Essentially, the purpose of the detector is to identify shifts in the mean of the rewards, i.e., changes
in the environment. Line 6 and D are fully elaborated in Sections 3, 4.1 and in the Appendix. A key
advantage of DAL is its ability to translate strong stationary performance into robust performance
under NS conditions. Therefore, by selecting a well-performing bandit algorithm, the DAL frame-
work inherently achieves effective adaptation to NS environments. In fact, the only requirement for
DAL’s input stationary algorithm is to attain optimal stationary regret performance bounds.

3 PRACTICAL PERFORMANCE

3.1 EXPERIMENTAL BASELINES

In our experiments, we evaluate all methods referenced in Section 1, highlighting the strongest
state-of-the-art algorithms applicable to PS and drifting settings across both synthetic and real-
world benchmarks. These baselines include MASTER (Wei & Luo, 2021), the only other black-
box method with order-optimal regret. MASTER lacks guarantees for SCBs, but empirical evi-
dence (Wang et al., 2023) supports using it with Log-UCB-1 (Faury et al., 2020) in NS-SCBs. We
additionally include two prior-free, order-optimal algorithms: ADA-OPKB (Hong et al., 2023) for
NS-LBs/NS-KBs and ADA-ILCTB+ (Chen et al., 2019) for NS-CBs. ADA-OPKB requires exten-
sive tuning (7 hyperparameters), which is incompatible with a fully prior-free setting; nevertheless,
we tune it (and MASTER’s single parameter n) for best performance in our evaluation. We also com-
pare against two prior-based discounted approaches—WeightUCB (Wang et al., 2023) for drifting
PBs and PS-SCBs, and WGP-UCB (Deng et al., 2022) for drifting KBs. All remaining methods are
prior-based. To maintain figure readability, we group algorithms by paradigm (discounted, sliding-
window, budget-restart) while keeping distinct methods separate when they differ meaningfully. In
real-world experiments, we focus on the strongest current state-of-the-art methods, as the remaining
algorithms are less competitive. We use the hyperparameters specified in the original works.
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3.2 PRACTICAL TUNING OF DAL

Across all settings, DAL uses the Generalized Likelihood Ratio (GLR) and the Generalized Shiryaev-
Roberts (GSR) tests (Huang & Veeravalli, 2025) as the detector D, which are given in Algorithms 2
and 3. For the detectors, we set their thresholds βGLR(n, δF ) = log(n3/2/δF) and βGSR(n, δF ) =

n5/2/δF, with δF = 1/
√
T , as per Huang et al. (2025); Besson et al. (2022). Concretely: In

NS-LBs, LinUCB (Abbasi-yadkori et al., 2011) pairs with Gaussian GLR and GSR. In NS-GLBs,
GLM-UCB (Filippi et al., 2010) pairs with Gaussian GLR and GSR. In NS-SCBs, OFUGLB (Lee
et al., 2024) pairs with Bernoulli GLR and GSR. In NS-KBs, REDS (Salgia et al., 2024) pairs with
Gaussian GLR and GSR. In NS-CBs, SquareCB (Foster & Rakhlin, 2020) pairs with Bernoulli GLR
and GSR. We implement the stationary bandit algorithms as provided in their original works. For all
settings, we set αk =

√
k||C|Ne/(2

√
T log2 T ) as per Theorem 4.8. A crucial advantage of DAL is

that it is hyperparameter-free, guided entirely by our theoretical principles.

To construct Ae, for NS-PBs we follow Proposition 4.2: we greedily select linearly independent
actions until collecting d such vectors, or as many as exist if fewer than d are available. In our
experiments, actions are sampled from a multivariate Gaussian, which always yields d such vectors.
For NS-KBs, Ae is from a δT -cover by selecting the centers of the covering balls according to
Proposition 4.3 and Corollary 4.9. In finite action spaces, we compute γT ; if |A| ≤ γT , then by
Corollary 4.9 the action set already forms a valid cover and we take Ae = A, otherwise we select
the γT actions closest to the cover centers. In all our NS-KB experiments, γT is larger than |A|, so
we always have Ae = A. In PS-CBs, the action space is finite, and as noted in Remark 4.4, both
the theory and our experiments take Ae = A. DAL’s exploration burden is Ne = |Ae|, which is
determined by the structural complexity of the reward class. In PBs and KBs |Ae| is independent
of the infinite A, while in CBs all finite actions must be explored. DAL limits Ne to the minimum
needed to characterize the reward function for detection and learning. DAL is driven by structural
complexity, not |A|. An extended discussion on Ae and its implications appears in the Appendix.

3.3 SYNTHETIC EXPERIMENTS
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Figure 1: Dynamic regret vs. environment steps for synthetic experiments (lower=better). First
three rows correspond to the geometric change-points and the final one to the drifting case.

3.3.1 EXPERIMENTAL PARAMETERS

Common parameters In all synthetic experiments, the action space comprises 100 unique actions
with dimension d = 10. These actions are sampled independently from N (0, I). The horizon is
fixed to T = 50000 and we average the results over 15 independent trials.
Remark 3.1. In Algorithm 1, when |A| is finite, change-detection can be performed on the actions
selected by B that are not in Ae, which improves performance. This does not affect the theoretical
properties of the algorithm, and we employ this variation for our experiments.
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NS-PBs The actions are scaled to lie within an L-ball and the underlying parameters θt belong
to an S-ball. Specifically, for NS-LBs and NS-GLBs we have that S = L = 1, while for NS-
SCBs, we have that L = 1 but S = 3. Every time a θt is initialized or changed, its elements are
chosen independently and uniformly in [−1, 1], and then are scaled to the S-ball. For both NS-
GLBs and NS-SCBs, we select µ(x) := σ(x) = (1 + e−x)−1 (sigmoid). The additive noise εt
is sampled according to N (0, 0.01) at each time-step, while for NS-SCBs, we sample the random
reward according to Bernoulli(µ(⟨θt, At⟩)) at time t. To set Ae in NS-PBs, we use Corollary 4.9.

NS-KBs Actions are scaled in the
√
d-ball and εt ∼ N (0, 0.01). We employ the SE kernel with

ℓ = 0.2. We follow a procedure similar to Chowdhury & Gopalan (2017); Deng et al. (2022).
Specifically, every time we initialize or change the reward function, ft is generated from the RKHS
obtained by a discretization of [−1, 1] into 200 evenly spaced points. The reward function is set as
f(·) =

∑M
i=1 αik(·, xi), αi ∼ Unif[−1, 1] and M = 200. For Ae, we use Corollary 4.9.

NS-CBs The context Ct ∈ Rdc is drawn at each round from a fixed pool of 1000 normalized vectors
with dc = 10, according to a categorical distribution. At every initialization or change, at least one
of the ft or Pt changes, while Π is fixed in each run. For a ∈ A and context Ct, ft is clipped in
[0, 1], and is given by

ft(Ct, a) =
[
ba + z(sig) σ(u⊤

a Ct) + z(sin) sin(v⊤a Ct) + z(xpr) Ct,2Ct,3

]
[0,1]

,

where ua, va ∼ N (0, I), ba ∼ Unif[0.3, 0.7], and z(sig), z(sin), z(xpr) are drawn uniformly from
[0.25, 0.45], [0.15, 0.35], [0.10, 0.25], respectively. Rewards are sampled as Bernoulli(ft(Ct, At)).
Since the reward function lacks any arm-related structure, here we set A = Ae (see Remark 4.4).

3.3.2 EXPERIMENTAL BENCHMARKS

Piecewise Stationarity In the PS setting, we adopt the geometric change-point model proposed
in Gerogiannis et al. (2025), and independently sample the intervals between the change-points
according to a geometric distribution with parameter ρ = T−ξ, for ξ ∈ {0.4, 0.6, 0.8}. We do not
impose any restriction on the lengths of the intervals between change-points in our experiments.

Drifting Non-Stationarity Regarding comparisons in drifting non-stationarity, we adopt the fol-
lowing drift model: in each run, the reward structure changes linearly over T rounds from an initial
value to a final value, where the end-points are chosen as in the beginning of the section. Specifically,

PBs: θt = (1− t/T ) θinit + (t/T ) θfinal, KBs: ft = (1− t/T ) finit + (t/T ) ffinal,

CBs: ϕt = (1− t/T )ϕinit + (t/T )ϕfinal, ϕt := (ua,t, va,t, ba,t, zt), zt := (z
(sig)
t , z

(sin)
t , z

(xpr)
t ).

Experimental ResultsPer the results in Figure 1, DAL outperforms the current state-of-art methods
in every synthetic experiment for both choices of detectors. DAL only abandons the actions chosen
by the stationary bandit algorithm and restarts learning when an efficient change detector flags a
mean-shift in rewards; hence, it avoids unnecessary restarts, especially when the intervals between
the change-points are long enough for such detectors to correctly flag said changes without false
alarms. Regarding drifting non-stationarity, DAL significantly outperforms all other methods. In
fact, it fares better than both WeightUCB and ADA-OPKB, which not only are known to attain the
optimal regret bound in the drift setup, but have also been shown to perform well in practice.

3.4 REAL-WORLD EXPERIMENTS

Microarchitecture Prefetcher Selection Benchmark. We introduce a novel dataset for NS bandit
evaluation using the data of Gerogiannis & Torrellas (2023).1. The dataset includes 11 prefetcher
configurations (actions) that trade aggressiveness against efficiency. At each time-step, the reward is
the normalized instructions per cycle in [0, 1], and the horizon is T = 26224. Following Gerogiannis
& Torrellas (2023), we also evaluate D-UCB (Kocsis & Szepesvári, 2006) in its native form; while
for our baselines we model the task as an NS-SCB. D-UCB hyperparameters follow its original
paper and Gerogiannis & Torrellas (2023). Evaluation is by cumulative reward.

1We aim to release the dataset to facilitate real-world experimentation by the bandit research community.
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Figure 2: Results for real-world experiments of Section 3.4, averaged over 15 independent runs.
Top: dynamic regret (lower=better); Bottom: cumulative reward (higher=better).

Stock Market Benchmarks. NS-KBs have been applied to stock market prediction, and we fol-
low the procedure of (Deng et al., 2022) to simulate two environments: one using their original
data (Quandl stocks) and one constructed from NASDAQ-100 stocks retrieved via the yfinance
Python package.2 In the Yahoo-based dataset, we retain stocks with sufficient history (T=2000,
approx. 5.5 years) and select the 50 most volatile as actions. Daily closing prices define the reward
function, and the empirical price covariance matrix is used as the kernel. To increase difficulty, we
add Gaussian noise N (0, 0.01) to the reward at each time-step. Evaluation is by dynamic regret.

COVID-NMA Clinical Benchmark. We construct an NS-SCB benchmark from the open COVID-
NMA database (Boutron et al., 2025). To maximize coverage while retaining clinical meaning, we
form a UNION endpoint: for each bucketed-treatment arm and month, we include both Clinical Im-
provement at Day 28 (when reported) and Survival at Day 28 (1–mortality) as separate contributions,
leading to binary rewards (1=success). Treatments (actions) are mapped into 13 classes and month
counts are expanded exactly (s successes and n−s failures per bin) and concatenated in a fixed
chronological order (month, clinD28 then mortD28, then bucket) to yield a long non-stationary
sequence with T ≈ 7.4×104. Evaluation is based on cumulative reward.

Click Log Benchmarks. We use the Yahoo! R6A click log dataset.3 Following (Cao et al., 2019b;
Seznec et al., 2020), we compute smoothed click-through rates (CTRs) via rolling averages over
2000 rounds, average CTRs within each subperiod, and suppress fluctuations below 0.005. We
combine actions across 5 days, leading to 64 actions, compress the horizon to 50000, and multiply
final CTRs by 10. We model the resulting environment as an NS-SCB problem, reflecting the logistic
reward structure typical in such settings (Russac et al., 2021). Evaluation is by dynamic regret.

Alongside the R6A, we build a fixed-arm replay benchmark from the additional Yahoo! R6B click
logs, as an NS-CB problem.3 We select the highest-CTR articles to form an action set of 51 actions,
round-robin interleave days and then select T = 50000. For each visit, we intersect the candidate set
with this vocabulary, keep rounds where the displayed item remains, and record the binary click as
the raw reward (Xt ∈ {0, 1}). We rely on R6B’s uniform-random logging for unbiased replay/IPS
evaluation (Li et al., 2011). Our metric is (replay) cumulative reward.

Live Traffic Benchmark. We construct an NS bandit environment based on the Criteo live traffic
dataset (Diemert et al., 2017), following the preprocessing approach of Russac et al. (2019) but
modeling the problem as an NS-GLB rather than an NS-LB. We estimate the underlying parameter
θ∗ using logistic regression. Unlike Russac et al. (2019), in which the authors employ a single
change, we introduce shifts in θ∗ via a geometric change-point model with parameter ξ = 0.8 and
extend the horizon to T = 50000. The metric here is the dynamic regret.

Sensor Correlation Benchmark. We use the Bioliq dataset provided by Komiyama et al. (2024),
which contains a week of measurements from 20 sensors in a power plant. We process the reward
as Komiyama et al. (2024) and construct an NS-SCB environment with 190 actions. At each time-

2Data retrieved from Yahoo Finance using the publicly available yfinance package. Used solely for
non-commercial, academic research purposes.

3Yahoo! Front Page Today Module User Click Log Datasets: https://webscope.sandbox.yahoo.com.
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step, the reward is 1 if the last 1000 measurements exceed a threshold of 2.04, and 0 otherwise.
Evaluation is based on cumulative reward.

Ad Recommendation Benchmark. We evaluate on the Zozo environment, a real-world ad rec-
ommender system deployed on an e-commerce platform, introduced by Saito et al. (2021). Using
the dataset preprocessed by Komiyama et al. (2024), we construct an NS-GLB environment that
captures the dynamics of online ad recommendation. Unlike Komiyama et al. (2024), in which the
authors limit the setup to 10 actions due to sparsity, we keep all 80 ads as actions. Following their
setup, we assign a reward of 1 to any ad that received at least one user click within a one-second
window, and 0 to ads with no clicks. Here, evaluation is based on cumulative reward.

Based on the results in Figure 2, DAL consistently outperforms all state-of-the-art baselines across
real-world benchmarks, in both dynamic regret and cumulative reward with both GLR and GSR.
We attribute this strong performance to the robustness DAL demonstrates in the synthetic settings,
which captured a range of challenging NS scenarios. These findings underscore DAL’s practical
effectiveness. In what follows, we provide a theoretical explanation for its performance.

4 THEORETICAL INSIGHTS

4.1 ON EFFECTIVE DETECTION

When selecting a non-stationarity detector, accuracy and efficiency are essential for ensuring opti-
mal regret growth. Any detector aiming to identify distribution shifts inherently requires a certain
number of samples, both before and after the change. Ideally, this sample complexity should scale
appropriately to avoid negatively impacting the total regret. To this end, the GLR and GSR tests
have been shown to achieve a pre- and post-change sample complexity of the order log T (Huang &
Veeravalli, 2025). Since logarithmic terms are disregarded in dynamic regret analyses, it suggests
that integrating such detection mechanisms could achieve optimal regret growth.

The stopping time τ of a change detector D denotes the time-step at which a change is identified.
Let Pν and Eν be the probability and expectation with change-point at ν, and P∞ and E∞ be the
ones with no change-point. The latency ℓD is the length of time post-change within which a change
is declared with a probability 1− δD, i.e.,

ℓD := inf{t ∈ [T ] : Pν(τ ≥ ν + t) ≤ δD, ∀ ν ∈ [mD + 1, T − t]}

where mD is the length of the pre-change window at which no changes occur. A good detector seeks
to minimize ℓD while ensuring low false-alarm probability over horizon T , namely P∞(τ ≤ T ) ≤
δF with δF ∈ (0, 1). To ensure order-optimal regret for DAL, the detector D must satisfy:
Property 4.1. ℓD +mD = O(log T + log(1/δF) + log(1/δD)).

This condition is crucial in the proof of Theorem 4.8 in the Appendix. We employ the GLR and GSR
tests since they satisfy Property 4.1 (Huang & Veeravalli, 2025), with thresholds βGLR(n, δF) =
O(log(n3/2/δF)) and βGSR(n, δF) = O(n5/2/δF). In experiments, GSR performs slightly bet-
ter than GLR, but the difference is minor since both satisfy Property 4.1. This shows that the
good performance is due to the design of DAL rather than the specifics of a single detector.

Alg. 2 Generalized Likelihood Ratio Test
Input: History H = {X1, . . . , Xn}, δF, δD, KL di-
vergence kl(·, ·)
1: for k = 1 to n− 1 do
2: Compute empirical means µ̂1:k, µ̂k+1:n,µ̂1:n

3: GLRk ← k kl(µ̂1:k, µ̂1:n)
4: + (n− k) kl(µ̂k+1:n, µ̂1:n)
5: if GLRk ≥ βGLR(n, δF) then
6: return detection
7: end if
8: end for

Alg. 3 Generalized Shiryaev–Roberts Test
Input:HistoryH = {X1, . . . , Xn}, δF, δD, KL diver-
gence kl(·, ·), GSRk ← 0

1: for k = 1 to n− 1 do
2: Compute empirical means µ̂1:k, µ̂k+1:n,µ̂1:n.
3: Compute GLRk according to Alg. 2
4: GSRk ← GSRk + exp(GLRk)
5: if GSRk ≥ βGSR(n, δF) then
6: return detection
7: end if
8: end for

The Bernoulli GLR and GSR are used for sub-Bernoulli rewards with kl(x, y) = x ln(x/y) + (1−
x) ln

(
1−x
1−y

)
, and the Gaussian variants are for σ2-sub-Gaussian rewards with kl(x, y) = (x−y)2

2σ2 .
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To select which samples should be fed into the detector, one needs to properly select the covering
set Ae, so that it contains actions that can capture changes in the reward function for any context.
However, changes cannot be arbitrarily small, as no change detector may be able to identify them.
Hence, Ae should be designed such that whenever a change occurs, reward sequences associated
with at least one context-action pair in C × Ae exhibit an appreciable mean-shift. Define

∆c := inf
f ̸=f ′

max
(c,a)∈C×Ae

|f(c, a)− f ′(c, a)|.

Then, ∆c captures how well the context-action pairs in C×Ae can discern between candidate reward
functions. According to Huang et al. (2025), ∆c crucially affects the performance of the GLR and
GSR tests, as their pre- and post- change sample complexity grows with 1/∆2

c . The more discernible
the changes are, the easier the detection becomes. Since forced exploration incurs regret, Ae should
be chosen to minimize Ne while maximizing ∆c. However, this cannot be done since the function
ft is unknown. Hence, we provide the ways with which one can ensure appreciable mean-shift
(i.e., ∆c > 0) in settings where the reward function has a certain structure (e.g., linear dependence
on the arms or prescribed smoothness). Specifically, the NS-PB and NS-KB settings satisfy such
conditions. Using these choices of Ae, one can guarantee order-optimal regret in certain cases, as
shown in the next section. The proofs of the following propositions are given in the Appendix.
Proposition 4.2. In NS-PBs, Ae can be any arbitrary maximal linearly independent subset of A.
Proposition 4.3. In NS-KBs, assume that A ⊆ [0, R]d w.l.o.g., and that there exists an ã ∈ A s.t.

inf
f ̸=f ′
|f(ã)− f ′(ã)| > LT ,

for some LT > 0. Let δT := LT /(2BLu), where BLu is the Lipschitz constant of all f ∈ Hk(A)
and let VT ⊂ A be the set of the centers of the balls of an arbitrary δT -cover. Then,Ae can be taken
as VT , with |VT | ≤ ⌈

√
dR/2δT ⌉d = ⌈

√
dBLuR/LT ⌉d.

Remark 4.4. In NS-CBs, if ft andA satisfy the structural assumptions of the preceding propositions
for any fixed context, we can setAe similarly. Without such structure, we setAe = A, asA is finite.

4.2 ON ORDER-OPTIMALITY IN PIECEWISE STATIONARY ENVIRONMENTS

In the PS setting, the minimax regret lower bound under bandit feedback is Ω̃(
√
NTT ) (Garivier

& Moulines, 2011),4 which applies across all settings considered in this work, differing only in
problem-dependent constants. Under certain conditions on the minimum spacing between change-
points, our algorithm matches this bound with state-of-the-art dependence on these constants.
Specifically, the assumption states that νk−νk−1 should be large enough to acquire enough samples
to trigger restarts. For brevity, we first define the relevant quantities and then state the assumption.
Definition 4.5. For PS-PBs and PS-KBs, let mk := ⌈Ne/αk⌉mD and ℓk := ⌈Ne/αk⌉ℓD for k ∈
[NT ]. For PS-CBs, let mk := ⌈Ne/αk⌉⌈mD/s+log T/4s2+

√
mD log(T )/2s3 + (log T )2/16s4⌉

and ℓk := ⌈Ne/αk⌉⌈ℓD/s + log(T )/4s2 +
√
ℓD log T/2s3 + (log T )2/16s4⌉ for k ∈ [NT ], with

s := minc∈C,t∈[T ]:Pt(c)>0 Pt(c).

Assumption 4.6. Assume ν1 ≥m1 and νk − νk−1 ≥ ℓk−1 +mk for k ∈ {2, . . . , NT }.

In PS-PBs and PS-KBs, DAL performs round-robin forced exploration on each arm every ⌈Ne/αk⌉
rounds. Thus, the scaling of mD and ℓD in Definition 4.5 is necessary for Assumption 4.6 to guar-
antee that the change detector in each arm observes at least mD pre-change samples and ℓD post-
change samples. In PS-CBs, each context–action pair is only seen in expectation (not determinis-
tically) at least once every ⌈Ne/αk⌉/s rounds due to randomness. Thus, in Assumption 4.6, we
increase the change-point separation, as shown in Definition 4.5, to collect the mD and ℓD samples
with high probability. These conditions allow D to reliably detect a change (Property 4.1).

The assumption on the minimum separation between change-points essentially requires scaling as
Õ(
√
T/k). However, this condition primarily emerges from a conservative proof technique, where

missed detections are aggregated into a single adverse event. Practically, and as corroborated by
our experiments, this assumption is often violated without negatively impacting the regret perfor-
mance—even under scenarios with frequent and arbitrarily placed change-points (e.g. ξ = 0.4).

4We use the ∼ in Ω̃(·) to hide polylogarithmic factors.
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We suspect that this resilience arises because any detector satisfying Property 4.1, while poten-
tially missing isolated short intervals, reliably detects subsequent changes when stationary segments
exceed the threshold length. Even if a change is entirely missed during a segment shorter than
Õ(
√
T/k), the resulting regret remains under that order. Conversely, when the assumption holds,

optimal regret is provably guaranteed. Thus, the required separation threshold acts as a practical
”sweet spot”: segments longer than this threshold are detected reliably, ensuring optimal perfor-
mance, while shorter segments incur minimal regret, thereby preserving overall optimal regret.
Remark 4.7. Assumption 4.6 is necessary to prove the order-optimality, but it is not for practical
performance. None of our experiments enforced this assumption, and DAL dominated in both the
synthetic and the real-world simulations as shown in Section 3.

Based on Algorithm 1, DAL can incorporate any stationary bandit algorithm. Since different algo-
rithms yield different regret guarantees, DAL attains order-optimal regret in PS environments only
when the stationary component has optimal minimax regret, namely Õ(d

√
T ) in PBs, Õ(

√
γTT ) in

KBs, and Õ(
√
|A| log |Π|T ) in CBs. This requirement is formalized in Theorem 4.8.

Thus, to characterize DAL’s performance under piecewise stationarity, we employ the methodology
of Huang et al. (2025), incorporating the regret analysis of the stationary bandit algorithm and that
of the change detector. Since we are studying general bandits, additional novel analysis is required.
Due to space constraints, the full analysis and proof of Theorem 4.8 is deffered to the Appendix.
Theorem 4.8. For the PS setting, consider DAL with a detector D that satisfies Property 4.1,
a stationary bandit algorithm B with regret upper bound RB concave and increasing with T ,
a covering set Ae and forced exploration frequencies (αk)

T
k=1. If Assumption 4.6 holds, αk =√

k|C|Ne/(2
√
T log2 T ), δF = δD = T−γ , with γ > 1, and RB(T ) = Õ(dpγq

T (|A| log |Π|)r
√
T )

with p, q, r ≥ 0, then DAL’s regret satisfies, RT = Õ(dpγq
T (|A| log |Π|)r

√
NTT +

√
|C|NeNTT ).

Using Theorem 4.8, Propositions 4.2, 4.3 and Remark 4.4 we present the optimal regret of DAL.
Corollary 4.9. Assume that the conditions of Theorem 4.8 hold. In PS-PBs, select Ae as in Propo-
sition 4.2. In PS-KBs, select Ae as in Proposition 4.3 with δT := Rd1/2−2p/d

2(Cγ2q
T )1/d

for some C > 0. In
PS-CBs, set Ae as in Remark 4.4. Then, DAL attains

RT = Õ(dpγq
T (|A| log |Π|)

r
√
NTT ).

If the base stationary algorithm has order-optimal regret, DAL retains optimality in PS-PBs, PS-KBs
and PS-CBs. This also holds when Ne < d or |A| < d in PS-PBs, when Ne < γT or |A| < γT in
PS-KBs, and when Π is the universal set of all mappings from C to A.

State-of-the-art Regret. In line with the black-box philosophy, Corollary 4.9 enables regret
bounds across all settings considered, with flexibility in the choice of stationary bandit algorithms.
When using specific stationary algorithms from Section 3, which attain the optimal stationary re-
gret mentioned above, DAL matches the state-of-the-art regret bounds in PS-LBs and PS-GLBs at
Õ(d
√
NTT ). In PS-CBs, DAL achieves the state-of-the-art regret bound of Õ(

√
|A|NTT log |Π|).

More notably, DAL improves the best known bounds in the PS-SCB and PS-KB settings. For PS-
SCBs, the strongest, prior-based, bound is due to WeightUCB, which achieves Õ(d2/3T 2/3N

1/3
T ).5

DAL improves this to Õ(d
√
NTT ) with our algorithmic choices. Although this matches the

bound in Russac et al. (2021), their analysis relies on substantially stronger assumptions than ours.
For PS-KBs, the prior-free ADA-OPKB achieves Õ(

√
dγTNTT ), while DAL improves this to

Õ(
√
γTNTT ). This highlights the interesting feature of DAL: the order-wise dependence on prob-

lem parameters from the stationary setting seamlessly transfers to the PS setting without degradation.
A detailed comparison of regret bounds is given in the Appendix.

4.3 ON DRIFTING ENVIRONMENTS

Based on the previous section, at first glance, one can expect that DAL is not able to handle drifting
non-stationarity. Our results in Section 3 naturally lead us to ask when and why DAL performs well
in drifting environments.

5While MASTER may be extendable to PS-SCBs, no regret bound is currently known.
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Figure 3: Final dynamic regret vs. radius of
change δ: Drifting LBs.

As a first step to study this, we perform another ex-
periment with LBs. Specifically, the parameter θt in
each time-step t evolves randomly as follows,

θt+1 := θt + ζt+1

where ζt+1 ∈ Rd is chosen uniformly over a δ-
ball. If the resulting θt+1 violates the norm-bound S,
we disregard that choice of ζt+1 and sample again.
We sample εt ∼ N (0, 0.1) at each t. We com-
pare the cumulative dynamic regret up to time T of
DAL+LinUCB with GLR, and WeightUCB over a
range of δ’s in Figure 3. The remaining parameters
are chosen to be the same as those in Section 3, with
the exception of d = 5. The DAL algorithm per-
forms better than WeightUCB for smaller values of δ, but the conclusion reverses upon increasing δ.
We now shed light into our hypothesis behind the observations from Figure 3. For playing an action
a ∈ A at time t+ 1, we get the random reward,

Xt+1 = ⟨θt, a⟩+ ⟨ζt+1, a⟩+ εt+1.

If the governing parameter does not change, then the reward from playing action a would have been
X ′

t+1 = ⟨θt, a⟩+ε′t+1, where ε′t+1 is another realization of the noise. Statistically, a specific instance
of ⟨ζt+1, a⟩ + εt+1 and ε′t+1 are close to each other, when δ is small, albeit the resulting (small)
mean-shift due to the drift in the governing parameter. For practical purposes, the impact of the
drift can be absorbed into the noise term εt+1 when δ is small. As a result, one expects an algorithm
tailored to handle piecewise stationarity to perform reasonably well for slowly drifting environments.
Conversely, if δ is large, the bias induced by ζt+1 is large enough to disallow absorbing it into the
noise term. Over a few time-steps, the cumulative effect of this compounding bias is then large
enough to completely violate the stationarity assumption. With large enough δ, the change in θt
over a few time-steps can be considered large enough to trigger a restart.

5 SUMMARY AND OUTLOOK

We introduced DAL, a practical, prior-free black-box framework for general PS bandits. Its plug-
and-play design integrates seamlessly with a wide range of stationary bandit algorithms and different
detectors. Through extensive experiments in both PS and drifting settings—spanning synthetic and
real-world benchmarks, DAL consistently outperforms all prior-free baselines, including the black-
box gold standard MASTER and the state-of-the-art methods ADA-OPKB and ADA-ILCTB+, and
even surpasses leading prior-based methods like WeightUCB and WGP-UCB. Its leading perfor-
mance in real-world scenarios highlights its value as a practical and effective solution.

On the theoretical side, using existing results and providing novel techniques, we showed that DAL
inherits and adapts the regret guarantees of its stationary input algorithm, achieving order-optimal
regret under piecewise stationarity, with mild change-point separation. As a result, it matches the
best existing bounds in PS-LBs, PS-GLBs and PS-CBs while improving the best known bounds
for PS-SCBs and PS-KBs. Regarding drifting non-stationarity, we hypothesized key conditions
under which DAL excels–an insight further validated through additional experiments under drifting
settings. Our results suggest that a well-designed algorithm for the PS setting can extend to a broad
range of drifting scenarios, bridging the gap between these two regimes.

While DAL advances both theory and practice, it opens new directions. First, regret guarantees
for detection-based methods in drifting environments remain unexplored. Second, the current re-
gret bounds for DAL rely on a separation condition between change-points—a standard assump-
tion in the detection-based literature (see e.g., (Auer et al., 2019; Besson et al., 2022; Huang et al.,
2025))—which nonetheless limits the extent to which DAL achieves fully prior-free theoretical opti-
mality. Addressing these gaps would deepen our understanding of detection-based methods in more
continuous forms of non-stationarity. Finally, DAL’s modular nature invites extensions to broader
settings, including general non-stationary reinforcement learning. We believe that deepening the
study of piecewise stationarity may be the key to tackling these broader challenges and DAL can
serve as a solid foundation towards that goal.
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Generalized Linear Bandits with Forgetting . In Arindam Banerjee and Kenji Fukumizu (eds.),
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume
130 of Proceedings of Machine Learning Research, pp. 658–666. PMLR, 13–15 Apr 2021. URL
https://proceedings.mlr.press/v130/russac21a.html.

Yuta Saito, Shunsuke Aihara, Megumi Matsutani, and Yusuke Narita. Open Bandit Dataset and
Pipeline: Towards Realistic and Reproducible Off-Policy Evaluation. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.
URL https://openreview.net/forum?id=tyn3MYS_uDT.

Sudeep Salgia, Sattar Vakili, and Qing Zhao. Random Exploration in Bayesian Optimization:
Order-Optimal Regret and Computational Efficiency. In Ruslan Salakhutdinov, Zico Kolter,
Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.),
Proceedings of the 41st International Conference on Machine Learning, volume 235 of Pro-
ceedings of Machine Learning Research, pp. 43112–43141. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/salgia24a.html.

Eric M Schwartz, Eric T Bradlow, and Peter S Fader. Customer acquisition via display advertising
using multi-armed bandit experiments. Marketing Science, 36(4):500–522, 2017.

Girgin Sertan, Mary Jérémie, Preux Philippe, and Nicol Olivier. Managing advertising cam-
paigns—an approximate planning approach. Frontiers of Computer Science, 6(2):209, 2012.
doi: 10.1007/s11704-012-2873-5. URL https://journal.hep.com.cn/fcs/EN/
abstract/article_3688.shtml.

Julien Seznec, Pierre Menard, Alessandro Lazaric, and Michal Valko. A single algorithm for both
restless and rested rotting bandits. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of
the Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pp. 3784–3794. PMLR, 26–28 Aug 2020.

Suho Shin, Chenghao Yang, Haifeng Xu, and MohammadTaghi Hajiaghayi. Tokenized bandit for
LLM decoding and alignment. In Forty-second International Conference on Machine Learning,
2025. URL https://openreview.net/forum?id=TFXxarWZzv.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimiza-
tion in the bandit setting: no regret and experimental design. In Proceedings of the 27th Interna-
tional Conference on International Conference on Machine Learning, ICML’10, pp. 1015–1022,
Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

Mahmoud Tajik, Babak Mohamadpour Tosarkani, Ahmad Makui, and Rouzbeh Ghousi. A novel
two-stage dynamic pricing model for logistics planning using an exploration–exploitation frame-
work: A multi-armed bandit problem. Expert Systems with Applications, 246:123060, 2024.
ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2023.123060. URL https://www.
sciencedirect.com/science/article/pii/S0957417423035625.

Yogatheesan Varatharajah and Brent Berry. A contextual-bandit-based approach for informed
decision-making in clinical trials. Life, 12(8):1277, 2022.

V. V. Veeravalli and T. Banerjee. Quickest Change Detection. In Academic press library in signal
processing: Array and statistical signal processing. Academic Press, Cambridge, MA, 2013.

15

https://proceedings.neurips.cc/paper_files/paper/2019/file/263fc48aae39f219b4c71d9d4bb4aed2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/263fc48aae39f219b4c71d9d4bb4aed2-Paper.pdf
https://arxiv.org/abs/2003.10113
https://proceedings.mlr.press/v130/russac21a.html
https://openreview.net/forum?id=tyn3MYS_uDT
https://proceedings.mlr.press/v235/salgia24a.html
https://journal.hep.com.cn/fcs/EN/abstract/article_3688.shtml
https://journal.hep.com.cn/fcs/EN/abstract/article_3688.shtml
https://openreview.net/forum?id=TFXxarWZzv
https://www.sciencedirect.com/science/article/pii/S0957417423035625
https://www.sciencedirect.com/science/article/pii/S0957417423035625


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Jing Wang, Peng Zhao, and Zhi-Hua Zhou. Revisiting Weighted Strategy for Non-stationary Para-
metric Bandits. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent (eds.), Proceed-
ings of The 26th International Conference on Artificial Intelligence and Statistics, volume 206
of Proceedings of Machine Learning Research, pp. 7913–7942. PMLR, 25–27 Apr 2023. URL
https://proceedings.mlr.press/v206/wang23k.html.

Chen-Yu Wei and Haipeng Luo. Non-stationary Reinforcement Learning without Prior Knowledge:
an Optimal Black-box Approach. In Mikhail Belkin and Samory Kpotufe (eds.), Proceedings of
Thirty Fourth Conference on Learning Theory, volume 134 of Proceedings of Machine Learning
Research, pp. 4300–4354. PMLR, 15–19 Aug 2021. URL https://proceedings.mlr.
press/v134/wei21b.html.

Michael Woodroofe. A one-armed bandit problem with a concomitant variable. Journal of
the American Statistical Association, 74(368):799–806, 1979. doi: 10.1080/01621459.1979.
10481033. URL https://www.tandfonline.com/doi/abs/10.1080/01621459.
1979.10481033.

Liyan Xie, Shaofeng Zou, Yao Xie, and Venugopal V. Veeravalli. Sequential (Quickest) Change
Detection: Classical Results and New Directions. IEEE Journal on Selected Areas in Information
Theory, 2(2):494–514, 2021. doi: 10.1109/JSAIT.2021.3072962.

Yu Zhang, Shanshan Zhao, Bokui Wan, Jinjuan Wang, and Xiaodong Yan. Strategic a/b testing
via maximum probability-driven two-armed bandit. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=BwYQ1MTrCR.

Yu-Jie Zhang and Masashi Sugiyama. Online (Multinomial) Logistic Bandit: Improved Regret and
Constant Computation Cost. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 29741–
29782. Curran Associates, Inc., 2023.

Peng Zhao, Lijun Zhang, Yuan Jiang, and Zhi-Hua Zhou. A Simple Approach for Non-stationary
Linear Bandits. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics, volume 108 of Proceed-
ings of Machine Learning Research, pp. 746–755. PMLR, 26–28 Aug 2020. URL https:
//proceedings.mlr.press/v108/zhao20a.html.

Huozhi Zhou, Lingda Wang, Lav Varshney, and Ee-Peng Lim. A Near-Optimal Change-Detection
Based Algorithm for Piecewise-Stationary Combinatorial Semi-Bandits. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(04):6933–6940, Apr. 2020. doi: 10.1609/aaai.v34i04.
6176. URL https://ojs.aaai.org/index.php/AAAI/article/view/6176.

Xingyu Zhou and Ness Shroff. No-Regret Algorithms for Time-Varying Bayesian Optimization. In
2021 55th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6, 2021. doi:
10.1109/CISS50987.2021.9400292.

16

https://proceedings.mlr.press/v206/wang23k.html
https://proceedings.mlr.press/v134/wei21b.html
https://proceedings.mlr.press/v134/wei21b.html
https://www.tandfonline.com/doi/abs/10.1080/01621459.1979.10481033
https://www.tandfonline.com/doi/abs/10.1080/01621459.1979.10481033
https://openreview.net/forum?id=BwYQ1MTrCR
https://proceedings.mlr.press/v108/zhao20a.html
https://proceedings.mlr.press/v108/zhao20a.html
https://ojs.aaai.org/index.php/AAAI/article/view/6176


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

A.1 ON FORCED EXPLORATION IN FINITE ACTION SPACES

Covering Set Construction. In practice, the covering set Ae is selected according to Proposi-
tions 4.2, 4.3, and Remark 4.4 together with the specifications of Corollary 4.9. However, in finite-
action settings, the full construction may not be feasible: the action set A may not contain enough
elements to satisfy the required conditions. For instance, in the NS-PB setting, A may not include
d linearly independent actions, while in the NS-KB case, it may lack a full δT -covering net for the
chosen δT in Corollary 4.9. One might expect that when |Ae| < d in PS-PBs or |Ae| < γT in
PS-KBs, the inability to detect all possible changes would degrade DAL’s performance. In practice,
however, DAL does not need to restart when changes in the reward function leave the mean reward
of each action unchanged. Crucially, as discussed in Appendix B.6, DAL retains order-optimality
even in these constrained regimes. Accordingly, whenever |A| < d or |A| < γT , we simply set
Ae = A. In our experiments, the action set is finite (typically in the hundreds). For PS-PBs, the
random generation of actions almost always guarantees d linearly independent vectors. For PS-KBs,
since γT is typically large, we also use the full action set A as Ae without impacting performance.
On the other hand, since the regret bounds in PS-CBs include |A|, as it is finite, in any PS-CB setting
we can simply set Ae = A.

Practical Implementations. For NS-PBs, we construct Ae by greedily selecting linearly inde-
pendent actions until we obtain d such vectors, where d is the dimension of the action space. In the
NS-KB setting, Ae is formed by building a δT -cover over the bounded action space and choosing
the centers of the covering balls. If the action space is continuous and bounded, these centers suffice
to cover the space. If the action space is finite and Ne < d2pγ2q

T , then the entire set A serves as
the covering set, as established in Corollary 4.9. Otherwise, if Ne > d2pγ2q

T , we select the d2pγ2q
T

actions closest to the covering-ball centers. Finally, in the NS-CB setting, selecting a smaller Ae

compared to A does not affect regret, but improves practical performance due to less forced ex-
ploration. Thus, depending on the reward function and action set structures, it is recommended to
decrease the cardinality of Ae as much as possible.

Sensitivity of Ae As shown in Algorithm 1, DAL’s forced exploration depends on Ne, the cardi-
nality of Ae. Intuitively, a larger Ne increases the exploration burden, since DAL must select more
actions to detect changes. In all cases, DAL limits the cardinality of Ae to the minimum number
of actions needed to characterize the reward function for detection and learning. These cardinalities
match the quantities appearing in the minimax stationary regret bounds (e.g., d for PBs, γT for KBs,
and |A| for CBs). This principle guided our design of the covering-set selection procedures.

• NS-PBs. In the NS-PB setting, Proposition 4.2 shows that the cardinality of a suitable
covering set is at most d. Thus, even if the underlying action space is infinite, DAL only
needs to explore at most d actions in Ae. In this sense, DAL is not sensitive to the size
of the continuous action space: it pays only a d-dependent cost. If there are multiple
choices of d linearly independent actions, the practical performance depends on the induced
change magnitude ∆c (as discussed in Section 4.1). For a fixed non-stationarity model,
some choices of d actions may yield larger ∆c, improving pre- and post-change sample
complexity. However, our regret analysis accounts for the worst case over ∆c, so, at the
theoretical level, DAL is not sensitive to which particular d actions are chosen.

• NS-KBs. In the NS-KB setting, the sensitivity of DAL is governed by the smoothness of
the RKHS. If the Lipschitz constant BLu is small, the RKHS contains smooth functions,
so we can use a relatively large δT , leading to a smaller covering setAe (and thus a smaller
Ne). If the RKHS contains less smooth functions (larger BLu), we require a smaller δT to
detect changes reliably, which increases Ne. Nevertheless, to attain order-optimality DAL
only needs to explore at most γT actions, which is finite and significantly smaller than
the (possibly infinite) original action space. As in NS-PBs, DAL is more sensitive to the
underlying function class (smoothness) than to the raw size of the continuous action space.

• NS-CBs. In the NS-CB case, the action set is finite, and one must fully explore all actions
in order to characterize changes in the reward function, since the rewards can be completely
uninformative about structural properties beyond their realized values.
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Experimental Choices. In our experiments, for NS-PBs the action set is sampled from a multi-
variate Gaussian distribution, which ensures the existence of d linearly independent actions. Thus,
we always set Ne = d using the greedy selection procedure described above. For NS-KBs, the re-
gret bound for Ne obtained from Theorem 4.8 and Corollary 4.9 is extremely large for our horizons,
implying that |A| < γT . Consequently, in all NS-KB experiments we simply take Ae = A and set
Ne equal to the number of available actions, which yielded optimal performance. Finally, since the
reward does not exhibit any structure with the arms in PS-CBs, we simply set A = Ae.

A.2 REAL-WORLD DATA PREPROCESSING

Microarchitecture Prefetcher Selection Benchmark. We introduce a non–stationary bandit
dataset derived from the MICRO’23 study of Gerogiannis & Torrellas (2023), built on the
SPEC06/17 benchmark suites. Each action corresponds to one of 11 L2 prefetcher configurations
(next–line on/off, stream degree, stride degree). The sequence spans T=26224 rounds; at round
t, the reward is the trace–level normalized instructions–per–cycle in [0, 1], computed from perfor-
mance counters. We obtained the data directly from the original authors, and note that reproducing
the exact series from scratch is not feasible without the same stack, microarchitectural parameters,
and arm schedules described in the paper. We aim to release the dataset to facilitate real-world
experimentation by the bandit research community.
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Figure 4: IPC of the prefetchers of the dataset over time.

Stock Market Data Construction. Regarding the stock market experiments we follow the proce-
dure of Deng et al. (2022). For the first experiment, we use the data provided in Deng et al. (2022).
For the other experiment, we collect daily closing prices of NASDAQ-100 companies using the Ya-
hoo Finance API.6 We filter out stocks with fewer than T = 2000 trading days and align all time
series over the most recent T dates. From this pool, we remove stocks with extremely high volatil-
ity or mean price to make the problem non-trivial, then select the top K most volatile stocks from
the remainder. In both cases, the stock prices are scaled accordingly to lie in [0, 1]. Each selected
company’s scaled closing price series defines the mean-reward sequence for one arm in a K-armed
bandit problem. Finally, we corrupt the reward at each time step with N (0, 0.01) noise.

COVID–NMA Clinical Dataset Construction. For the clinical benchmark based on the public
COVID-NMA pharmacological RCT database (Boutron et al., 2025),7. we use only released arm-
level counts and metadata and discretize time into calendar months, assigning each trial arm to

6Data retrieved from Yahoo Finance using the publicly available yfinance package. Used solely for
non-commercial, academic research purposes.

7Data available at: https://doi.org/10.5281/zenodo.14965887
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Figure 5: Daily closing prices from the dataset of Deng et al. (2022).
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Figure 6: Daily closing prices obtained from Yahoo Finance.

its Start date (falling back to Pub date online); rows with invalid or missing dates are dis-
carded. We deterministically map case-insensitive rules on treatment type into 13 actions: Antivirals
(any), Anti–inflammatory (steroids/NSAIDs), Interleukin inhibitors, Monoclonal antibodies (other),
Immunoglobulins/Plasma, Antithrombotics, Antimicrobials, Immunomodulators (non–steroid), Ki-
nase inhibitors, Metabolic agents, Supportive care, Control/Standard care, and Other/Unknown. At
the bucket–month level we compute two endpoints: (i) Clinical Improvement @ D28 (successes
= number improved; trials = reported denominator, or baseline N if missing) and (ii) Survival @
D28 derived from mortality (successes = denominator − deaths). To form a long non–stationary
sequence, we adopt a union construction: for each (k, t, endpoint) bin we emit exactly sk,t ones and
nk,t−sk,t zeros and concatenate all bins in a fixed order (month, clinD28, mortD28, bucket).
The sequence is fully deterministic; in our run it comprises T ≈7.4×104 rounds with 13 actions.
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Figure 7: Raw rewards for COVID-NMA Clinical dataset (Boutron et al., 2025).

Yahoo! R6A Dataset Construction. For the NS bandit benchmark based on the Yahoo! R6A
click log dataset8, we follow the main procedure provided in Cao et al. (2019a); Zhou et al. (2020).
We merge ten consecutive days of logs and we group the data by article ID and compute smoothed
click-through rates (CTRs) using centered rolling averages over a 100-round window. This generates
a time series of empirical CTRs for each article. We segment the dataset into ten distinct subperiods
(each spanning half a day), filtering out actions with missing data or high noise. We further select
a set of common actions present in all segments to ensure consistent tracking. We average CTRs
within each subperiod and smoothing small deviations below a threshold 0.005. We stack selected
actions across multiple days into a single K×T matrix, where K is the number of valid actions and
T the compressed time horizon. To reduce spurious noise and compress the time scale, we apply
local smoothing. Finally, we apply post-processing filters to remove (i) globally high-value actions
(outliers with inflated CTRs), and (ii) actions that persist as best for too many segments.
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Figure 8: Mean rewards for the Yahoo! R6A dataset.

8Yahoo! Front Page Today Module User Click Log Dataset: https://webscope.sandbox.yahoo.com.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Yahoo! R6B Dataset Construction. We follow a two-stage pipeline tailored to the Yahoo! R6B
logs.8 Stage 1 (action vocabulary): we scan the logs to count displays and clicks per article and
select the top items using the click-through rate with a minimum display threshold of 2, yielding a
fixed action set with mapping id 7→k ∈ {0, . . . ,K−1}with K = 51, chosen on the same window as
the evaluation files. Stage 2 (replay log): we reprocess the files and, for each round t, form a feature
vector xt from the given features, restrict the candidate set to the Top–K vocabulary to obtain At,
locate the displayed item’s index j⋆t ∈ {0, . . . , |At| − 1}, and record the binary click Xt ∈ {0, 1};
we drop rounds where the displayed item lies outside Top–K or |At| < 2. To increase coverage at a
fixed horizon T = 50000, days are merged in a round-robin fashion before truncation. The resulting
dataset stores {xt,At, j

⋆
t , rt, tt}Tt=1. For offline replay evaluation, a policy π observes (xt,At) and

proposes At ∈ {0, . . . , |At| − 1}; we credit the outcome only when at = j⋆t , and report cumulative
reward CT =

∑T
t=1 1{at = j⋆t }rt.
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Figure 9: Rewards for the Yahoo! R6B dataset.

Sensor Correlation Data Construction. We use the Bioliq dataset from Komiyama et al. (2024),
comprising a week of readings from 20 power plant sensors. Following their setup, we construct an
NS-SCB environment with 190 actions: the reward is 1 if the last 1000 measurements exceed 2.04,
and 0 otherwise. Evaluation is based on cumulative reward. Data available at https://github.
com/edouardfouche/G-NS-MAB/tree/master/data.
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Figure 10: Raw rewards obtained from the Bioliq dataset (Komiyama et al., 2024).

Ad Recommendation Data Construction. We evaluate on the Zozo environment, a real-world
ad recommender system from Saito et al. (2021), using the preprocessed dataset of Komiyama et al.
(2024). We construct an NS-GLB environment with all 80 ads (unlike their 10-action setup), as-
signing reward 1 to any ad clicked within one second, and 0 otherwise. Evaluation is based on cu-
mulative reward. Data available at https://github.com/edouardfouche/G-NS-MAB/
tree/master/data.
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Figure 11: Raw rewards obtained from the Zozo dataset (Komiyama et al., 2024).

Live Traffic Data Construction. We construct a NS bandit environment based on the Criteo live
traffic dataset (Diemert et al., 2017), following the preprocessing approach of Russac et al. (2019)
but modeling the problem as an NS-GLB rather than an NS-LB. Specifically, the dataset includes
banners shown to users, associated contextual variables, and whether each banner was clicked. We
retain the categorical variables cat1 through cat9, along with campaign, which uniquely identi-
fies each campaign. These categorical features are one-hot encoded, and a dimensionality reduction
via Singular Value Decomposition selects 50 resulting features. The parameter vector θ⋆ is esti-
mated using logistic regression. Rewards are then generated from this regression model with added
Gaussian noise of variance σ2 = 0.01. Unlike Russac et al. (2019), in which the authors employ a
single change, we introduce shifts in θ∗ via a geometric change-point model with parameter ξ = 0.8,
chaging 60% of the θ∗ coordinates at each time-step to −θ∗ and extend the horizon to T = 50000.

A.3 HARDWARE SPECIFICATIONS

All experiments were employed on a desktop using an Intel(R) Xeon(R) W-2245 processor with 32
GB RAM. Each experiment had a total runtime below one hour.

B THEORETICAL RESULTS

B.1 GENERAL FORMULATIONS OF GLR AND GSR

For completeness we provide the general mathematical forms of the Generalized Likelihood Ratio
(GLR) and the Generalized Shiryaev-Robers (GSR) tests. Specifically, the GLR test declares a
change at time-step τ , such that,

τ := inf {n ∈ N : Gn ≥ β (n, δF)}

where the GLR statistics Gn is

Gn := sup
t∈[n]

log

(
supθ0∈R supθ1∈R

∏t
i=1 fθ0 (Xi)

∏n
i=t+1 fθ1 (Xi)

supθ∈R
∏n

i=1 fθ (Xi)

)
,

while the GSR test declares a change at,

τ := inf {n ∈ N : logWn ≥ β (n, δF) + log n}

and the GSR statistic Wn is given by

Wn :=
1

n

n∑
t=1

(
supθ0∈R supθ1∈R

∏t
i=1 fθ0 (Xi)

∏n
i=t+1 fθ1 (Xi)

supθ∈R
∏n

i=1 fθ (Xi)

)
.

For both cases, fθ can be the density of a Gaussian random variable with mean θσ2 and variance σ2

or the density of a Bernoulli random variable with the same mean. Finally, in the general case, we
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have that for any false alarm probability δF ∈ (0, 1), the threshold is given by

β(n, δF) = 6 log(1 + log(n)) +
5

2
log

(
4n3/2

δF

)
+ 11.

Finally, for the practical implementation of the GLR and GSR in Algorithms 2 and 3, as per Besson
et al. (2022); Huang et al. (2025) we have that, for any n ∈ N and any t ∈ {1, . . . , n}:

log

(
supθ0∈R

∏t
i=1 fθ0 (Xi) supθ1∈R

∏n
i=t+1 fθ1 (Xi)

supθ∈R
∏n

i=1 fθ (Xi)

)
= tkl (µ̂1:t; µ̂1:n) + (n− t) kl (µ̂t+1:n; µ̂1:n)

where µ̂t1:t2 denotes the empirical mean of the reward samples from sample Xt1 to sample Xt2 with
t1 < t2 and kl(x; y) is KL-divergence between two Gaussian or Bernoulli distributions, depending
on the rewards.

B.2 REGRET BOUNDS OF DAL IN PIECEWISE STATIONARY ENVIRONMENTS

As discussed in Section 4.2 of the paper, using Corollary 4.9, we can select different algorithms
as input for DAL to attain or improve the state-of-the-art regret bounds in PS environments. Com-
bining DAL with different bandit algorithms leads to the results in Table 1. It is evident that DAL
matches the state-of-the-art regret bounds in PS-LBs, PS-GLBs and PS-CBs, and DAL improves
the best known bounds in the PS-SCB and PS-KB settings. Note that for PS-SCBs, the strongest
result corresponds to the prior-based WeightUCB Wang et al. (2023). As demonstrated in the final
columns of the table, the order-wise dependence on problem parameters from the stationary setting
seamlessly transfers to the PS setting without degradation.

Table 1: Regret bound comparison of algorithms for PS bandits, under the Assumption 4.6. “†”
denotes settings with finite number of actions, while MASTER, ADA-OPKB and SCB-WeightUCB
also recover the appropriate bounds in this setting. “•” indicates prior-based algorithms.

PS
Setting

Non-Stationary
Algorithm

NS Algorithm Regret
Bound in Õ(·)

DAL Input Regret
Bound in Õ(·)

PS-LB

MASTER (Wei & Luo, 2021) + LinUCB d
√
TNT -

ADA-OPKB (Hong et al., 2023) d
√
NTT -

DAL (ours) + LinUCB (Abbasi-yadkori et al., 2011) d
√
NTT d

√
T

DAL (ours) + LinTS (Agrawal & Goyal, 2013) d3/2√NTT d3/2
√
T

DAL (ours) + PEGE† (Lattimore & Szepesvári, 2020)
√
dNTT

√
dT

PS-GLB

MASTER (Wei & Luo, 2021) + GLM-UCB d
√
NTT -

DAL (ours) + GLM-UCB (Filippi et al., 2010) d
√
NTT d

√
T

DAL (ours) + GLM-TSL (Kveton et al., 2020) d3/2√NTT d3/2
√
T

DAL (ours) + SupCB-GLM† (Li et al., 2017)
√
dNTT

√
dT

PS-SCB

SCB-WeightUCB• (Wang et al., 2023) d2/3T 2/3N
1/3
T –

DAL (ours) + OFU-ECOLog (Faury et al., 2022) d
√
NTT d

√
T

DAL (ours) + OFUL-MLogB (Zhang & Sugiyama, 2023) d
√
NTT d

√
T

DAL (ours) + OFUGLB (Lee et al., 2024) d
√
NTT d

√
T

PS-KB

MASTER (Wei & Luo, 2021) + GPUCB γT

√
NTT -

ADA-OPKB (Hong et al., 2023)
√
dγTNTT -

DAL (ours) + GPUCB (Chowdhury & Gopalan, 2017) γT

√
NTT γT

√
T

DAL (ours) + REDS (Salgia et al., 2024)
√
γTNTT

√
γTT

PS-CB

MASTER (Wei & Luo, 2021) + ILTCB
√

|A|NTT log |Π| -
ADA-ILTCB+ (Chen et al., 2019)

√
|A|NTT log |Π| -

DAL (ours) + ILTCB (Agarwal et al., 2014)
√

|A|NTT log |Π|
√

|A|T log |Π|
DAL (ours) + SquareCB (Foster & Rakhlin, 2020)

√
|A|NTT log |Π|

√
|A|T log |Π|

B.3 PROOF OF PROPOSITION 4.2

In the NS-PB setting, the reward at time t is given by ft(a) = µ(⟨θt, a⟩) for all a ∈ A, where µ is
injective and θt ∈ Rd. To detect any changes in θt, it suffices to detect changes in the values ⟨θt, a⟩
for a suitable set of actions.
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Since µ is injective, each observation yt,i = µ(⟨θt, ai⟩) can be inverted to recover the inner product:

⟨θt, ai⟩ = µ−1(yt,i).

Hence, observing yt,i is equivalent to observing ⟨θt, ai⟩.
Suppose that Ae ⊆ A is the maximal linearly independent subset of A. Then, the vector θt is
uniquely determined by the inner products ⟨θt, a⟩ for a ∈ Ae. Therefore, any change in θt results
in a detectable change in the vector of observations (yt,i)ai∈Ae

, meaning that Ae can be taken to be
any maximal linearly independent subset of A, with |Ae| ≤ d.

B.4 PROOF OF PROPOSITION 4.3

In this subsection, we establish the construction ofAe in the NS-KB setting. According to Lemma 5
from De Freitas et al. (2012), we have that every f ∈ Hk with ∥f∥Hk

≤ B is Lipschitz continuous,
satisfying the following,

|f(x)− f(y)| ≤ B Lu ∥x− y∥2, ∀x, y ∈ A, where Lu := sup
z∈D

max
i,j≤d

[∂2k(p, q)

∂pi ∂qj

]1/2
p=q=z

.

Recall that VT corresponds to the set of centers of the balls of an arbitrary δT -cover of A ⊆ [0, R]d,
with δT = LT /(2BLu) for some arbitrary LT > 0. Let [a]e denote the action in VT that is the
closest to a ∈ A, i.e., [a]e = argminx∈PT

∥a − x∥2. Then, we can leverage the Lipschitz property
of functions in the RKHS to obtain the following upper bound: For any a ∈ A and f ∈ Hk with
∥f∥Hk

≤ B,

|f(a)− f([a]e)|
(a)

≤ BLu∥a− [a]e∥2
(b)

≤ BLuδT . (1)

Step (a) follows from the Lipschitz property in Lemma 5 of De Freitas et al. (2012), and step (b)
results from the definition of a δT -cover. Then, for any arbitrary functions f and f ′ in Hk with
∥f∥Hk

, ∥f ′∥Hk
≤ B and action ã ∈ A, we have

|f([ã]e)− f ′([ã]e)| ≥ |f(ã)− f ′(ã)| − |f(ã)− f([ã]e)| − |f ′(ã)− f ′([ã]e)|
(a)

≥ |f(ã)− f ′(ã)| − 2BLuδT= |f(ã)− f ′(ã)| − LT

(b)
> 0

where step (a) is due to equation 1, and step (b) is due to the assumption in Proposition 4.3. This
indicates that the value of the reward function at [ã]e must change by a non-zero amount. Thus, one
can use observations from action [ã]e in order to deduce whether the reward function has changed
its value in action ã. In addition, by the upper bound on the covering number, the cardinality of VT
is upper bounded by ⌈

√
dR/2δT ⌉d= ⌈

√
dBLuR/LT ⌉d .

B.5 PROOF OF THEOREM 4.8

For PS-PBs and PS-KBs, the proof of Theorem 4.8 follows exactly the same as those of Theorem
1 and Corollary 1 in Huang et al. (2025), with the number of arms replaced by Ne, due to the
different number of actions in the covering set. For completeness, we provide a proof sketch of
Theorem 4.8: First, we partition the regret into two cases. If no false alarm occurs and all changes
are detected within a short delay, we can separate the regret into three components: the regret due to
forced exploration, the regret during the short detection (restart) delay after changes, and the regret
incurred by the stationary bandit algorithm after the change is detected. If not, we use a crude linear
bound to bound the regret and show that the probability of false alarm and that of late detection are
low, which ensures that the regret due to detection failure is small.

For PS-CBs, the proof of Theorem 4.8 the definition of successful detection events should be modi-
fied as follows:

Consider a PS-CB environment satisfying the change-point separation condition in Theorem 4.8,
and recall that D is the change detector of DAL. Let τk be the kth detection point for k ∈ N, i.e.,

τk := inf {t > τk−1 : D (Hc,a) = Detection at time-step t for some (c, a) ∈ C ×Ae} , (2)
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where τ0 = 0. Recall that ν0 := 1 and νNT+1 := T + 1. We define the following events:

Gk := {∀ l ∈ [k − 1], τl ∈ {νl, . . . , νl + ℓl − 1}} ∩ {τk > νk} , k ∈ [NT ] . (3)

The event Gk represents the “good event” up to the kth detection point Gk in which the first k changes
are detected within the latency. For notational convenience, we define G0 to be the universal space.
Then, we have the following:

RT = E

NT+1∑
k=1

νk−1∑
t=νk−1

max
π∈Π

ft(Ct, π(Ct))− ft(Ct, At)


=

NT+1∑
k=1

E

 νk−1∑
t=νk−1

max
π∈Π

ft(Ct, π(Ct))− ft(Ct, At)


=

NT+1∑
k=1

P (Gck)E

 νk−1∑
t=νk−1

max
π∈Π

ft(Ct, π(Ct))− ft(Ct, At)

∣∣∣∣∣Gck


+

NT+1∑
k=1

E

1 {Gk} νk−1∑
t=νk−1

max
π∈Π

ft (Ct, π (Ct))− ft (Ct, At)


(a)

≤
NT+1∑
k=1

∆̄ (νk − νk−1)P (Gck) +
NT+1∑
k=1

E

1 {Gk} νk−1∑
t=νk−1

max
π∈Π

ft (Ct, π (Ct))− ft (Ct, At)


(4)

where ∆̄ in step (a) is the maximum gap between the mean rewards of two actions, over all con-
texts, actions, and time-steps, i.e., ∆̄ := maxc∈C,a∈A,t∈[T ] (maxπ∈Π ft (c, π(c))− ft (c, a)). For
convenience in the proof of the upper bound on the probability of bad event P (Gck), define

Ek := {∀ l ∈ [k − 1], τl ∈ {νl, . . . , νl + ℓl − 1}} , k ∈ [NT ] . (5)

P (Gck) is upper bounded by the following modified union bound, which decomposes the bad event
into false alarm events and late detection events:

P (Gck) = P ({∃ l ∈ [k − 1], τl /∈ {νl, . . . , νl + ℓl − 1}} ∪ {τk ≤ νk})

=

k−1∑
l=1

P (τl /∈ {νs, . . . , νl + ℓl − 1} , El−1) + P (τk ≤ νk, Ek−1)

=

k−1∑
l=1

P (El−1)P
(
τl /∈ {νl, . . . , νl + ℓl − 1}

∣∣El−1

)
+ P (Ek−1)P

(
τk ≤ νk

∣∣Ek−1

)
(a)

≤
k−1∑
l=1

P
(
τl /∈ {νl, . . . , νl + ℓl − 1}

∣∣El−1

)
+ P

(
τk ≤ νk

∣∣Ek−1

)
=

k∑
l=1

P
(
τl < νl

∣∣El−1

)︸ ︷︷ ︸
Φ1

+

k−1∑
l=1

P
(
τl ≥ νl + ℓl

∣∣El−1

)︸ ︷︷ ︸
Φ2

(6)

where (a) is due to the fact that P {Ek−1} ≤ 1. We then separately bound Φ1 and Φ2.

• Upper-Bounding Φ1: Recall that Ae =
{
a(i), i ∈ [Ne]

}
is the covering set, and that H(c,a(i)) is

the change detector history list associated with the context-action pair
(
c, a(i)

)
. For any context

c ∈ C, i ∈ [Ne], and u ∈ N, we define t′(c,i),u to be the uth time-step after τl−1 at which Ct = c and
(t− τl−1 − 1) mod ⌈Ne/αl⌉ = i− 1, i.e.,

t′(c,i),u := inf

{
t > t′(c,i),u−1 : Ct = c, (t− τl−1 − 1) mod

⌈
Ne

αl

⌉
= i− 1

}
(7)
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where t′(c,i),0 = τl−1. Then, we define nc,i (t) to be the number of time-steps between τl−1 + 1 and
t at which Ct = c and (t − τl−1 − 1) mod ⌈Ne/αl⌉ = i − 1, which is the number of samples
obtained due to force exploration and added in the history H(c,a(i)) if there are no restarts after τl−1,
i.e.,

n(c,i) (t) :=

t∑
s=τl−1+1

1

{
Ct = c, (t− τl−1 − 1) mod

⌈
Ne

αl

⌉
= i− 1

}
. (8)

We also use τ(c,i) to denote the stopping time of the change detector associated with arm a(i) ∈ Ae

after the (l − 1)th detection point τl−1, i.e.,

τ(c,i) := inf
{
u ∈ N : D

(
Hc,a(i)

)
= Detection at time-step t′(c,i),u

}
. (9)

The stopping time τ(c,i) operates independently from other stopping times, and does not stop if
other stopping times get triggered earlier. Let P∞ denote the probability measure at which ft = fνl

for all t > νl, i.e., the probability measure under which the CB becomes stationary after the kth

change-point. Then, for all l ∈ [NT + 1], we have

P
(
τl < νl

∣∣El−1

)
= P

(
∃
(
c, a(i)

)
∈ C × Ae : τ(c,i) ∈

[
n(c,i) (νl − 1)

] ∣∣El−1

)
(a)

≤
∑
c∈C

Ne∑
i=1

P
(
τ(c,i) ∈

[
n(c,i) (νl − 1)

] ∣∣El−1

)
(b)

≤
∑
c∈C

Ne∑
i=1

P
(
τ(c,i) ≤ T

∣∣El−1

)
(c)

≤
∑
c∈C

Ne∑
i=1

δF

= |C|NeδF

(10)

where step (a) results from a union bound. Due to the fact that the rewards between τl−1 and νl are
i.i.d. across time-steps and actions given the past event El−1 (as there are no changes between τl−1

and νl), we can change the measure to P∞ in step (b). In addition, because [na (νl − 1)] ⊆ [T ], the
event {τa,l ∈ [na (νl − 1)]} ⊆ {τa,l ≤ T}. In step (c), since the reward samples

{
Xt′

(c,i),u

}
u≥1

are
i.i.d. sub-Gaussian for each (c, i) ∈ C × [Ne], we can apply the false alarm probability upper bound
for the GLR and GSR tests in Huang & Veeravalli (2025) (see Section 4.1).

• Upper Bounding Φ2: Let (c∗, i∗) be the context-action pair at which the mean reward function
changes the most at νl, i.e.,

(c∗, i∗) = argmax
c∈C,i∈[Ne]

∣∣∣fνl

(
c, a(i)

)
− fνl−1

(
c, a(i)

)∣∣∣ . (11)

We define the eventsMl and Ll as follows:

Ml :=

{
νl−1∑

t=τl−1+1

1

{
Ct = c∗, (t− τl−1 − 1)mod

⌈
Ne

αl

⌉
= i∗−1

}
≥ mD

}
, (12)

Ll :=

{
νl+ℓl−1∑
t=νl

1

{
Ct = c∗, (t− τl−1 − 1)mod

⌈
Ne

αl

⌉
= i∗−1

}
≥ ℓD

}
. (13)

When τl ≥ νl + ℓl, there are at least mD reward samples following fνl−1 in H(c∗,a(i∗)) under the
eventMl, and there are at least ℓD reward samples following fνl

in H(c∗,a(i∗)) under the event Ll.
Then, we have,

P
(
τl ≥ νl + ℓl

∣∣El−1

)
≤ P

(
{τl ≥ νl + ℓl} ∪Mc

l ∪ Lc
l

∣∣El−1

)
= P

(
Mc

l ∪ Lc
l

∣∣El−1

)
+ P

(
{τl ≥ νl + ℓl} ∩Ml ∩ Ll

∣∣El−1

)
= P

(
Mc

l ∪ Lc
l

∣∣El−1

)
+ P

(
Ml ∩ Ll

∣∣El−1

)
P
(
τl ≥ νl + ℓl

∣∣Ml ∩ Ll ∩ El−1

)
(a)

≤ P
(
Mc

l

∣∣El−1

)
+ P

(
Lc
l

∣∣El−1

)
+ P

(
τl ≥ νl + ℓl

∣∣Ml ∩ Ll ∩ El−1

)
(14)
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where step (a) follows from a union bound and the fact that P
(
Ml ∩ Ll

∣∣El−1

)
≤ 1. For upper

bounding the first two terms, we use the fact that that given El−1, for any i ∈ [Ne] and u, v > τl−1

where v < u,
u∑

t=v+1

1

{
(t− τk − 1) mod

⌈
Ne

αl

⌉
= i− 1

}
≥
⌊

u− v

⌈Ne/αl⌉

⌋
. (15)

The inequality in equation 15 holds with equality when u − v is divisible by ⌈Ne/αl⌉. Re-
call that n(c,i) (t) is the number of time-steps between τl−1 + 1 and t at which Ct = c and
(t− τl−1 − 1 mod ⌈Ne/αl⌉) = i− 1 (see equation 8). Then, we have

E
[
n(c∗,i∗) (νl − 1)− n(c∗,i∗) (τl−1) |El−1

]
(a)

≥ E
[
n(c∗,i∗) (νl − 1)− n(c∗,i∗) (νl −ml − 1) |El−1

]
= E

[
νl−1∑

t=νl−ml

1

{
Ct = c∗, (t− τk − 1) mod

⌈
Ne

αl

⌉
= i∗ − 1

} ∣∣∣∣∣El−1

]

=

νl−1∑
t=νl−ml

P (Ct = c∗|El−1)1

{
(t− τk − 1) mod

⌈
Ne

αl

⌉
= i∗ − 1

}
(b)
=

νl−1∑
t=νl−ml

Pt(c)1

{
(t− τk − 1) mod

⌈
Ne

αl

⌉
= i− 1

}
(c)

≥ s

νl−1∑
t=νl−ml

1

{
(t− τk − 1) mod

⌈
Ne

αl

⌉
= i− 1

}
(d)
= s

⌊
ml

⌈Ne/αl⌉

⌋
= s

⌈
mD

s
+

log T

4s2
+

√
mD log T

2s3
+

(log T )2

16s4

⌉
, (16)

and

E
[
n(c∗,i∗) (νl + ℓl − 1)− n(c∗,i∗) (νl − 1)

]
= E

[
νl+ℓl−1∑
t=νl

1

{
Ct = c∗, (t− τk − 1) mod

⌈
Ne

αl

⌉
= i∗ − 1

}]

=

νl+ℓl−1∑
t=νl

P (Ct = c∗|El−1)1

{
(t− τk − 1) mod

⌈
Ne

αl

⌉
= i∗ − 1

}
(e)
=

νl+ℓl−1∑
t=νl

Pt(c)1

{
(t− τk − 1) mod

⌈
Ne

αl

⌉
= i− 1

}
(f)

≥ s

νl+ℓl−1∑
t=νl

1

{
(t− τk − 1) mod

⌈
Ne

αl

⌉
= i− 1

}
(g)
= s

⌊
ℓl

⌈Ne/αl⌉

⌋
= s

⌈
ℓD
s

+
log T

4s2
+

√
ℓD log T

2s3
+

(log T )2

16s4

⌉
. (17)

In step (a), since τl−1 ≤ νl−1+ ℓl−1−1 given El−1 and νl−νl−1 ≥ ℓl−1+ml by Assumption 4.6,
τl−1 ≤ νl −ml − 1 and thus n(c∗,i∗) (νl − 1) ≤ n(c∗,i∗) (νl −ml − 1). Steps (b) and (e) follow
from the independence between (Ct)t>τl and El−1. Steps (c) and (f) stem from the definition of s

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

in Theorem 4.6 (s = minc∈C,t∈[T ]:Pt(c)>0 Pt(c)). Steps (d) and (g) result from equation 15, as ml

and ℓl are divisible by ⌈Ne/αl⌉. Therefore,

P
(
Mc

l

∣∣El−1

)
= P

 νl−1∑
t=τl+1:(t−τk−1) mod ⌈Ne/αl⌉=i∗−1

1 {Ct = c∗} ≤ mD

∣∣∣∣∣El−1


(a)

≤ exp

(
−2
(
E
[
n(c∗,i∗) (νl − 1)− n(c∗,i∗) (τl−1)

]
−mD

)2∑νl−1
t=τl+1 1 {(t− τk − 1) mod ⌈Ne/αl⌉ = i∗ − 1}

)

(b)

≤ exp

−2
(
s
⌈
ℓD/s+ log(T )/4s2 +

√
ℓD log T/2s3 + (log T )2/16s4

⌉
− ℓD

)2
⌈
ℓD/s+ log(T )/4s2 +

√
ℓD log T/2s3 + (log T )2/16s4

⌉


≤ T−1, (18)

and

P
(
Lc
l

∣∣El−1

)
= P

 νl+ℓl−1∑
t=νl:(t−τk−1) mod ⌈Ne/αl⌉=i∗−1

1 {Ct = c∗} ≤ ℓD

∣∣∣∣∣El−1


(c)

≤ exp

(
−2
(
E
[
n(c∗,i∗) (νl + ℓl − 1)− n(c∗,i∗) (νl − 1)

]
− ℓD

)2∑νl+ℓl−1
t=νl

1 {(t− τk − 1) mod ⌈Ne/αl⌉ = i∗ − 1}

)

(d)

≤ exp

−2
(
s
⌈
ℓD/s+ log(T )/4s2 +

√
ℓD log T/2s3 + (log T )2/16s4

⌉
− ℓD

)2
⌈
ℓD/s+ log(T )/4s2 +

√
ℓD log T/2s3 + (log T )2/16s4

⌉


≤ T−1. (19)

In steps (a) and (c), we apply Hoeffding’s inequality, as {1{Ct = c∗}}t≥τl is a sequence of i.i.d.
Bernoulli random variables with parameter Pt(c). In steps (b) and (d), we apply equation 17.

Before bounding the third term in equation 14, recall the definition of the stopping time of the change
detector associated with arm a(i) after the (l − 1)th detection point in equation 9. Without loss of
generality, we assume that νl ≤ T − ℓl; otherwise, there is no need to detect the change because the
horizon will end soon after the change occurs. We can derive that

P (τl ≥ νl + ℓl|El−1 ∩Ml ∩ Ll)

= P
(
∀ (c, i) ∈ C × [Ne], τ(c,i) > n(c,i) (νl + ℓl − 1)

∣∣El−1 ∩Ml ∩ Ll

)
(a)

≤ P
(
τ(c∗,i∗) > n(c∗,i∗) (νl + ℓl − 1)

∣∣El−1 ∩Ml ∩ Ll

)
(b)

≤ P
(
τ(c∗,i∗) > n(c∗,i∗) (νl − 1) + ℓD

∣∣El−1 ∩Ml ∩ Ll

)
(c)

≤ sup
ν∈{mD+1,...,T−ℓD}

P
(
τ(c∗,i∗) ≥ ν + ℓD

∣∣El−1 ∩Ml ∩ Ll

)
(d)

≤ δD (20)

where step (a) comes from the fact that {(c∗, i∗)} ⊆ C × [Ne], and step (b) stems from the fact
that n(c∗,i∗) (νl + ℓl − 1) − n(c∗,i∗) (νl − 1) ≥ ℓD given Ll. Step (c) results from the fact that
n(c∗,i∗) (νl − 1) ≥ mD givenMl and νl ≤ T−ℓl. Recall the definition of t′(c,i),u in equation 7. Step
(d) follows from the definition of latency in Section 4.1, as the reward sequence

{
Xt′

(c∗,i∗),u

}
u≥1

are independent sub-Gaussian whose distribution changes at ν, given El−1 and the context sequence
{Ct}t≥1. Plugging equation 18, equation 19, and equation 20 into equation 14, we have

P
(
τl ≥ νl + ℓl

∣∣El−1

)
≤ 2T−1 + δD. (21)
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This completes bounding Φ1 and Φ2. Plugging equation 10 and equation 20 into equation 6, we
obtain

P {Gck} ≤ |C|NekδF + (k − 1)
(
2T−1 + δD

)
. (22)

This bounds the first term in equation 4.

For convenience in bounding the second term in equation 4, we define ᾱ := maxk=1,...,NT+1 αk.
Recall that ∆̄ = maxc∈C,a∈A,t∈[T ] (maxπ∈Π ft (c, π(c))− ft (c, a)). For any k ∈ [NT + 1], if
(t− τk−1 − 1 mod ⌈Ne/αk⌉) ≥ Ne, then At follows the stationary CB algorithm B. Thus, the
second term in equation 4 can then be decomposed as follows:

E

1 {Gk} νk−1∑
t=νk−1

max
π∈Π

ft (Ct, π (Ct))− ft (Ct, At)


(a)

≤ ∆̄ℓk−1 + ∆̄Ne

⌈
νk − νk−1

⌈Ne/αk⌉

⌉

+ E

1{Gk} νk−1∑
t=τk−1+1:(t−τk−1−1) mod ⌈Ne/αk⌉≥Ne

(
max
π∈Π

ft (Ct, π (Ct))− ft (Ct, At)

)
(b)

≤ ∆̄ℓk−1 + ∆̄ [αk (νk − νk−1) +Ne] +RB (νk − νk−1)

≤ ∆̄ℓk−1 + ∆̄ [ᾱ (νk − νk−1) +Ne] +RB (νk − νk−1) (23)

where in step (a), the first term bounds the regret due to the delay of the change detector, and the
second term bounds the regret incurred due to forced exploration. In step (b), as the reward samples
in the history of the stationary bandit algorithm B are independent of those in ∪(c,i)∈C×[Ne]H(c,i),
and that Gk only depends on samples in ∪(c,i)∈C×[Ne]H(c,i), the regret bound of the stationary ban-
dit We also apply the fact that RB (T ) is increasing with T . Then, we can plug equation 23 and
equation 22 into equation 4 and obtain:

RT

≤
NT+1∑
k=1

∆̄ (νk − νk−1)
(
|C|NekδF + (k − 1)

(
2T−1 + δD

))
+

NT+1∑
k=1

(
∆̄ℓk−1 + ∆̄ [ᾱ (νk − νk−1) +Ne] +RB (νk − νk−1)

)
≤

NT+1∑
k=1

∆̄ (νk − νk−1)
(
|C|Ne (NT + 1) δF +NT

(
2T−1 + δD

))
+

NT+1∑
k=1

(
∆̄ℓk−1 + ∆̄ [ᾱ (νk − νk−1) +Ne] +RB (νk − νk−1)

)
= ∆̄T |C|Ne (NT + 1) δF + 2∆̄NT + ∆̄TNT δD + ∆̄

NT∑
k=1

ℓk + ∆̄ [ᾱT + (NT + 1)Ne]

+

NT+1∑
k=1

RB (νk − νk−1)

(a)

≤ ∆̄T |C|Ne (NT + 1) δF + 2∆̄NT + ∆̄TNT δD + ∆̄

NT∑
k=1

ℓk + ∆̄ [ᾱT + (NT + 1)Ne]

+ (NT + 1)RB

(
T

NT + 1

)
. (24)

In step (a), we apply Jensen’s inequality to the concave function RB. This concludes the proof of
Theorem 4.8.
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B.6 PROOF OF COROLLARY 4.9

In PS-PBs, Ne = d, p ≥ 1/2, and q = r = 0. Thus, RT = Õ(
√
dNTT + dp

√
NTT ) =

Õ(dpγq
T (log |Π|)r

√
NTT ).

In PS-KBs, q ≥ 1/2, p ≥ 0 and r = 0. We can upper bound Ne using the fact that |VT | ≤
⌈
√
dR/2δT ⌉d. Thus, Ne ≤ ⌈Cγ

2q/d
T ⌉d with δT = Rd1/2−2p/d

2(Cγ2q
T )1/d

and RT = Õ((d2pγ2q
T NTT )

1/2 +

dpγq
T

√
NTT ) = Õ(dpγq

T (log |Π|)r
√
NTT ).

We emphasize that when the number of action is smaller than the covering number, i.e., |A| <
⌈Cγ

2q/d
T ⌉d ≤ γT , then we can set Ae to be the entire action set A. In this case, Ne < γT , guaran-

teeing order-optimal regret.

In PS-CBs, Ne ≤ |A|, r ≥ 1/2, p = q = 0, and |Π| = |A||C|. Thus, RT =

Õ((|A| log |Π|)r
√
NTT +

√
|C||A|NTT ) = Õ(dpγq

T (|A| log |Π|)r
√
NTT ).
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