

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EMERGENT CHESS SKILL ACQUISITION IN LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

We investigate the emergent behaviours of rule comprehension, tactical execution, and strategic competence in transformer-based models trained on algebraic chess notation. To support structured reasoning, we introduce a disambiguation-aware tokenization scheme that explicitly encodes promotions, castling, checks, and mates, enabling fine-grained modeling of chess rules and dynamics. Our analysis reveals phase transitions in capabilities: shallow models fewer than 15 layers exhibit high illegality rates, while deeper models 20 layers or more increasingly demonstrate reliable tactical and positional behaviours. Training dynamics show while rule comprehension emerges early, higher-order abilities follow a hierarchical developmental path that mirrors curriculum learning. These trends remain consistent across decoding strategies and training distributions. Our findings suggest that transformer models can acquire human-aligned planning abilities in symbolic domains. Chess provides a tractable benchmark for evaluating the staged emergence of hierarchical competence in language models. Our methodology, including vocabulary design, architectural scaling, and behavioral evaluation, has the potential to generalize to other structured domains such as programming, formal logic, and mathematical proof systems.

1 INTRODUCTION

The rise of large-scale language models (LLMs) has raised fundamental questions about how these systems acquire structured decision-making abilities from data alone. While benchmarks often probe performance in static settings such as question answering or logical reasoning, far less is known about how sequence models internalize *dynamic, rule-governed domains* that demand planning, legality, and long-horizon consistency.

Chess provides an ideal setting for such study. It is bounded and interpretable, yet computationally vast: the number of legal board positions is estimated at roughly 10^{44} (Allis, 1994), while the space of possible distinct games, known as the Shannon number, exceeds 10^{120} (Shannon, 1950), dwarfing the number of atoms in the observable universe. With an average branching factor of 30–40 legal moves and typical games lasting around 80 plies, chess exhibits a game-tree complexity on the order of 10^{123} (Allis, 1994). This combination of strict rules and overwhelming combinatorial growth makes it uniquely suited for investigating how structured behaviours emerge in autoregressive models.

In this work, we study decoder-only transformers trained from scratch on human chess games in algebraic notation. Unlike prior work that emphasizes end-performance or reinforcement learning agents, our focus is on *training dynamics*: how rule comprehension, tactical motifs, and positional play emerge across model depth and training time.

Our approach is distinguished by a custom tokenization scheme that mirrors the syntax of chess notation, including explicit disambiguation tokens to handle ambiguous positions. This design enables models to generate contextually valid moves while respecting the rules of chess. We train across two datasets drawn from over a million human games with $\text{ELO} \geq 1600$ and at least 40 moves: one filtered for high-quality white-win games and another balanced across outcomes. We compare models with 5, 10, 15, 20, and 25 layers.

Our analysis makes three contributions:

054

- 055 1. **Training Dynamics:** We provide the first systematic analysis of how rule comprehen-
- 056 sion, blunder avoidance, tactical motifs, and positional strategy emerge *as functions of*
- 057 *both model depth and training time*. Prior work typically reports end-state performance;
- 058 our focus is on the *developmental trajectory*.
- 059 2. **Strategic Complexity:** We move beyond legality and tactics to measure whether mod-
- 060 els learn simple strategies before complex ones, quantifying phase transitions in planning
- 061 ability. This contrasts with earlier studies that treat gameplay competence as a monolithic
- 062 outcome.
- 063 3. **Dataset Bias:** By comparing outcome-biased (white-win) vs. balanced datasets, we
- 064 show how data distribution shapes model style—aggression, planning, and positional
- 065 preference—providing insight into how training signals imprint strategic behaviours.

066

067 Together, these contributions recast chess not as an end in itself, but as a *microscope on emerg-*

068 *gent structure in sequence models*, offering insights relevant to symbolic reasoning and other rule-

069 More broadly, chess serves here not as an end in itself but as a controlled testbed for studying how

070 sequence models acquire structured, rule-governed behaviours. By treating chess as a microscope

071 on emergent structure, our findings contribute to a broader understanding of how autoregressive

072 training can give rise to rule compliance, abstraction, and strategy in complex environments.

074 2 RELATED WORK

075

076 Recent work has demonstrated that large language models (LLMs) can learn to play chess by training

077 on textual representations of games, without explicit rule supervision or board state conditioning.

078 Noever et al. (2020) showed that fine-tuning GPT-2 on PGN game data enables coherent move

079 generation that respects opening principles, establishing the viability of autoregressive models in

080 this domain.

081 Subsequent studies investigated whether such models internally track latent board states. Notably,

082 Toshniwal et al. (2021) and Stöckl (2021) revealed that transformers trained solely on move se-

083 quences exhibit accurate legality prediction and internal piece tracking, even when perplexity re-

084 mains flat. These works suggest that world modeling capabilities can emerge naturally from lan-

085 guage modeling objectives.

086 Structured decoding and scaling have also improved play quality. Ruoss et al. (2024) showed that

087 a 270M transformer can achieve ~2895 Elo without search, while Schultz et al. (2025) and Ye et al.

088 (2025) leveraged LMs as policy evaluators or future-move samplers, improving planning through

089 Monte Carlo Tree Search or diffusion rollouts.

090 In parallel, efforts like Feng et al. (2023) and Wang et al. (2025) paired move generation with

091 strategy annotation, enriching model outputs with reasoning traces and achieving superior move

092 quality. Zhang et al. (2025) emphasized the importance of uninterrupted long games during training,

093 while Zhang et al. (2024) showed that models can exceed their training data’s Elo through curated

094 sampling.

095 Beyond the domain of chess, recent studies have turned toward understanding the evolution of skills

096 and internal structure during pretraining. Bayazit et al. (2025) introduced sparse alignment meth-

097 ods to trace how specific linguistic features emerge and consolidate during LLM training. They

098 demonstrate that core linguistic abstractions (e.g., syntax, irregular agreement) emerge in stages,

099 and propose metrics like Relative Indirect Effects (RELIE) to quantify when specific features be-

100 come causally important, offering a fine-grained view of conceptual acquisition over time.

101 Complementing this, Hakimi et al. (2025) used component-level analysis to track the functional

102 roles of attention heads and feedforward networks throughout training, observing that models begin

103 with general-purpose heads and later specialize, with some components being repurposed. They

104 found that factual knowledge representations evolve hierarchically and remain plastic even in later

105 stages, consequently supporting a dynamic view of neural specialization.

106 Our work bridges these threads by applying a curriculum-aware lens to chess modeling, treating

107 model depth and training epochs as axes along which increasingly complex competencies emerge.

108 Unlike prior work focused on end-task performance, we analyze how rule-following, tactical execution,
 109 and strategic reasoning emerge over time, offering a behavioral analogue to recent mechanistic
 110 interpretability work. We introduce a structured tokenization scheme encoding algebraic disam-
 111 biguation, castling, checks, and promotions, which enables interpretable tracking of skills like tactic
 112 execution, center control, and positional safety. Our findings highlight a layered trajectory of skill
 113 acquisition, marked by phase transitions in legality and an early stabilization of rule compliance,
 114 paralleling developmental patterns observed in both symbolic reasoning tasks and natural language
 115 pretraining.

116

117

118

119

3 DATA

120

121

122

3.1 DATA COLLECTION

123

124 We sourced training data from publicly available chess games on Lichess.org, a large-scale online
 125 platform with millions of user-submitted games. All games were downloaded in Portable Game
 126 Notation (PGN) format, which encodes move sequences in algebraic notation along with metadata
 127 such as Elo ratings, time controls, and outcomes. To ensure data quality, we retained only games in
 128 which both players had Elo ratings above 1600, filtering out noise from novice play while avoiding
 129 the idiosyncrasies of top-tier grandmasters. Games were further restricted to between 80 and 200
 130 plies (40–100 full moves), excluding trivial early resignations and excessively long endgames. Fi-
 131 nally, we constructed two datasets of 270,000 games for training and 23,000 games for validation
 132 to probe the effects of outcome distributions: a *white-win* dataset containing only White victories,
 133 and a *balanced* dataset with equal proportions of White wins, Black wins, and draws. Table 1 sum-
 134marizes key style-related statistics across these datasets, showing broadly similar trends but with
 135 slightly higher tactical activity and material volatility in the White-win corpus.

136

137

138

139

Table 1: Statistics on playing styles by data type (mean \pm std).

Data type	Castling	Checks	Fork Rate	Pin Rate	Total Centipawn Loss
Balanced	0.91 ± 0.29	2.51 ± 2.49	0.01 ± 0.02	0.02 ± 0.03	311.5 ± 335.5
White	0.85 ± 0.36	2.37 ± 2.12	0.02 ± 0.02	0.03 ± 0.03	414.6 ± 404.0

143

144

145

146

147

3.2 VOCABULARY DESIGN AND TOKENIZATION

148

149 To support fine-grained modeling of chess rules, tactics, and strategy, we developed a custom
 150 disambiguation-aware tokenization scheme based on algebraic notation. This design preserves game
 151 semantics and allows transformer models to learn directly from move sequences without auxiliary
 152 board supervision (e.g., FEN states). Moves with multiple legal origins are annotated with rank or
 153 file qualifiers (e.g., Nbd2, R1e1), while special moves such as castling (O–O, O–O–O) and prom-
 154 tions (e.g., e8=Q) are represented explicitly. Captures are consistently marked with x, including en
 155 passant, and suffixes denote checks (+) or checkmates (#). The resulting vocabulary encodes both
 156 target squares and semantically relevant features, maintaining move-order fidelity and supporting
 157 both subword and whole-token representations. This structured approach facilitates not only model
 158 training but also downstream interpretability, enabling analysis of learned behaviours such as tactic
 159 execution, castling patterns, and strategic development. Additionally as observed in A.5, while
 160 models trained on BPE tokenizer in similar experiments achieves lower overall illegality rates, mod-
 161 els trained with the custom tokenizer exhibit more stable learning trajectories on complex pieces,
 suggesting that domain-specific structure supports smoother rule acquisition even when absolute
 performance lags. Vocabulary tokens can be further explored in A.6.

162
 163 Table 2: Examples of our disambiguation-aware tokenization compared to standard algebraic nota-
 164 tion (SAN).

Move Type	Standard Algebraic Notation (SAN)	Tokenized Representation
Disambiguation	Nbd2	N DISAMBIG_FILE_b d2
Disambiguation (capture)	R1xe4	R DISAMBIG_RANK_1 x e4
Castling (kingside)	O-O	O-O
Castling (queenside)	O-O-O	O-O-O
Promotion	e8=Q	e8 =Q
Capture	exd5	e x d5
Capture (en passant)	dxe6	d x e6
Check	Qh5+	Q h5 +
Checkmate	Qh7#	Q h7 #

4 TRAINING IMPLEMENTATION

4.1 MODEL ARCHITECTURE AND LEARNING PARAMETERS

We adopt a decoder-only transformer architecture tailored for structured chess modeling, trained autoregressively to predict the next token in a sequence of algebraic moves. To isolate the effects of scale, we vary model depth across 5, 10, 15, 20, and 25 layers while holding other parameters fixed. Each model uses a hidden size of 768, eight attention heads, and a feedforward dimension of 1024, yielding between 20M and 100M parameters depending on depth. Positional information is encoded with rotary positional embeddings (RoPE), and we include special tokens for padding (<PAD>) and sequence termination (<EOS>).

Training is performed with causal cross-entropy loss, optimized using a cosine learning rate schedule with linear warmup. The base learning rate is set to 1×10^{-5} with a warmup ratio of 0.1. We use a batch size of 8 and train for 10 epochs on approximately 270k games, which corresponds to roughly 33,000 batches per epoch. Input sequences consist of tokenized algebraic notation (e.g., 1. e4 1... c5 2. Nf3 ...), and the model is optimized to predict the next token at each timestep. This token-level granularity enables fine-grained analysis of learning dynamics across both training epochs and architectural depth.

4.2 CHESS GAME SIMULATOR

To assess model gameplay in a dynamic and interactive context, we developed a simulator that alternates between model-generated and engine-generated moves until the game reaches a terminal state.

4.2.1 SIMULATION PROCEDURE

Each simulation begins with the model playing as White. The game proceeds as follows:

1. **White move generation:** The model generates a move using temperature-controlled sampling. To enforce rule compliance, prefix-constrained decoding is applied via a legality trie built from the current board state.
2. **Prompt update:** The move is appended to the PGN-style prompt and applied to the board state using the internal simulator.
3. **Black move (Stockfish):** The Stockfish engine generates a reply using a fixed search depth or Elo cap. This move is parsed and appended to the prompt.
4. **Loop continuation:** The updated prompt (containing both White and Black moves) is passed to the model for the next White move.

This loop continues until the game reaches checkmate, stalemate, repetition, or another terminal condition.

216 4.2.2 DECODING AND LEGALITY CONSTRAINTS
217
218219 Our simulator supports several decoding strategies, including greedy decoding, top- k sampling, top-
220 p (nucleus) sampling, and temperature-based sampling. These methods are used in comparative
221 experiments to evaluate how different decoding regimes affect both gameplay quality and move
222 legality.
223224 To ensure that generated moves adhere to the rules of chess, we apply legality-constrained decoding
225 through a dynamically updated trie of valid tokens derived from the current board state. The im-
226 plementation differs slightly by context. For legality evaluation, logits are first generated over the
227 full vocabulary, sampling is applied according to the chosen strategy, and candidate tokens are then
228 validated against the legality trie; invalid moves are rejected and resampled. For full game simu-
229 lation, logits are filtered in advance by masking all invalid tokens, and sampling is performed directly
230 over this pruned distribution. In both cases, the legality trie is regenerated after each move, ensuring
231 that only valid continuations remain possible. This approach guarantees coherent gameplay while
232 preserving the intended diversity of decoding strategies.
233
234
235236 5 TRAINING DYNAMICS AND BEHAVIORAL METRICS
237
238
239240 In this section, we examine the progression of model performance and gameplay behavior across
241 training epochs, model depths, and training data types. Our analysis spans a range of quantitative
242 metrics, including loss curves, legality rates, tactical motif recognition, material evaluation, and
243 positional strategy. Note that the legality metrics are computed over 10 simulated games, while the
244 remaining three metrics are computed over 20 simulated games generated at each completed epoch
245 during training.
246

Unless otherwise specified:

247

- 248 • **white** and **balanced** refer to the distribution of game outcomes in the training set; either
249 exclusively white-win games or a balanced mix of white-win games, black-win games and
draws.
- 250 • **n1** denotes the number of transformer layers and is used throughout figures to indicate
251 model depth.
- 252 • All metrics correspond to model generated moves only.

253All models are pretrained as described in Sections 3 and 4. Games were generated using a range
254 of decoding strategies to assess not only predictive accuracy, but also the emergence of legal and
255 strategic play. This section presents a detailed, metric-by-metric comparison of how capabilities
256 such as rule comprehension, tactical reasoning, and strategic planning evolve with increased training
257 time, architectural depth, and data composition.
258262 5.1 TRAINING AND VALIDATION LOSS
263
264265 Figure 1 shows training and validation loss over epochs, grouped by model depth and data type. All
266 models exhibit smooth convergence, though shallower ones ($n = 5, n = 10$) plateau at higher loss,
267 reflecting limited capacity. Deeper models ($n = 20, n = 25$) achieve lower final loss, especially on
268 validation, indicating stronger generalization. Balanced-trained models slightly outperform white-
269 only ones, though this advantage diminishes past $n = 15$. Overall, depth is the key driver of loss
reduction, with data diversity playing a secondary role.
270

Figure 1: Training and validation loss across epochs, grouped by model depth (nl, number of layers) and training data type (balanced outcomes vs white wins only). Top row: training loss; bottom row: validation loss.

5.2 RULE COMPREHENSION

Figure 2: We report four metrics that reflect the progression of basic gameplay dynamics with training and model depth: (1) average game length, (2) average number of checks per game normalized by game length, and (3–4) percentage of games that include queenside or kingside castling, respectively.

To evaluate the emergence of rule comprehension, we generated 10 games per epoch and decoding strategy. As detailed in Appendix A.1 and illustrated in Figure 3, basic rule awareness emerges early in training, but legal move generation remains unreliable in shallower models ($n = 5, n = 10$), which exhibit persistently high illegality rates (~60–80%). A phase transition occurs around $n = 15$, where legality stabilizes and becomes a consistent behavior. Beyond this threshold, deeper models ($n = 20, n = 25$) generate predominantly legal moves (~10–20% illegality), indicating that sufficient architectural depth is essential for internalizing the game’s rules.

The acquisition of individual piece movements follows a similar depth-dependent trajectory. Pawns are mastered earliest, with low illegality rates even from the first epoch. More complex pieces, namely knights, bishops, and queens, are learned reliably by epoch 4, but their accuracy remains sensitive to model depth, particularly for long-range movements or ambiguous positions. Full results, including decoding strategy and data type breakdowns, are presented in Appendix A.1.

324 While decoding strategy plays a secondary role, its influence is not negligible. Greedy decoding
 325 yields slightly higher legality, likely due to its deterministic bias toward high-probability tokens.
 326 Still, model depth is the dominant factor, suggesting that legality is primarily governed by internal
 327 representations rather than sampling behavior. Training data type also shapes performance: models
 328 trained on the balanced dataset consistently exhibit lower and more stable illegality rates than those
 329 trained on the white-only dataset. This advantage is especially pronounced for complex pieces such
 330 as rooks, bishops, and queens.

331 Figure 2 extends this analysis to broader game-play dynamics. Deeper models produce longer, more
 332 structured games, indicating the emergence of planning and restraint. Check frequency varies across
 333 depths, possibly reflecting competing objectives: giving checks vs. avoiding them. Castling behav-
 334 ior shows a clear developmental pattern: kingside castling is acquired earlier and more reliably;
 335 queenside castling is rarer and only appears consistently in deeper models. Once again, models
 336 trained on the balanced dataset show more stable castling trends, longer games, and richer dynamics
 337 overall. In contrast, white-trained models exhibit erratic castling behavior and noisier check dis-
 338 tributions, suggesting more brittle or over-optimized playstyles. These results reinforce the role of
 339 training diversity in fostering more generalizable and procedurally complete rule comprehension.

340 5.3 MATERIAL LOSS

341 Material-based strategy can be studied in Figure 4 in Appendix A.2. Blunder rates decrease with
 342 both depth and training, showing that deeper models make fewer material-losing moves. Sacrifice
 343 recognition remains rare overall, but begins to emerge in deeper models, indicating that intentional
 344 material sacrifice is a late-acquired and more sophisticated capability. Good trade frequencies re-
 345 main minimal, suggesting that evaluating and executing favorable exchanges is an advanced concept
 346 that requires additional training or depth to develop reliably.

347 Models trained on balanced and white-win games show varying performance. Blunder rates decline
 348 with training, with white-win models showing smoother and more stable convergence. Sacrifices
 349 in general remain rare but begin to appear in deeper balanced models, suggesting early signs of
 350 intentional material play. Good trades are virtually absent, with only sparse emergence beyond
 351 15 layers, again favoring balanced models. Centipawn loss declines steadily across training, but
 352 differences between data types remain inconclusive with respect to whether either setting reflects
 353 more efficient or principled material management.

356 5.4 TACTICAL MOTIFS

357 In Appendix A.3, Figure 5 demonstrates the emergence of tactical pattern recognition across model
 358 depths. Fork recognition improves consistently with depth, reaching peak performance around
 359 $n = 20\text{--}25$. Pin recognition is more variable, suggesting it is a more challenging tactical concept to
 360 acquire. Skewers show depth-dependent variability, with some intermediate-depth models outper-
 361 forming deeper ones. Discovered attacks remain relatively rare and stable across depths, indicating
 362 that this represents a late-emerging and advanced tactical capability.

363 Across most tactical motifs, models trained on the balanced dataset consistently exhibit higher motif
 364 rates, particularly at greater depths. In contrast, white-trained models show greater epoch-to-epoch
 365 volatility, with less reliable improvements in tactical behavior as depth increases.

368 5.5 POSITIONAL STRATEGY

369 The emergence of strategic behaviours across model depth and training is charted in Figure 6 in
 370 Appendix A.4. Opening development improves reliably with depth, indicating stronger coordina-
 371 tion in early piece mobilization. King safety also increases, aligning with a decline in early-game
 372 defeats. By contrast, center control slightly fluctuates across depths and epochs, suggesting that this
 373 positional concept may require more nuanced modeling or reinforcement.

374 Middlegame metrics show more uneven trends. Space control and coordination improve gradually
 375 across both balanced and white-win models, while rook activity and outpost usage exhibit instability
 376 and remain underdeveloped, reflecting the greater challenge of encoding board-wide, multi-piece
 377 strategies.

378 These trends suggest a layered progression of competence. Foundational abilities, such as legality
 379 and piece development, stabilize between $n = 10\text{--}15$. Intermediate behaviours like castling and
 380 tactical motifs, emerge more reliably at $n = 15\text{--}20$. More advanced positional skills such as spatial
 381 dominance, rook activation, and coordination, only begin to surface at $n = 20\text{--}25$, and even then,
 382 often remain incomplete. The trajectory across training epochs mirrors this pattern: early epochs
 383 (2–4) establish basic rules, mid-epochs (4–8) introduce structure and tactics, and later epochs (8–10)
 384 refine behaviours, though sometimes at the cost of stability, possibly due to overfitting.

385 Dataset composition further shapes this development. Balanced-trained models show slightly
 386 smoother and stronger gains across most strategic metrics. In the opening phase, they outperform
 387 in development, king safety, and castling frequency, particularly at deeper layers. White-trained
 388 models tend to be noisier and less stable. In the middlegame, balanced models continue to lead in
 389 space control, rook activity, and outpost usage, while coordination is somewhat similar between the
 390 two models.

391 6 DISCUSSION

392 6.1 BASIC GAMEPLAY ABILITIES

393 The steady increase in game length with model depth suggests an emerging capacity for long-term
 394 planning. This is reinforced by reductions in centipawn loss¹ and blunders, indications of tactical
 395 soundness. While longer games could, in principle, result from indecision or repetition, here they
 396 correlate with improved positional control and fewer tactical collapses, pointing to meaningful gains
 397 in strategic coherence.

398 Strategic milestones such as checks and castling offer further insight. Check frequency follows non-
 399 monotonic trends across depths, suggesting that models are learning both to deliver checks and to
 400 avoid them, reflecting the development of offensive and defensive behavior. Castling tendencies
 401 reveal a clearer developmental trajectory: kingside castling emerges earlier and more reliably, while
 402 queenside castling appears only in deeper models. This asymmetry reflects hierarchical skill acqui-
 403 sition, where simpler strategies arise first, and more complex coordination (e.g., preparing queenside
 404 castling) depends on deeper representational capacity.

405 6.2 MATERIAL LOSS

406 Blunder rates decline steadily with model depth and training, suggesting that legality and short-
 407 term evaluation are internalized early. However, more sophisticated material reasoning such as
 408 sacrifices or favorable trades, remain rare and noisy. This asymmetry marks a developmental gap:
 409 legal competence and tactical avoidance emerge before deeper, value-based strategy. While the
 410 reduction in blunders reflects improved understanding of legal structure and tactical punishment,
 411 the sparse and inconsistent use of sacrifices and trades highlights limitations in the models’ internal
 412 utility functions. Captures are not yet integrated into coherent long-term plans. Bridging this gap
 413 may require architectural changes, curriculum design, or auxiliary objectives that incentivize multi-
 414 step evaluation and counterfactual reasoning.

415 6.3 TACTICAL MOTIFS

416 Tactical motifs vary in difficulty. Forks are learned earliest, likely due to their local structure and
 417 high frequency. Pins and skewers require global board awareness and opponent modeling, and are
 418 acquired less consistently. Discovered attacks are especially rare, reflecting their reliance on deferred
 419 threat planning and latent piece alignment.

420 Motif usage improves with depth: shallow models may recognize isolated patterns, while deeper
 421 models begin to integrate them strategically. Nonetheless, even at 25 layers, performance remains
 422 inconsistent, suggesting that some motifs require abstract, multi-move inference beyond the capacity
 423 of sequence models trained on next-move prediction alone. This highlights potential for future work
 424 in curriculum learning, tactic-rich corpora, or auxiliary objectives targeting tactical abstraction.

425
 426 ¹Centipawn loss quantifies the difference between the engine’s evaluation of the move played and that of
 427 the optimal move, measured in hundredths of a pawn. Lower values indicate closer adherence to optimal play.

432 6.4 POSITIONAL STRATEGY
433434 Limitations in material and tactical play are mirrored in the development of positional strategy.
435 Foundational behaviours like development and king safety improve steadily with depth, whereas
436 spatial concepts like space control, rook activity, and coordination lag behind. This suggests a need
437 for broader board evaluation and long-range planning, which current next-token objectives may not
438 fully support.439 These patterns highlight a broader constraint: sequence models readily acquire legality and short-
440 horizon heuristics but struggle with integrated, multi-phase strategic reasoning. Increasing model
441 depth may help, but additional mechanisms may be needed to support deeper abstraction and utility
442 tracking.443
444 6.5 DATASET BIAS
445446 The training distribution plays a central role in shaping procedural understanding. Models trained on
447 balanced datasets consistently exhibit more robust gameplay: they generate longer games, castling
448 more frequently and producing a wider variety of checks, demonstrating evidence of exposure to di-
449 verse strategic and tactical contexts. These conditions support generalizable rule learning, including
450 rare mechanics like pawn promotion or castling constraints.451 In contrast, white-win-only models often overfit to narrow, aggressive trajectories. They exhibit
452 shorter games, limited castling, and lower strategic variability, suggesting a brittle reliance on fre-
453 quent winning lines. This outcome bias impedes the acquisition of full-game procedures, particu-
454 larly those requiring long-range planning or defensive play. Notably, performance gaps between the
455 two regimes widen with depth: beyond $n = 15$, balanced-trained models consistently outperform.
456 This reinforces a central insight that depth enables capacity, but data diversity enables competence.457
458 7 CONCLUSION
459460 Taken together, our results reveal a developmental trajectory in model gameplay. Early stages reflect
461 syntactic competence, characterized by movement legality, blunder avoidance, and simple motifs.
462 At greater depth, models begin to exhibit semantic competence through planning, positional struc-
463 turing, and selective strategy. This progression from syntax to semantics, from local tactics to global
464 planning, provides a framework for understanding how structured behaviours emerge in sequence
465 models.466 We also find that data diversity modulates this arc: models trained on balanced datasets exhibit
467 smoother, more stable transitions between competence stages, while white-only models tend to de-
468 velop brittle, aggressive heuristics that hinder semantic generalization. This suggests that repre-
469 sentational capacity must be paired with training diversity to yield flexible, procedurally grounded
470 play.471 Persistent gaps in material valuation and advanced motif coordination underscore the limitations of
472 next-move prediction as a sole learning signal, highlighting the need for additional supervision or
473 architectural support to foster higher-level strategic reasoning. More broadly, these findings suggest
474 that similar dynamics may govern learning in other rule-based domains, providing a template for
475 studying the acquisition of structure and strategy in sequence models.476 Future work could explore whether architectural modifications, curriculum learning, or targeted data
477 augmentation can accelerate the emergence of strategic competence and unlock deeper abstraction
478 in autoregressive models.479
480 481 ACKNOWLEDGMENTS
482483 The author acknowledges the use of AI tools for assistance with editing, phrasing, and refining
484 functions related to the detection of chess behaviours. All research decisions and conclusions remain
485 the sole responsibility of the authors.

486 REFERENCES
487488 Victor Allis. *Searching for Solutions in Games and Artificial Intelligence*. PhD thesis, University of
489 Limburg, 1994.490 Deniz Bayazit, Aaron Mueller, and Antoine Bosselut. Crosscoding through time: Tracking
491 emergence consolidation of linguistic representations throughout llm pretraining, 2025. URL
492 <https://arxiv.org/abs/2509.05291>.493 Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun Shao, David Mguni,
494 Yali Du, and Jun Wang. Chessgpt: Bridging policy learning and language modeling, 2023. URL
495 <https://arxiv.org/abs/2306.09200>.496 Ahmad Dawar Hakimi, Ali Modarressi, Philipp Wicke, and Hinrich Schütze. Time course mech-
497 interp: Analyzing the evolution of components and knowledge in large language models, 2025.
498 URL <https://arxiv.org/abs/2506.03434>.500 David Noever, Matt Ciolino, and Josh Kalin. The chess transformer: Mastering play using generative
501 language models, 2020. URL <https://arxiv.org/abs/2008.04057>.502 Anian Ruoss, Grégoire Delétang, Sourabh Medapati, Jordi Grau-Moya, Li Kevin Wenliang, Elliot
503 Catt, John Reid, Cannada A. Lewis, Joel Veness, and Tim Genewein. Amortized planning with
504 large-scale transformers: A case study on chess, 2024. URL <https://arxiv.org/abs/2402.04494>.505 John Schultz, Jakub Adamek, Matej Jusup, Marc Lanctot, Michael Kaisers, Sarah Perrin, Daniel
506 Hennes, Jeremy Shar, Cannada Lewis, Anian Ruoss, Tom Zahavy, Petar Veličković, Laurel
507 Prince, Satinder Singh, Eric Malmi, and Nenad Tomašev. Mastering board games by external
508 and internal planning with language models, 2025. URL <https://arxiv.org/abs/2412.12119>.510 Claude E. Shannon. Programming a computer for playing chess. *Philosophical Magazine*, 41(314):
511 256–275, 1950.512 Andreas Stöckl. Watching a language model learning chess. In Ruslan Mitkov and Galia Angelova
513 (eds.), *Proceedings of the International Conference on Recent Advances in Natural Language
514 Processing (RANLP 2021)*, pp. 1369–1379, Held Online, September 2021. INCOMA Ltd. URL
515 <https://aclanthology.org/2021.ranlp-1.153/>.516 Shubham Toshniwal, Sam Wiseman, Karen Livescu, and Kevin Gimpel. Learning chess blindfolded:
517 Evaluating language models on state tracking. *CoRR*, abs/2102.13249, 2021. URL <https://arxiv.org/abs/2102.13249>.518 Shu Wang, Lei Ji, Renxi Wang, Wenxiao Zhao, Haokun Liu, Yifan Hou, and Ying Nian Wu. Explore
519 the reasoning capability of llms in the chess testbed, 2025. URL <https://arxiv.org/abs/2411.06655>.520 Jiacheng Ye, Zhenyu Wu, Jiahui Gao, Zhiyong Wu, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
521 Implicit search via discrete diffusion: A study on chess, 2025. URL <https://arxiv.org/abs/2502.19805>.522 Edwin Zhang, Vincent Zhu, Naomi Saphra, Anat Kleiman, Benjamin L. Edelman, Milind Tambe,
523 Sham M. Kakade, and Eran Malach. Transcendence: Generative models can outperform the
524 experts that train them, 2024. URL <https://arxiv.org/abs/2406.11741>.525 Yinqi Zhang, Xintian Han, Haolong Li, Kedi Chen, and Shaohui Lin. Complete chess games enable
526 llm become a chess master, 2025. URL <https://arxiv.org/abs/2501.17186>.

540
541 **A APPENDIX**
542
543
544
545
546547 **A.1 ADDITIONAL FIGURES - RULE COMPREHENSION**
548
549
550
551
552
553
554
555
556
557
558
559

594 A.2 ADDITIONAL FIGURES - MATERIAL LOSS
595
596
597
598600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
Figure 4: Emergence of material evaluation across model depth and training.618 A.3 ADDITIONAL FIGURES - TACTICAL MOTIFS
619
620
621
622623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
Figure 5: Emergence of tactical motifs across model depth and training. All tactics are normalized by game length, and the average rate is taken across all games.

648 A.4 ADDITIONAL FIGURES - POSITIONAL STRATEGY
649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Figure 6: Positional strategy across epochs.

702
703 A.5 RULE COMPREHENSION UNDER BPE VS. DOMAIN-SPECIFIC TOKENIZATION
704
705

738 Figure 7: Average percentage of illegal model-generated moves across training epochs, grouped by
739 model depth (columns), piece-specific movement type (rows), and decoding strategy. Curves com-
740 pare models trained with a standard BPE tokenizer (green) against those trained with a chess-aware
741 custom tokenizer (orange). Although BPE models generally show lower absolute illegality, the
742 custom tokenizer demonstrates more stable learning patterns particularly on complex pieces, indicating
743 that domain-specific tokenization can yield smoother rule acquisition despite higher baseline error
744 rates.

745
746 A.6 VOCABULARY TOKENS
747748 MOVE MARKERS
749

- #, +, ..

750 MOVE NUMBERS
751752 5
753

- 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.,
- 11., 12., 13., 14., 15., 16., 17., 18., 19., 20.,

756 • 21.-298.
757
758 **SPECIAL TOKENS**
759 • <EOS>
760
761 **PROMOTION SUFFIXES**
762 • =Q, =R, =B, =N
763
764 **PIECE IDENTIFIERS**
765 • K, Q, R, B, N
766
767 **CASTLING TOKENS**
768 • O-O, O-O-O
769
770 **CAPTURE INDICATOR**
771 • x
772
773 **FILES**
774 • a, b, c, d, e, f, g, h
775
776 **SQUARES**
777 4
778 • a1--a8, b1--b8, c1--c8, d1--d8
779 • e1--e8, f1--f8, g1--g8, h1--h8
780
781
782 **DISAMBIGUATION TOKENS**
783 • DISAMBIG_FILE_a--h
784 • DISAMBIG_RANK_1--8
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809