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ABSTRACT

We investigate the emergent behaviours of rule comprehension, tactical execu-
tion, and strategic competence in transformer-based models trained on algebraic
chess notation. To support structured reasoning, we introduce a disambiguation-
aware tokenization scheme that explicitly encodes promotions, castling, checks,
and mates, enabling fine-grained modeling of chess rules and dynamics. Our anal-
ysis reveals phase transitions in capabilities: shallow models fewer than 15 layers
exhibit high illegality rates, while deeper models 20 layers or more increasingly
demonstrate reliable tactical and positional behaviours. Training dynamics show
while rule comprehension emerges early, higher-order abilities follow a hierarchi-
cal developmental path that mirrors curriculum learning. These trends remain con-
sistent across decoding strategies and training distributions. Our findings suggest
that transformer models can acquire human-aligned planning abilities in symbolic
domains. Chess provides a tractable benchmark for evaluating the staged emer-
gence of hierarchical competence in language models. Our methodology, includ-
ing vocabulary design, architectural scaling, and behavioral evaluation, has the
potential to generalize to other structured domains such as programming, formal
logic, and mathematical proof systems.

1 INTRODUCTION

The rise of large-scale language models (LLMs) has raised fundamental questions about how these
systems acquire structured decision-making abilities from data alone. While benchmarks often
probe performance in static settings such as question answering or logical reasoning, far less is
known about how sequence models internalize dynamic, rule-governed domains that demand plan-
ning, legality, and long-horizon consistency.

Chess provides an ideal setting for such study. It is bounded and interpretable, yet computation-
ally vast: the number of legal board positions is estimated at roughly 10%** (Allis| [1994), while the
space of possible distinct games, known as the Shannon number, exceeds 102V (Shannon, [1950),
dwarfing the number of atoms in the observable universe. With an average branching factor of 30—
40 legal moves and typical games lasting around 80 plies, chess exhibits a game-tree complexity on
the order of 10123 (Allis| [1994). This combination of strict rules and overwhelming combinatorial
growth makes it uniquely suited for investigating how structured behaviours emerge in autoregres-
sive models.

In this work, we study decoder-only transformers trained from scratch on human chess games in
algebraic notation. Unlike prior work that emphasizes end-performance or reinforcement learning
agents, our focus is on training dynamics: how rule comprehension, tactical motifs, and positional
play emerge across model depth and training time.

Our approach is distinguished by a custom tokenization scheme that mirrors the syntax of chess no-
tation, including explicit disambiguation tokens to handle ambiguous positions. This design enables
models to generate contextually valid moves while respecting the rules of chess. We train across
two datasets drawn from over a million human games with ELO > 1600 and at least 40 moves:
one filtered for high-quality white-win games and another balanced across outcomes. We compare
models with 5, 10, 15, 20, and 25 layers.

Our analysis makes three contributions:
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1. Training Dynamics: We provide the first systematic analysis of how rule comprehen-
sion, blunder avoidance, tactical motifs, and positional strategy emerge as functions of
both model depth and training time. Prior work typically reports end-state performance;
our focus is on the developmental trajectory.

2. Strategic Complexity: We move beyond legality and tactics to measure whether mod-
els learn simple strategies before complex ones, quantifying phase transitions in planning
ability. This contrasts with earlier studies that treat gameplay competence as a monolithic
outcome.

3. Dataset Bias: By comparing outcome-biased (white-win) vs. balanced datasets, we
show how data distribution shapes model style—aggression, planning, and positional
preference—providing insight into how training signals imprint strategic behaviours.

Together, these contributions recast chess not as an end in itself, but as a microscope on emer-
gent structure in sequence models, offering insights relevant to symbolic reasoning and other rule-
governed domains.

More broadly, chess serves here not as an end in itself but as a controlled testbed for studying how
sequence models acquire structured, rule-governed behaviours. By treating chess as a microscope
on emergent structure, our findings contribute to a broader understanding of how autoregressive
training can give rise to rule compliance, abstraction, and strategy in complex environments.

2 RELATED WORK

Recent work has demonstrated that large language models (LLMs) can learn to play chess by training
on textual representations of games, without explicit rule supervision or board state conditioning.
Noever et al.| (2020) showed that fine-tuning GPT-2 on PGN game data enables coherent move
generation that respects opening principles, establishing the viability of autoregressive models in
this domain.

Subsequent studies investigated whether such models internally track latent board states. Notably,
Toshniwal et al.| (2021) and |Stockl (2021) revealed that transformers trained solely on move se-
quences exhibit accurate legality prediction and internal piece tracking, even when perplexity re-
mains flat. These works suggest that world modeling capabilities can emerge naturally from lan-
guage modeling objectives.

Structured decoding and scaling have also improved play quality. |[Ruoss et al.| (2024) showed that
a 270M transformer can achieve “2895 Elo without search, while [Schultz et al.[|(2025) and |Ye et al.
(2025) leveraged LMs as policy evaluators or future-move samplers, improving planning through
Monte Carlo Tree Search or diffusion rollouts.

In parallel, efforts like [Feng et al.| (2023) and Wang et al.| (2025) paired move generation with
strategy annotation, enriching model outputs with reasoning traces and achieving superior move
quality. Zhang et al.[(2025) emphasized the importance of uninterrupted long games during training,
while [Zhang et al.[(2024)) showed that models can exceed their training data’s Elo through curated
sampling.

Beyond the domain of chess, recent studies have turned toward understanding the evolution of skills
and internal structure during pretraining. Bayazit et al.|(2025) introduced sparse alignment meth-
ods to trace how specific linguistic features emerge and consolidate during LLM training. They
demonstrate that core linguistic abstractions (e.g., syntax, irregular agreement) emerge in stages,
and propose metrics like Relative Indirect Effects (RELIE) to quantify when specific features be-
come causally important, offering a fine-grained view of conceptual acquisition over time.

Complementing this, [Hakimi et al.| (2025) used component-level analysis to track the functional
roles of attention heads and feedforward networks throughout training, observing that models begin
with general-purpose heads and later specialize, with some components being repurposed. They
found that factual knowledge representations evolve hierarchically and remain plastic even in later
stages, consequently supporting a dynamic view of neural specialization.

Our work bridges these threads by applying a curriculum-aware lens to chess modeling, treating
model depth and training epochs as axes along which increasingly complex competencies emerge.
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Unlike prior work focused on end-task performance, we analyze how rule-following, tactical execu-
tion, and strategic reasoning emerge over time, offering a behavioral analogue to recent mechanistic
interpretability work. We introduce a structured tokenization scheme encoding algebraic disam-
biguation, castling, checks, and promotions, which enables interpretable tracking of skills like tactic
execution, center control, and positional safety. Our findings highlight a layered trajectory of skill
acquisition, marked by phase transitions in legality and an early stabilization of rule compliance,
paralleling developmental patterns observed in both symbolic reasoning tasks and natural language
pretraining.

3 DATA

3.1 DATA COLLECTION

We sourced training data from publicly available chess games on Lichess.org, a large-scale online
platform with millions of user-submitted games. All games were downloaded in Portable Game
Notation (PGN) format, which encodes move sequences in algebraic notation along with metadata
such as Elo ratings, time controls, and outcomes. To ensure data quality, we retained only games in
which both players had Elo ratings above 1600, filtering out noise from novice play while avoiding
the idiosyncrasies of top-tier grandmasters. Games were further restricted to between 80 and 200
plies (40-100 full moves), excluding trivial early resignations and excessively long endgames. Fi-
nally, we constructed two datasets of 270,000 games for training and 23,000 games for validation
to probe the effects of outcome distributions: a white-win dataset containing only White victories,
and a balanced dataset with equal proportions of White wins, Black wins, and draws. Table [I] sum-
marizes key style-related statistics across these datasets, showing broadly similar trends but with
slightly higher tactical activity and material volatility in the White-win corpus.

Table 1: Statistics on playing styles by data type (mean =+ std).

Data type Castling Checks Fork Rate Pin Rate  Total Centipawn Loss
Balanced 091 +£0.29 2.51+£249 0.01£0.02 0.02+0.03 311.5 £ 3355
White 0.85+036 237+2.12 0.02+£0.02 0.03+0.03 414.6 +404.0

3.2 VOCABULARY DESIGN AND TOKENIZATION

To support fine-grained modeling of chess rules, tactics, and strategy, we developed a custom
disambiguation-aware tokenization scheme based on algebraic notation. This design preserves game
semantics and allows transformer models to learn directly from move sequences without auxiliary
board supervision (e.g., FEN states). Moves with multiple legal origins are annotated with rank or
file qualifiers (e.g., Nbd2, R1el), while special moves such as castling (0—-0, 0-0-0) and promo-
tions (e.g., e8=Q) are represented explicitly. Captures are consistently marked with x, including en
passant, and suffixes denote checks (+) or checkmates (#). The resulting vocabulary encodes both
target squares and semantically relevant features, maintaining move-order fidelity and supporting
both subword and whole-token representations. This structured approach facilitates not only model
training but also downstream interpretability, enabling analysis of learned behaviours such as tactic
execution, castling patterns, and strategic development. Additionally as observed in [A.5] while
models trained on BPE tokenizer in similar experiments achieves lower overall illegality rates, mod-
els trained with the custom tokenizer exhibit more stable learning trajectories on complex pieces,
suggesting that domain-specific structure supports smoother rule acquisition even when absolute
performance lags. Vocabulary tokens can be further explored in
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Table 2: Examples of our disambiguation-aware tokenization compared to standard algebraic nota-
tion (SAN).

Move Type Standard Algebraic Notation (SAN) Tokenized Representation
Disambiguation Nbd2 N DISAMBIG.FILE.b d2
Disambiguation (capture) Rlxe4 R DISAMBIG.RANK.1 x e4
Castling (kingside) 0-0 0-0

Castling (queenside) 0-0-0 0-0-0

Promotion e8=Q e8 =0

Capture exd5 e x db

Capture (en passant) dxe6 d x e6

Check Qh5+ Q h5 +

Checkmate Qh7# Q h7 #

4 TRAINING IMPLEMENTATION

4.1 MODEL ARCHITECTURE AND LEARNING PARAMETERS

We adopt a decoder-only transformer architecture tailored for structured chess modeling, trained
autoregressively to predict the next token in a sequence of algebraic moves. To isolate the effects of
scale, we vary model depth across 5, 10, 15, 20, and 25 layers while holding other parameters fixed.
Each model uses a hidden size of 768, eight attention heads, and a feedforward dimension of 1024,
yielding between 20M and 100M parameters depending on depth. Positional information is encoded
with rotary positional embeddings (RoPE), and we include special tokens for padding (<PAD>) and
sequence termination (<EOS>).

Training is performed with causal cross-entropy loss, optimized using a cosine learning rate schedule
with linear warmup. The base learning rate is set to 1 x 10> with a warmup ratio of 0.1. We use
a batch size of 8 and train for 10 epochs on approximately 270k games, which corresponds to
roughly 33,000 batches per epoch. Input sequences consist of tokenized algebraic notation (e.g., 1.
ed4d 1... «¢5 2. Nf3 ...), and the model is optimized to predict the next token at each
timestep. This token-level granularity enables fine-grained analysis of learning dynamics across
both training epochs and architectural depth.

4.2 CHESS GAME SIMULATOR

To assess model gameplay in a dynamic and interactive context, we developed a simulator that
alternates between model-generated and engine-generated moves until the game reaches a terminal
state.

4.2.1 SIMULATION PROCEDURE

Each simulation begins with the model playing as White. The game proceeds as follows:

1. White move generation: The model generates a move using temperature-controlled sam-
pling. To enforce rule compliance, prefix-constrained decoding is applied via a legality trie
built from the current board state.

2. Prompt update: The move is appended to the PGN-style prompt and applied to the board
state using the internal simulator.

3. Black move (Stockfish): The Stockfish engine generates a reply using a fixed search depth
or Elo cap. This move is parsed and appended to the prompt.

4. Loop continuation: The updated prompt (containing both White and Black moves) is
passed to the model for the next White move.

This loop continues until the game reaches checkmate, stalemate, repetition, or another terminal
condition.
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4.2.2 DECODING AND LEGALITY CONSTRAINTS

Our simulator supports several decoding strategies, including greedy decoding, top-k sampling, top-
p (nucleus) sampling, and temperature-based sampling. These methods are used in comparative
experiments to evaluate how different decoding regimes affect both gameplay quality and move
legality.

To ensure that generated moves adhere to the rules of chess, we apply legality-constrained decoding
through a dynamically updated trie of valid tokens derived from the current board state. The im-
plementation differs slightly by context. For legality evaluation, logits are first generated over the
full vocabulary, sampling is applied according to the chosen strategy, and candidate tokens are then
validated against the legality trie; invalid moves are rejected and resampled. For full game simula-
tion, logits are filtered in advance by masking all invalid tokens, and sampling is performed directly
over this pruned distribution. In both cases, the legality trie is regenerated after each move, ensuring
that only valid continuations remain possible. This approach guarantees coherent gameplay while
preserving the intended diversity of decoding strategies.

5 TRAINING DYNAMICS AND BEHAVIORAL METRICS

In this section, we examine the progression of model performance and gameplay behavior across
training epochs, model depths, and training data types. Our analysis spans a range of quantitative
metrics, including loss curves, legality rates, tactical motif recognition, material evaluation, and
positional strategy. Note that the legality metrics are computed over 10 simulated games, while the
remaining three metrics are computed over 20 simulated games generated at each completed epoch
during training.

Unless otherwise specified:

* white and balanced refer to the distribution of game outcomes in the training set; either
exclusively white-win games or a balanced mix of white-win games, black-win games and
draws.

* nl denotes the number of transformer layers and is used throughout figures to indicate
model depth.

¢ All metrics correspond to model generated moves only.

All models are pretrained as described in Sections [3]and f] Games were generated using a range
of decoding strategies to assess not only predictive accuracy, but also the emergence of legal and
strategic play. This section presents a detailed, metric-by-metric comparison of how capabilities
such as rule comprehension, tactical reasoning, and strategic planning evolve with increased training
time, architectural depth, and data composition.

5.1 TRAINING AND VALIDATION LOSS

Figure [I|shows training and validation loss over epochs, grouped by model depth and data type. All
models exhibit smooth convergence, though shallower ones (n = 5, n = 10) plateau at higher loss,
reflecting limited capacity. Deeper models (n = 20, n = 25) achieve lower final loss, especially on
validation, indicating stronger generalization. Balanced-trained models slightly outperform white-
only ones, though this advantage diminishes past n = 15. Overall, depth is the key driver of loss
reduction, with data diversity playing a secondary role.
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Training and Validatation Loss Across Epochs (Grouped by Model Depth & Data Type)
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Figure 1: Training and validation loss across epochs, grouped by model depth (nl, number of layers)
and training data type (balanced outcomes vs white wins only). Top row: training loss; bottom row:
validation loss.

5.2 RULE COMPREHENSION

Simple Game Playing Abilities Across Epochs (Grouped by Model Depth & Data Type)
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Figure 2: We report four metrics that reflect the progression of basic gameplay dynamics with train-
ing and model depth: (1) average game length, (2) average number of checks per game normalized
by game length, and (3—4) percentage of games that include queenside or kingside castling, respec-
tively.

To evaluate the emergence of rule comprehension, we generated 10 games per epoch and decoding
strategy. As detailed in Appendix [A:]] and illustrated in Figure [3] basic rule awareness emerges
early in training, but legal move generation remains unreliable in shallower models (n = 5, n =
10), which exhibit persistently high illegality rates (~60-80%). A phase transition occurs around
n = 15, where legality stabilizes and becomes a consistent behavior. Beyond this threshold, deeper
models (n = 20, n = 25) generate predominantly legal moves (~10-20% illegality), indicating that
sufficient architectural depth is essential for internalizing the game’s rules.

The acquisition of individual piece movements follows a similar depth-dependent trajectory. Pawns
are mastered earliest, with low illegality rates even from the first epoch. More complex pieces,
namely knights, bishops, and queens, are learned reliably by epoch 4, but their accuracy remains
sensitive to model depth, particularly for long-range movements or ambiguous positions. Full re-
sults, including decoding strategy and data type breakdowns, are presented in Appendix [A.T]
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While decoding strategy plays a secondary role, its influence is not negligible. Greedy decoding
yields slightly higher legality, likely due to its deterministic bias toward high-probability tokens.
Still, model depth is the dominant factor, suggesting that legality is primarily governed by internal
representations rather than sampling behavior. Training data type also shapes performance: models
trained on the balanced dataset consistently exhibit lower and more stable illegality rates than those
trained on the white-only dataset. This advantage is especially pronounced for complex pieces such
as rooks, bishops, and queens.

Figure2]extends this analysis to broader game-play dynamics. Deeper models produce longer, more
structured games, indicating the emergence of planning and restraint. Check frequency varies across
depths, possibly reflecting competing objectives: giving checks vs. avoiding them. Castling behav-
ior shows a clear developmental pattern: kingside castling is acquired earlier and more reliably;
queenside castling is rarer and only appears consistently in deeper models. Once again, models
trained on the balanced dataset show more stable castling trends, longer games, and richer dynamics
overall. In contrast, white-trained models exhibit erratic castling behavior and noisier check dis-
tributions, suggesting more brittle or over-optimized playstyles. These results reinforce the role of
training diversity in fostering more generalizable and procedurally complete rule comprehension.

5.3 MATERIAL LOSS

Material-based strategy can be studied in Figure ] in Appendix [A.2] Blunder rates decrease with
both depth and training, showing that deeper models make fewer material-losing moves. Sacrifice
recognition remains rare overall, but begins to emerge in deeper models, indicating that intentional
material sacrifice is a late-acquired and more sophisticated capability. Good trade frequencies re-
main minimal, suggesting that evaluating and executing favorable exchanges is an advanced concept
that requires additional training or depth to develop reliably.

Models trained on balanced and white-win games show varying performance. Blunder rates decline
with training, with white-win models showing smoother and more stable convergence. Sacrifices
in general remain rare but begin to appear in deeper balanced models, suggesting early signs of
intentional material play. Good trades are virtually absent, with only sparse emergence beyond
15 layers, again favoring balanced models. Centipawn loss declines steadily across training, but
differences between data types remain inconclusive with respect to whether either setting reflects
more efficient or principled material management.

5.4 TACTICAL MOTIFS

In Appendix Figure [5]demonstrates the emergence of tactical pattern recognition across model
depths. Fork recognition improves consistently with depth, reaching peak performance around
n = 20-25. Pin recognition is more variable, suggesting it is a more challenging tactical concept to
acquire. Skewers show depth-dependent variability, with some intermediate-depth models outper-
forming deeper ones. Discovered attacks remain relatively rare and stable across depths, indicating
that this represents a late-emerging and advanced tactical capability.

Across most tactical motifs, models trained on the balanced dataset consistently exhibit higher motif
rates, particularly at greater depths. In contrast, white-trained models show greater epoch-to-epoch
volatility, with less reliable improvements in tactical behavior as depth increases.

5.5 POSITIONAL STRATEGY

The emergence of strategic behaviours across model depth and training is charted in Figure [6] in
Appendix [A.4] Opening development improves reliably with depth, indicating stronger coordina-
tion in early piece mobilization. King safety also increases, aligning with a decline in early-game
defeats. By contrast, center control slightly fluctuates across depths and epochs, suggesting that this
positional concept may require more nuanced modeling or reinforcement.

Middlegame metrics show more uneven trends. Space control and coordination improve gradually
across both balanced and white-win models, while rook activity and outpost usage exhibit instability
and remain underdeveloped, reflecting the greater challenge of encoding board-wide, multi-piece
strategies.
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These trends suggest a layered progression of competence. Foundational abilities, such as legality
and piece development, stabilize between n = 10-15. Intermediate behaviours like castling and
tactical motifs, emerge more reliably at n = 15-20. More advanced positional skills such as spatial
dominance, rook activation, and coordination, only begin to surface at n = 20-25, and even then,
often remain incomplete. The trajectory across training epochs mirrors this pattern: early epochs
(2-4) establish basic rules, mid-epochs (4-8) introduce structure and tactics, and later epochs (8—10)
refine behaviours, though sometimes at the cost of stability, possibly due to overfitting.

Dataset composition further shapes this development. Balanced-trained models show slightly
smoother and stronger gains across most strategic metrics. In the opening phase, they outperform
in development, king safety, and castling frequency, particularly at deeper layers. White-trained
models tend to be noisier and less stable. In the middlegame, balanced models continue to lead in
space control, rook activity, and outpost usage, while coordination is somewhat similar between the
two models.

6 DISCUSSION

6.1 BASIC GAMEPLAY ABILITIES

The steady increase in game length with model depth suggests an emerging capacity for long-term
planning. This is reinforced by reductions in centipawn lossﬂ and blunders, indications of tactical
soundness. While longer games could, in principle, result from indecision or repetition, here they
correlate with improved positional control and fewer tactical collapses, pointing to meaningful gains
in strategic coherence.

Strategic milestones such as checks and castling offer further insight. Check frequency follows non-
monotonic trends across depths, suggesting that models are learning both to deliver checks and to
avoid them, reflecting the development of offensive and defensive behavior. Castling tendencies
reveal a clearer developmental trajectory: kingside castling emerges earlier and more reliably, while
queenside castling appears only in deeper models. This asymmetry reflects hierarchical skill acqui-
sition, where simpler strategies arise first, and more complex coordination (e.g., preparing queenside
castling) depends on deeper representational capacity.

6.2 MATERIAL LOSS

Blunder rates decline steadily with model depth and training, suggesting that legality and short-
term evaluation are internalized early. However, more sophisticated material reasoning such as
sacrifices or favorable trades, remain rare and noisy. This asymmetry marks a developmental gap:
legal competence and tactical avoidance emerge before deeper, value-based strategy. While the
reduction in blunders reflects improved understanding of legal structure and tactical punishment,
the sparse and inconsistent use of sacrifices and trades highlights limitations in the models’ internal
utility functions. Captures are not yet integrated into coherent long-term plans. Bridging this gap
may require architectural changes, curriculum design, or auxiliary objectives that incentivize multi-
step evaluation and counterfactual reasoning.

6.3 TACTICAL MOTIFS

Tactical motifs vary in difficulty. Forks are learned earliest, likely due to their local structure and
high frequency. Pins and skewers require global board awareness and opponent modeling, and are
acquired less consistently. Discovered attacks are especially rare, reflecting their reliance on deferred
threat planning and latent piece alignment.

Motif usage improves with depth: shallow models may recognize isolated patterns, while deeper
models begin to integrate them strategically. Nonetheless, even at 25 layers, performance remains
inconsistent, suggesting that some motifs require abstract, multi-move inference beyond the capacity
of sequence models trained on next-move prediction alone. This highlights potential for future work
in curriculum learning, tactic-rich corpora, or auxiliary objectives targeting tactical abstraction.

!Centipawn loss quantifies the difference between the engine’s evaluation of the move played and that of
the optimal move, measured in hundredths of a pawn. Lower values indicate closer adherence to optimal play.
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6.4 POSITIONAL STRATEGY

Limitations in material and tactical play are mirrored in the development of positional strategy.
Foundational behaviours like development and king safety improve steadily with depth, whereas
spatial concepts like space control, rook activity, and coordination lag behind. This suggests a need
for broader board evaluation and long-range planning, which current next-token objectives may not
fully support.

These patterns highlight a broader constraint: sequence models readily acquire legality and short-
horizon heuristics but struggle with integrated, multi-phase strategic reasoning. Increasing model
depth may help, but additional mechanisms may be needed to support deeper abstraction and utility
tracking.

6.5 DATASET BIAS

The training distribution plays a central role in shaping procedural understanding. Models trained on
balanced datasets consistently exhibit more robust gameplay: they generate longer games, castling
more frequently and producing a wider variety of checks, demonstrating evidence of exposure to di-
verse strategic and tactical contexts. These conditions support generalizable rule learning, including
rare mechanics like pawn promotion or castling constraints.

In contrast, white-win-only models often overfit to narrow, aggressive trajectories. They exhibit
shorter games, limited castling, and lower strategic variability, suggesting a brittle reliance on fre-
quent winning lines. This outcome bias impedes the acquisition of full-game procedures, particu-
larly those requiring long-range planning or defensive play. Notably, performance gaps between the
two regimes widen with depth: beyond n = 15, balanced-trained models consistently outperform.
This reinforces a central insight that depth enables capacity, but data diversity enables competence.

7 CONCLUSION

Taken together, our results reveal a developmental trajectory in model gameplay. Early stages reflect
syntactic competence, characterized by movement legality, blunder avoidance, and simple motifs.
At greater depth, models begin to exhibit semantic competence through planning, positional struc-
turing, and selective strategy. This progression from syntax to semantics, from local tactics to global
planning, provides a framework for understanding how structured behaviours emerge in sequence
models.

We also find that data diversity modulates this arc: models trained on balanced datasets exhibit
smoother, more stable transitions between competence stages, while white-only models tend to de-
velop brittle, aggressive heuristics that hinder semantic generalization. This suggests that repre-
sentational capacity must be paired with training diversity to yield flexible, procedurally grounded

play.

Persistent gaps in material valuation and advanced motif coordination underscore the limitations of
next-move prediction as a sole learning signal, highlighting the need for additional supervision or
architectural support to foster higher-level strategic reasoning. More broadly, these findings suggest
that similar dynamics may govern learning in other rule-based domains, providing a template for
studying the acquisition of structure and strategy in sequence models.

Future work could explore whether architectural modifications, curriculum learning, or targeted data
augmentation can accelerate the emergence of strategic competence and unlock deeper abstraction
in autoregressive models.
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A APPENDIX
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ADDITIONAL FIGURES - RULE COMPREHENSION
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Figure 3: Acquisition of rule legality across training epochs and model depths. This figure illustrates
the percentage of illegal moves generated over time, stratified by decoding strategy and model depth.
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A.2 ADDITIONAL FIGURES - MATERIAL LOSS
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Figure 4: Emergence of material evaluation across model depth and training.

ADDITIONAL FIGURES - TACTICAL MOTIFS
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Figure 5: Emergence of tactical motifs across model depth and training. All tactics are normalized
by game length, and the average rate is taken across all games.
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Figure 6: Positional strategy across epochs.
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A.5 RULE COMPREHENSION UNDER BPE vS. DOMAIN-SPECIFIC TOKENIZATION
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Figure 7: Average percentage of illegal model-generated moves across training epochs, grouped by
model depth (columns), piece-specific movement type (rows), and decoding strategy. Curves com-
pare models trained with a standard BPE tokenizer (green) against those trained with a chess-aware
custom tokenizer (orange). Although BPE models generally show lower absolute illegality, the cus-
tom tokenizer demonstrates more stable learning patterns particularly on complex pieces, indicating
that domain-specific tokenization can yield smoother rule acquisition despite higher baseline error

rates.

A.6 VOCABULARY TOKENS
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