

UNI-MAP: UNIFIED CAMERA-LiDAR PERCEPTION FOR ROBUST HD MAP CONSTRUCTION

Anonymous authors

Paper under double-blind review

ABSTRACT

High-definition (HD) map construction methods play a vital role in providing precise and comprehensive static environmental information essential for autonomous driving systems. The primary sensors used are cameras and LiDAR, with input configurations varying among camera-only, LiDAR-only, or camera-LiDAR fusion based on cost-performance considerations, while fusion-based methods typically perform the best. However, current methods face two major issues: high costs due to separate training and deployment for each input configuration, and low robustness when sensors are missing or corrupted. To address these challenges, we propose the Unified Robust HD Map Construction Network (Uni-Map), a single model designed to perform well across all input configurations. Our approach designs a novel Mixture Stack Modality (MSM) training scheme, allowing the map decoder to learn effectively from camera, LiDAR, and fused features. We also introduce a projector module to align Bird’s Eye View features from different modalities into a shared space, enhancing representation learning and overall model performance. During inference, our model utilizes a switching modality strategy to adapt seamlessly to any input configuration, ensuring compatibility across various modalities. To evaluate the robustness of HD map construction methods, we designed 13 different sensor corruption scenarios and conducted extensive experiments comparing Uni-Map with state-of-the-art methods. Experimental results show that Uni-Map outperforms previous methods by a significant margin across both normal and corrupted modalities, demonstrating superior performance and robustness. Notably, our unified model surpasses independently trained camera-only, LiDAR-only, and camera-LiDAR MapTR models with a gain of 4.6, 5.6, and 5.6 mAP on the nuScenes dataset, respectively. The code and models will be released.

1 INTRODUCTION

Online high-definition (HD) map provides abundant and precise static environmental information about the driving scenes, which is fundamental for planning and navigation in autonomous driving systems. Cameras and LiDAR are the predominant sensors, offering semantic-rich image data and explicit geometric information from point clouds, respectively. HD map construction models can be categorized into three groups based on input configurations: camera-only (Qiao et al., 2023; Ding et al., 2023; Yuan et al., 2024; Hao et al., 2024a; Li et al., 2024), LiDAR-only (Li et al., 2022a; Liu et al., 2023a), and camera-LiDAR fusion (Liao et al., 2023a;b; Hao et al., 2025a; Zhou et al., 2024) models. As illustrated in Fig. 1 (a)-(c), HD map construction methods with different input configurations have been widely studied and deployed in real-world systems based on different cost-effective considerations.

However, existing methods entail the training and deployment of separate models for each input configuration, resulting in substantial development, maintenance, and deployment overheads. To address this problem, we propose a novel ***Unified Robust HD Map Construction Network (Uni-Map)***, where one trained model can perform well under all input configurations, depicted in Fig. 1(d). Our approach elaborates a novel Mixture Stack Modality (MSM) training scheme during the training phase, allowing the map decoder to glean rich knowledge from the camera, LiDAR, or fused features. Furthermore, we introduce a novel projector module to map Bird’s Eye View (BEV) features of different modalities into a shared space. During inference, we present a switching modality strategy enabling precise predictions by Uni-Map when utilizing arbitrary modality inputs. Extensive

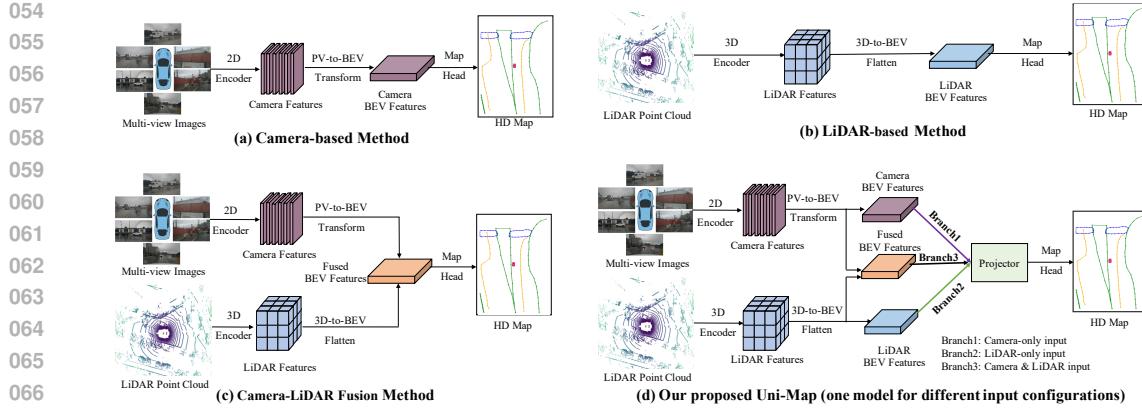


Figure 1: Illustration of the Camera-based method, LiDAR-based method, Camera-LiDAR Fusion method, and the proposed Uni-Map (one model for different input configurations).

experiments demonstrate that Uni-Map can achieve high performance in different input configurations while reducing the training and deployment costs of the model.

Another critical concern of HD map construction methods for autonomous driving is the model’s robustness (Kong et al., 2024). While Camera-LiDAR fusion methods have shown promising performance by incorporating information from both modalities (Liao et al., 2023a; Zhou et al., 2024; Hao et al., 2024b), existing fusion methods often assume access to complete sensor information, leading to low robustness and potential collapse when sensors are corrupted or missing. To comprehensively evaluate the robustness of the Camera-LiDAR fusion model, we design 13 types of camera-LiDAR corruption combinations that perturb both camera and LiDAR inputs separately or concurrently. These combinations are summarized into 6 cases and illustrated in Fig. 2 (left). We compare Uni-Map with state-of-the-art MapTR (Liao et al., 2023a) method, Uni-Map performs more robustly as depicted in Fig. 2 (right), benefiting from the comprehensive feature representations learned by our proposed MSM and aligned by the projector module. Quantitatively, when facing missing camera sensors, Uni-Map still achieves 61.2 mAP, which outperforms the original MapTR (Liao et al., 2023a) by +38.7 mAP (61.2 vs. 22.5). Experimental results show that Uni-Map exhibits stronger robustness on various multi-sensor corruption types. Importantly, the core components of Uni-Map, *i.e.*, MSM training scheme, projector module, and the switching modality strategy are simple yet effective plug-and-play techniques compatible with existing pipelines.

In summary, the main contributions of this paper are threefold:

- We propose a novel Unified Robust HD Map Construction Network (Uni-Map), which stands out as an all-in-one model to operate on arbitrary input configurations.
- We design a novel Mixture Stack Modality training scheme with a simple yet effective projector module to project the BEV features of different modalities into a shared space, allowing the map decoder to learn strong representation from different modalities and a switching modality strategy to utilize arbitrary modality inputs during inference.
- Our single Uni-Map model beats the popular MapTR models independently trained on camera-only, LiDAR-only, and camera-LiDAR fusion modalities with a gain of 4.6, 5.6, and 5.6 mAP, respectively. Moreover, Uni-Map shows much better robustness on 13 types of camera-LiDAR corruption combinations. These benefits extend to various map construction models due to our simple, task-independent designs.

2 RELATED WORK

HD Map Construction. HD map construction is a prominent and extensively researched area within the field of autonomous driving. According to the input sensor modality, HD map construction models can be categorized into camera-only (Liao et al., 2023a; Zhang et al., 2024; Ding et al., 2023; Liao et al., 2023b; Yuan et al., 2024), LiDAR-only (Li et al., 2022a; Liu et al., 2023a) and camera-LiDAR fusion (Liao et al., 2023a;b; Zhou et al., 2024; Hao et al., 2024c) models.

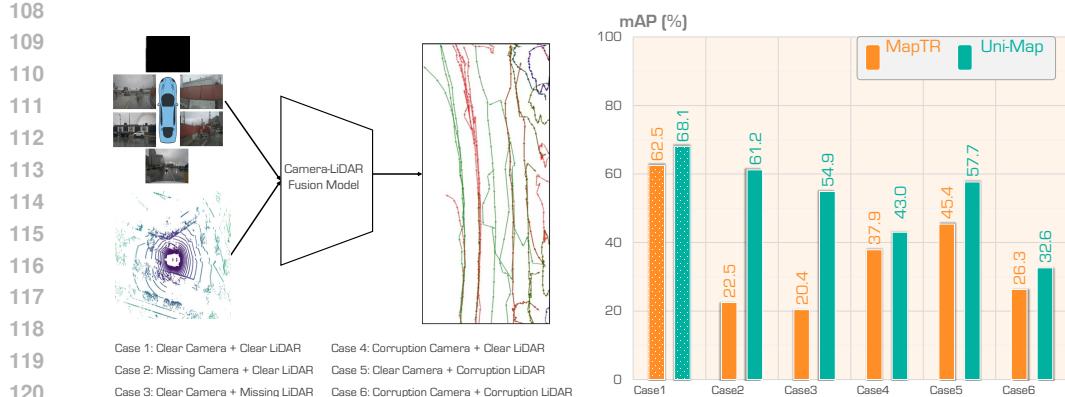


Figure 2: **Uni-Map shows stronger robustness on various multi-sensor corruption types.** We show mAP results for MapTR and Uni-Map models on clean data and each type of multi-sensor corruption. Results show Uni-Map can mitigate the performance drop on sensor missing or corruptions.

Recently, camera-only methods have increasingly employed the Bird’s-eye view (BEV) representation as an ideal feature space for multi-view perception due to its remarkable ability to mitigate scale-ambiguity and occlusion challenges. Various techniques have been proposed and utilized to project perspective view (PV) features into the BEV space by leveraging geometric priors, such as LSS (Phlion & Fidler, 2020), Deformable Attention (Li et al., 2022b) and GKT (Chen et al., 2022). However, camera-only methods suffer from a lack of explicit depth information. LiDAR-only methods (Wang et al., 2023; Li et al., 2022a; Liu et al., 2023a; Liao et al., 2023b;a) benefit from the accurate 3D geometric information from the LiDAR input. However, they struggle to deal with data sparsity and sensing noise problems robustly. Recently, camera-LiDAR feature fusion in the unified BEV space has attracted much attention (Liao et al., 2023a;b; Zhou et al., 2024; Dong et al., 2024). BEV-level fusion uses two independent streams that encode the raw inputs from the camera and LiDAR sensors into features within the same BEV space. This fusion at the BEV level incorporates complementary modality features, surpassing unimodal input approaches in performance.

While significant progress has been made using various methods with different input configurations (camera-only, LiDAR-only, camera-LiDAR fusion) chosen based on cost-performance considerations, a common challenge persists. Current methods necessitate training and deploying separate models for each input configuration, leading to considerable costs in development, maintenance, and deployment. In this paper, we introduce a novel Unified Robust HD map construction approach to address this issue. This method enables training a single model capable of operating on any input configuration, thereby streamlining the process.

Robustness Under Sensor Failures. Sensor failures can significantly impact the accuracy of HD map tasks, thereby jeopardizing the safety of autonomous driving. While Camera-LiDAR fusion methods have shown promising performance, which can make use of both the semantic-rich information from cameras and the explicit geometric information from LiDAR, existing fusion methods often assume access to complete sensor information from both cameras and LiDAR, leading to low robustness in the face of sensor missing or corruptions. This means that their performance may degrade significantly or even fail entirely when sensor data is incomplete or corrupted. Recently, there have been a few studies that focus on benchmarking and improving the robustness under natural corruptions, particularly in various BEV perception algorithms such as 3D object detection (Liu et al., 2023b; Ge et al., 2023; Kong et al., 2025), BEV segmentation (Zhang et al., 2022; Zhou & Krähenbühl, 2022), occupancy prediction (Wei et al., 2023b; Huang et al., 2023), and depth estimation (Wei et al., 2023a). However, approaches addressing sensor failures for HD map construction are still under exploration.

In this paper, we focus on exploring the robustness of the HD map construction task under multi-sensor corruptions. To achieve this, we design 13 types of camera-LiDAR corruption combinations that perturb both camera and LiDAR inputs separately or concurrently. Our proposed Uni-Map model demonstrates enhanced robustness across various sensor failure scenarios.

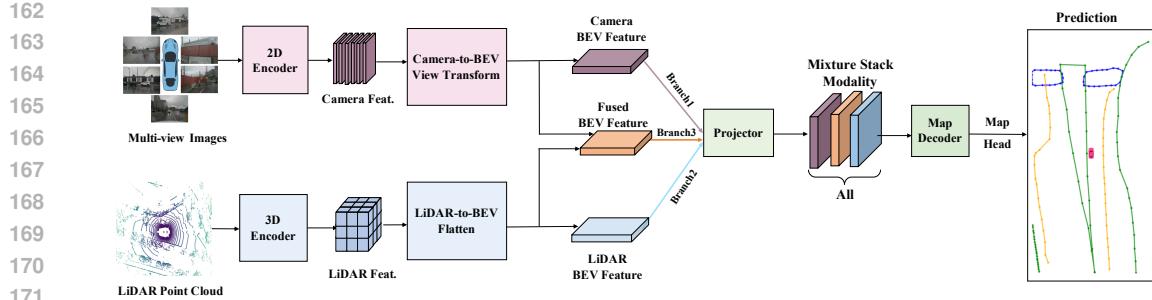


Figure 3: **An overview of Uni-Map framework.** First, we extract features from multi-modal sensor inputs and convert them into a unified bird’s-eye view (BEV) space efficiently using view transformations. Then, we design a novel Mixture Stack Modality (MSM) scheme with a projector module to re-project the BEV features of different modalities into a shared space. Finally, the mixture stack BEV features are fed into a shared decoder and prediction heads for HD Map construction.

3 METHODOLOGY

Uni-Map pursues a novel Unified Robust HD Map construction approach, which can train an all-in-one model capable of operating with various input configurations. For this purpose, we feed the model decoder with the features from all input configurations at the training stage and process one specific feature based on the deployed input configuration during inference. The overview framework of Uni-Map is shown in Fig. 3. Given different sensory inputs, we first apply modality-specific encoders to extract their features. These multi-modal features are then transformed into a unified BEV representation that preserves both geometric and semantic information. Then, we incorporate a projector module to align BEV features from different modalities into a shared space, thereby enhancing representation learning. Additionally, we introduce a novel Mixture Stack Modality training scheme, enabling the map decoder module to glean rich knowledge from the camera, LiDAR, or fused features. Specifically, the mixture stack BEV features are fed into the decoder and prediction heads for the HD Map construction task. During inference, we employ a switching modality strategy, enabling Uni-Map to make precise predictions using arbitrary modality inputs.

3.1 PRELIMINARIES

For notation clarity, we first introduce some symbols and definitions used throughout this paper. Our goal is to design a novel Unified Robust HD map construction framework taking arbitrary modal sensor data χ as input and predicting vectorized map elements in BEV space, and the types of the map elements (supported types are road boundary, lane divider, and pedestrian crossing). Formally, assume that we have a set of inputs, $\chi = \{Camera, LiDAR\}$, containing multi-view RGB camera images in perspective view, $Camera \in \mathbb{R}^{B \times N^{cam} \times H^{cam} \times W^{cam} \times 3}$, where $B, N^{cam}, H^{cam}, W^{cam}$ denote batch, number of cameras, image height, and image width, respectively, as well as a LiDAR point cloud, $LiDAR \in \mathbb{R}^{B \times P \times 5}$, with number of points P . Each point consists of its 3-dimensional coordinates, reflectivity, and beam index. The detailed architectural designs are described as follows.

3.2 MAP ENCODER

We build our Map Encoder based on the state-of-the-art HD map construction method MapTR (Liao et al., 2023a), which applies modality-specific encoders to extract their features and transforms multi-modal features into a unified BEV representation that preserves both geometric and semantic information. Note that our approach is compatible with other Map Encoders that can also be employed to generate camera-only, LiDAR-only, and camera-LiDAR fusion BEV features.

Camera to BEV. For camera images, we first utilize Resnet50 (He et al., 2016b) as the backbone to extract the multi-view features. Then we adopt GKT (Chen et al., 2022) as the 2D-to-BEV transformation module to convert the multi-view features into BEV space. The generated BEV features can be denoted as $F_{Camera}^{BEV} \in \mathbb{R}^{B \times H \times W \times C}$, where H, W, C represent the height, width, and the number of channels of BEV features, respectively.

216 **LiDAR to BEV.** For the LiDAR points, we follow SECOND (Yan et al., 2018) in using voxelization
 217 and a sparse LiDAR encoder. The LiDAR features are projected to BEV space using a flattening
 218 operation as in (Liu et al., 2023b), to obtain the unified LiDAR BEV representation $F_{LiDAR}^{BEV} \in$
 219 $\mathbb{R}^{B \times H \times W \times C}$.

220 **Fused BEV.** We utilize a convolution-based fusion method (Liao et al., 2023a; Zhou et al., 2024)
 221 to effectively fuse the BEV features from both camera and LiDAR sensors. More specifically,
 222 we utilize concatenation followed by convolution to fuse features from multi-modal BEV feature
 223 inputs, $F_{Camera}^{BEV} \in \mathbb{R}^{B \times H \times W \times C}$ and $F_{LiDAR}^{BEV} \in \mathbb{R}^{B \times H \times W \times C}$, resulting in the aggregated features
 224 $F_{Fused}^{BEV} \in \mathbb{R}^{B \times H \times W \times C}$.

226 3.3 MIXTURE STACK MODALITY AND PROJECTOR

228 In this section, we first introduce the projector module that aims to align BEV features from different
 229 modalities into a shared space, thereby enhancing representation learning and overall model perfor-
 230 mance. Then, we offer the details of the Mixture Stack Modality (MSM) training scheme, which
 231 enables the map decoder module to learn rich knowledge from the camera, LiDAR, or fused features.

232 **Projector Module.** After input sensor features converted to the shared BEV representation, we can
 233 easily obtain the BEV features of the three modalities, *i.e.*, $F_{Camera}^{BEV} \in \mathbb{R}^{B \times H \times W \times C}$, $F_{LiDAR}^{BEV} \in$
 234 $\mathbb{R}^{B \times H \times W \times C}$ and $F_{Fused}^{BEV} \in \mathbb{R}^{B \times H \times W \times C}$. While in the same space, camera BEV features, LiDAR
 235 BEV features, and fused BEV features can still be misaligned to some extent due to the inaccurate
 236 depth in the view transformer and the large modality gap (See Fig. 9 (a)). Existing works (Liang et al.,
 237 2022; Liu et al., 2023b) show the phenomenon of modal gaps, *i.e.*, the features of different BEV
 238 modalities usually focus on completely separate regions in BEV space. Thus, we propose a projector
 239 module to align BEV features from different modalities into a shared space (see the *Remarks* below),
 240 thereby enhancing representation learning. To address this issue, we project BEV features of different
 241 modalities into a new shared space via a learnable projector $projector(\cdot)$, *i.e.*,

$$\hat{F}_{camera}^{BEV} = projector(F_{camera}^{BEV}), \quad (1)$$

$$\hat{F}_{LiDAR}^{BEV} = projector(F_{LiDAR}^{BEV}), \quad (2)$$

$$\hat{F}_{Fused}^{BEV} = projector(F_{Fused}^{BEV}), \quad (3)$$

248 where $projector(\cdot)$ is the multi-layer linear perceptron (MLP) function. Note that, the BEV features
 249 of different modalities use a shared projector, and the details are discussed in the ablation experiments.

250 **Mixture Stack Modality Training Scheme.** The map decoder module in existing HD map construc-
 251 tion methods is typically trained using BEV features from a single mode, limiting it to one input
 252 configuration. To address this limitation and ensure that a single trained model can perform well
 253 across all input configurations, we introduce a novel Mixture Stack Modality training scheme after
 254 the projector module. Specifically, it can be formulated as:

$$\hat{F}_{Stack}^{BEV} = Stack(\hat{F}_{camera}^{BEV}, \hat{F}_{LiDAR}^{BEV}, \hat{F}_{Fused}^{BEV}). \quad (4)$$

257 Using the MSM scheme, we obtain the stacked multi-modal BEV feature $\hat{F}_{Stack}^{BEV} \in \mathbb{R}^{3B \times H \times W \times C}$,
 258 which serves as input for the HD map construction task. Notably, the stacking operation preserves
 259 the feature map shape as $H \times W \times C$ by stacking along the batch dimension. This design choice
 260 enables seamless integration with the subsequent Map Decoder module in existing methods, such as
 261 MapTR Liao et al. (2023a). Consequently, our method operates in a plug-and-play manner, ensuring
 262 easy implementation and compatibility.

263 **Remarks:** The MSM scheme offers three key advantages. First, by stacking BEV features from
 264 different modalities that share the *same* map decoder and ground truth labels, the projector module is
 265 supervised (via gradient back-propagation) to implicitly align BEV features from different modalities
 266 in the shared feature space. Second, inputting stacked BEV features into the same map decoder
 267 increases the diversity of the BEV feature space accessible to the decoder module, thereby improving
 268 the model’s generalization ability and robustness across different input configurations. Third, this
 269 scheme allows the map decoder module to process BEV features of different modalities. As a result,
 Uni-Map can flexibly handle various input configurations during inference.

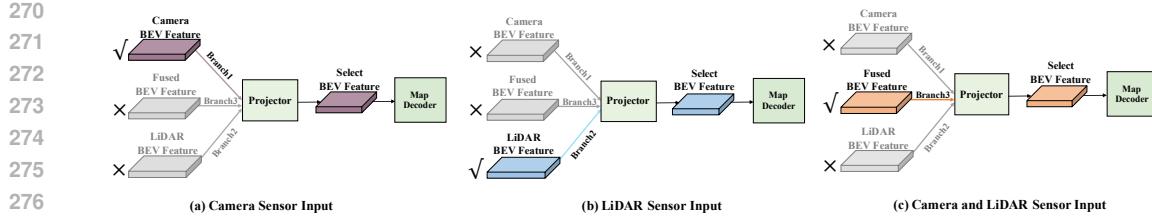


Figure 4: Illustration of the switching modality strategy.

3.4 FULL OBJECTIVE AND INFERENCE

Overall Training. We follow the MapTR (Liao et al., 2023a) model’s training loss function, which is composed of three parts, including the classification loss \mathcal{L}_{cls} , the point2point loss \mathcal{L}_{p2p} , and the edge direction loss \mathcal{L}_{dir} . Combining these loss terms, the overall objective function can be formulated as:

$$\mathcal{L} = \lambda_1 \mathcal{L}_{cls} + \lambda_2 \mathcal{L}_{p2p} + \lambda_3 \mathcal{L}_{dir}, \quad (5)$$

where λ_1 , λ_2 and λ_3 are hyper parameters for balancing these terms. For all experiments, λ_1 is set to 2, λ_2 is set to 5, and λ_3 is set to $5e^{-3}$.

Inference Phase. During inference, our model utilizes a switching modality strategy to seamlessly adapt to arbitrary modality inputs, ensuring compatibility across various input configurations. The switching modality strategy can be formulated as:

$$\hat{F}_{\text{Select}}^{\text{BEV}} = \begin{cases} \hat{F}_{\text{camera}}^{\text{BEV}}, & \text{if Camera only sensor input,} \\ \hat{F}_{\text{lidar}}^{\text{BEV}}, & \text{if LiDAR only sensor input,} \\ \hat{F}_{\text{fused}}^{\text{BEV}}, & \text{if Camera and LiDAR are both obtained.} \end{cases} \quad (6)$$

This switching strategy simulates real-world scenarios where sensors may be missing during the inference phase. As shown in Fig. 4, if LiDAR data is unavailable due to uninstallation or damage, we use the camera BEV feature $\hat{F}_{\text{camera}}^{\text{BEV}}$ as the map decoder input, and vice versa. When both Camera and LiDAR data are available, we select the fused BEV features $\hat{F}_{\text{fused}}^{\text{BEV}}$. Thus, Uni-Map supports these three input configurations, enhancing its practicality in autonomous driving. Note that automatically detecting sensor failures is a separate topic beyond this study, though recent methods (Gaddam et al., 2020; Ji & Luo, 2025) have started to address it.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our method on the widely-used challenging nuScenes (Caesar et al., 2020) dataset following the standard setting of previous methods (Liao et al., 2023a; Hao et al., 2025d). The nuScenes dataset contains 1,000 sequences of recordings collected by autonomous driving cars. Each sample is annotated at 2Hz and contains 6 camera images covering 360° horizontal FOV of the ego-vehicle. Following (Liao et al., 2023a; Hao et al., 2025b; Gao et al., 2024), three kinds of map elements are chosen for fair evaluation – pedestrian crossing, lane divider, and road boundary.

Evaluation Metrics. We adopt the evaluation metrics consistent with previous works (Liao et al., 2023a; Hao et al., 2025c; Zhang et al., 2024), where average precision (AP) is used to evaluate the map construction quality and Chamfer distance D_{Chamfer} determines the matching between predictions and ground truth. We calculate the AP_{τ} under several D_{Chamfer} thresholds ($\tau \in T = \{0.5m, 1.0m, 1.5m\}$), and then average across all thresholds as the final mean AP (*mAP*) metric. The perception ranges are $[-15.0m, 15.0m]/[-30.0m, 30.0m]$ for X/Y-axes.

Implementation Details. Uni-Map is trained with 4 NVIDIA RTX A6000 GPUs. During the training phase, the GT labels are duplicated twice and stacked to form $3B$ batch dimension, matching with the stacked feature map from Eq. 4. The design choice of the MSM scheme is discussed in the ablation studies. For the projector module, we use a two-layer perceptron whose dimension is C->C/2->C. We adopt the AdamW optimizer (Loshchilov & Hutter, 2019) for all our experiments. We set the mini-batch size to 16, and use a step-decayed learning rate with an initial value of $4e^{-3}$. The inference time is measured on a single NVIDIA RTX A6000 GPU with batch size 1.

324 Table 1: **Comparisons with state-of-the-art methods on nuScenes val set.** “L” and “C” represent
 325 LiDAR and camera, respectively. “Effi-B0”, “R50”, “PP”, and “Sec” are short for EfficientNet-
 326 B0 (Tan & Le, 2019), ResNet50 (He et al., 2016a), PointPillars (Lang et al., 2019) and SECOND (Yan
 327 et al., 2018), respectively. Note that Uni-Map (MapModel) means our method is integrated into an
 328 existing MapModel. Best viewed in color.

Method	Modality	BEV Encoder	Backbone	Epoch	AP _{ped.}	AP _{div.}	AP _{bou.}	mAP ↑
HDMapNet (Li et al., 2022a)	C	NVT	Effi-B0	30	14.4	21.7	33.0	23.0
VectorMapNet (Liu et al., 2023a)	C	IPM	R50	110	36.1	47.3	39.3	40.9
PivotNet (Ding et al., 2023)	C	PersFormer	R50	30	53.8	58.8	59.6	57.4
BeMapNet (Qiao et al., 2023)	C	IPM-PE	R50	30	57.7	62.3	59.4	59.8
MapVR (Zhang et al., 2024)	C	GKT	R50	24	47.7	54.4	51.4	51.2
MapTRv2 (Liao et al., 2023b)	C	BEVPoolv2	R50	24	59.8	62.4	62.4	61.5
StreamMapNet (Yuan et al., 2024)	C	BEVFormer	R50	30	61.7	66.3	62.1	63.4
MapTR (Liao et al., 2023a)	C	GKT	R50	24	46.3	51.5	53.1	50.3
HIMap (Zhou et al., 2024)	C	BEVFormer	R50	24	62.2	66.5	67.9	65.5
Uni-Map (MapTR)	C	GKT	R50	24	52.1	57.5	55.2	54.9
Uni-Map (HIMap)	C	BEVFormer	R50	24	64.5	68.2	68.3	67.0
VectorMapNet (Liu et al., 2023a)	L	-	PP	110	25.7	37.6	38.6	34.0
MapTRv2 (Liao et al., 2023b)	L	-	Sec	24	56.6	58.1	69.8	61.5
MapTR (Liao et al., 2023a)	L	-	Sec	24	48.5	53.7	64.7	55.6
HIMap (Zhou et al., 2024)	L	-	Sec	24	54.8	64.7	73.5	64.3
Uni-Map (MapTR)	L	-	Sec	24	56.5	57.8	69.4	61.2
Uni-Map (HIMap)	L	-	Sec	24	65.3	69.5	77.8	70.8
MapTRv2 (Liao et al., 2023b)	C & L	BEVPoolv2	R50 & Sec	24	65.6	66.5	74.8	69.0
MapTR (Liao et al., 2023a)	C & L	GKT	R50 & Sec	24	55.9	62.3	69.3	62.5
HIMap (Zhou et al., 2024)	C & L	BEVFormer	R50 & Sec	24	71.0	72.4	79.4	74.3
Uni-Map (MapTR)	C & L	GKT	R50 & Sec	24	64.4	66.8	73.2	68.1
Uni-Map (HIMap)	C & L	BEVFormer	R50 & Sec	24	73.6	75.3	81.2	76.7

346
 347 Table 2: Comparison of MapTR and Uni-Map in terms of accuracy, model size, training epochs
 348 and training time on nuScenes dataset. Note that only one Uni-Map model is trained while three
 349 MapTR models (MapTR-C, MapTR-L, and MapTR-F) are trained for different input configurations.
 350 † represents using the time equivalent to training three MapTR models to train our Uni-Map model.

Method	Camera-only (mAP)	LiDAR-only (mAP)	Camera & LiDAR (mAP)	Params(MB)	Epoch	Training Time
MapTR-C	50.3	—	—	35.9	24	13h55m
MapTR-L	—	55.6	—	14.3	24	9h7m
MapTR-F	—	—	62.5	39.8	24	15h44m
Uni-Map (MapTR)	54.9	61.2	68.1	39.9	24	21h57m
Uni-Map (MapTR)†	57.2	64.5	70.4	39.9	42	38h44m

356 4.2 COMPARISON WITH THE STATE-OF-THE-ARTS

357
 358 With the same settings, we compare our method with several state-of-the-art methods across three
 359 categories, *i.e.*, camera-only methods, LiDAR-only methods, and camera-LiDAR fusion methods.
 360 Specifically, we integrate our Uni-Map into two recent methods, MapTR (Liao et al., 2023a) and
 361 HIMap (Zhou et al., 2024), where we insert the projector module into these models and apply the
 362 MSM training scheme. Moreover, to fairly evaluate the effectiveness, we train the same epochs as
 363 the original model. It’s noteworthy that while three MapTR/HIMap models need to be trained for
 364 different input configurations, our Uni-Map model only requires training once. As shown in Tab. 1,
 365 our Uni-Map significantly improves the performance compared to the original models. Specifically,
 366 Uni-Map (MapTR) outperforms independently trained camera-only, LiDAR-only, and camera-LiDAR
 367 MapTR models on NuScenes with a large gain of 4.6, 5.6, and 5.6 mAP, under the respective input
 368 configurations, respectively. Based on the previous state-of-the-art HIMap, our all-in-one model
 369 surpasses HIMap-C, HIMap-L, and HIMap-F by 1.5, 6.5, and 2.4 mAP respectively, establishing
 370 a new state-of-the-art in vectorized map reconstruction. Results for more datasets like Argoverse2
 371 (Wilson et al., 2021) are shown in the supplementary material A.3. All these results prove the
 372 effectiveness of our design.

373 **Model Size, Training Time, GPU Memory and Inference Speed.** To systematically evaluate the
 374 effectiveness of our proposed Uni-Map model, we comprehensively analyze it in terms of accuracy,
 375 model size, training time, and inference speed. The experimental results are shown in Tab. 2 and
 376 Appendix Tab. 6-Tab. 7. The experimental results reveal some interesting findings: (1) Compared
 377 with MapTR, Uni-Map performs much better in all input configurations in both single-class APs
 378 and the overall mAP. Note that only one Uni-Map model is trained while three MapTR models
 379 (MapTR-C, MapTR-L, and MapTR-F) are trained for different input configurations. Thus, we use

378
 379 Table 3: Ablation study on the MSM training
 380 scheme. The mAP values on nuScenes val set
 381 are reported. ‘Mean’ represents the average mAP
 382 of three input configurations.

Random Select	Mixture Stack	Projector	Camera-only	LiDAR-only	Camera & LiDAR	Mean
✗	✗	✗	20.4	22.5	62.5	35.1
✓	✗	✗	36.9	47.5	62.9	49.1
✗	✓	✗	53.7	59.4	67.9	60.3
✓	✗	✓	45.6	55.3	61.2	54.0
✗	✓	✓	54.9	61.2	68.1	61.4

383
 384 Table 4: Ablation study on Projector Module.
 385 The mAP values on nuScenes val set are re-
 386 ported. ‘Mean’ represents the average mAP of
 387 three input configurations.

Method	Camera-only	LiDAR-only	Camera&LiDAR	Mean
Baseline (w/o projector)	53.7	59.4	67.9	60.3
Variant 1: Independent Projector	53.6	62.2	67.6	61.1
Variant 2: Partially Shared Projector	53.3	61.5	68.0	60.9
Variant 3: Skip Shared Projector	53.4	61.7	68.0	61.0
Variant 4: Shared Projector (Ours)	54.9	61.2	68.1	61.4

388 the same computational budget of training three MapTR models to train our Uni-Map model, and
 389 the resulting Uni-Map model (last row of Tab. 2) beats independently trained camera-only, LiDAR-
 390 only, and camera-LiDAR fusion MapTR models with a larger gain of 6.9, 8.9, 7.9 mAP, under the
 391 respective input configurations. (2) In terms of model size, our Uni-Map model only increases the
 392 number of parameters by 0.1MB compared to the MapTR-F model, as shown in Tab. 2. It is more
 393 parameter-efficient than deploying the three models simultaneously in practice. (3) In terms of GPU
 394 Memory and inference speed, the quantities of our Uni-Map and MapTR are almost the same, as
 395 shown in Appendix Tab. 6-Tab. 7. All in all, the Uni-Map model achieves significant performance
 396 improvements over the strong MapTR baseline with less training time and fewer parameters (for
 397 various input configurations), while maintaining the same inference speed and memory footprint.

398 4.3 ABLATION STUDIES

400 **Analysis of the MSM training scheme.** To systematically evaluate the effectiveness of the MSM
 401 training scheme, we train the model using different schemes and report the mAP results in Tab. 3. In
 402 addition to MSM, we also introduce the Random Select Modality (RSM) training scheme that receives
 403 inputs from one BEV feature map randomly selected among \hat{F}_{camera}^{BEV} , \hat{F}_{LiDAR}^{BEV} , \hat{F}_{Fused}^{BEV} . In the main
 404 ablation study, we design the following model variants: (1) We train the model without the projector
 405 module and any of the RSM and MSM training schemes. (2) We train the model without the projector
 406 module using RSM or MSM training schemes, respectively. (3) We train the model with the projector
 407 module using RSM or MSM training schemes, respectively. The experimental results reveal some
 408 interesting findings: (1) The results of both RSM and MSM schemes are significantly better than the
 409 Baseline model (only learned/seen the BEV features of one modality), verifying the effectiveness of
 410 learning with rich knowledge from different BEV features to improve the generalization ability of the
 411 map decoder. (2) The results of the RSM training scheme are inferior to the MSM training scheme
 412 under both settings (with and without the Projector). This demonstrates the MSM training scheme’s
 413 advantage in enhancing the map decoder’s effective use of camera, LiDAR, and fused features. This
 414 increases the diversity of the BEV feature space, resulting in a high-performance integrated model.

415 **Analysis on projector module.** We investigate the design choice of the projector module in our
 416 method. The ablation variants include Independent Projector, Partially Shared Projector, Skip
 417 Shared Projector, and Shared Projector (the default setting). The detailed formulation of the variant
 418 projector module is in the supplementary material A.1. As shown in Tab. 4, the experimental results
 419 reveal some interesting findings: (1) Using different projector variants consistently outperforms the
 420 baseline model, implying that using the simple projector module can facilitate learning better feature
 421 representations. This can be owing to the fact that our model uses the same map decoder and ground
 422 truth labels to promote feature alignment in this latent space. (2) Using a shared projector module
 423 consistently outperforms other projector variants. It is reasonable that using BEV feature information
 424 from different modalities to perform gradient updates on a shared projector, rather than on multiple
 425 projectors, aligns BEV features from different modalities more effectively. These observations
 426 validate the effectiveness of the projector module in aligning BEV features from different modalities
 427 into a shared space, thereby enhancing representation learning and overall model performance.

428 4.4 ROBUSTNESS OF MULTI-SENSOR CORRUPTIONS

429 To explore the camera-LiDAR fusion model robustness, we design 13 types of camera-LiDAR
 430 corruption combinations that perturb both camera and LiDAR inputs separately or concurrently.
 431 Camera-LiDAR corruption combinations are grouped into camera-only corruptions, LiDAR-only
 432 corruptions, and their combinations, covering the majority of real-world corruption cases. The

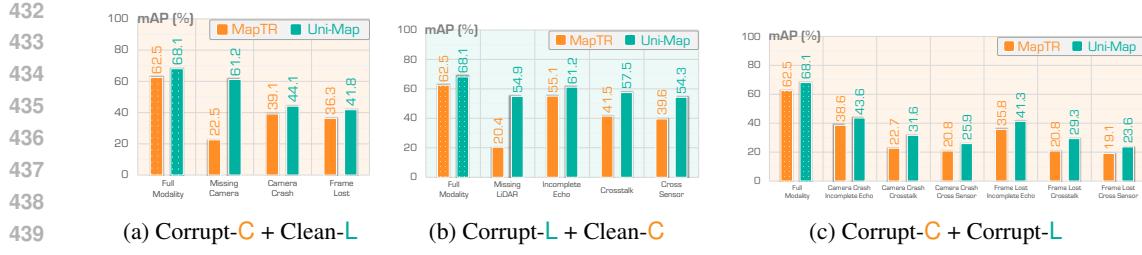


Figure 5: The result of multi-sensor corruption on MapTR vs. Uni-Map (MapTR) fusion model.

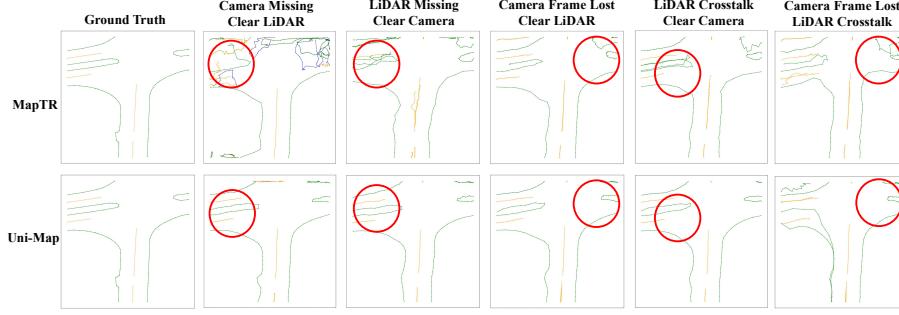


Figure 6: Qualitative results of the nuScenes val set on the MapTR and UniMap models respectively.

definition of multi-sensor corruption is detailed in A.2. Fig. 5 shows the results of three Camera-LiDAR corruption combinations. We have the following observations. (1) In the sensor missing , Uni-Map can prevent the model from collapsing owing to the switching modality strategy. Quantitatively, when facing a missing LiDAR sensor, Uni-Map still achieves 54.9 mAP, which outperforms the original MapTR (Liao et al., 2023a) by 34.5 mAP. (2) In case of the corruption of the camera and LiDAR sensor individually or simultaneously, Uni-Map shows stronger robustness. For example, in the face of camera frame lost and LiDAR crosstalk, compared to the MapTR fused model, the Uni-Map model achieved significant improvements in 8.5 mAP (29.3 vs. 20.8). These results demonstrate that the MSM training scheme enhances the generalization ability of the map decoder. By stacking BEV features from different modalities into the same map decoder, the diversity of the BEV feature space accessible to the decoder increases, thereby improving the model’s robustness. All in all, Uni-Map shows stronger robustness on our designed 13 types of camera-LiDAR corruption combinations.

4.5 VISUALIZATION

Qualitative Results. To further analyze the effectiveness of our Uni-Map model, we compare it with MapTR (Liao et al., 2023a) and present the qualitative results in Fig. 6. We compare the predicted vectorized HD map results of different settings, including the camera sensor missing, LiDAR sensor missing, camera frame lost and clear LiDAR, LiDAR crosstalk and clear camera, and camera frame lost with LiDAR crosstalk. We observe that the baseline MapTR predictions are highly erroneous, whereas our Uni-Map model can already correct significant errors in the baseline predictions in all settings. All in all, our model shows significant advantages in clear and various corruption situations.

5 CONCLUSION

In this paper, we propose a novel Unified Robust HD Map Construction Network (Uni-Map), which can train an all-in-one model to operate on arbitrary input configurations. The core components of Uni-Map, *i.e.* MSM training scheme, projector module, and the switching modality strategy, are simple yet effective plug-and-play techniques compatible with existing pipelines. Extensive experiments demonstrate that Uni-Map can achieve high performance in different input configurations while reducing the training and deployment costs of the model. Moreover, Uni-Map shows stronger robustness on our designed 13 types of camera-LiDAR corruption combinations. We hope that our method can be applied to more autonomous driving perception tasks.

486 **Ethics Statement.** Our work can boost the performance and robustness of HD map construction
 487 task. Although our method significantly improves the robustness of the HD map model, the overall
 488 robustness is still low. Special caution is needed in deploying our methods onto vehicles on the
 489 road to ensure safety. Therefore, future research is necessary to further investigate more advanced
 490 robustness methods.

491 **Reproducibility.** To ensure the reproducibility of our work, we have included a comprehensive
 492 Reproducibility Statement. Specifically, for the novel model and algorithms presented in this work,
 493 we will make them open source upon paper acceptance. Additionally, all multi-sensor corruption
 494 details and more experimental results can be found in Appendix A. For the datasets used in our
 495 experiments, we follow the standard protocol of the open source work MapTR (Liao et al., 2023a).
 496 This Reproducibility Statement is intended to guide readers to the relevant resources that will aid in
 497 replicating our work, ensuring transparency and clarity throughout.

498
 499 **REFERENCES**
 500

501 Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
 502 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
 503 autonomous driving. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 504 11618–11628, 2020.

505 Shaoyu Chen, Tianheng Cheng, Xinggang Wang, Wenming Meng, Qian Zhang, and Wenyu Liu.
 506 Efficient and robust 2d-to-bev representation learning via geometry-guided kernel transformer.
 507 *arXiv preprint arXiv:2206.04584*, 2022.

508 Wenjie Ding, Limeng Qiao, Xi Qiu, and Chi Zhang. Pivotnet: Vectorized pivot learning for end-to-end
 509 hd map construction. In *Proceedings of the IEEE/CVF International Conference on Computer
 510 Vision*, pp. 3672–3682, 2023.

512 Hao Dong, Weihao Gu, Xianjing Zhang, Jintao Xu, Rui Ai, Huimin Lu, Juho Kannala, and Xieyuanli
 513 Chen. Superfusion: Multilevel lidar-camera fusion for long-range hd map generation. In *2024
 514 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 9056–9062. IEEE, 2024.

516 Anuroop Gaddam, Tim Wilkin, Maia Angelova, and Jyotheesh Gaddam. Detecting sensor faults,
 517 anomalies and outliers in the internet of things: A survey on the challenges and solutions. *Electronics*,
 518 9(3):511, 2020.

519 Wenjie Gao, Jiawei Fu, Yanqing Shen, Haodong Jing, Shitao Chen, and Nanning Zheng. Complementing
 520 onboard sensors with satellite maps: A new perspective for hd map construction. In *2024
 521 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 11103–11109, 2024.

523 Chongjian Ge, Junsong Chen, Enze Xie, Zhongdao Wang, Lanqing Hong, Huchuan Lu, Zhenguo
 524 Li, and Ping Luo. Metabev: Solving sensor failures for 3d detection and map segmentation. In
 525 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 8721–8731, 2023.

526 Xiaoshuai Hao, Ruihai Li, Hui Zhang, Dingzhe Li, Rong Yin, Sangil Jung, Seung-In Park, ByungIn
 527 Yoo, Haimei Zhao, and Jing Zhang. Mapdistill: Boosting efficient camera-based hd map
 528 construction via camera-lidar fusion model distillation. In *European Conference on Computer Vision*,
 529 2024a.

531 Xiaoshuai Hao, Mengchuan Wei, Yifan Yang, Haimei Zhao, Hui Zhang, Yi Zhou, Qiang Wang,
 532 Weiming Li, Lingdong Kong, and Jing Zhang. Is your hd map constructor reliable under sensor
 533 corruptions? In *Advances in Neural Information Processing System*, 2024b.

534 Xiaoshuai Hao, Hui Zhang, Yifan Yang, Yi Zhou, Sangil Jung, Seung-In Park, and ByungIn Yoo.
 535 Mbfusion: A new multi-modal bev feature fusion method for hd map construction. In *2024 IEEE
 536 International Conference on Robotics and Automation (ICRA)*, pp. 15922–15928, 2024c.

538 Xiaoshuai Hao, Yunfeng Diao, Mengchuan Wei, Yifan Yang, Peng Hao, Rong Yin, Hui Zhang,
 539 Weiming Li, Shu Zhao, and Yu Liu. Mapfusion: A novel bev feature fusion network for multi-
 modal map construction. *Information Fusion*, 119:103018, 2025a.

540 Xiaoshuai Hao, Lingdong Kong, Rong Yin, Pengwei Wang, Jing Zhang, Yunfeng Diao, and Shu
 541 Zhao. Safemap: Robust hd map construction from incomplete observations. *arXiv preprint*
 542 *arXiv:2507.00861*, 2025b.

543

544 Xiaoshuai Hao, Guanqun Liu, Yuting Zhao, Yuheng Ji, Mengchuan Wei, Haimei Zhao, Lingdong
 545 Kong, Rong Yin, and Yu Liu. Msc-bench: Benchmarking and analyzing multi-sensor corruption
 546 for driving perception. *arXiv preprint arXiv:2501.01037*, 2025c.

547

548 Xiaoshuai Hao, Yuting Zhao, Yuheng Ji, Luanyuan Dai, Peng Hao, Dingzhe Li, Shuai Cheng, and
 549 Rong Yin. What really matters for robust multi-sensor hd map construction? *arXiv preprint*
 550 *arXiv:2507.01484*, 2025d.

551

552 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 553 recognition. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 770–778,
 554 2016a.

555

556 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 557 recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 Recognition*, 2016b.

558

559 Yuanhui Huang, Wenzhao Zheng, Yunpeng Zhang, Jie Zhou, and Jiwen Lu. Tri-perspective view for
 560 vision-based 3d semantic occupancy prediction. In *Proceedings of the IEEE/CVF Conference on
 Computer Vision and Pattern Recognition*, pp. 9223–9232, 2023.

561

562 Cheng Ji and Huaiying Luo. Cloud-based ai systems: Leveraging large language models for intelligent
 563 fault detection and autonomous self-healing. *arXiv preprint arXiv:2505.11743*, 2025.

564

565 Lingdong Kong, Shaoyuan Xie, Hanjiang Hu, Yaru Niu, Wei Tsang Ooi, Benoit R Cottreau, Lai Xing
 566 Ng, Yuxin Ma, Wenwei Zhang, Liang Pan, et al. The robodrive challenge: Drive anytime anywhere
 567 in any condition. *arXiv preprint arXiv:2405.08816*, 2024.

568

569 Lingdong Kong, Wesley Yang, Jianbiao Mei, et al. 3d and 4d world modeling: A survey. *arXiv
 preprint arXiv:2509.07996*, 2025.

570

571 Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Point-
 572 pillars: Fast encoders for object detection from point clouds. In *Proceedings of the IEEE/CVF
 conference on computer vision and pattern recognition*, pp. 12697–12705, 2019.

573

574 Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmapnet: An online hd map construction and
 575 evaluation framework. In *IEEE International Conference on Robotics and Automation*, pp. 4628–
 576 4634, 2022a.

577

578 Siyu Li, Kailun Yang, Hao Shi, Song Wang, You Yao, and Zhiyong Li. Genmapping: Unleashing the
 579 potential of inverse perspective mapping for robust online hd map construction. *arXiv preprint*
 580 *arXiv:2409.08688*, 2024.

581

582 Zhiqi Li, Wenhui Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, and Jifeng Dai.
 583 Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal
 584 transformers. In *European Conference on Computer Vision*, pp. 1–18, 2022b.

585

586 Tingting Liang, Hongwei Xie, Kaicheng Yu, Zhongyu Xia, Zhiwei Lin, Yongtao Wang, Tao Tang,
 587 Bing Wang, and Zhi Tang. Bevfusion: A simple and robust lidar-camera fusion framework. In
 588 *Advances in Neural Information Processing Systems*, pp. 10421–10434, 2022.

589

590 Bencheng Liao, Shaoyu Chen, Xinggang Wang, Tianheng Cheng, Qian Zhang, Wenyu Liu, and
 591 Chang Huang. Maptr: Structured modeling and learning for online vectorized hd map construction.
 592 In *International Conference on Learning Representations*, 2023a.

593

594 Bencheng Liao, Shaoyu Chen, Yunchi Zhang, Bo Jiang, Qian Zhang, Wenyu Liu, Chang Huang, and
 595 Xinggang Wang. Maptrv2: An end-to-end framework for online vectorized HD map construction.
 596 *arXiv preprint arXiv:2308.05736*, 2023b.

594 Yicheng Liu, Tianyuan Yuan, Yue Wang, Yilun Wang, and Hang Zhao. Vectormapnet: End-to-end
 595 vectorized hd map learning. In *International Conference on Machine Learning*, pp. 22352–22369,
 596 2023a.

597

598 Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela L Rus, and Song Han.
 599 Bevfusion: Multi-task multi-sensor fusion with unified bird’s eye view representation. In *IEEE*
 600 *International Conference on Robotics and Automation*, pp. 2774–2781, 2023b.

601 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference*
 602 *on Learning Representations*, 2019.

603

604 Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs by
 605 implicitly unprojecting to 3d. In *European Conference on Computer Vision*, pp. 194–210, 2020.

606

607 Limeng Qiao, Wenjie Ding, Xi Qiu, and Chi Zhang. End-to-end vectorized hd-map construction with
 608 piecewise bezier curve. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 609 *Pattern Recognition*, pp. 13218–13228, 2023.

610

611 Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
 In *International conference on machine learning*, pp. 6105–6114, 2019.

612

613 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 614 *learning research*, 9(11), 2008.

615

616 Song Wang, Wentong Li, Wenyu Liu, Xiaolu Liu, and Jianke Zhu. Lidar2map: In defense of lidar-
 617 based semantic map construction using online camera distillation. In *Proceedings of the IEEE/CVF*
 618 *Conference on Computer Vision and Pattern Recognition*, pp. 5186–5195, 2023.

619

620 Yi Wei, Linqing Zhao, Wenzhao Zheng, Zheng Zhu, Yongming Rao, Guan Huang, Jiwen Lu, and
 621 Jie Zhou. Surrounddepth: Entangling surrounding views for self-supervised multi-camera depth
 622 estimation. In *Conference on Robot Learning*, pp. 539–549, 2023a.

623

624 Yi Wei, Linqing Zhao, Wenzhao Zheng, Zheng Zhu, Jie Zhou, and Jiwen Lu. Surroundocc: Multi-
 625 camera 3d occupancy prediction for autonomous driving. In *Proceedings of the IEEE/CVF*
 626 *International Conference on Computer Vision*, pp. 21729–21740, 2023b.

627

628 Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandelwal,
 629 Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemel Pontes, Deva Ramanan, Peter
 Carr, and James Hays. Argoverse 2: Next generation datasets for self-driving perception and
 forecasting. In *Proceedings of the Neural Information Processing Systems Track on Datasets and*
 630 *Benchmarks*, 2021.

631

632 Yan Yan, Yuxing Mao, and Bo Li. SECOND: sparsely embedded convolutional detection. *Sensors*,
 633 pp. 3337, 2018.

634

635 Tianyuan Yuan, Yicheng Liu, Yue Wang, Yilun Wang, and Hang Zhao. Streammapnet: Streaming
 636 mapping network for vectorized online hd map construction. In *IEEE/CVF Winter Conference on*
 637 *Applications of Computer Vision*, pp. 7356–7365, 2024.

638

639 Yunpeng Zhang, Zheng Zhu, Wenzhao Zheng, Junjie Huang, Guan Huang, Jie Zhou, and Jiwen
 640 Lu. Beverse: Unified perception and prediction in birds-eye-view for vision-centric autonomous
 641 driving. *arXiv preprint arXiv:2205.09743*, 2022.

642

643 Zhixin Zhang, Yiyuan Zhang, Xiaohan Ding, Fusheng Jin, and Xiangyu Yue. Online vectorized hd
 644 map construction using geometry. In *European Conference on Computer Vision*, 2024.

645

646 Brady Zhou and Philipp Krähenbühl. Cross-view transformers for real-time map-view semantic
 647 segmentation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 648 *recognition*, pp. 13760–13769, 2022.

649

650 Yi Zhou, Hui Zhang, Jiaqian Yu, Yifan Yang, Sangil Jung, Seung-In Park, and ByungIn Yoo. Himap:
 651 Hybrid representation learning for end-to-end vectorized hd map construction. In *Proceedings of*
 652 *the IEEE/CVF conference on computer vision and pattern recognition*, 2024.

648 **A APPENDIX / SUPPLEMENTAL MATERIAL**
649650 This supplementary material provides additional details on the proposed method and experimental
651 results that could not be included in the main manuscript due to page limitations.
652653

- 654 • Section A.1 discusses details of different variant projector modules.
- 655 • Section A.2 provides additional details of the multi-sensor corruptions.
- 656 • Section A.3 complements Argoverse2 dataset experiment results and corresponding analysis.
- 657 • Section A.4 presents the results of the switching modality strategy on the original MapTR
658 fusion model.
- 659 • Section A.5 offers more experimental results regarding model robustness.
- 660 • Section A.6 offers 3D object detection results to prove the generalization ability of the
661 Uni-Map.
- 662 • Section A.7 includes more visualization results to prove the effectiveness of the Uni-Map.
- 663 • Section A.8 provides an overview of the usage of large language models (LLMs).

664665 **A.1 VARIANT PROJECTOR MODULE**
666667 After input sensor features converted to the shared BEV representation, we can easily obtain the
668 BEV features of the three modalities, *i.e.*, $F_{Camera}^{BEV} \in \mathbb{R}^{B \times H \times W \times C}$, $F_{LiDAR}^{BEV} \in \mathbb{R}^{B \times H \times W \times C}$ and
669 $F_{Fused}^{BEV} \in \mathbb{R}^{B \times H \times W \times C}$. While in the same space, camera BEV features, LiDAR BEV features, and
670 fused BEV features can still be misaligned to some extent due to the inaccurate depth in the view
671 transformer and the large modality gap (See Fig. 9 (a)). Existing works (Liang et al., 2022; Liu
672 et al., 2023b) show the phenomenon of modal gaps, *i.e.*, the features of different BEV modalities
673 usually focus on completely separate regions in BEV space. Thus, we propose a projector module to
674 align BEV features from different modalities into a shared space, thereby enhancing representation
675 learning. To address this issue, we project BEV features of different modalities into a new shared
676 space via a learnable projector $projector(\cdot)$.
677**Shared Projector.** The Shared Projector formula can be written as:

678
$$\hat{F}_{camera}^{BEV} = projector(F_{camera}^{BEV}), \quad (7)$$

679

680
$$\hat{F}_{LiDAR}^{BEV} = projector(F_{LiDAR}^{BEV}), \quad (8)$$

681

682
$$\hat{F}_{Fused}^{BEV} = projector(F_{Fused}^{BEV}), \quad (9)$$

683 where $projector(\cdot)$ is the two-layer linear perceptron function. Note that, the BEV features of
684 different modalities use a shared projector module.
685**Partially Shared Projector.** The main difference from the shared projector is that the first linear
686 layer of the partially shared projector learns three modes independently, and the second linear layer is
687 shared.
688**Independent Projector.** The Independent Projector formula can be written:

689
$$\hat{F}_{camera}^{BEV} = projector_1(F_{camera}^{BEV}), \quad (10)$$

690

691
$$\hat{F}_{LiDAR}^{BEV} = projector_2(F_{LiDAR}^{BEV}), \quad (11)$$

692

693
$$\hat{F}_{Fused}^{BEV} = projector_3(F_{Fused}^{BEV}), \quad (12)$$

694 where $projector(\cdot)$ is the multi-layer linear perceptron function. Note that, the BEV features of
695 different modalities use different projector modules.
696**Skip Shared Projector.** The Skip Shared Projector formula can be written as:

697
$$\hat{F}_{camera}^{BEV} = projector(F_{camera}^{BEV}) + F_{camera}^{BEV}, \quad (13)$$

698

699
$$\hat{F}_{LiDAR}^{BEV} = projector(F_{LiDAR}^{BEV}) + F_{LiDAR}^{BEV}, \quad (14)$$

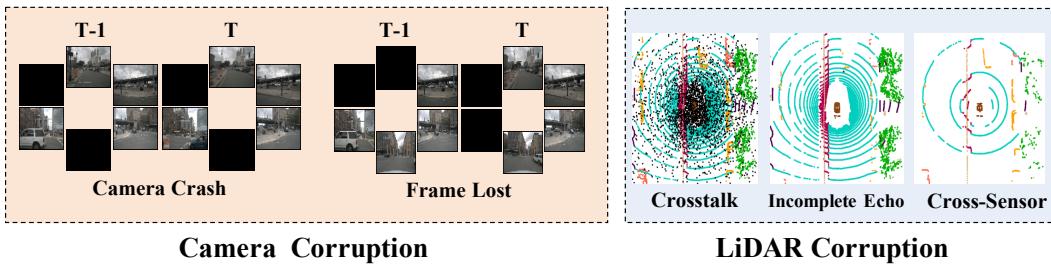
700

701
$$\hat{F}_{Fused}^{BEV} = projector(F_{Fused}^{BEV}) + F_{Fused}^{BEV}, \quad (15)$$

702 where $projector(\cdot)$ is the two-layer linear perceptron function. Note that, the BEV features of
703 different modalities use a shared skip projector module.
704

702 Table 5: Description and severity level setups in camera/LiDAR corruption simulations. Camera
 703 Crash (Camera), Frame Lost (Frame), Crosstalk, Incomplete Echo (Echo), and Cross-Sensor (Sensor).
 704

705 Corruption	706 Description	707 Parameter	708 Easy	709 Moderate	710 Hard
706 Camera	707 droping view images	708 number of dropped camera	709 2	710 4	711 5
706 Frame	707 droping temporal frames	708 probability of frame dropping	709 2/6	710 4/6	711 5/6
708 Crosstalk	709 light impluses interference	710 percentage	711 0.03	712 0.07	713 0.12
709 Echo	710 imcomplete LiDAR readings	711 drop ratio	712 0.75	713 0.85	714 0.95
710 Sensor	711 cross sensor data	712 beam number to drop	713 8	714 16	715 20



712 Figure 7: Visualization results of camera/LiDAR sensor corruptions.

713 A.2 MULTI-SENSOR CORRUPTIONS

714 To explore the camera-LiDAR fusion model robustness, we design 13 types of camera-LiDAR
 715 corruption combinations that perturb both camera and LiDAR inputs separately or concurrently.
 716 Camera-LiDAR corruption combinations are grouped into camera-only corruptions, LiDAR-only
 717 corruptions, and their combinations, covering the majority of real-world corruption cases. Specifically,
 718 we design 3 types of camera-only corruptions by utilizing the clean LiDAR point data and three
 719 camera failure cases such as Unavailable Camera (*all pixel values are set to zero for all RGB images*),
 720 Camera Crash, and Frame Lost. Moreover, we design 4 types for LiDAR-only corruptions by utilizing
 721 the clean camera data and the corrupted LiDAR data as the input. The LiDAR corruption types
 722 include complete LiDAR failure which means LiDAR data are unavailable (*Since no model can*
 723 *work when all points are absent, we approximate this scenario by only retaining a single point*
 724 *as input*), LiDAR Incomplete Echo, LiDAR Crosstalk, and LiDAR Cross-Sensor. Note that our
 725 implementation of complete LiDAR failure is close to the real-world situation. Lastly, we design 6
 726 types of camera-LiDAR corruption combinations that perturb both sensor inputs concurrently, using
 727 the previously mentioned image/LiDAR sensor failure types. We establish several corruption severity
 728 levels (*i.e.*, three levels including easy, moderate, and hard) for each type of corruption. Furthermore,
 729 for a comprehensive evaluation, we report metrics for each corruption type by averaging over three
 730 severity levels. Description and severity level setups in 2 types of camera corruption and 3 types of
 731 LiDAR corruption are shown in Tab. 5. Visualization results of camera/LiDAR sensor corruptions
 732 are shown in Fig. 7.

733 A.3 RESULTS ON ARGOVERSE2 DATASET

734 There are 1000 logs in the Argoverse2 dataset (Wilson et al., 2021). Each log contains 15s of 20Hz
 735 RGB images from 7 cameras, 10Hz LiDAR sweeps, and a 3D vectorized map. The train, validation,
 736 and test sets contain 700, 150, and 150 logs, respectively. Following previous works (Liao et al.,
 737 2023a; Zhou et al., 2024), we report results on its validation set and focus on the same three map
 738 categories as the nuScenes dataset.

739 Tab. 8 and Tab. 9 show the overall performance of Uni-Map and all the baselines on the Argoverse2
 740 dataset. Compared with MapTR, Uni-Map outperforms all input configurations in both single-class
 741 APs and the overall mAP by a significant margin on the Argoverse2 dataset. Note that only one
 742 Uni-Map model is trained while three MapTR models (MapTR-C, MapTR-L, and MapTR-F) are
 743 trained for different input configurations. Thus, we use the total time of training three MapTR models
 744 to train our Uni-Map model, and the resulting Uni-Map model (last row of Tab. 9) beats independently
 745 trained camera-only, LiDAR-only, and camera-LiDAR fusion MapTR models with gains of 5.0,
 746 4.8, 6.6 mAP, under the respective input configurations. In a nutshell, Uni-Map shows significant

Table 6: Comparison of MapTR (Liao et al., 2023a) and Uni-Map in terms of inference speed (Frames-per-Second).

Method	Camera-only	LiDAR-only	Camera & LiDAR
MapTR-C	21.4	—	—
MapTR-L	—	8.7	—
MapTR-F	—	—	6.4
Uni-Map (MapTR)	21.4	8.7	6.4

Table 7: Comparison of MapTR (Liao et al., 2023a) and Uni-Map in terms of GPU memory (MB) footprint.

Method	Camera-only	LiDAR-only	Camera & LiDAR
MapTR-C	2544	—	—
MapTR-L	—	9963	—
MapTR-F	—	—	10607
Uni-Map (MapTR)	2544	9963	10607

superiority over other baseline methods on the nuScenes and the Argoverse2 datasets, indicating the benefit of our method.

Table 8: **Comparisons with state-of-the-art methods on Argoverse2 dataset.** Note that Uni-Map (MapModel) means our method is integrated into an existing MapModel.

Method	Modality	BEV Encoder	Backbone	Epoch	AP _{ped.}	AP _{div.}	AP _{bou.}	mAP↑
HDMaPNet Li et al. (2022a)	C	NVT	Effi-B0	6	13.1	5.7	37.6	18.8
VectorMapNet Liu et al. (2023a)	C	IPM	R50	24	38.3	36.1	39.2	37.9
MapTRv2 Liao et al. (2023b)	C	BEVPoolv2	R50	6	62.9	72.1	67.1	67.4
HIMap Zhou et al. (2024)	C	BEVFormer	R50	6	69.0	69.5	70.3	72.7
MapTR Liao et al. (2023a)	C	GKT	R50	6	57.9	56.9	59.2	58.0
MapTR Liao et al. (2023a)	L	-	R50	6	56.1	56.7	74.9	62.5
MapTR Liao et al. (2023a)	C & L	GKT	R50 & Sec	6	65.1	61.6	75.1	67.3
Uni-Map (MapTR)	C	GKT	R50	6	60.2	62.9	62.9	62.0
Uni-Map (MapTR)	L	-	R50	6	60.0	60.0	77.8	66.0
Uni-Map (MapTR)	C & L	GKT	R50 & Sec	6	70.1	69.4	80.5	73.3

Table 9: Comparison of MapTR (Liao et al., 2023a) and Uni-Map in terms of accuracy, model size, training epochs and training time on the Argoverse2 dataset. Note that only one Uni-Map model is trained while three MapTR models (MapTR-C, MapTR-L, and MapTR-F) are trained for different input configurations. † represents using the total time of training three MapTR models to train our Uni-Map model.

Method	Camera-only (mAP)	LiDAR-only (mAP)	Camera & LiDAR (mAP)	Params(MB)	Epoch	Training Time
MapTR-C	58.0	—	—	35.9	6	11h46m
MapTR-L	—	62.5	—	14.3	6	7h38m
MapTR-F	—	—	67.3	39.8	6	13h22m
Uni-Map (MapTR)	62.0	66.0	73.3	39.9	6	18h31m
Uni-Map (MapTR)†	63.0	67.2	73.9	39.9	10	30h51m

Table 10: Results of switching modality strategy on MapTR Fusion model.

Method	Camera-only (mAP)	LiDAR-only (mAP)	Camera & LiDAR (mAP)
MapTR	0	0	62.5

A.4 RESULTS OF MSM ON ORIGINAL MAPTR FUSION MODEL

We use our proposed switching modality strategy on the original MapTR Fusion model on nuScenes dataset. The experimental results are shown in Tab. 10. We are surprised to find that directly using our switching modality strategy in the existing MapTR fusion model, the performance of the camera-only branch and LiDAR branch are zero. Experimental results prove that without using our Mixture Stack Modality (MSM) training scheme and projector module, the model is unable to handle various input configurations. The above experimental phenomena verify the effectiveness and rationality of our MSM training scheme and projector module design.

A.5 MORE EXPERIMENTAL RESULTS REGARDING MODEL ROBUSTNESS

To explore the camera-LiDAR fusion model robustness, we design 13 types of camera-LiDAR corruption combinations that perturb both camera and LiDAR inputs separately or concurrently. Camera-LiDAR corruption combinations are grouped into camera-only corruptions, LiDAR-only

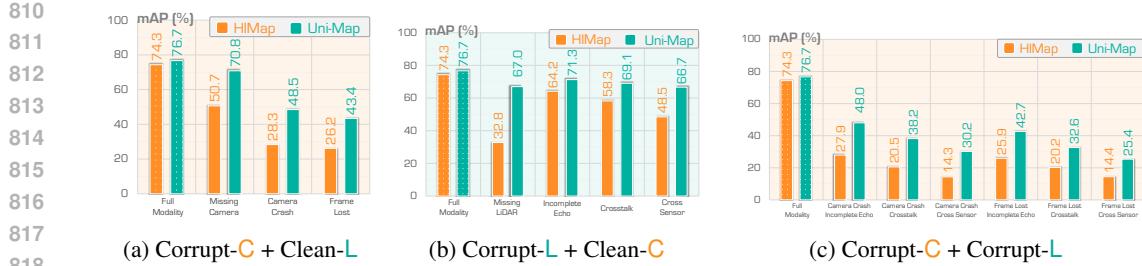


Figure 8: The result of multi-sensor corruption on HIMap vs. Uni-Map (HIMap) fusion model.

corruptions, and their combinations, covering the majority of real-world corruption cases. Fig. 8 shows the results of three Camera-LiDAR corruption combinations on HIMap (Zhou et al., 2024) fusion model. We can find that: (1) In the sensor missing scenario, Uni-Map can still keep the model from collapsing based on our switching modality strategy. Quantitatively, when facing the camera sensor missing case, Uni-Map still achieves 70.8 mAP, which outperforms the original HIMap (Zhou et al., 2024) by +20.1 mAP. (2) In case of corruption of camera and LiDAR sensor individually or simultaneously, Uni-Map still shows stronger robustness. For example, in the face of camera crash and LiDAR crosstalk, compared to the MapTR fused model, the Uni-Map model achieved significant improvements in 17.7 mAP (38.2 vs. 20.5). All in all, Uni-Map shows stronger robustness on our designed 13 types of camera-LiDAR corruption combinations. Experimental results for all corruption types for MapTR and Uni-Map (MapTR) are shown in Tab. 12-Tab. 14. And, experimental results for all corruption types for HIMap and Uni-Map (HIMap) are shown in Tab. 15-Tab. 17.

Table 11: Comparison of BEVFusion (Liu et al., 2023b) and Uni-Map in terms of accuracy on the nuScenes dataset. Note that only one Uni-Map model is trained while three BEVFusion models (BEVFusion-C, BEVFusion-L and BEVFusion-F) are trained for different input configurations.

Method	Camera-only (mAP/NDS)	LiDAR-only (mAP/NDS)	Camera & LiDAR (mAP/NDS)
BEVFusion-C	35.6/41.2	—	—
BEVFusion-L	—	64.7/69.3	—
BEVFusion-F	—	—	68.5/71.4
Uni-Map (BEVFusion)	39.2/46.1	67.3/71.6	71.1/73.5

A.6 GENERALIZATION TO 3D OBJECT DETECTION TASK

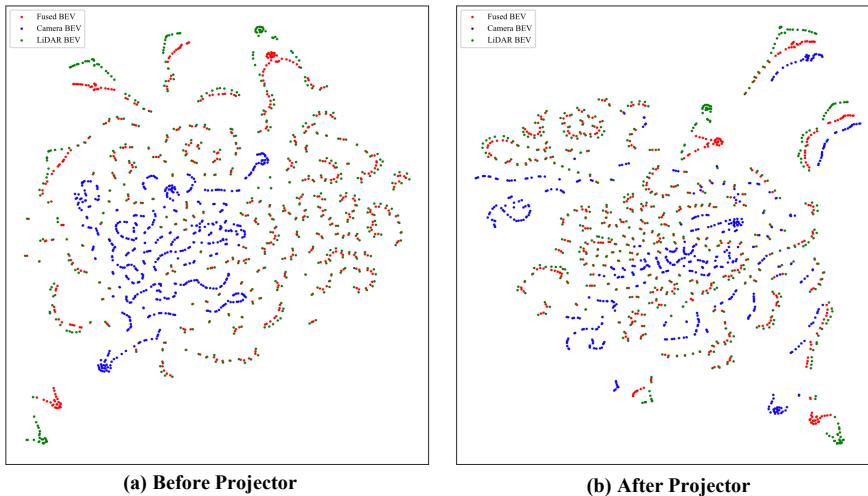
In order to verify the universality of the Uni-Map method, we thereby generalize our method to the 3D object detection task, to further show its effectiveness on other perception tasks. We select the popular 3D object detection method BEVFusion (Liu et al., 2023b) as the baseline model. As shown in the Tab. 11, our Uni-Map consistently improves the performance, compared to the original model. For example, our Uni-Map beats independently trained camera-only, LiDAR-only, and camera-LiDAR fusion models with gains of 3.6/4.9, 2.6/2.3, 2.6/2.1 mAP/NDS, under the respective input configurations. Obviously, our method can be directly utilized in the 3D objection detection task, demonstrating the generalization ability of our method.

A.7 MORE VISUALIZATION RESULTS

Qualitative Results. We provide more visualization results of qualitative results. Visualization results of qualitative results are shown in Fig. 10. We observe that in the case of multi-sensor corruption, the source MapTR model predictions are highly incorrect. However, our Uni-Map model can already correct significant errors in the baseline predictions in all settings. Qualitative results demonstrate the superiority of the UniMap model in various corruption scenarios.

t-SNE. We randomly choose 500 samples on the nuScenes dataset and show the tSNE (Van der Maaten & Hinton, 2008) visualizations of (a) Before Projector module and (b) After Projector module in Fig. 9. Red/Blue/green denotes fused BEV feature/camera BEV feature/LiDAR BEV feature. As can be seen, Fig. 9 (a) Before Projector module shows that blue and red/green features are clearly separated, indicating that although in the same space, camera BEV features, LiDAR BEV features,

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 9: The t-SNE visualizations of (a) Before Projector module and (b) After Projector module. Red/Blue/green denotes fused BEV feature/camera BEV feature/LiDAR BEV feature. After the projector module, the BEV features from different modalities are aligned in a shared space, *e.g.*, red, blue, and green circles are close together after the projector module (best viewed in color).

and fused BEV features can still be misaligned to some extent due to the inaccurate depth in the view transformer and the large modality gap. Fig. 9 (b) After the projector module, the BEV features from different modalities are aligned in a shared space, *i.e.*, red, blue, and green circles are close together after the projector module.

A.8 USAGE OF LLM

In this study, we leverage Large Language Models (LLMs) to enhance various aspects of our work, specifically in the following key areas: 1) **Writing Assistance**: LLMs are utilized to aid in the writing and refinement of this manuscript, including proofreading for grammatical errors, improving sentence structure for clarity, and rephrasing content to enhance readability. All generated text undergoes thorough review, critical evaluation, and editing by the authors to ensure the accuracy and integrity of the final content, for which the authors take full responsibility. 2) **Code Implementation**: LLMs serve as a tool to facilitate the implementation of algorithms and data processing scripts, generating boilerplate code, suggesting solutions for specific challenges, and assisting with debugging. All code produced by LLMs is manually verified and tested by the authors to confirm its correctness, efficiency, and adherence to project requirements. 3) **Research Applications**: Beyond supporting specific tasks, LLMs play an integral role in the research process, fulfilling various functions such as serving as the base model for our experiments, refining and rephrasing prompts to guide model behavior, and executing other research tasks explicitly mentioned in this work.

972
973974 Table 12: The result of camera-only corruptions on MapTR vs Uni-Map (MapTR) fusion model.
975

Method	Modality	Camera	LiDAR	AP _{ped.}	AP _{div.}	AP _{bou.}	mAP ↑
MapTR Liao et al. (2023a)	C & L	✓	✓	55.9	62.3	69.3	62.5
MapTR Liao et al. (2023a)	C & L	✗	✓	15.0	18.2	34.4	22.5 _{-40.0}
MapTR Liao et al. (2023a)	C & L	Camera Crash	✓	32.5	36.5	48.4	39.1 _{-23.4}
MapTR Liao et al. (2023a)	C & L	Frame Lost	✓	29.1	33.7	46.1	36.3 _{-26.2}
Uni-Map (MapTR)	C & L	✓	✓	64.4	66.8	73.2	68.1
Uni-Map (MapTR)	C & L	✗	✓	56.5	57.8	69.4	61.2 _{-6.9}
Uni-Map (MapTR)	C & L	Camera Crash	✓	40.3	40.3	51.5	44.1 _{-24.0}
Uni-Map (MapTR)	C & L	Frame Lost	✓	37.0	38.6	49.9	41.8 _{-26.3}

981
982
983
984
985
986
987
988
989990 Table 13: The result of LiDAR-only corruptions on MapTR vs Uni-Map (MapTR) fusion model.
991

Method	Modality	Camera	LiDAR	AP _{ped.}	AP _{div.}	AP _{bou.}	mAP ↑
MapTR Liao et al. (2023a)	C & L	✓	✓	55.9	62.3	69.3	62.5
MapTR Liao et al. (2023a)	C & L	✓	✗	20.7	27.4	13.1	20.4 _{-42.1}
MapTR Liao et al. (2023a)	C & L	✓	Incomplete Echo	47.9	55.2	62.2	55.1 _{-7.4}
MapTR Liao et al. (2023a)	C & L	✓	Crosstalk	36.7	42.5	45.3	41.5 _{-21.0}
MapTR Liao et al. (2023a)	C & L	✓	Cross-Sensor	33.9	42.9	42.0	39.6 _{-22.9}
Uni-Map (MapTR)	C & L	✓	✓	64.4	66.8	73.2	68.1
Uni-Map (MapTR)	C & L	✓	✗	52.1	57.5	55.2	54.9 _{-13.2}
Uni-Map (MapTR)	C & L	✓	Incomplete Echo	56.5	61.3	65.9	61.2 _{-6.9}
Uni-Map (MapTR)	C & L	✓	Crosstalk	53.3	58.2	60.9	57.5 _{-10.6}
Uni-Map (MapTR)	C & L	✓	Cross-Sensor	50.5	55.4	57.2	54.3 _{-13.8}

1003
1004
1005
1006
10071008 Table 14: The result of camera and LiDAR corruptions on MapTR vs Uni-Map (MapTR) fusion
1009 model.
1010

Method	Modality	Camera	LiDAR	AP _{ped.}	AP _{div.}	AP _{bou.}	mAP ↑
MapTR Liao et al. (2023a)	C & L	✓	✓	55.9	62.3	69.3	62.5
MapTR Liao et al. (2023a)	C & L	Camera Crash	Incomplete Echo	32.4	35.6	47.8	38.6 _{-23.9}
MapTR Liao et al. (2023a)	C & L	Camera Crash	Crosstalk	19.7	21.6	26.9	22.7 _{-39.8}
MapTR Liao et al. (2023a)	C & L	Camera Crash	Cross-Sensor	18.4	20.8	23.2	20.8 _{-41.7}
MapTR Liao et al. (2023a)	C & L	Frame Lost	Incomplete Echo	28.9	32.8	45.5	35.8 _{-26.7}
MapTR Liao et al. (2023a)	C & L	Frame Lost	Crosstalk	16.9	19.9	25.5	20.8 _{-41.7}
MapTR Liao et al. (2023a)	C & L	Frame Lost	Cross-Sensor	15.8	19.4	22.2	19.1 _{-43.4}
Uni-Map (MapTR)	C & L	✓	✓	64.4	66.8	73.2	68.1
Uni-Map (MapTR)	C & L	Camera Crash	Incomplete Echo	40.3	39.7	50.8	43.6 _{-24.5}
Uni-Map (MapTR)	C & L	Camera Crash	Crosstalk	29.8	28.7	36.4	31.6 _{-36.5}
Uni-Map (MapTR)	C & L	Camera Crash	Cross-Sensor	24.5	24.6	28.8	25.9 _{-42.2}
Uni-Map (MapTR)	C & L	Frame Lost	Incomplete Echo	36.9	37.8	49.2	41.3 _{-26.8}
Uni-Map (MapTR)	C & L	Frame Lost	Crosstalk	26.3	27.3	34.3	29.3 _{-38.8}
Uni-Map (MapTR)	C & L	Frame Lost	Cross-Sensor	20.9	23.3	26.6	23.6 _{-44.5}

1024
1025

1026

1027

1028

1029

Table 15: The result of camera-only corruptions on HIMap vs Uni-Map (HIMap) fusion model.

Method	Modality	Camera	LiDAR	AP _{ped.}	AP _{div.}	AP _{bou.}	mAP↑
HIMap Zhou et al. (2024)	C & L	✓	✓	71.0	72.4	79.4	74.3
HIMap Zhou et al. (2024)	C & L	✗	✓	40.9	46.4	74.7	50.7 _{-23.6}
HIMap Zhou et al. (2024)	C & L	Camera Crash	✓	36.3	27.7	20.9	28.3 _{-46.0}
HIMap Zhou et al. (2024)	C & L	Frame Lost	✓	29.9	25.0	23.8	26.2 _{-48.1}
Uni-Map (HIMap)	C & L	✓	✓	73.6	75.3	81.2	76.7
Uni-Map (HIMap)	C & L	✗	✓	65.3	69.5	77.8	70.8 _{-5.9}
Uni-Map (HIMap)	C & L	Camera Crash	✓	42.5	47.6	55.5	48.5 _{-28.2}
Uni-Map (HIMap)	C & L	Frame Lost	✓	36.7	42.3	51.1	43.4 _{-33.3}

1039

1040

1041

1042

1043

1044

Table 16: The result of LiDAR-only corruptions on HIMap vs Uni-Map (HIMap) fusion model.

Method	Modality	Camera	LiDAR	AP _{ped.}	AP _{div.}	AP _{bou.}	mAP↑
HIMap Zhou et al. (2024)	C & L	✓	✓	71.0	72.4	79.4	74.3
HIMap Zhou et al. (2024)	C & L	✓	✗	30.7	38.7	29.0	32.8 _{-41.5}
HIMap Zhou et al. (2024)	C & L	✓	Incomplete Echo	59.1	63.7	69.9	64.2 _{-10.1}
HIMap Zhou et al. (2024)	C & L	✓	Crosstalk	54.1	57.5	63.4	58.3 _{-16.0}
HIMap Zhou et al. (2024)	C & L	✓	Cross-Sensor	44.2	50.7	50.8	48.5 _{-25.8}
Uni-Map (HIMap)	C & L	✓	✓	73.6	75.3	81.2	76.7
Uni-Map (HIMap)	C & L	✓	✗	64.5	68.2	68.3	67.0 _{-9.7}
Uni-Map (HIMap)	C & L	✓	Incomplete Echo	68.0	70.8	75.0	71.3 _{-5.4}
Uni-Map (HIMap)	C & L	✓	Crosstalk	65.9	68.9	72.6	69.1 _{-7.6}
Uni-Map (HIMap)	C & L	✓	Cross-Sensor	63.8	67.4	69.1	66.7 ₋₁₀

1057

1058

1059

1060

1061

1062

Table 17: The result of camera and LiDAR corruptions on HIMap vs Uni-Map (HIMap) fusion model.

Method	Modality	Camera	LiDAR	AP _{ped.}	AP _{div.}	AP _{bou.}	mAP↑
HIMap Zhou et al. (2024)	C & L	✓	✓	71.0	72.4	79.4	74.3
HIMap Zhou et al. (2024)	C & L	Camera Crash	Incomplete Echo	36.2	26.9	20.5	27.9 _{-46.4}
HIMap Zhou et al. (2024)	C & L	Camera Crash	Crosstalk	29.2	19.3	12.9	20.5 _{-53.8}
HIMap Zhou et al. (2024)	C & L	Camera Crash	Cross-Sensor	23.1	13.8	5.9	14.3 _{-60.0}
HIMap Zhou et al. (2024)	C & L	Frame Lost	Incomplete Echo	29.9	24.4	23.5	25.9 _{-48.4}
HIMap Zhou et al. (2024)	C & L	Frame Lost	Crosstalk	23.6	18.9	18.0	20.2 _{-54.1}
HIMap Zhou et al. (2024)	C & L	Frame Lost	Cross-Sensor	17.7	14.3	11.2	14.4 _{-59.9}
Uni-Map (HIMap)	C & L	✓	✓	73.6	75.3	81.2	76.7
Uni-Map (HIMap)	C & L	Camera Crash	Incomplete Echo	42.4	46.7	54.8	48.0 _{-28.7}
Uni-Map (HIMap)	C & L	Camera Crash	Crosstalk	35.1	36.6	42.8	38.2 _{-38.5}
Uni-Map (HIMap)	C & L	Camera Crash	Cross-Sensor	28.9	30.8	31.0	30.2 _{-46.5}
Uni-Map (HIMap)	C & L	Frame Lost	Incomplete Echo	36.6	41.2	50.3	42.7 _{-34.0}
Uni-Map (HIMap)	C & L	Frame Lost	Crosstalk	29.2	31.3	37.5	32.6 _{-44.1}
Uni-Map (HIMap)	C & L	Frame Lost	Cross-Sensor	23.9	25.9	26.4	25.4 _{-51.3}

1078

1079