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ABSTRACT

High-definition (HD) map construction methods play a vital role in providing pre-
cise and comprehensive static environmental information essential for autonomous
driving systems. The primary sensors used are cameras and LiDAR, with input
configurations varying among camera-only, LiDAR-only, or camera-LiDAR fusion
based on cost-performance considerations, while fusion-based methods typically
perform the best. However, current methods face two major issues: high costs
due to separate training and deployment for each input configuration, and low
robustness when sensors are missing or corrupted. To address these challenges, we
propose the Unified Robust HD Map Construction Network (Uni-Map), a single
model designed to perform well across all input configurations. Our approach
designs a novel Mixture Stack Modality (MSM) training scheme, allowing the
map decoder to learn effectively from camera, LiDAR, and fused features. We
also introduce a projector module to align Bird’s Eye View features from different
modalities into a shared space, enhancing representation learning and overall model
performance. During inference, our model utilizes a switching modality strategy
to adapt seamlessly to any input configuration, ensuring compatibility across vari-
ous modalities. To evaluate the robustness of HD map construction methods, we
designed 13 different sensor corruption scenarios and conducted extensive exper-
iments comparing Uni-Map with state-of-the-art methods. Experimental results
show that Uni-Map outperforms previous methods by a significant margin across
both normal and corrupted modalities, demonstrating superior performance and ro-
bustness. Notably, our unified model surpasses independently trained camera-only,
LiDAR-only, and camera-LiDAR MapTR models with a gain of 4.6, 5.6, and 5.6
mAP on the nuScenes dataset, respectively. The code and models will be released.

1 INTRODUCTION

Online high-definition (HD) map provides abundant and precise static environmental information
about the driving scenes, which is fundamental for planning and navigation in autonomous driving
systems. Cameras and LiDAR are the predominant sensors, offering semantic-rich image data and
explicit geometric information from point clouds, respectively. HD map construction models can be
categorized into three groups based on input configurations: camera-only (Qiao et al., 2023; Ding
et al., 2023; Yuan et al., 2024; Hao et al., 2024a; Li et al., 2024), LiDAR-only (Li et al., 2022a;
Liu et al., 2023a), and camera-LiDAR fusion (Liao et al., 2023a;b; Hao et al., 2025a; Zhou et al.,
2024) models. As illustrated in Fig. 1 (a)-(c), HD map construction methods with different input
configurations have been widely studied and deployed in real-world systems based on different
cost-effective considerations.

However, existing methods entail the training and deployment of separate models for each input
configuration, resulting in substantial development, maintenance, and deployment overheads. To
address this problem, we propose a novel Unified Robust HD Map Construction Network (Uni-Map),
where one trained model can perform well under all input configurations, depicted in Fig. 1(d). Our
approach elaborates a novel Mixture Stack Modality (MSM) training scheme during the training
phase, allowing the map decoder to glean rich knowledge from the camera, LiDAR, or fused
features. Furthermore, we introduce a novel projector module to map Bird’s Eye View (BEV) features
of different modalities into a shared space. During inference, we present a switching modality
strategy enabling precise predictions by Uni-Map when utilizing arbitrary modality inputs. Extensive
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Figure 1: Illustration of the Camera-based method, LiDAR-based method, Camera-LiDAR Fusion
method, and the proposed Uni-Map method (one model for different input configurations).

experiments demonstrate that Uni-Map can achieve high performance in different input configurations
while reducing the training and deployment costs of the model.

Another critical concern of HD map construction methods for autonomous driving is the model’s
robustness (Kong et al., 2024). While Camera-LiDAR fusion methods have shown promising perfor-
mance by incorporating information from both modalities (Liao et al., 2023a; Zhou et al., 2024; Hao
et al., 2024b), existing fusion methods often assume access to complete sensor information, leading
to low robustness and potential collapse when sensors are corrupted or missing. To comprehensively
evaluate the robustness of the Camera-LiDAR fusion model, we design 13 types of camera-LiDAR
corruption combinations that perturb both camera and LiDAR inputs separately or concurrently.
These combinations are summarized into 6 cases and illustrated in Fig. 2 (left). We compare Uni-Map
with state-of-the-art MapTR (Liao et al., 2023a) method, Uni-Map performs more robustly as depicted
in Fig. 2 (right), benefiting from the comprehensive feature representations learned by our proposed
MSM and aligned by the projector module. Quantitatively, when facing missing camera sensors,
Uni-Map still achieves 61.2 mAP, which outperforms the original MapTR (Liao et al., 2023a) by
+38.7 mAP (61.2 vs. 22.5). Experimental results show that Uni-Map exhibits stronger robustness
on various multi-sensor corruption types. Importantly, the core components of Uni-Map, i.e., MSM
training scheme, projector module, and the switching modality strategy are simple yet effective
plug-and-play techniques compatible with existing pipelines.

In summary, the main contributions of this paper are threefold:

• We propose a novel Unified Robust HD Map Construction Network (Uni-Map), which
stands out as an all-in-one model to operate on arbitrary input configurations.

• We design a novel Mixture Stack Modality training scheme with a simple yet effective
projector module to project the BEV features of different modalities into a shared space,
allowing the map decoder to learn strong representation from different modalities and a
switching modality strategy to utilize arbitrary modality inputs during inference.

• Our single Uni-Map model beats the popular MapTR models independently trained on
camera-only, LiDAR-only, and camera-LiDAR fusion modalities with a gain of 4.6, 5.6, and
5.6 mAP, respectively. Moreover, Uni-Map shows much better robustness on 13 types of
camera-LiDAR corruption combinations. These benefits extend to various map construction
models due to our simple, task-independent designs.

2 RELATED WORK

HD Map Construction. HD map construction is a prominent and extensively researched area within
the field of autonomous driving. According to the input sensor modality, HD map construction models
can be categorized into camera-only (Liao et al., 2023a; Zhang et al., 2024; Ding et al., 2023; Liao
et al., 2023b; Yuan et al., 2024), LiDAR-only (Li et al., 2022a; Liu et al., 2023a) and camera-LiDAR
fusion (Liao et al., 2023a;b; Zhou et al., 2024; Hao et al., 2024c) models.
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Figure 2: Uni-Map shows stronger robustness on various multi-sensor corruption types. We show
mAP results for MapTR and Uni-Map models on clean data and each type of multi-sensor corruption.
Results show Uni-Map can mitigate the performance drop on sensor missing or corruptions.

Recently, camera-only methods have increasingly employed the Bird’s-eye view (BEV) represen-
tation as an ideal feature space for multi-view perception due to its remarkable ability to mitigate
scale-ambiguity and occlusion challenges. Various techniques have been proposed and utilized to
project perspective view (PV) features into the BEV space by leveraging geometric priors, such
as LSS (Philion & Fidler, 2020), Deformable Attention (Li et al., 2022b) and GKT (Chen et al.,
2022). However, camera-only methods suffer from a lack of explicit depth information. LiDAR-only
methods (Wang et al., 2023; Li et al., 2022a; Liu et al., 2023a; Liao et al., 2023b;a) benefit from the
accurate 3D geometric information from the LiDAR input. However, they struggle to deal with data
sparsity and sensing noise problems robustly. Recently, camera-LiDAR feature fusion in the unified
BEV space has attracted much attention (Liao et al., 2023a;b; Zhou et al., 2024; Dong et al., 2024).
BEV-level fusion uses two independent streams that encode the raw inputs from the camera and
LiDAR sensors into features within the same BEV space. This fusion at the BEV level incorporates
complementary modality features, surpassing unimodal input approaches in performance.

While significant progress has been made using various methods with different input configurations
(camera-only, LiDAR-only, camera-LiDAR fusion) chosen based on cost-performance considerations,
a common challenge persists. Current methods necessitate training and deploying separate models for
each input configuration, leading to considerable costs in development, maintenance, and deployment.
In this paper, we introduce a novel Unified Robust HD map construction approach to address this
issue. This method enables training a single model capable of operating on any input configuration,
thereby streamlining the process.

Robustness Under Sensor Failures. Sensor failures can significantly impact the accuracy of HD map
tasks, thereby jeopardizing the safety of autonomous driving. While Camera-LiDAR fusion methods
have shown promising performance, which can make use of both the semantic-rich information from
cameras and the explicit geometric information from LiDAR, existing fusion methods often assume
access to complete sensor information from both cameras and LiDAR, leading to low robustness in the
face of sensor missing or corruptions. This means that their performance may degrade significantly or
even fail entirely when sensor data is incomplete or corrupted. Recently, there have been a few studies
that focus on benchmarking and improving the robustness under natural corruptions, particularly in
various BEV perception algorithms such as 3D object detection (Liu et al., 2023b; Ge et al., 2023;
Kong et al., 2025), BEV segmentation (Zhang et al., 2022; Zhou & Krähenbühl, 2022), occupancy
prediction (Wei et al., 2023b; Huang et al., 2023), and depth estimation (Wei et al., 2023a). However,
approaches addressing sensor failures for HD map construction are still under exploration.

In this paper, we focus on exploring the robustness of the HD map construction task under multi-
sensor corruptions. To achieve this, we design 13 types of camera-LiDAR corruption combinations
that perturb both camera and LiDAR inputs separately or concurrently. Our proposed Uni-Map model
demonstrates enhanced robustness across various sensor failure scenarios.

3
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Figure 3: An overview of Uni-Map framework. First, we extract features from multi-modal
sensor inputs and convert them into a unified bird’s-eye view (BEV) space efficiently using view
transformations. Then, we design a novel Mixture Stack Modality (MSM) scheme with a projector
module to re-project the BEV features of different modalities into a shared space. Finally, the mixture
stack BEV features are fed into a shared decoder and prediction heads for HD Map construction.

3 METHODOLOGY

Uni-Map pursues a novel Unified Robust HD Map construction approach, which can train an all-
in-one model capable of operating with various input configurations. For this purpose, we feed the
model decoder with the features from all input configurations at the training stage and process one
specific feature based on the deployed input configuration during inference. The overview framework
of Uni-Map is shown in Fig. 3. Given different sensory inputs, we first apply modality-specific
encoders to extract their features. These multi-modal features are then transformed into a unified
BEV representation that preserves both geometric and semantic information. Then, we incorporate
a projector module to align BEV features from different modalities into a shared space, thereby
enhancing representation learning. Additionally, we introduce a novel Mixture Stack Modality
training scheme, enabling the map decoder module to glean rich knowledge from the camera, LiDAR,
or fused features. Specifically, the mixture stack BEV features are fed into the decoder and prediction
heads for the HD Map construction task. During inference, we employ a switching modality strategy,
enabling Uni-Map to make precise predictions using arbitrary modality inputs.

3.1 PRELIMINARIES

For notation clarity, we first introduce some symbols and definitions used throughout this paper. Our
goal is to design a novel Unified Robust HD map construction framework taking arbitrary modal
sensor data χ as input and predicting vectorized map elements in BEV space, and the types of the
map elements (supported types are road boundary, lane divider, and pedestrian crossing). Formally,
assume that we have a set of inputs, χ = {Camera,LiDAR}, containing multi-view RGB camera
images in perspective view, Camera ∈ RB×Ncam×Hcam×W cam×3, where B,N cam, Hcam, W cam

denote batch, number of cameras, image height, and image width, respectively, as well as a LiDAR
point cloud, LiDAR ∈ RB×P×5, with number of points P . Each point consists of its 3-dimensional
coordinates, reflectivity, and beam index. The detailed architectural designs are described as follows.

3.2 MAP ENCODER

We build our Map Encoder based on the state-of-the-art HD map construction method MapTR (Liao
et al., 2023a), which applies modality-specific encoders to extract their features and transforms
multi-modal features into a unified BEV representation that preserves both geometric and semantic
information. Note that our approach is compatible with other Map Encoders that can also be employed
to generate camera-only, LiDAR-only, and camera-LiDAR fusion BEV features.

Camera to BEV. For camera images, we first utilize Resnet50 (He et al., 2016b) as the backbone
to extract the multi-view features. Then we adopt GKT (Chen et al., 2022) as the 2D-to-BEV
transformation module to convert the multi-view features into BEV space. The generated BEV
features can be denoted as FBEV

Camera ∈ RB×H×W×C , where H,W,C represent the height, width,
and the number of channels of BEV features, respectively.

4
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LiDAR to BEV. For the LiDAR points, we follow SECOND (Yan et al., 2018) in using voxelization
and a sparse LiDAR encoder. The LiDAR features are projected to BEV space using a flattening
operation as in (Liu et al., 2023b), to obtain the unified LiDAR BEV representation FBEV

LiDAR ∈
RB×H×W×C .

Fused BEV. We utilize a convolution-based fusion method (Liao et al., 2023a; Zhou et al., 2024)
to effectively fuse the BEV features from both camera and LiDAR sensors. More specifically,
we utilize concatenation followed by convolution to fuse features from multi-modal BEV feature
inputs, FBEV

Camera ∈ RB×H×W×C and FBEV
LiDAR ∈ RB×H×W×C , resulting in the aggregated features

FBEV
Fused ∈ RB×H×W×C .

3.3 MIXTURE STACK MODALITY AND PROJECTOR

In this section, we first introduce the projector module that aims to align BEV features from different
modalities into a shared space, thereby enhancing representation learning and overall model perfor-
mance. Then, we offer the details of the Mixture Stack Modality (MSM) training scheme, which
enables the map decoder module to learn rich knowledge from the camera, LiDAR, or fused features.

Projector Module. After input sensor features converted to the shared BEV representation, we can
easily obtain the BEV features of the three modalities, i.e., FBEV

Camera ∈ RB×H×W×C , FBEV
LiDAR ∈

RB×H×W×C and FBEV
Fused ∈ RB×H×W×C . While in the same space, camera BEV features, LiDAR

BEV features, and fused BEV features can still be misaligned to some extent due to the inaccurate
depth in the view transformer and the large modality gap (See Fig. 9 (a)). Existing works (Liang et al.,
2022; Liu et al., 2023b) show the phenomenon of modal gaps, i.e., the features of different BEV
modalities usually focus on completely separate regions in BEV space. Thus, we propose a projector
module to align BEV features from different modalities into a shared space (see the Remarks below),
thereby enhancing representation learning. To address this issue, we project BEV features of different
modalities into a new shared space via a learnable projector projector(·), i.e.,

F̂BEV
camera = projector(FBEV

camera), (1)

F̂BEV
LiDAR = projector(FBEV

LiDAR), (2)

F̂BEV
Fused = projector(FBEV

Fused), (3)

where projector(·) is the multi-layer linear perceptron (MLP) function. Note that, the BEV features
of different modalities use a shared projector, and the details are discussed in the ablation experiments.

Mixture Stack Modality Training Scheme. The map decoder module in existing HD map construc-
tion methods is typically trained using BEV features from a single mode, limiting it to one input
configuration. To address this limitation and ensure that a single trained model can perform well
across all input configurations, we introduce a novel Mixture Stack Modality training scheme after
the projector module. Specifically, it can be formulated as:

F̂BEV
Stack = Stack(F̂BEV

camera, F̂
BEV
LiDAR, F̂

BEV
Fused). (4)

Using the MSM scheme, we obtain the stacked multi-modal BEV feature F̂BEV
Stack ∈ R3B×H×W×C ,

which serves as input for the HD map construction task. Notably, the stacking operation preserves
the feature map shape as H ×W × C by stacking along the batch dimension. This design choice
enables seamless integration with the subsequent Map Decoder module in existing methods, such as
MapTR Liao et al. (2023a). Consequently, our method operates in a plug-and-play manner, ensuring
easy implementation and compatibility.

Remarks: The MSM scheme offers three key advantages. First, by stacking BEV features from
different modalities that share the same map decoder and ground truth labels, the projector module is
supervised (via gradient back-propagation) to implicitly align BEV features from different modalities
in the shared feature space. Second, inputting stacked BEV features into the same map decoder
increases the diversity of the BEV feature space accessible to the decoder module, thereby improving
the model’s generalization ability and robustness across different input configurations. Third, this
scheme allows the map decoder module to process BEV features of different modalities. As a result,
Uni-Map can flexibly handle various input configurations during inference.
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Figure 4: Illustration of the switching modality strategy.

3.4 FULL OBJECTIVE AND INFERENCE

Overall Training. We follow the MapTR (Liao et al., 2023a) model’s training loss function, which is
composed of three parts, including the classification loss Lcls, the point2point loss Lp2p, and the edge
direction loss Ldir. Combining these loss terms, the overall objective function can be formulated as:

L = λ1Lcls + λ2Lp2p + λ3Ldir, (5)

where λ1, λ2 and λ3 are hyper parameters for balancing these terms. For all experiments, λ1 is set to
2, λ2 is set to 5, and λ3 is set to 5e−3.

Inference Phase. During inference, our model utilizes a switching modality strategy to seamlessly
adapt to arbitrary modality inputs, ensuring compatibility across various input configurations. The
switching modality strategy can be formulated as:

F̂BEV
Select =


F̂BEV
camera, if Camera only sensor input,

F̂BEV
lidar , if LiDAR only sensor input,

F̂BEV
fused, if Camera and LiDAR are both obtained.

(6)

This switching strategy simulates real-world scenarios where sensors may be missing during the
inference phase. As shown in Fig. 4, if LiDAR data is unavailable due to uninstallation or damage,
we use the camera BEV feature F̂BEV

camera as the map decoder input, and vice versa. When both
Camera and LiDAR data are available, we select the fused BEV features F̂BEV

fused. Thus, Uni-Map
supports these three input configurations, enhancing its practicality in autonomous driving. Note
that automatically detecting sensor failures is a separate topic beyond this study, though recent
methods (Gaddam et al., 2020; Ji & Luo, 2025) have started to address it.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our method on the widely-used challenging nuScenes (Caesar et al., 2020)
dataset following the standard setting of previous methods (Liao et al., 2023a; Hao et al., 2025d).
The nuScenes dataset contains 1,000 sequences of recordings collected by autonomous driving cars.
Each sample is annotated at 2Hz and contains 6 camera images covering 360◦ horizontal FOV of the
ego-vehicle. Following (Liao et al., 2023a; Hao et al., 2025b; Gao et al., 2024), three kinds of map
elements are chosen for fair evaluation – pedestrian crossing, lane divider, and road boundary.

Evaluation Metrics. We adopt the evaluation metrics consistent with previous works (Liao et al.,
2023a; Hao et al., 2025c; Zhang et al., 2024), where average precision (AP) is used to evaluate
the map construction quality and Chamfer distance DChamfer determines the matching between
predictions and ground truth. We calculate the APτ under several DChamfer thresholds (τ ∈ T =
{0.5m, 1.0m, 1.5m}), and then average across all thresholds as the final mean AP (mAP) metric.
The perception ranges are [−15.0m, 15.0m]/[−30.0m, 30.0m] for X/Y-axes.

Implementation Details. Uni-Map is trained with 4 NVIDIA RTX A6000 GPUs. During the training
phase, the GT labels are duplicated twice and stacked to form 3B batch dimension, matching with the
stacked feature map from Eq. 4. The design choice of the MSM scheme is discussed in the ablation
studies. For the projector module, we use a two-layer perceptron whose dimension is C->C/2->C.
We adopt the AdamW optimizer (Loshchilov & Hutter, 2019) for all our experiments. We set the
mini-batch size to 16, and use a step-decayed learning rate with an initial value of 4e−3. The inference
time is measured on a single NVIDIA RTX A6000 GPU with batch size 1.
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Table 1: Comparisons with state-of-the-art methods on nuScenes val set. “L” and “C” represent
LiDAR and camera, respectively. “Effi-B0”, “R50”, “PP”, and “Sec” are short for EfficientNet-
B0 (Tan & Le, 2019), ResNet50 (He et al., 2016a), PointPillars (Lang et al., 2019) and SECOND (Yan
et al., 2018), respectively. Note that Uni-Map (MapModel) means our method is integrated into an
existing MapModel. Best viewed in color.

Method Modality BEV Encoder Backbone Epoch APped. APdiv. APbou. mAP ↑
HDMapNet (Li et al., 2022a) C NVT Effi-B0 30 14.4 21.7 33.0 23.0
VectorMapNet (Liu et al., 2023a) C IPM R50 110 36.1 47.3 39.3 40.9
PivotNet (Ding et al., 2023) C PersFormer R50 30 53.8 58.8 59.6 57.4
BeMapNet (Qiao et al., 2023) C IPM-PE R50 30 57.7 62.3 59.4 59.8
MapVR (Zhang et al., 2024) C GKT R50 24 47.7 54.4 51.4 51.2
MapTRv2 (Liao et al., 2023b) C BEVPoolv2 R50 24 59.8 62.4 62.4 61.5
StreamMapNet (Yuan et al., 2024) C BEVFormer R50 30 61.7 66.3 62.1 63.4
MapTR (Liao et al., 2023a) C GKT R50 24 46.3 51.5 53.1 50.3
HIMap (Zhou et al., 2024) C BEVFormer R50 24 62.2 66.5 67.9 65.5
Uni-Map (MapTR) C GKT R50 24 52.1 57.5 55.2 54.9
Uni-Map (HIMap) C BEVFormer R50 24 64.5 68.2 68.3 67.0
VectorMapNet (Liu et al., 2023a) L - PP 110 25.7 37.6 38.6 34.0
MapTRv2 (Liao et al., 2023b) L - Sec 24 56.6 58.1 69.8 61.5
MapTR (Liao et al., 2023a) L - Sec 24 48.5 53.7 64.7 55.6
HIMap (Zhou et al., 2024) L - Sec 24 54.8 64.7 73.5 64.3
Uni-Map (MapTR) L - Sec 24 56.5 57.8 69.4 61.2
Uni-Map (HIMap) L - Sec 24 65.3 69.5 77.8 70.8
MapTRv2 (Liao et al., 2023b) C & L BEVPoolv2 R50 & Sec 24 65.6 66.5 74.8 69.0
MapTR (Liao et al., 2023a) C & L GKT R50 & Sec 24 55.9 62.3 69.3 62.5
HIMap (Zhou et al., 2024) C & L BEVFormer R50 & Sec 24 71.0 72.4 79.4 74.3
Uni-Map (MapTR) C & L GKT R50 & Sec 24 64.4 66.8 73.2 68.1
Uni-Map (HIMap) C & L BEVFormer R50 & Sec 24 73.6 75.3 81.2 76.7

Table 2: Comparison of MapTR and Uni-Map in terms of accuracy, model size, training epochs
and training time on nuScenes dataset. Note that only one Uni-Map model is trained while three
MapTR models (MapTR-C, MapTR-L, and MapTR-F) are trained for different input configurations.
† represents using the time equivalent to training three MapTR models to train our Uni-Map model.

Method Camera-only (mAP) LiDAR-only (mAP) Camera & LiDAR (mAP) Params(MB) Epoch Training Time

MapTR-C 50.3 — — 35.9 24 13h55m
MapTR-L — 55.6 — 14.3 24 9h7m
MapTR-F — — 62.5 39.8 24 15h44m
Uni-Map (MapTR) 54.9 61.2 68.1 39.9 24 21h57m
Uni-Map (MapTR)† 57.2 64.5 70.4 39.9 42 38h44m

4.2 COMPARISON WITH THE STATE-OF-THE-ARTS

With the same settings, we compare our method with several state-of-the-art methods across three
categories, i.e., camera-only methods, LiDAR-only methods, and camera-LiDAR fusion methods.
Specifically, we integrate our Uni-Map into two recent methods, MapTR (Liao et al., 2023a) and
HIMap (Zhou et al., 2024), where we insert the projector module into these models and apply the
MSM training scheme. Moreover, to fairly evaluate the effectiveness, we train the same epochs as
the original model. It’s noteworthy that while three MapTR/HIMap models need to be trained for
different input configurations, our Uni-Map model only requires training once. As shown in Tab. 1,
our Uni-Map significantly improves the performance compared to the original models. Specifically,
Uni-Map (MapTR) outperforms independently trained camera-only, LiDAR-only, and camera-LiDAR
MapTR models on NuScenes with a large gain of 4.6, 5.6, and 5.6 mAP, under the respective input
configurations, respectively. Based on the previous state-of-the-art HIMap, our all-in-one model
surpasses HIMap-C, HIMap-L, and HIMap-F by 1.5, 6.5, and 2.4 mAP respectively, establishing
a new state-of-the-art in vectorized map reconstruction. Results for more datasets like Argoverse2
(Wilson et al., 2021) are shown in the supplementary material A.3. All these results prove the
effectiveness of our design.

Model Size, Training Time, GPU Memory and Inference Speed. To systematically evaluate the
effectiveness of our proposed Uni-Map model, we comprehensively analyze it in terms of accuracy,
model size, training time, and inference speed. The experimental results are shown in Tab. 2 and
Appendix Tab. 6-Tab. 7. The experimental results reveal some interesting findings: (1) Compared
with MapTR, Uni-Map performs much better in all input configurations in both single-class APs
and the overall mAP. Note that only one Uni-Map model is trained while three MapTR models
(MapTR-C, MapTR-L, and MapTR-F) are trained for different input configurations. Thus, we use
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Table 3: Ablation study on the MSM training
scheme. The mAP values on nuScenes val set
are reported. ‘Mean’ represents the average mAP
of three input configurations.

Random Select Mixture Stack Projector Camera-only LiDAR-only Camera & LiDAR Mean

% % % 20.4 22.5 62.5 35.1
" % % 36.9 47.5 62.9 49.1
% " % 53.7 59.4 67.9 60.3
" % " 45.6 55.3 61.2 54.0
% " " 54.9 61.2 68.1 61.4

Table 4: Ablation study on Projector Module.
The mAP values on nuScenes val set are re-
ported. ‘Mean’ represents the average mAP of
three input configurations.

Method Camera-only LiDAR-only Camera&LiDAR Mean

Baseline (w/o projector) 53.7 59.4 67.9 60.3
Variant 1: Independent Projector 53.6 62.2 67.6 61.1
Variant 2:Partially Shared Projector 53.3 61.5 68.0 60.9
Variant 3: Skip Shared Projector 53.4 61.7 68.0 61.0
Variant 4: Shared Projector (Ours) 54.9 61.2 68.1 61.4

the same computational budget of training three MapTR models to train our Uni-Map model, and
the resulting Uni-Map model (last row of Tab. 2) beats independently trained camera-only, LiDAR-
only, and camera-LiDAR fusion MapTR models with a larger gain of 6.9, 8.9, 7.9 mAP, under the
respective input configurations. (2) In terms of model size, our Uni-Map model only increases the
number of parameters by 0.1MB compared to the MapTR-F model, as shown in Tab. 2. It is more
parameter-efficient than deploying the three models simultaneously in practice. (3) In terms of GPU
Memory and inference speed, the quantities of our Uni-Map and MapTR are almost the same, as
shown in Appendix Tab. 6-Tab. 7. All in all, the Uni-Map model achieves significant performance
improvements over the strong MapTR baseline with less training time and fewer parameters (for
various input configurations), while maintaining the same inference speed and memory footprint.

4.3 ABLATION STUDIES

Analysis of the MSM training scheme. To systematically evaluate the effectiveness of the MSM
training scheme, we train the model using different schemes and report the mAP results in Tab. 3. In
addition to MSM, we also introduce the Random Select Modality (RSM) training scheme that receives
inputs from one BEV feature map randomly selected among F̂BEV

camera, F̂
BEV
LiDAR, F̂

BEV
Fused. In the main

ablation study, we design the following model variants: (1) We train the model without the projector
module and any of the RSM and MSM training schemes. (2) We train the model without the projector
module using RSM or MSM training schemes, respectively. (3) We train the model with the projector
module using RSM or MSM training schemes, respectively. The experimental results reveal some
interesting findings: (1) The results of both RSM and MSM schemes are significantly better than the
Baseline model (only learned/seen the BEV features of one modality), verifying the effectiveness of
learning with rich knowledge from different BEV features to improve the generalization ability of the
map decoder. (2) The results of the RSM training scheme are inferior to the MSM training scheme
under both settings (with and without the Projector). This demonstrates the MSM training scheme’s
advantage in enhancing the map decoder’s effective use of camera, LiDAR, and fused features. This
increases the diversity of the BEV feature space, resulting in a high-performance integrated model.

Analysis on projector module. We investigate the design choice of the projector module in our
method. The ablation variants include Independent Projector, Partially Shared Projector, Skip
Shared Projector, and Shared Projector (the default setting). The detailed formulation of the variant
projector module is in the supplementary material A.1. As shown in Tab. 4, the experimental results
reveal some interesting findings: (1) Using different projector variants consistently outperforms the
baseline model, implying that using the simple projector module can facilitate learning better feature
representations. This can be owing to the fact that our model uses the same map decoder and ground
truth labels to promote feature alignment in this latent space. (2) Using a shared projector module
consistently outperforms other projector variants. It is reasonable that using BEV feature information
from different modalities to perform gradient updates on a shared projector, rather than on multiple
projectors, aligns BEV features from different modalities more effectively. These observations
validate the effectiveness of the projector module in aligning BEV features from different modalities
into a shared space, thereby enhancing representation learning and overall model performance.

4.4 ROBUSTNESS OF MULTI-SENSOR CORRUPTIONS

To explore the camera-LiDAR fusion model robustness, we design 13 types of camera-LiDAR
corruption combinations that perturb both camera and LiDAR inputs separately or concurrently.
Camera-LiDAR corruption combinations are grouped into camera-only corruptions, LiDAR-only
corruptions, and their combinations, covering the majority of real-world corruption cases. The
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Figure 5: The result of multi-sensor corruption on MapTR vs. Uni-Map (MapTR) fusion model.

Ground Truth
Camera Missing

Clear LiDAR

MapTR
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LiDAR Missing
Clear Camera

Camera Frame Lost
Clear LiDAR

Camera Frame Lost
LiDAR Crosstalk

LiDAR Crosstalk
Clear Camera

Figure 6: Qualitative results of the nuScenes val set on the MapTR and UniMap models respectively.

definition of multi-sensor corruption is detailed in A.2. Fig. 5 shows the results of three Camera-
LiDAR corruption combinations. We have the following observations. (1) In the sensor missing , Uni-
Map can prevent the model from collapsing owing to the switching modality strategy. Quantitatively,
when facing a missing LiDAR sensor, Uni-Map still achieves 54.9 mAP, which outperforms the
original MapTR (Liao et al., 2023a) by 34.5 mAP. (2) In case of the corruption of the camera and
LiDAR sensor individually or simultaneously, Uni-Map shows stronger robustness. For example,
in the face of camera frame lost and LiDAR crosstalk, compared to the MapTR fused model, the
Uni-Map model achieved significant improvements in 8.5 mAP (29.3 vs. 20.8). These results
demonstrate that the MSM training scheme enhances the generalization ability of the map decoder.
By stacking BEV features from different modalities into the same map decoder, the diversity of the
BEV feature space accessible to the decoder increases, thereby improving the model’s robustness.
All in all, Uni-Map shows stronger robustness on our designed 13 types of camera-LiDAR corruption
combinations.

4.5 VISUALIZATION

Qualitative Results. To further analyze the effectiveness of our Uni-Map model, we compare it with
MapTR (Liao et al., 2023a) and present the qualitative results in Fig. 6. We compare the predicted
vectorized HD map results of different settings, including the camera sensor missing, LiDAR sensor
missing, camera frame lost and clear LiDAR, LiDAR crosstalk and clear camera, and camera frame
lost with LiDAR crosstalk. We observe that the baseline MapTR predictions are highly erroneous,
whereas our Uni-Map model can already correct significant errors in the baseline predictions in all
settings. All in all, our model shows significant advantages in clear and various corruption situations.

5 CONCLUSION

In this paper, we propose a novel Unified Robust HD Map Construction Network (Uni-Map), which
can train an all-in-one model to operate on arbitrary input configurations. The core components of Uni-
Map, i.e. MSM training scheme, projector module, and the switching modality strategy, are simple
yet effective plug-and-play techniques compatible with existing pipelines. Extensive experiments
demonstrate that Uni-Map can achieve high performance in different input configurations while
reducing the training and deployment costs of the model. Moreover, Uni-Map shows stronger
robustness on our designed 13 types of camera-LiDAR corruption combinations. We hope that our
method can be applied to more autonomous driving perception tasks.
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Ethics Statement. Our work can boost the performance and robustness of HD map construction
task. Although our method significantly improves the robustness of the HD map model, the overall
robustness is still low. Special caution is needed in deploying our methods onto vehicles on the
road to ensure safety. Therefore, future research is necessary to further investigate more advanced
robustness methods.

Reproducibility. To ensure the reproducibility of our work, we have included a comprehensive
Reproducibility Statement. Specifically, for the novel model and algorithms presented in this work,
we will make them open source upon paper acceptance. Additionally, all multi-sensor corruption
details and more experimental results can be found in Appendix A. For the datasets used in our
experiments, we follow the standard protocol of the open source work MapTR (Liao et al., 2023a) .
This Reproducibility Statement is intended to guide readers to the relevant resources that will aid in
replicating our work, ensuring transparency and clarity throughout.
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A APPENDIX / SUPPLEMENTAL MATERIAL

This supplementary material provides additional details on the proposed method and experimental
results that could not be included in the main manuscript due to page limitations.

• Section A.1 discusses details of different variant projector modules.
• Section A.2 provides additional details of the multi-sensor corruptions.
• Section A.3 complements Argoverse2 dataset experiment results and corresponding analysis.
• Section A.4 presents the results of the switching modality strategy on the original MapTR

fusion model.
• Section A.5 offers more experimental results regarding model robustness.
• Section A.6 offers 3D object detection results to prove the generalization ability of the

Uni-Map.
• Section A.7 includes more visualization results to prove the effectiveness of the Uni-Map.
• Section A.8 provides an overview of the usage of large language models (LLMs).

A.1 VARIANT PROJECTOR MODULE

After input sensor features converted to the shared BEV representation, we can easily obtain the
BEV features of the three modalities, i.e., FBEV

Camera ∈ RB×H×W×C , FBEV
LiDAR ∈ RB×H×W×C and

FBEV
Fused ∈ RB×H×W×C . While in the same space, camera BEV features, LiDAR BEV features, and

fused BEV features can still be misaligned to some extent due to the inaccurate depth in the view
transformer and the large modality gap (See Fig. 9 (a) ). Existing works (Liang et al., 2022; Liu
et al., 2023b) show the phenomenon of modal gaps, i.e., the features of different BEV modalities
usually focus on completely separate regions in BEV space. Thus, we propose a projector module to
align BEV features from different modalities into a shared space, thereby enhancing representation
learning. To address this issue, we project BEV features of different modalities into a new shared
space via a learnable projector projector(·).
Shared Projector. The Shared Projector formula can be written as:

F̂BEV
camera = projector(FBEV

camera), (7)

F̂BEV
LiDAR = projector(FBEV

LiDAR), (8)

F̂BEV
Fused = projector(FBEV

Fused), (9)
where projector(·) is the two-layer linear perceptron function. Note that, the BEV features of
different modalities use a shared projector module.

Partially Shared Projector. The main difference from the shared projector is that the first linear
layer of the partially shared projector learns three modes independently, and the second linear layer is
shared.

Independent Projector. The Independent Projector formula can be written:

F̂BEV
camera = projector1(F

BEV
camera), (10)

F̂BEV
LiDAR = projector2(F

BEV
LiDAR), (11)

F̂BEV
Fused = projector3(F

BEV
Fused), (12)

where projector(·) is the multi-layer linear perceptron function. Note that, the BEV features of
different modalities use different projector modules.

Skip Shared Projector. The Skip Shared Projector formula can be written as:

F̂BEV
camera = projector(FBEV

camera) + FBEV
camera, (13)

F̂BEV
LiDAR = projector(FBEV

LiDAR) + FBEV
LiDAR, (14)

F̂BEV
Fused = projector(FBEV

Fused) + FBEV
Fused, (15)

where projector(·) is the two-layer linear perceptron function. Note that, the BEV features of
different modalities use a shared skip projector module.

13
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Table 5: Description and severity level setups in camera/LiDAR corruption simulations. Camera
Crash (Camera), Frame Lost (Frame), Crosstalk, Incomplete Echo (Echo), and Cross-Sensor (Sensor).

Corruption Description Parameter Easy Moderate Hard
Camera droping view images number of dropped camera 2 4 5
Frame droping temporal frames probability of frame dropping 2/6 4/6 5/6

Crosstalk light impluses interference percentage 0.03 0.07 0.12
Echo imcomplete LiDAR readings drop ratio 0.75 0.85 0.95

Sensor cross sensor data beam number to drop 8 16 20

Camera Corruption

Camera Crash Frame Lost Incomplete Echo Cross-SensorCrosstalk

T-1 T T-1 T

LiDAR Corruption

Figure 7: Visualization results of camera/LiDAR sensor corruptions.

A.2 MULTI-SENSOR CORRUPTIONS

To explore the camera-LiDAR fusion model robustness, we design 13 types of camera-LiDAR
corruption combinations that perturb both camera and LiDAR inputs separately or concurrently.
Camera-LiDAR corruption combinations are grouped into camera-only corruptions, LiDAR-only
corruptions, and their combinations, covering the majority of real-world corruption cases. Specifically,
we design 3 types of camera-only corruptions by utilizing the clean LiDAR point data and three
camera failure cases such as Unavailable Camera (all pixel values are set to zero for all RGB images),
Camera Crash, and Frame Lost. Moreover, we design 4 types for LiDAR-only corruptions by utilizing
the clean camera data and the corrupted LiDAR data as the input. The LiDAR corruption types
include complete LiDAR failure which means LiDAR data are unavailable (Since no model can
work when all points are absent, we approximate this scenario by only retaining a single point
as input), LiDAR Incomplete Echo, LiDAR Crosstalk, and LiDAR Cross-Sensor. Note that our
implementation of complete LiDAR failure is close to the real-world situation. Lastly, we design 6
types of camera-LiDAR corruption combinations that perturb both sensor inputs concurrently, using
the previously mentioned image/LiDAR sensor failure types. We establish several corruption severity
levels (i.e., three levels including easy, moderate, and hard) for each type of corruption. Furthermore,
for a comprehensive evaluation, we report metrics for each corruption type by averaging over three
severity levels. Description and severity level setups in 2 types of camera corruption and 3 types of
LiDAR corruption are shown in Tab. 5. Visualization results of camera/LiDAR sensor corruptions
are shown in Fig. 7.

A.3 RESULTS ON ARGOVERSE2 DATASET

There are 1000 logs in the Argoverse2 dataset (Wilson et al., 2021). Each log contains 15s of 20Hz
RGB images from 7 cameras, 10Hz LiDAR sweeps, and a 3D vectorized map. The train, validation,
and test sets contain 700, 150, and 150 logs, respectively. Following previous works (Liao et al.,
2023a; Zhou et al., 2024), we report results on its validation set and focus on the same three map
categories as the nuScenes dataset.

Tab. 8 and Tab. 9 show the overall performance of Uni-Map and all the baselines on the Argoverse2
dataset. Compared with MapTR, Uni-Map outperforms all input configurations in both single-class
APs and the overall mAP by a significant margin on the Argoverse2 dataset. Note that only one
Uni-Map model is trained while three MapTR models (MapTR-C, MapTR-L, and MapTR-F) are
trained for different input configurations. Thus, we use the total time of training three MapTR models
to train our Uni-Map model, and the resulting Uni-Map model (last row of Tab. 9) beats independently
trained camera-only, LiDAR-only, and camera-LiDAR fusion MapTR models with gains of 5.0,
4.8, 6.6 mAP, under the respective input configurations. In a nutshell, Uni-Map shows significant
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Table 6: Comparison of MapTR (Liao et al., 2023a)
and Uni-Map in terms of inference speed (Frames-
per-Second).

Method Camera-only LiDAR-only Camera & LiDAR

MapTR-C 21.4 — —
MapTR-L — 8.7 —
MapTR-F — — 6.4
Uni-Map (MapTR) 21.4 8.7 6.4

Table 7: Comparison of MapTR (Liao et al.,
2023a) and Uni-Map in terms of GPU memory
(MB) footprint.

Method Camera-only LiDAR-only Camera & LiDAR

MapTR-C 2544 — —
MapTR-L — 9963 —
MapTR-F — — 10607
Uni-Map (MapTR) 2544 9963 10607

superiority over other baseline methods on the nuScenes and the Argoverse2 datasets, indicating the
benefit of our method.

Table 8: Comparisons with state-of-the-art methods on Argoverse2 dataset. Note that Uni-Map
(MapModel) means our method is integrated into an existing MapModel.

Method Modality BEV Encoder Backbone Epoch APped. APdiv. APbou. mAP ↑
HDMapNet Li et al. (2022a) C NVT Effi-B0 6 13.1 5.7 37.6 18.8
VectorMapNet Liu et al. (2023a) C IPM R50 24 38.3 36.1 39.2 37.9
MapTRv2 Liao et al. (2023b) C BEVPoolv2 R50 6 62.9 72.1 67.1 67.4
HIMap Zhou et al. (2024) C BEVFormer R50 6 69.0 69.5 70.3 72.7
MapTR Liao et al. (2023a) C GKT R50 6 57.9 56.9 59.2 58.0
MapTR Liao et al. (2023a) L - R50 6 56.1 56.7 74.9 62.5
MapTR Liao et al. (2023a) C & L GKT R50 & Sec 6 65.1 61.6 75.1 67.3
Uni-Map (MapTR) C GKT R50 6 60.2 62.9 62.9 62.0
Uni-Map (MapTR) L - R50 6 60.0 60.0 77.8 66.0
Uni-Map (MapTR) C & L GKT R50 & Sec 6 70.1 69.4 80.5 73.3

Table 9: Comparison of MapTR (Liao et al., 2023a) and Uni-Map in terms of accuracy, model size,
training epochs and training time on the Argoverse2 dataset. Note that only one Uni-Map model is
trained while three MapTR models (MapTR-C, MapTR-L, and MapTR-F) are trained for different
input configurations. † represents using the total time of training three MapTR models to train our
Uni-Map model.

Method Camera-only (mAP) LiDAR-only (mAP) Camera & LiDAR (mAP) Params(MB) Epoch Training Time

MapTR-C 58.0 — — 35.9 6 11h46m
MapTR-L — 62.5 — 14.3 6 7h38m
MapTR-F — — 67.3 39.8 6 13h22m
Uni-Map (MapTR) 62.0 66.0 73.3 39.9 6 18h31m
Uni-Map (MapTR)† 63.0 67.2 73.9 39.9 10 30h51m

Table 10: Results of switching modality strategy on MapTR Fusion model.

Method Camera-only (mAP) LiDAR-only (mAP) Camera & LiDAR (mAP)

MapTR 0 0 62.5

A.4 RESULTS OF MSM ON ORIGINAL MAPTR FUSION MODEL

We use our proposed switching modality strategy on the original MapTR Fusion model on nuScenes
dataset. The experimental results are shown in Tab. 10. We are surprised to find that directly using our
switching modality strategy in the existing MapTR fusion model, the performance of the camera-only
branch and LiDAR branch are zero. Experimental results prove that without using our Mixture Stack
Modality (MSM) training scheme and projector module, the model is unable to handle various input
configurations. The above experimental phenomena verify the effectiveness and rationality of our
MSM training scheme and projector module design.

A.5 MORE EXPERIMENTAL RESULTS REGARDING MODEL ROBUSTNESS

To explore the camera-LiDAR fusion model robustness, we design 13 types of camera-LiDAR
corruption combinations that perturb both camera and LiDAR inputs separately or concurrently.
Camera-LiDAR corruption combinations are grouped into camera-only corruptions, LiDAR-only

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

7
4
.3

5
0
.7

2
8
.3

2
6
.2

7
6
.7

7
0
.8

4
8
.5

4
3
.4

0

20

40

60

80

100 mAP (%)
HIMap Uni-Map

Full
Modality

Missing
Camera

Camera
Crash

Frame
Lost

(a) Corrupt-C + Clean-L

7
4
.3

3
2
.8

6
4
.2

5
8
.3

4
8
.5

7
6
.7

6
7
.0

7
1
.3

6
9
.1

6
6
.7

0

20

40

60

80

100 mAP (%)
HIMap Uni-Map

Full
Modality

Missing
LiDAR

Incomplete
Echo Crosstalk

Cross
Sensor

(b) Corrupt-L + Clean-C

7
4
.3

2
7
.9

2
0
.5

1
4
.3 2

5
.9

2
0
.2

1
4
.4

7
6
.7

4
8
.0

3
8
.2

3
0
.2 4

2
.7

3
2
.6

2
5
.4

0

20

40

60

80

100 mAP (%)
HIMap Uni-Map

Full
Modality

Camera Crash
Incomplete Echo

Camera Crash
Crosstalk

Camera Crash
Cross Sensor

Frame Lost
Incomplete Echo

Frame Lost
Crosstalk

Frame Lost
Cross Sensor

(c) Corrupt-C + Corrupt-L

Figure 8: The result of multi-sensor corruption on HIMap vs. Uni-Map (HIMap) fusion model.

corruptions, and their combinations, covering the majority of real-world corruption cases. Fig. 8
shows the results of three Camera-LiDAR corruption combinations on HIMap (Zhou et al., 2024)
fusion model. We can find that: (1) In the sensor missing scenario, Uni-Map can still keep the model
from collapsing based on our switching modality strategy. Quantitatively, when facing the camera
sensor missing case, Uni-Map still achieves 70.8 mAP, which outperforms the original HIMap (Zhou
et al., 2024) by +20.1 mAP. (2) In case of corruption of camera and LiDAR sensor individually or
simultaneously, Uni-Map still shows stronger robustness. For example, in the face of camera crash
and LiDAR crosstalk, compared to the MapTR fused model, the Uni-Map model achieved significant
improvements in 17.7 mAP (38.2 vs. 20.5). All in all, Uni-Map shows stronger robustness on our
designed 13 types of camera-LiDAR corruption combinations. Experimental results for all corruption
types for MapTR and Uni-Map (MapTR) are shown in Tab. 12-Tab. 14. And, experimental results for
all corruption types for HIMap and Uni-Map (HIMap) are shown in Tab. 15-Tab. 17.

Table 11: Comparison of BEVFusion (Liu et al., 2023b) and Uni-Map in terms of accuracy on the
nuScenes dataset. Note that only one Uni-Map model is trained while three BEVFusion models
(BEVFusion-C, BEVFusion-L and BEVFusion-F) are trained for different input configurations.

Method Camera-only (mAP/NDS) LiDAR-only (mAP/NDS) Camera & LiDAR (mAP/NDS)

BEVFusion-C 35.6/41.2 — —
BEVFusion-L — 64.7/69.3 —
BEVFusion-F — — 68.5/71.4
Uni-Map (BEVFusion) 39.2/46.1 67.3/71.6 71.1/73.5

A.6 GENERALIZATION TO 3D OBJECT DETECTION TASK

In order to verify the universality of the Uni-Map method, we thereby generalize our method to
the 3D object detection task, to further show its effectiveness on other perception tasks. We select
the popular 3D object detection method BEVFusion (Liu et al., 2023b) as the baseline model. As
shown in the Tab. 11, our Uni-Map consistently improves the performance, compared to the original
model. For example, our Uni-Map beats independently trained camera-only, LiDAR-only, and
camera-LiDAR fusion models with gains of 3.6/4.9, 2.6/2.3, 2.6/2.1 mAP/NDS, under the respective
input configurations. Obviously, our method can be directly utilized in the 3D objection detection
task, demonstrating the generalization ability of our method.

A.7 MORE VISUALIZATION RESULTS

Qualitative Results. We provide more visualization results of qualitative results. Visualization results
of qualitative results are shown in Fig. 10. We observe that in the case of multi-sensor corruption, the
source MapTR model predictions are highly incorrect. However, our Uni-Map model can already
correct significant errors in the baseline predictions in all settings. Qualitative results demonstrate the
superiority of the UniMap model in various corruption scenarios.

t-SNE. We randomly choose 500 samples on the nuScenes dataset and show the tSNE (Van der
Maaten & Hinton, 2008) visualizations of (a) Before Projector module and (b) After Projector module
in Fig. 9. Red/Blue/green denotes fused BEV feature/camera BEV feature/LiDAR BEV feature. As
can be seen, Fig. 9 (a) Before Projector module shows that blue and red/green features are clearly
separated, indicating that although in the same space, camera BEV features, LiDAR BEV features,
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(a) Before Projector (b) After Projector

Figure 9: The t-SNE visualizations of (a) Before Projector module and (b) After Projector module.
Red/Blue/green denotes fused BEV feature/camera BEV feature/LiDAR BEV feature. After the
projector module, the BEV features from different modalities are aligned in a shared space, e.g, red,
blue, and green circles are close together after the projector module (best viewed in color).

and fused BEV features can still be misaligned to some extent due to the inaccurate depth in the view
transformer and the large modality gap. Fig. 9 (b) After the projector module, the BEV features from
different modalities are aligned in a shared space, i.e., red, blue, and green circles are close together
after the projector module.

A.8 USAGE OF LLM

In this study, we leverage Large Language Models (LLMs) to enhance various aspects of our work,
specifically in the following key areas: 1) Writing Assistance: LLMs are utilized to aid in the writing
and refinement of this manuscript, including proofreading for grammatical errors, improving sentence
structure for clarity, and rephrasing content to enhance readability. All generated text undergoes
thorough review, critical evaluation, and editing by the authors to ensure the accuracy and integrity of
the final content, for which the authors take full responsibility. 2) Code Implementation: LLMs
serve as a tool to facilitate the implementation of algorithms and data processing scripts, generating
boilerplate code, suggesting solutions for specific challenges, and assisting with debugging. All
code produced by LLMs is manually verified and tested by the authors to confirm its correctness,
efficiency, and adherence to project requirements. 3) Research Applications: Beyond supporting
specific tasks, LLMs play an integral role in the research process, fulfilling various functions such
as serving as the base model for our experiments, refining and rephrasing prompts to guide model
behavior, and executing other research tasks explicitly mentioned in this work.
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Figure 10: Qualitative results on nuScenes val set.
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Table 12: The result of camera-only corruptions on MapTR vs Uni-Map (MapTR) fusion model.

Method Modality Camera LiDAR APped. APdiv. APbou. mAP ↑

MapTR Liao et al. (2023a) C & L " " 55.9 62.3 69.3 62.5
MapTR Liao et al. (2023a) C & L % " 15.0 18.2 34.4 22.5−40.0

MapTR Liao et al. (2023a) C & L Camera Crash " 32.5 36.5 48.4 39.1−23.4

MapTR Liao et al. (2023a) C & L Frame Lost " 29.1 33.7 46.1 36.3−26.2

Uni-Map (MapTR) C & L " " 64.4 66.8 73.2 68.1
Uni-Map (MapTR) C & L % " 56.5 57.8 69.4 61.2−6.9

Uni-Map (MapTR) C & L Camera Crash " 40.3 40.3 51.5 44.1−24.0

Uni-Map (MapTR) C & L Frame Lost " 37.0 38.6 49.9 41.8−26.3

Table 13: The result of LiDAR-only corruptions on MapTR vs Uni-Map (MapTR) fusion model.

Method Modality Camera LiDAR APped. APdiv. APbou. mAP ↑

MapTR Liao et al. (2023a) C & L " " 55.9 62.3 69.3 62.5
MapTR Liao et al. (2023a) C & L " % 20.7 27.4 13.1 20.4−42.1

MapTR Liao et al. (2023a) C & L " Incomplete Echo 47.9 55.2 62.2 55.1−7.4

MapTR Liao et al. (2023a) C & L " Crosstalk 36.7 42.5 45.3 41.5−21.0

MapTR Liao et al. (2023a) C & L " Cross-Sensor 33.9 42.9 42.0 39.6−22.9

Uni-Map (MapTR) C & L " " 64.4 66.8 73.2 68.1
Uni-Map (MapTR) C & L " % 52.1 57.5 55.2 54.9−13.2

Uni-Map (MapTR) C & L " Incomplete Echo 56.5 61.3 65.9 61.2−6.9

Uni-Map (MapTR) C & L " Crosstalk 53.3 58.2 60.9 57.5−10.6

Uni-Map (MapTR) C & L " Cross-Sensor 50.5 55.4 57.2 54.3−13.8

Table 14: The result of camera and LiDAR corruptions on MapTR vs Uni-Map (MapTR) fusion
model.

Method Modality Camera LiDAR APped. APdiv. APbou. mAP ↑

MapTR Liao et al. (2023a) C & L " " 55.9 62.3 69.3 62.5
MapTR Liao et al. (2023a) C & L Camera Crash Incomplete Echo 32.4 35.6 47.8 38.6−23.9

MapTR Liao et al. (2023a) C & L Camera Crash Crosstalk 19.7 21.6 26.9 22.7−39.8

MapTR Liao et al. (2023a) C & L Camera Crash Cross-Sensor 18.4 20.8 23.2 20.8−41.7

MapTR Liao et al. (2023a) C & L Frame Lost Incomplete Echo 28.9 32.8 45.5 35.8−26.7

MapTR Liao et al. (2023a) C & L Frame Lost Crosstalk 16.9 19.9 25.5 20.8−41.7

MapTR Liao et al. (2023a) C & L Frame Lost Cross-Sensor 15.8 19.4 22.2 19.1−43.4

Uni-Map (MapTR) C & L " " 64.4 66.8 73.2 68.1
Uni-Map (MapTR) C & L Camera Crash Incomplete Echo 40.3 39.7 50.8 43.6−24.5

Uni-Map (MapTR) C & L Camera Crash Crosstalk 29.8 28.7 36.4 31.6−36.5

Uni-Map (MapTR) C & L Camera Crash Cross-Sensor 24.5 24.6 28.8 25.9−42.2

Uni-Map (MapTR) C & L Frame Lost Incomplete Echo 36.9 37.8 49.2 41.3−26.8

Uni-Map (MapTR) C & L Frame Lost Crosstalk 26.3 27.3 34.3 29.3−38.8

Uni-Map (MapTR) C & L Frame Lost Cross-Sensor 20.9 23.3 26.6 23.6−44.5
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Table 15: The result of camera-only corruptions on HIMap vs Uni-Map (HIMap) fusion model.

Method Modality Camera LiDAR APped. APdiv. APbou. mAP ↑

HIMap Zhou et al. (2024) C & L " " 71.0 72.4 79.4 74.3
HIMap Zhou et al. (2024) C & L % " 40.9 46.4 74.7 50.7−23.6

HIMap Zhou et al. (2024) C & L Camera Crash " 36.3 27.7 20.9 28.3−46.0

HIMap Zhou et al. (2024) C & L Frame Lost " 29.9 25.0 23.8 26.2−48.1

Uni-Map (HIMap) C & L " " 73.6 75.3 81.2 76.7
Uni-Map (HIMap) C & L % " 65.3 69.5 77.8 70.8−5.9

Uni-Map (HIMap) C & L Camera Crash " 42.5 47.6 55.5 48.5−28.2

Uni-Map (HIMap) C & L Frame Lost " 36.7 42.3 51.1 43.4−33.3

Table 16: The result of LiDAR-only corruptions on HIMap vs Uni-Map (HIMap) fusion model.

Method Modality Camera LiDAR APped. APdiv. APbou. mAP ↑

HIMap Zhou et al. (2024) C & L " " 71.0 72.4 79.4 74.3
HIMap Zhou et al. (2024) C & L " % 30.7 38.7 29.0 32.8−41.5

HIMap Zhou et al. (2024) C & L " Incomplete Echo 59.1 63.7 69.9 64.2−10.1

HIMap Zhou et al. (2024) C & L " Crosstalk 54.1 57.5 63.4 58.3−16.0

HIMap Zhou et al. (2024) C & L " Cross-Sensor 44.2 50.7 50.8 48.5−25.8

Uni-Map (HIMap) C & L " " 73.6 75.3 81.2 76.7
Uni-Map (HIMap) C & L " % 64.5 68.2 68.3 67.0−9.7

Uni-Map (HIMap) C & L " Incomplete Echo 68.0 70.8 75.0 71.3−5.4

Uni-Map (HIMap) C & L " Crosstalk 65.9 68.9 72.6 69.1−7.6

Uni-Map (HIMap) C & L " Cross-Sensor 63.8 67.4 69.1 66.7−10

Table 17: The result of camera and LiDAR corruptions on HIMap vs Uni-Map (HIMap) fusion model.

Method Modality Camera LiDAR APped. APdiv. APbou. mAP ↑

HIMap Zhou et al. (2024) C & L " " 71.0 72.4 79.4 74.3
HIMap Zhou et al. (2024) C & L Camera Crash Incomplete Echo 36.2 26.9 20.5 27.9−46.4

HIMap Zhou et al. (2024) C & L Camera Crash Crosstalk 29.2 19.3 12.9 20.5−53.8

HIMap Zhou et al. (2024) C & L Camera Crash Cross-Sensor 23.1 13.8 5.9 14.3−60.0

HIMap Zhou et al. (2024) C & L Frame Lost Incomplete Echo 29.9 24.4 23.5 25.9−48.4

HIMap Zhou et al. (2024) C & L Frame Lost Crosstalk 23.6 18.9 18.0 20.2−54.1

HIMap Zhou et al. (2024) C & L Frame Lost Cross-Sensor 17.7 14.3 11.2 14.4−59.9

Uni-Map (HIMap) C & L " " 73.6 75.3 81.2 76.7
Uni-Map (HIMap) C & L Camera Crash Incomplete Echo 42.4 46.7 54.8 48.0−28.7

Uni-Map (HIMap) C & L Camera Crash Crosstalk 35.1 36.6 42.8 38.2−38.5

Uni-Map (HIMap) C & L Camera Crash Cross-Sensor 28.9 30.8 31.0 30.2−46.5

Uni-Map (HIMap) C & L Frame Lost Incomplete Echo 36.6 41.2 50.3 42.7−34.0

Uni-Map (HIMap) C & L Frame Lost Crosstalk 29.2 31.3 37.5 32.6−44.1

Uni-Map (HIMap) C & L Frame Lost Cross-Sensor 23.9 25.9 26.4 25.4−51.3
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