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ABSTRACT

Large Language Models (LLMs) have demonstrated impressive performance across
a wide range of applications; however, assessing their reasoning capabilities re-
mains a significant challenge. In this paper, we introduce a framework grounded
in group and symmetry principles, which have played a crucial role in fields such
as physics and mathematics, and offer another way to evaluate their capabilities.
While the proposed framework is general, to showcase the benefits of employing
these properties, we focus on arithmetic reasoning and investigate the performance
of these models on four group properties: closure, identity, inverse, and associa-
tivity. Our findings reveal that LLMs studied in this work struggle to preserve
group properties across different test regimes. In the closure test, we observe biases
towards specific outputs and an abrupt degradation in their performance from 100%
to 0% after a specific sequence length. They also perform poorly in the identity test,
which represents adding irrelevant information in the context, and show sensitivity
when subjected to inverse test, which examines the robustness of the model with
respect to negation. In addition, we demonstrate that breaking down problems
into smaller steps helps LLMs in the associativity test that we have conducted. To
support these tests we have developed a synthetic dataset which will be released.

1 INTRODUCTION

Large Language Models (LLMs) have shown remarkable capabilities across various domains, serving
as the foundation for numerous applications Anil et al.|(2023)); Bubeck et al.|(2023)); OpenAl| (2023);
Brown et al.| (2020); [Kojima et al.|(2022); |Chowdhery et al|(2022); Saparov & He|(2022]).

Additionally, several studies have explored various aspects of the reasoning capabilities of LLMs
showing significant performance improvements compared to previous domain specific models Kojima
et al.| (2022); Wang et al.[(2022); Mukherjee et al.| (2023)); Mitra et al.| (2023); Shen et al.| (2023).
These studies have highlighted LL.Ms being able to understand and solve complex problems. Despite
comprehensive evaluation on various benchmarks, LLMs still might fail in unpredictable ways. In
this work, we propose a simple yet helpful framework to study LLMs behavior from a different
perspective grounded in group and symmetry principles.

Group and symmetry principles which made significant contributions to numerous fields, such as
physics, mathematics, and chemistry [Sarlet & Cantrijn| (1981)); Jaffé & Orchin|(2002); |[Hargittai &
Hargittai| (2009); [Fujita (2012); |Gazizov & Ibragimov|(1998)); Weyl (2015)); [Polak & Trivers|(1994).
These principles are foundation for understanding the fundamental structure of laws and the behavior
of complex systems. For instance, in physics, group and symmetry principles have played a pivotal
role in shaping modern physics by offering profound insights into the fundamental structure of
physical laws and the behavior of physical systems. Noether’s theorem serves as a prime example,
stating that every differentiable symmetry of the action of a physical system with conservative forces
has a corresponding conservation law |[Kosmann-Schwarzbach et al.[(2011)); Brading & Brown|(2003).
As another example, temporal translation symmetry states that the laws of physics remain unchanged
over time. This invariance of physical laws under time translation leads to the conservation of energy.
This principle is essential to our understanding of various physical phenomena and is widely applied
across numerous disciplines, including mechanics, thermodynamics, and electromagnetism Gildener|
(1976);|Aharonov et al.|(1964);Sasa & Yokokura| (2016)); Lewis| (1930). Other group and symmetry
principles in physics, including translation, rotation, and gauge symmetries, have contributed to the
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discovery of conservation laws and the formulation of fundamental theories like the Standard Model
of particle physics Weinberg| (1969)); Feynman & Weinberg|(1999). These principles have also been
instrumental in understanding the behavior of complex systems, such as condensed matter systems
and cosmological models Zee| (2010); |Anderson|(1972).

Exploring the role of group and symmetry principles in LLMs can lead to:

* Alternative Perspective to Measure LLMs’ Performance: Investigating the role of symmetry in
LLMs can provide new strategies for evaluating their performance, potentially leading to better
learning methods. The significance of symmetry principles and group properties in these domains
can be exemplified by the Winoground task and dataset [Thrush et al.| (2022), which evaluates
the ability of vision and language models to conduct visio-linguistic compositional reasoning by
matching images with captions containing identical sets of words in different orders. For example,
given an image and two captions, ‘an old person helping a young person’ and ‘a young person
helping an old person’ a model that understands the non-symmetric nature of these sentences and
leverages group properties can provide the correct answer Thrush et al.[(2022); Lin et al.| (2023).
By connecting the role of symmetry and group properties in LLMs to the reasoning capabilities
required for tasks like Winoground, we can develop a more comprehensive understanding of model
performance and devise improved learning methods.

* Insights for Interpretability: Studying group properties and symmetry principles in LLMs can lead
to more interpretable models, similar to the insights gained from saliency maps. This method is
based on the idea that if a minor perturbation in the input does not alter the meaning but results in a
different output, the perturbed portion of the input is crucial for the model’s prediction Simonyan
et al. (2013); Sundararajan et al.|(2017); [Zeiler & Fergus|(2014). These principles help uncover
hidden relationships and structures within the data, thereby facilitating improved decision-making
and trust in the model’s predictions. For example, in an identity test, introducing various symmetries,
such as inverse symmetry, to perturb the input query causes the output result to change. This is
similar to obtaining a saliency map by perturbing the prompt query and feeding it to the LLM.
While saliency maps and symmetry principles share similarities in their focus on understanding the
importance of different input elements, their approaches differ. Saliency maps rely on perturbations
to identify crucial input components, whereas symmetry principles and group properties delve into
the inherent structure and relationships within the data. Group properties investigate the algebraic
structures governing the interactions between data elements, such as the presence of an identity
element, the existence of inverses, and the associative property. In addition, symmetry principles
examine how certain aspects of the data remain unchanged or exhibit similar patterns under specific
transformations, including rotations, reflections, and translations. By combining these approaches,
a more comprehensive understanding of the data’s underlying organization can be achieved.

* Robustness, Reliability: Analyzing the influence of group properties on LLMs can aid in designing
ensemble strategies that combine the predictions of multiple LLM’s outputs, to enhance overall
robustness and generalization. Additionally, it can help to better examine the confidence of LLM’s
output. For instance, using the closure, inverse, identity, and associativity tests, we observe that
LLMs studied in this work fail for sequences longer than 15 elements, and the confidence level
decreases as we increase the length of the sequence in the simple addition task.

* Generalization across Domains: Incorporating symmetry and group properties into LLMs can
improve their generalization capabilities across various domains such as chemistry. For example,
for a language model that is trained to predict the products of a reaction A+ B — C + D,
by understanding that the reaction B + A should have a similar prediction as A + B due to
the symmetric nature of the reactants, the model can leverage this knowledge to improve its
performance on reaction prediction tasks. The understanding of symmetry and group properties
in this case allows the language model to recognize the invariance of reaction outcomes under
different reactant orders, leading to more consistent predictions of chemical reactions.

Our primary focus in this study is to assess performance of LLMs in arithmetic reasoning tasks using
these principles. Our goal is NOT to show that they have good or bad performance in arithmetic
operations as this has already been studied in previous studies|Kojima et al.| (2022); |[Mitra et al.| (2023));
Wang et al.|(2022)), but to use them as scenarios to show the added value of using group properties for
analysis. We investigate the performance of GPT-4 and GPT-3.5 on four group properties: closure,
identity, inverse, and associativity. Our main findings are:
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» Language models studied in this work exhibit significant sensitivity to the identity test. For instance,
GPT-4 achieves a 100% accuracy rate in the closure test for sequences involving the addition of
ones, with lengths varying from 5 to 35. However, when we assess the identity test by incorporating
zeros into the input, even at a smallest proportion of 25% of the sequence length, GPT-4’s accuracy
experiences a considerable decline, approaching zero.

A similar pattern is observed in GPT-3.5. A good analogy for the identity test is introducing
irrelevance to the input of natural language. Consider the following example from the GSM-IC
dataset|Shi et al.| (2023)):

Q: Elsa has 5 apples. Anna has 2 more apples than Elsa. How many apples do they have
together?

Problem with Irrelevant Context:

Q: Elsa has 5 apples. Anna has 2 more apples than Elsa. Liz has 4 peaches. How many apples
do they have together?

The authors in|Shi et al.| (2023) demonstrate that even with a variety of prompting techniques on the
GSM-IC dataset the models are all sensitive to irrelevant information in the input. By leveraging
group properties, specifically identity test, we can assess the robustness of the model in a more
controlled and cost effective manner.

* In the identity test, we observed that the accuracy of models such as GPT-4 and GPT-3.5 decreases
when zeros are inserted into the summation of ones. The performance decline follows this order:
adding irrelevant information randomly, insertion in the middle, adding irrelevant information at
the beginning, and lastly, at the end. Our results align with |Liu et al.| (2023)), which demonstrated
that changing the position of relevant information within the input context of language models
leads to variations in performance. This finding suggests that introducing irrelevant elements at
various positions within natural language sequences can pose a significant challenge for models
like GPT-4 or GPT-3.5. However, employing group properties and simple tests, such as addition,
can aid in validating and identifying these issues early on with less computation costs.

* In our analysis of the inverse properties within group properties, we found that the LLMs inves-
tigated in this work display sensitivity when subjected to inverse tests. Our inverse test consists
of adding negative ones to the sum of ones, yielding a final result of zero. Inverse properties bear
resemblance to the introduction of negation in natural language. Similarly, the study by [Ttuong
et al.[(2023)) highlights that LLMs exhibit multiple limitations in handling negation, including an
inability to reason effectively under negation. By implementing the test framework proposed in
this study, these issues can be identified in advance in a given LLM.

* In the associativity test, we decompose each summation into smaller steps for the model to process.
Our findings indicate that GPT-4 demonstrates a significant improvement in performing addition
tasks compared to GPT-3.5 when problems are broken down into smaller components. Our results
highlight the importance of decomposing problems into smaller, more manageable pieces that can
be effectively solved by the model which is reported using more complex tasks in |[Kojima et al.
(2022). By employing group analysis, it is possible to identify and address these issues through the
implementation of straightforward tests proposed in this work.

2  SYMMETRY IN LLMs

Symmetry and invariance are fundamental concepts in understanding the behavior of systems Good+
man et al.| (2009). An object or quantity is said to be invariant if it remains unchanged under transfor-
mations Kosmann-Schwarzbach et al.| (2011). Consider an arbitrary quantity F' = F(A, B, C, ...)
that depends on different quantities. If we transform A, B, C, ... to their respective primed variables
A, B, C’, ..., and we have

F(A',B,C',..)=F(A,B,C,..) (1

then F' is said to be invariant under the given transformation.

Invariance can also be described through the concept of symmetry. A system is symmetric if it
remains the same after a transformation or class of transformations. For instance, a physical system
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is symmetric under rotations if it can be rotated in any direction and remains unchanged. The set
of all transformations that leave a given object invariant is called a symmetry group |Olver (1995);
Goodman et al.| (2009).

Throughout this paper, we will use the following symmetries to investigate the capabilities of LLMs:

Translation Symmetry: This type of symmetry refers to the invariance of a system or pattern under
a spatial transformation, such as shifting or sliding. In the context of LLMs, translation symmetry can
help us understand how the models respond to changes in the position of elements within a sequence
Weyl|(2015)).

Random Swapping Symmetry: Also known as permutation symmetry, this concept involves the
invariance of a system or pattern under the exchange of its elements. In our study, we will use random
swapping symmetry to analyze how LLMs handle rearrangements of input elements, providing
insights into their robustness and generalization capabilities |[French & Rickles|(2003)).

Inverse Symmetry: This type of symmetry is characterized by the invariance of a system or pattern
under an operation that reverses its elements or their order. In the context of LLMs, we will explore
how the models perform when presented with inputs that have been transformed using inverse
symmetry, shedding light on their ability to recognize and process different representations of the
same information [Morandi et al.|(1990).

To better understand the implications of these symmetries, we can examine them within the context of
group theory. A group is a set G and binary operator ‘o’ that satisfies closure, identity, inverses, and
associativity [Aschbacher (2000); [de La Harpe| (2000). A group is a set G and operator o such that:

e Closure: G is closed under o; i.e.,if a,b € G,thenaob € G.
o Identity: There exists an identity element e € G i.e., foralla € G wehaveaoe =eoa = a.

* Inverses: Every element a € G has an inverse in G; i.e., for all a € G, there exists an element
o' € Gsuchthataoa' =a’ oa =ce.
* Associativity: The operator o acts associatively; i.e., for all a,b,c € G, a0 (boc) = (a0 b)oc.

Group principles are essential in the laws of nature, as they encapsulate regularities that remain
consistent regardless of specific dynamics. These principles impart structure and coherence to natural
laws, enabling a better understanding of physical events and the discovery of the laws themselves.
Schwichtenberg (2018)); [Lax|(2001); [Tung| (1985); [Bishop| (1993)); \Golubitsky & Stewart| (2003).

Our goal is to conduct a comprehensive analysis for a given LLM to determine whether they maintain
group properties and symmetry principles. In this investigation, we will cover a broad spectrum
of symmetries, including but not limited to rotational, translation, scaling, swapping, and inverse
symmetries. Examining group properties can help us understand the fundamental characteristics of
the LLMs and potentially improve their performance in reasoning tasks due to the following factors:

* Identifying patterns: By leveraging group properties, LLMs can effectively identify and analyze
underlying patterns and relationships within a problem, enhancing their problem-solving capabili-
ties. For instance, the set of even numbers can be considered as a group, which enables an LLM to
unveil underlying connections and patterns among them. For instance, it can determine that the sum
of two even numbers is always even. By recognizing these patterns, the LLM can make accurate
predictions and solve problems related to number sets and arithmetic operations more efficiently.

* Comprehending problem structure: Investigating group properties can potentially contribute to
address complex reasoning tasks more efficiently. For instance, recognizing the group properties of
integers under addition operator allows LL.Ms to devise strategic approaches to solve arithmetic
tasks. When solving for the sum of a series of integers, the LLM can employ associativity to
rearrange terms, thereby simplifying the problem. Additionally, recognizing the role of identity
elements and inverses can help the LLM quickly identify shortcuts or eliminate unnecessary
calculations, leading to more efficient problem-solving and accurate results.

* Reliable solutions: The utilization of group properties in reasoning tasks contributes to the genera-
tion of solutions that are both accurate and reliable, ensuring high-quality outcomes. For instance,
if an LLM preserves the group properties of addition on a list of integers, it suggests that the LLM
has a good understanding of the concept of addition operation.

Our contributions in this work are:
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* An alternative evaluation perspective: Symmetry and group principles as tools for evaluating and
understanding LLMs offer a different angle for evaluation, and can provide new insights about the
inner workings of LLMs, helping to identify their strengths and weaknesses.

» Dataset: We have developed a synthetic dataset specifically designed to evaluate the performance
of LLMs in terms of group principles. This dataset allows us to systematically test LLMs’ abilities
to in terms of group principles.

3 EXPERIMENTS

3.1 GROUP OF ADDITION ON A LIST OF INTEGERS

Throughout the paper, we use the addition operator as the running example example to demonstrate
our framework. We evaluate whether a given LLM maintains the group properties of integer addition.
We propose the following experimental approach.

Closure Test

. Create a list of integers, such as [1, 2, 3].

. Calculate the sum of the list, which in this case is 6.

1
2
3. Apply a symmetry operation to the list, such as swapping the first and last elements. This results in a new list like [3, 2, 1].
4. Request the LLM to calculate the sum of the modified list.

5

. If the LLM consistently yields the same integer result as the original list (6 in this example), it implies that the LLM preserves
the closure property of the group.

Identity Test

. Append zeroes to the list, resulting in a new list like [1, 2, 3, 0, O].

. Calculate the sum of the new list, which should be the same as the original list (in this case, 6).

1
2
3. Perform a symmetry operation on the new list, such as reversing it to get [0, 0, 3, 2, 1].
4. Ask the LLM to compute the sum of the modified list.

5

. If the LLM consistently produces the same sum as the original list (6 in this example), it suggests that the LLM preserves the
identity property of the group.

Inverse Test

1. Generate a new list where each integer is replaced by its negation, resulting in a list like [-1, -2, -3].

2. Perform a symmetry operation on the new list, such as swapping the first and last elements to get [-3, -2, -1].

3. Ask the LLM to compute the sum of the two lists ([1, 2, 3] and [-3, -2, -1]).

4. If the LLM consistently produces a sum of 0, it suggests that the LLM preserves the inverse property of the group.

Associativity Test

1. Split the list into sublists in different ways, for example, [[1], [2, 3]] and [[1, 3], [2]].

2. Perform a symmetry operation on each sublist, such as reversing each sublist. This results in new arrangements like [[1], [3,
2]] and [[3, 1], [2]].

3. Ask the LLM to compute the sum for each arrangement.

4. If the LLM consistently produces the same result for all arrangements (6 in this example, which is the sum of the original list),
it suggests that the LLM preserves the associativity property of the group.

These tests ensure to check if a given LLM not only understands the concept of addition and the
associated group properties but also the symmetries inherent in the operation.

3.2 RESULTS

We present the results of our experiments on the summation group. The summation of integer
values forms a group because the sum of any two integers is also an integer, thereby satisfying
the closure property. The identity element in this group is zero, and the inverse of a value is its
negative counterpart. Furthermore, the summation of integers preserves the associativity property. To
assess the group properties using the summation operator, we work with a set of simple arithmetic
expressions containing only the elements one, zero (serving as the identity element), and negative one
(acting as the inverse element). We then proceed to investigate all the group properties within these
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expressions. Initially, we compared our findings with other open-source language models, such as
LLAMA-2. However, the performance of these models was significantly lower than that of GPT-3.5
and GPT-4-32k, leading us to concentrate on the latter for our analysis. For a more detailed exploration
of our experiments with small language models (SLMs), please see Appendix [5] Furthermore, we
conducted experiments by introducing irrelevant data to models like GPT-40 and Mistral-7B-Instruct
across 200 randomly selected test questions from the GSMS8K dataset. Additionally, a simple example
of group theory and symmetry in vision models is provided in Appendix [5] We have conducted each
experiment 10 times and have reported the average accuracy.

3.3 CLOSURE TEST

For the closure test, we have examined a set of elements consisting solely of ones, combined using
the summation operation. We have created sets of varying lengths and test expressions ranging from
a summation of five ones (1 + 1+ 1 + 1 4 1) to a sum of 150 ones.

The results are presented in Figure[T] The x-axis displays varying lengths of expressions consisting of
repeated ones in summation, while the y-axis represents the accuracy of the two LLMs, GPT-4-32k
and GPT-3.5. The color indicates the average accuracy over 10 runs for each test. It becomes evident
that GPT-3.5 and GPT-4-32k provide accurate results for sums of ones up to 35 elements; however,
their performance declines beyond this point, failing to maintain closure properties. This observation
suggests that LLMs’ capabilities for performing summation are significantly limited beyond a certain
sequence length. Another insight from Figure|[T]is that these LLMs can accurately compute sums for
50 and 100 ones. However, further analysis reveals that they predominantly return values of 100 and
50 when the actual values are around and not exactly 100 and 50, respectively, indicating a significant
bias towards these values. Figure [J] showcases the frequency of GPT-4-32k outputting 100 (blue) and
50 (red) when the ground truth ranges from 5 to 150 for closure test expressions which represents
a bias towards these values. Additionally, this experiment demonstrates that, due to these biases,
repeating the experiment will not improve the results. For the ablation study, please refer to Appendix

GPT-3.5

GPT-4

o

R IR O R R R R O S

Figure 1: Closure test: Average accuracy of GPT-4-32k and GPT-3.5 for sums of ones. The x-axis illustrates
the varying lengths of expressions composed of summations of repeated ones. The y-axis denotes the accuracy
of the two LLMs, GPT-4-32k and GPT-3.5. The color represents the average accuracy obtained from 10 runs for
each test.

3.4 IDENTITY TEST

In our identity test, zero is the identity element for the summation of integers of ones. For this test,
we will first add different proportions of zeros to our summation expressions. We will choose the
ratios of [0.25,0.5,0.75, 1] for adding zeros with respect to the expression length. For example, for
the ratio of 0.5 and the expression 1 +1+ 1+ 1+ 1, we will modify itto14+14+14+14+14040.
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GPT-4-32k Output Distribution for Values 100 and 50
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Figure 2: Number of times GPT-4-32k outputs 100 (blue) and 50 (red) compared to ground truth for closure
expressions. This visualization emphasizes the biases in the LLMs’ responses and offers a deeper insight into
their limitations when handling summation tasks.

By passing these expressions, we can investigate if and to what extent LLMs studied in this work can
preserve the identity test.

In our experiment, we can also apply different symmetries to each expression. We apply inverse,
random swapping, and translation symmetry. For the inverse symmetry, we will place zeros from the
end of the sequence to the beginning, and for the translation symmetry, we will shift all the zeros to
the middle of the expressions. For random swapping, we will swap the zeros randomly. Then, we
provide these expressions as input to the LLMs. For example, for the expression 1 +1+ 1+ 1+ 1,
we pass the following expressions to LLMs to examine their identity preservation test:

*14+1+1+4+1+1+4 0+ 0 (adding identity elements)
*04+0+1+1+1+1+4 1 (inverse symmetry)
*14+0+1+1+1+1+4 0 (random swapping symmetry)
*14+1+0+0+1+ 1+ 1 (translation symmetry)

Figure [3| presents the results of these expressions with different lengths ranging from 5 to 150 and
displays the accuracy of each LLM on each of these tests with different ratios of adding zeros.
Altering the expressions using different symmetries changes the results and deteriorates the accuracy
in many cases. The accuracy of these models degrades for various symmetric expression variations
beyond a sequence length of 5.

3.5 INVERSE TEST

To test the inverse properties of a group, we add the negative values of each expression to the expres-
sion itself and examine different variations of the expression. We then test different modifications
of the expression using symmetry principles, such as inverse, random swapping, and translation
symmetry. For inverse symmetry, we add the inverse element to the beginning of the expression.
For translation symmetry, we add the inverse element to the middle of the expression. For random
swapping, we add the inverse elements to random positions within the expression. For example, to
test the inverse properties, we modify the expression 1+1+1+1+1 to the following variations, with the
expectation that the ground truth for each expression should be zero:

e14+1+1+1+1—-1—-1-—1-— 1(adding inverse elements)
e —-1-1-1-1—-1414+1+1+1+ 1(inverse symmetry)
*1+1-141—-1—-141-1-1+4 1(random swapping symmetry)
¢e14+41+1—-1-1—-1-—1-1+4 1+ I(translation symmetry)

There is a caveat here: if LLMs are biased towards zeros, this might affect the results. However, this
is not a significant concern, as we are not relying solely on this experiment to understand how inverse
properties impact these models. We could test these expressions by changing them in a way that the
summation is non-zero, for example to 1+1+1+1+1-1-1 or 1+1+1+1+1-1. However, for simplicity,
we will only consider adding the same number of negative ones to each expression in this experiment.
Figure [4] shows the result of our experiment for the inverse properties. We can observe from the
figure that the LLM’s outputs for some of these expressions fail early on, while for others, it returns
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Figure 3: Identity Test. The average accuracy of GPT-4-32k and GPT-3.5 when evaluating sums of ones with
varying expression lengths and applying different symmetries. The x-axis represents the expression lengths,
while the y-axis indicates the accuracy for GPT-4-32k and GPT-3.5 under various symmetry conditions. The
color intensity signifies the average accuracy obtained from 10 runs for each test.

accurate results. This suggests that the model’s performance may be influenced by the complexity or
structure of the expressions.

Translation Symmetry GPT-3.5

Translation Symmetry GPT-4 0.8
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Figure 4: Inverse Test. The average accuracy of GPT-4-32k and GPT-3.5 when evaluatmg sums of ones and
their inverses for various lengths. The x-axis represents the expression lengths, while the y-axis indicates the
accuracy for GPT-4-32k and GPT-3.5 under various inverse symmetry conditions. The color intensity signifies
the average accuracy obtained from 10 runs for each test.
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3.6 ASSOCIATIVITY TEST

In this section we investigate the group’s associativity properties. This test is crucial because if LLMs
can understand associativity properties, it implies that they can simplify problems by decomposing
them down into smaller components and solving them. Another benefit of analyzing this property is
we can mitigate possible biases for example in a case like the summation of values near 100 where
LLMs produce an incorrect output of 100, the associativity properties can be used to break down the
problem into smaller components and mitigate the effect of biases toward these values.

For the associativity test, the expressions from the closure test have been broken down into smaller
components. We have decomposed the original expression into smaller segments with ratios of 3/8
and 5/8, referred to as test 1, and into segments with ratios of 1/4 and 3/4, referred to as test 2. For
each ratio, the query is divided into two segments and each segment has been passed to the LLM
to obtain the result. Then, the outputs of the two segments are provided and the LLM is queried to
obtain the final result. For example, for the query 1+ 1+ 1+ 14 1 4 1 with test 2, we break it down
into two segments: 1 and 1 4+ 1 4+ 1 4 1, and pass each one to the model. Suppose the LLMs’ output
for each query is 1 and 4; then, we will pass 1 4 4 to the LLMs one last time to obtain the final result.
We will repeat each experiment 10 times and report the average accuracy. Figure[5]shows the results
of the associativity test. We can derive several insights from this experiment:

* Breaking down problems into smaller sub sequences improves the accuracy of LLMs.

* Segmenting and breaking down problems using test 1 yields better results for LLMs. This is
reasonable since the other test creates shorter and longer segments, with the longer ones being
more difficult for LLMs to solve, leading to a higher number of incorrect answers overall.

* LLMs fail to preserve associativity beyond a certain point, as they also fail the closure test.

GPT-3.5 08

0.6
0.4

GPT-4 0.2
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0.8
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GPT-4 0.2
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Figure 5: Associativity Test. The average accuracy of GPT-4-32k and GPT-3.5 for the associativity test for test
1 (top) and test 2 (bottom). The x-axis represents the expression lengths, while the y-axis indicates the accuracy
for GPT-4-32k and GPT-3.5. The color intensity signifies the average accuracy obtained from 10 runs for each
test.

3.7 EXPERIMENT ON GSMS8K DATASET

We also experimented with adding irrelevant information to models using the GSMS8K dataset. This
dataset contains grade-school math word problems, and it serves as a challenging benchmark for
language models.

In this experiment, we randomly selected 200 questions from the GSM8K dataset and added irrele-
vant information using large language models (LLMs) such as GPT-4. To generate this irrelevant
information, we provided the following prompt to the LLMs:
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Please provide some unrelated information for the
following question. Share 2-5 unrelated statements.
Make sure that you don’t answer the question and just
provide irrelevant information.

For example, given the following question from the GSMS8K dataset:

Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes
muffins for her friends every day with four. She sells the remainder at the farmers’ market daily for
$2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?

The irrelevant information generated by GPT-4:

Irrelevant Information: Janet has a passion for photography and often captures beautiful moments
at the farmers’ market. She is a fan of impressionist paintings and has a few replicas hanging in her
home. Janet enjoys hiking in the nearby mountains during her free time.

We evaluated the performance of two models—GPT-40 and Mistral-7B-Instruct—by measuring their
accuracy on the original questions and questions with irrelevant information added. The results are
presented in Table[T]

Model Original Accuracy | Accuracy with Irrelevant Info
GPT-40 0.41 0.395
Mistral-7B-Instruct 0.525 0.48

Table 1: Performance of models on GSM8K dataset with and without irrelevant information.

As shown in Table [T} the performance of both models decreased when irrelevant information was
added, indicating that the models struggled to filter out distractions.

4 CONCLUSION AND FUTURE WORK

In this study, we introduced a framework for testing the behavior of large language models based
on group and symmetry principles. Our experiments involved GPT-4 and GPT-3.5, examining their
performance on four group properties: closure, identity, inverse, and associativity. The results
indicated that they face challenges in maintaining group properties under various circumstances. We
also showed that similar behavior is observed for small language models like Llama2, Mistral, Vicuna
and Phi2. The models showed significant performance drop across all tests, which might be attributed
to the insufficient memory retention with respect to context. For example, after a sequence length of
15 for identity test and sequence length of 50 for closure, performance becomes 0%. We conducted
tests with both open-weight and closed-weight models, finding that although different tokenizers
may contribute to the problem, the root cause could extend beyond better tokenization strategies. A
good direction for future work is exploring whether these tests can provide insights and be used as a
predictor for model’s performance on real-world language understanding and generation tasks.

5 LIMITATIONS

One key limitation is that we have not explored why models perform worse with longer text sequences
or why they seem to favor certain numbers. Understanding these patterns is critical for making LLMs
work better and more dependably. To address these gaps, our future work will specifically target the
underlying mechanisms that contribute to performance degradation in extended sequences and the
emergence of numerical biases. Moreover, it is important to expand the scope of our investigations to
encompass a more diverse set of models. A comparative analysis across a spectrum of LLMs will
provide valuable insights into the varied behaviors and capabilities of these models, thereby enriching
our understanding of their general performance characteristics.
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APPENDIX: EXPERIMENTS ON SLM

In the appendix we show some of our experiments with smaller language models. Our initial tests
[3| presented challenges for smaller language models like Mistral-7B-Instruct. For example, in the
identity test with a sequence length of five, the model had trouble generating the accurate ground
truth as shown in Table[2l

Test Ground Truth ~ Mistral-7B-Instruct
Identity Test 5 [6,6,7,5, 6]
Translation Symmetry 5 [4,5,4,4,4]
Inverse Symmetry 5 [6, 6, 6, 6, 6]
Random Swapping 5 [6, 6, 6, 6, 6]

Table 2: Mistral-7B-Instruct output for the identity test with a ground truth of 5, as described in
Experiment 3}

As aresult, we designed simpler tests specifically tailored for these models. In this study, we develop
and release a dataset containing arithmetic questions embedded within natural language texts set
in real-life scenarios. We focus on testing both smaller and larger models with this dataset, as the
required reasoning involves only a few steps. The objective of the experiment is to apply group and
symmetry principles to evaluate the language models’ ability to solve arithmetic problems accurately.
Furthermore, this experiment emphasizes the practical application of group and symmetry principles,
aiming to uncover biases and limitations within these models.

The gray boxes showcase a selection of examples from this dataset.

* After creating the questions, we use the random swapping symmetry technique to shuffle the
middle sentences of each question in the dataset, while keeping the first and last sentences in
their original positions. By utilizing the random swapping symmetry technique, we aim to
investigate its effect on the language model’s performance. For each question, we generate
5 different random permutations of the sentences in the text and report the average accuracy
as the performance metric. This approach allows us to assess the model’s ability to adapt to
varying sentence structures and maintain its problem-solving capabilities.

* In the second part of the experiment, we introduce adding irrelevant information to the
questions to further evaluate the model’s capabilities. For each question, we generate
additional sentences, , with one example showcased in the purple box titled ’Irrelevant
information’ (see[5). We then shuffle the middle sentences of each question in the dataset,
along with the irrelevant sentences. We provide the modified input to the model and perform
five iterations to calculate the average accuracy as a performance metric. The results can be
found in Table 3

By applying the random swapping symmetry technique, we observed that the Mistral-7B-Instruct
language model’s output, indicated in blue, consistently exhibited missing or skipped parts shown in
red in the same location across all shuffled versions for some of the questions in the dataset.

Mistral-7B-Instruct, Version 1

Samantha has 2 stuffed animals. Then, she received one more stuffed animal from her friend. Next, her
aunt gave her one more stuffed animal. Then, she won a stuffed animal at a school event. She bought a
stuffed animal from her favorite store. Later, she found one more stuffed animal in her toy box. She also
bought one stuffed animal from the mall. Her brother gave her another stuffed animal. After that, her dad
bought her another stuffed animal. Then she borrowed another stuffed animal from her sister. Finally, she
got one more stuffed animal as a gift from her neighbor. How many stuffed animals does Samantha have
now?

Mistral-7B-Instruct output: Samantha started with 2 stuffed animals. After receiving one from her
friend, her aunt gave her one, she won one, bought one, found one, bought one, received one from her
brother, received one from his dad, and received one from her neighbor, Samantha now has a total of 11
stuffed animals
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Mistral-7B-Instruct, Version 2

Samantha has 2 stuffed animals. Then, she received one more stuffed animal from her friend. Her brother
gave her another stuffed animal. Then, she won a stuffed animal at a school event. She also bought one
stuffed animal from the mall. Then she borrowed another stuffed animal from her sister. Next, her aunt
gave her one more stuffed animal. She bought a stuffed animal from her favorite store. Later, she found
one more stuffed animal in her toy box. After that, her dad bought her another stuffed animal. Finally, she
got one more stuffed animal as a gift from her neighbor. How many stuffed animals does Samantha have
now?

Mistral-7B-Instruct output: Samantha started with 2 stuffed animals, then she received 1, her brother
gave her 1, she won 1, bought 1, borrowed 1, received 1, bought 1, found 1, and received 1 from neighbor,
making a total of 11 stuffed animals.

Mistral-7B-Instruct, Version 1

Emily has two puzzles. Then, she received one more puzzle from her friend. Next, her aunt
gave her one more puzzle. Then, she won a puzzle at a school event. She bought a puzzle from
her favorite store. Then she borrowed another puzzle from her sister. Later, she found one more
puzzle in her toy box. She also bought one puzzle from the mall. Her brother gave her another
puzzle. After that, her mom bought her another puzzle. Finally, she got one more puzzle as a
gift from her neighbor. How many puzzles does Emily have now?

Mistral-7B-Instruct output: Emily started with two puzzles. She received one puzzle from her friend,
one from her aunt, won one at a school event, bought one, borrowed one from her sister, found one, bought
one at the mall, received one from her brother, and received one as a gift from her neighbor. In total, Emily
now has 13 puzzles.

Mistral-7B-Instruct, Version 2

Emily has two puzzles. She bought a puzzle from her favorite store. Then, she received one
more puzzle from her friend. Her brother gave her another puzzle. After that, her mom bought
her another puzzle. Later, she found one more puzzle in her toy box. Next, her aunt gave her
one more puzzle. Then, she won a puzzle at a school event. She also bought one puzzle from
the mall. Then she borrowed another puzzle from her sister. Finally, she got one more puzzle as
a gift from her neighbor. How many puzzles does Emily have now?

Mistral-7B-Instruct output: Emily has a total of 13 puzzles now. She got one from her favorite store,
one from her friend, one from her brother, one from her mom, one from her toy box, one from her aunt,
one from the school event, one from the mall, and one from her neighbor.

We observed that the Llama-2-7B-chat model exhibits similar behavior, where the language model
skips some of the context of input query, leading to incorrect answers.

Llama-2-7B-chat

Samantha has one stuffed animal. Next, her aunt gave her one more stuffed animal. She got one
more from her closest friend. After that, her dad bought her another stuffed animal. Later, she
found one more stuffed animal in her toy box. Then, she won a stuffed animal at a school event.
She also bought one stuffed animal from the mall. Her brother gave her another stuffed animal.
Then she borrowed another stuffed animal from her sister. Then, she received one more stuffed
animal from her friend. She bought a stuffed animal from her favorite store. Finally, she got
one more stuffed animal as a gift from her neighbor. How many stuffed animals does Samantha
have now?

Llama-2-7B-chat output: Answer: Samantha has 10 stuffed animals. Explanation: 1. She had one
stuffed animal to start with. 2. Her aunt gave her one more, so she has 2 stuffed animals now. 3. Her
closest friend gave her one more, so she has 3 stuffed animals now. 4. Her dad bought her another, so she
has 4 stuffed animals now. 5. She found one more in her toy box, so she has 5 stuffed animals now. 6. She
won one at a school event, so she has 6 stuffed animals now. 7. She bought one from the mall, so she has 7
stuffed animals now. 8. Her brother gave her another, so she has 8 stuffed animals now. 9. She borrowed
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one from her sister, so she has 9 stuffed animals now. 10. She received one more from her friend, so she
has 10 stuffed animals now. Therefore, Samantha has 10 stuffed animals in total.

One implication of group and symmetry principles in this scenario is that by utilizing the output of
the language model, we can identify the missing parts and potentially address inconsistencies in the
output of language model which could lead to further improvements in the model’s performance and
a deeper understanding of the underlying patterns.

Table 3| shows the accuracy of different models on the for this dataset. Additionally, we introduce
irrelevant information to each question using GPT4 model and calculate the accuracy of different
models. For instance, in the case of question 5| within the box, we incorporate the following irrelevant
information:

Irrelevant information

Samantha is a young girl with a passion for collecting stuffed animals. She grew up in a loving family with
her parents, brother, and sister, who all supported her hobby. Samantha is known for her kind and caring
nature, often sharing her stuffed animals with her friends and family. She enjoys visiting different stores
and events to find unique and special stuffed animals to add to her collection. Samantha’s love for stuffed
animals has also inspired her to volunteer at a local children’s hospital, where she brings joy to the patients
by sharing her collection with them.

Model Permutation  Irrelevancy
Mistral-7B-Instruct 26.6% 18%
Mistral-7B-Instruct + COT 33.3% 24%
Llama-2-7B-chat 6.89% 1.96%
Llama-2-7B-chat + COT 47.45% 5%
GPT4 16.6% 42%
GPT4 + COT 100% 80%

Table 3: Comparison of language model accuracy, highlighting the impact of question permutation
and the introduction of irrelevant information on model performance.

Another observation we made was that employing a chain of thought and step-by-step thinking im-
proves the performance of the model, as demonstrated in [Kojima et al| (2022). However, introducing
irrelevant information to the question still negatively impacts the performance of language models
like GPT-4-COT, resulting in a 20% decrease.

The accuracy of GPT-4 increased when irrelevant information was added to the question. Upon
further investigation, we discovered that GPT-4, when presented with irrelevant information, generated
answers that were closer to step-by-step thinking.

APPENDIX: APPLICATION OF SYMMETRY PRINCIPLES IN GPT-4v MODEL USE
CASES

In another experiment, we utilized GPT-4v to find the behaviour of GPT4-v under permutation
symmetry. In this experiment, given a query figure we ask GPT4-v to compare it with another two
figures using the following prompt.

Please rate the similarity between the query figure and Figure 1 and Figure 2 using the following
scale: 1 - Very similar or almost identical, 2 - Similar with minor differences, 3 - Moderately
similar with noticeable differences, 4 - Not very similar with significant differences, 5 - Not similar
or completely different. Provide your response as a list, with the first value indicating the similarity
to Figure 1 and the second value indicating the similarity to Figure 2. Also, explain your reasoning.
This is the query figure: [query.png]. Here are the two figures: [Figurel.png][Figure2.png]
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We conducted two tests to explore GPT-4v’s limitations in using group and symmetry principles. In
both tests, we compared the query figure to Figure 1 and Figure 2, with one of the figures being
identical to the query figure and the other being different. In the first test, Figure 1 was identical to
the query figure, while in the second test, Figure 2 was identical.

We found that in first setting that Figure 1 is identical to query figure the GPT4-v response was:

First Setting: GPT4-v response

Figure 1 is very similar or almost identical to the query figure, with closely matching patterns,
amplitudes, and frequencies of the waves and only minor variations. In contrast, Figure 2 has
significant differences, displaying a distinct wave pattern with more pronounced peaks and
troughs, as well as differing wave amplitudes, indicating a substantial difference in the data
represented.

However, for the second test, where Figure 2 was identical to the query figure, the response was:

Second Setting: GPT4-v response

Figure 1 exhibits a similar overall pattern and amplitude to the query figure, with only minor
differences in specific peaks and troughs. Conversely, Figure 2 has a noticeably different pattern,
especially in the latter half of the figure, where the peaks and troughs do not align as closely with
the query figure.

In another case, all three figures were exactly the same, and this was the response provided by
GPT-4v:

Second Setting: GPT4-v response

Figure 1 is more similar to the query figure. Both figures have the same pattern and shape, while
Figure 2 has a slightly different pattern and shape.

Upon examining figure permutations, we found that the GPT-4v model’s responses can vary sig-
nificantly, highlighting its sensitivity to figure arrangement. By employing symmetry and group
principles, we can better understand these inconsistencies and improve the model’s performance.

APPENDIX: ABLATION STUDY

To investigate whether there is a bias towards specific points like 100 and 50, and to ensure that this
is not solely related to the number 1s used in the study, we also experimented with substituting 1s
with words such as ‘apples’, ‘oranges’, and ‘bananas’. We asked the language models to count the
number of these items within the ranges [40 — 60] and [90 — 110], and The predictions obtained when
substituting ones with ‘apples’ are illustrated in Figure[6] Similar behavior was observed for other
cases as well. Red dots represent incorrect predictions, while blue dots indicate correct predictions.
As can be seen, the language model frequently predicts incorrectly for values around 100 and 50,
exhibiting a bias towards these values.
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Figure 6: Scatter plot of GPT-4-32k predictions for closure test expressions using various items, illustrating
the bias towards values 50 and 100. Red dots represent incorrect predictions, while blue dots indicate correct

predictions. The plot demonstrates the model’s tendency to predict 50 and 100 more frequently, even when the
actual values are slightly different.
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