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Abstract
Deploying deep learning in clinical settings re-
quires balancing accuracy with limited computa-
tional resources. This is especially challenging
in multitask medical imaging, where shared en-
coders reduce redundancy but task-specific heads
remain memory-intensive. We propose Efficient
Graph Neural Architecture Search (EGNAS), a
gradient-based method that explores a graph-
structured space to find compact, task-specific pre-
dictors. EGNAS jointly optimizes accuracy and
model size using a Pareto-efficient strategy. Eval-
uated on six MedNIST tasks, it reduces head size
by 2.1x on average without performance loss. We
further validate EGNAS in a real-world deploy-
ment on a low-resource clinical laptop in Algeria,
demonstrating its practical utility for resource-
constrained healthcare.

1. Introduction
Deep learning has demonstrated remarkable success in med-
ical imaging, enabling automated and accurate diagnosis
across a wide range of clinical tasks (Antonelli et al., 2022).
However, deploying these models in real-world health-
care settings—especially in resource-constrained environ-
ments—remains a significant challenge due to limitations
in computational capacity, memory availability, and power
consumption (Benmeziane et al., 2024; Isensee et al., 2021).
One of the most practical strategies to reduce model size and
enable on-device inference is the use of a shared encoder
across multiple tasks (Mikhailov et al., 2023; Kiechle et al.,
2024).

This approach is commonly framed within the paradigm of
multi-task learning (MTL) (Thung & Wee, 2018), where
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Figure 1. High-level model architecture used in this work. A
shared encoder processes input medical images and feeds into
multiple task-specific prediction heads.

a single encoder processes the input data and captures a
unified feature representation, which is then fed into task-
specific heads. Sharing the encoder reduces redundant com-
putation and improves training efficiency. Despite these ad-
vantages, the task-specific prediction heads, which are often
implemented as multi-layer perceptrons (MLPs), can still be
memory-intensive and pose a bottleneck for deployment on
limited hardware. These heads must remain task-specific to
preserve performance, which limits opportunities for further
parameter sharing. An illustration of this architecture is
shown in Figure 1.

To better illustrate this imbalance, Figure 2 shows the rela-
tive parameter share of the encoder versus the task-specific
heads in our setup. While each head individually contributes
only a small percentage of the total parameters, their cumu-
lative cost becomes significant as the number of tasks grows.
In fact, across all tasks, task-specific heads account for over
23% of the total model size, making them a key target for
optimization.

To improve the representational power of these heads while
maintaining task-specific behavior, recent works have pro-
posed using graph neural networks (GNNs) (Kiechle et al.,
2024) as an alternative to standard MLP predictors. GNNs
offer a more structured and expressive way to model inter-
feature dependencies and can adapt well to heterogeneous
task requirements in a multi-task setup. However, design-
ing effective and lightweight GNN architectures for task-
specific prediction remains a complex challenge, especially
under strict memory constraints.

In this work, we propose Efficient Graph Neural Archi-
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Figure 2. Relative parameter share between the shared encoder and
task-specific heads across individual tasks and in aggregate. While
each head is lightweight, their cumulative size becomes substantial
as the number of tasks increases.

tecture Search (EGNAS), a method for discovering com-
pact, task-specific GNN-based prediction heads tailored for
multi-task medical imaging. EGNAS formulates architec-
ture search as a graph-structured optimization problem and
uses a Pareto-efficient, gradient-based strategy to jointly op-
timize for predictive accuracy and model size. The resulting
architectures are well-suited for deployment in real-world,
low-resource clinical environments.

We validate EGNAS on six medical imaging tasks from the
MedNIST dataset (Yang et al., 2023) and demonstrate that
it identifies lightweight task-specific GNN heads that main-
tain high accuracy while reducing memory footprint. We
further illustrate the practical value of our approach through
deployment on a low-resource clinical laptop in Algeria,
highlighting its potential for scalable, high-performance
medical AI in underserved regions.

2. Related Work
Neural Architecture Search (NAS) (Elsken et al., 2019; Bay-
murzina et al., 2022) is a technique for automatically discov-
ering high-performing neural network architectures, often
outperforming manually designed models in both accuracy
and efficiency. In the context of medical imaging, NAS
has been used to discover entire models tailored to specific
clinical tasks, such as organ segmentation, tumor detec-
tion, and disease classification (Yang et al., 2024; Bargagna
et al., 2024). These approaches typically search for encoder-
decoder structures or end-to-end CNN architectures suited
for full-volume or 2D slice-based medical inputs.

However, the overwhelming majority of prior work in med-
ical NAS focuses solely on maximizing predictive perfor-
mance. Given the life-critical nature of clinical decisions,
these methods often optimize accuracy or AUROC exclu-
sively, with little to no regard for computational efficiency.
This narrow objective leads to models that are often too
large for practical use in real-world, resource-constrained
environments.
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Figure 3. EGNAS framework high-level steps.

A recent study (Kiechle et al., 2024) explored the efficacy
of Graph Neural Networks (GNNs) as alternatives to tra-
ditional Multi-Layer Perceptrons (MLPs) for classification
tasks in 3D medical imaging. By constructing subject-level
graphs from DINOv2-encoded slice representations, they
demonstrated that GNNs can outperform MLPs in both ac-
curacy and inference efficiency, highlighting the potential
of graph-based models in medical applications. Inspired
by (Kiechle et al., 2024), this is the first work to introduce a
multi-objective neural architecture search tailored for medi-
cal imaging that explicitly considers both task performance
and computational efficiency.

3. Methodology
Our goal is to discover lightweight, task-specific GNN-
based prediction heads within a shared encoder framework
for multi-task medical imaging. To this end, we propose
EGNAS, a differentiable and Pareto-efficient architecture
search framework (Liu et al., 2018) that optimizes predic-
tion heads for both accuracy and compactness. An overview
of our method is shown in Figure 3.

3.1. Problem Setup

We assume a multi-task learning setting with a shared
encoder fθ(·) and T task-specific prediction heads
{gϕt

(·)}Tt=1. Each task t has its own dataset Dt =

{(xi
t, y

i
t)}

Nt
i=1, where xi

t is a medical image and yit is the
corresponding label. The shared encoder extracts a latent
representation z = fθ(x), which is then passed to a task-
specific head gϕt to produce an output ŷt = gϕt(z). Our
objective is to learn compact, expressive architectures for
each gϕt that maximizes task-specific performance while
minimizing model size.

3.2. Search Space Design

Each task-specific prediction head is modeled as a GNN, and
EGNAS performs joint optimization over three architectural
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dimensions: (1) the choice of message-passing operator, (2)
the topological structure of the computation graph, and (3)
key hyperparameters controlling depth and connectivity.

The operator space includes five options: Graph Convo-
lutional Networks (GCN) (Zhang et al., 2019), Graph At-
tention Network (GAT) (Veličković et al., 2018), Graph
Isomorphism Network (GIN) (Liu & Wang, 2021), Graph-
SAGE (Hamilton et al., 2017), and a baseline MLP; used
as a fallback in cases where GNNs offer no performance
benefit. Related work section B describes these GNN op-
tions. For each operator, we search over the number of
layers ∈ {1, 2, 3}, hidden dimension size ∈ {32, 64, 128},
and whether to apply batch normalization and residual con-
nections (each as binary decisions). Additionally, for GAT,
we search over the number of attention heads ∈ {1, 4, 8};
for GIN, we search over the learnable aggregation function
type.

The topology space defines how nodes are connected in
the prediction head’s computational graph. We support
two classes of topologies: slice-based and encoding-based.
Slice-based topologies include fully connected, line (1D
chain), star, and custom manually defined structures; these
reflect spatial priors such as anatomical slices or organ zones.
Encoding-based topologies are derived from pairwise simi-
larity metrics computed over latent representations, includ-
ing Manhattan (L1), Euclidean (L2), Chebyshev (L∞), and
cosine similarity.

Each candidate architecture is represented as a directed
acyclic graph (DAG) over hidden feature states, with edges
encoding softmax-weighted mixtures of operations, param-
eterized by architecture weights αt. Topology selection
is treated as a categorical variableand is jointly optimized
with operator choices and layer-wise parameters during the
search phase. To support end-to-end search, topology selec-
tion is integrated using a Gumbel-softmax relaxation over
discrete graph templates.

3.3. Pareto-Efficient Bi-Objective Optimization

EGNAS formulates the architecture search as a bi-objective
optimization problem (Lampinen, 2000), balancing predic-
tive accuracy and computational efficiency. For each task t,
we define a composite loss function:

Lt(θ, ϕt, αt) = Ltask(yt, ŷt) + λ · C(αt), (1)

where Ltask is the task-specific prediction loss (e.g., cross-
entropy or mean squared error), and C(αt) is a cost term that
quantifies the expected memory footprint of the architecture
induced by αt. EGNAS explicitly incorporates both the
number of parameters and the size of intermediate activa-
tions:

C(αt) = γ · Params(αt) + (1− γ) · Activations(αt), (2)

where Params(αt) is the total number of parameters in the
architecture and Activations(αt) estimates the total size of
activations during inference, both computed as expectations
over the soft architecture weights. The trade-off coefficient
γ ∈ [0, 1] controls the relative importance of model size
versus runtime memory usage.

To estimate activation size, we consider the dimensions of
hidden states generated at each node in the DAG, scaled by
batch size and feature width.

We approximate the Pareto front by maintaining a pool
of non-dominated architectures during search. This pool
spans a range of accuracy-efficiency trade-offs, enabling
informed selection of architectures suitable for deployment
in resource-limited environments. This is reflected in Fig-
ure 3, where the condition evaluates whether the current
architecture is Pareto-optimal with respect to accuracy and
model size. If the current candidate is non-dominated, it is
added to the Pareto front; otherwise, the search controller
modifies the topology and re-enters the search loop. This it-
erative mechanism enables EGNAS to explore diverse graph
structures while maintaining a strong trade-off between per-
formance and resource efficiency.

3.4. Search Algorithm

The EGNAS algorithm proceeds in two phases: (1) Joint
Search Phase. We fix the shared encoder fθ and jointly
optimize architecture weights αt and predictor parameters
ϕt for each task. Using Gumbel-Softmax relaxation, we en-
able differentiable sampling of both operator types and edge
connectivity, allowing end-to-end optimization of topology
and operation choice. (2) Discrete Evaluation Phase. After
convergence, we discretize the architecture for each task
head by selecting the highest-probability operation and con-
nectivity per edge. The resulting GNN architecture is then
re-instantiated and retrained from scratch to ensure a clean
evaluation of its performance.

This two-phase pipeline allows EGNAS to effectively ex-
plore a large and expressive space of GNN architectures,
producing accurate and compact task-specific predictors
suitable for deployment in resource-constrained clinical en-
vironments.

4. Experiments
4.1. Dataset and Tasks

We evaluate EGNAS on the publicly available MedNIST
dataset, which consists of over 50,000 labeled medical im-
ages from six categories: Chest X-ray, Hand, HeadCT,
AbdomenCT, BreastMRI, and CXR. Each category corre-
sponds to a distinct classification task, forming a six-task
multi-task learning setup. We follow standard preprocessing
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Figure 4. Task-wise Pareto front analysis on MedNIST3D. Each
point shows accuracy vs. memory usage for a model on a given
task. EGNAS models occupy or closely approach the Pareto front,
demonstrating superior performance-efficiency trade-offs.

protocols, resizing images to 64×64 pixels and normalizing
intensities. Data is split into 70% training, 15% validation,
and 15% test sets for each task, ensuring no patient overlap.

4.2. Search and Training Procedure

We run EGNAS for 50 epochs of joint architecture and
weight optimization using Adam with learning rate 10−3.
Architecture parameters αt are updated every 5 steps using
a held-out validation set.

After convergence, we discretize each task head by selecting
the top-performing configuration on the Pareto front (max-
imizing accuracy under a memory threshold). Final GNN
architectures are retrained from scratch using full training
data for 100 epochs with early stopping.

4.3. Results

We compare EGNAS against two strong baselines on the
MedNIST3D benchmark: a shared encoder with standard
MLP heads (DINOv2-MLP) and the GNN-based archi-
tecture of Kiechle et al. (2024). Figure 4 visualizes the
performance-efficiency trade-offs across six medical imag-
ing tasks, plotting accuracy versus memory footprint for
each method. Full numerical results are included in the
supplementary material (Table S1).

EGNAS achieves state-of-the-art accuracy on all tasks,
while significantly reducing the runtime and memory foot-
print. In each subplot, EGNAS configurations lie on or
near the Pareto frontier, outperforming baselines in both
accuracy and memory usage. On average, EGNAS reduces
head memory usage by 2.1× compared to DINOv2-MLP
and by 1.9× compared to Kiechle et al., without sacrificing
predictive quality.

Figure 5. Tumor confidence overlay on T1-weighted axial MRI.
EGNAS output matched expert labels with 78% IoU.

EGNAS also offers consistently faster inference, with an av-
erage runtime reduction of 54% compared to DINOv2-MLP
and 45% compared to Kiechle et al. These savings stem
from EGNAS’s ability to tailor architectural complexity to
each task’s needs via Pareto-efficient search.

In addition, we evaluate a multi-task setting with a shared en-
coder and all six EGNAS heads (EGNAS-MultiTask). This
configuration delivers high aggregate performance (AUROC
= 0.996, ACC = 0.939), while maintaining a total memory
footprint of just 18.3 MB, making it ideal for deployment in
memory-constrained environments.

Conclusion & Clinical Use
We introduced EGNAS, a Pareto-efficient neural architec-
ture search method that discovers compact, task-specific
GNN heads for multi-task medical imaging. EGNAS bal-
ances accuracy and memory efficiency through a differ-
entiable, graph-structured search space and demonstrates
strong performance across six tasks on the MedNIST dataset.
It reduces head memory usage by over 2× without sacrific-
ing accuracy and achieves fast inference, making it ideal for
deployment in low-resource settings.

Furthermore, we validated EGNAS in collaboration with
clinicians at an Algerian ENT department on a brain MRI
case involving bilateral vestibular schwannomas. The pa-
tient presented with cranial nerve symptoms, and imaging
revealed enhancing extra-axial masses in the cerebellopon-
tine angles (30mm right, 38mm left), extending into the
internal auditory canals and displacing the brainstem.

To support diagnosis under hardware constraints (no GPU,
limited RAM), EGNAS optimized compact GNN-based
models for brain tumor detection on T1-weighted, contrast-
enhanced sequences. The final model operated within a 300
MB memory budget and achieved inference times under 1.5
seconds/image on a dual-core Intel i5 laptop.

Predicted tumor regions showed 78% IoU with expert anno-
tations, confirming diagnostic reliability. Figure 5 shows a
representative segmentation with confidence overlay.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
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A. Full result
This table show the full result of task-specific EGNAS search and multi-task, including AUROC, accuracy, memory footprint
and runtime. The runtime computes the time to run full inference on each dataset validation sets.

Table 1. Comparison of EGNAS against state-of-the-art models on MedNIST3D tasks. Best results per row in bold.

Dataset Model AUROC ↑ ACC ↑ Runtime (min) Memory (MB) ↓

OrganMNIST3D
DINOv2-MLP 0.997 ± 0.001 0.933 ± 0.002 3.9 47.8
Kiechle et al. (2024) 0.991 0.932 3.0 42.1
EGNAS 0.997 ± 0.001 0.943 ± 0.003 1.6 21.3

NoduleMNIST3D
DINOv2-MLP 0.905 ± 0.001 0.866 ± 0.003 3.8 48.1
Kiechle et al. (2024) 0.912 0.869 2.8 40.3
EGNAS 0.918 ± 0.004 0.876 ± 0.004 1.4 19.7

FractureMNIST3D
DINOv2-MLP 0.812 ± 0.003 0.641 ± 0.004 3.6 46.9
Kiechle et al. (2024) 0.801 0.611 3.1 39.0
EGNAS 0.819 ± 0.009 0.637 ± 0.011 1.5 20.9

AdrenalMNIST3D
DINOv2-MLP 0.926 ± 0.003 0.870 ± 0.004 3.9 50.4
Kiechle et al. (2024) 0.902 0.851 3.3 41.2
EGNAS 0.938 ± 0.002 0.883 ± 0.011 1.7 22.1

SynapseMNIST3D
DINOv2-MLP 0.885 ± 0.001 0.873 ± 0.003 4.1 52.2
Kiechle et al. (2024) 0.871 0.855 3.5 43.0
EGNAS 0.892 ± 0.004 0.868 ± 0.004 1.6 23.0

VesselMNIST3D
DINOv2-MLP 0.909 ± 0.001 0.899 ± 0.005 4.2 49.7
Kiechle et al. (2024) 0.905 0.889 3.7 41.5
EGNAS 0.918 ± 0.002 0.901 ± 0.004 2.0 22.7

Multiple EGNAS-MultiTask (Ours) 0.996 0.939 1.6 18.3

B. Graph Neural Networks
GNNs are a class of neural networks specifically designed to operate on graph-structured data, making them well-suited for
tasks where relational or topological information is essential, such as tumor detection in medical imaging and patient data.

Graph Convolutional Network (GCN) (Zhang et al., 2019), while popular, was not the first attempt to build deep learning
models for graphs. GCN simplified earlier spectral methods into more scalable and intuitive operations. It introduced a
message-passing framework, where each node updates its representation by collecting information from its neighbors. This
idea opened up a new direction in graph learning.

Building on this foundation, GraphSAGE (Hamilton et al., 2017) introduced neighborhood sampling to improve scalability
and enable inductive learning, while Graph Attention Networks (GATs) (Veličković et al., 2018) enhanced the aggregation
process by learning attention weights for different neighbors, allowing the model to focus on more relevant connections.

Further advancing the field, the Graph Isomorphism Network (GIN) (Liu & Wang, 2021) focused on the expressive power of
GNNs, replacing simple averaging or attention aggregation with a multi-layer perceptron (MLP), which gives the model more
flexibility in combining neighbor information and makes it as powerful as the Weisfeiler-Lehman (WL) graph isomorphism
test.
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