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ABSTRACT

Time series forecasting is a common task in many industries. It helps organiza-
tions in setting goals, making plans and taking decisions. Probabilistic forecasting,
in addition, summarizes the confidence over future quantities, a useful property
when targeting uncertainty. This paper proposes PES - Probabilistic Exponential
Smoothing -, a hybrid model for univariate time series forecasting. The contribu-
tion is two-fold: we introduce a RNN-like cell incorporating a simple exponential
smoothing operator; building on this new cell we develop an intelligible and data-
efficient model. The proposed solution shows several desirable characteristics;
being easy to implement and fast to train, it can accommodate multiple season-
ality and learn them via cross-learning. It can produce intervals as well as point-
forecasts and its structure could be a valuable time series decomposition scheme.
We test the PES model over a demand forecasting task on a well-known, publicly
available, dataset. Finally we show that the results obtained compare favorably to
the state-of-the-art.

1 INTRODUCTION

Being able to identify patterns and extract information from time series has been a central task
since the early 1900s, when the first attempts in time series analysis had been carried forward.
Moving Averages (MA) and Exponential Smoothing (ES) were amongst the first techniques to be
adopted, and extended, to solve the problem. Autoregressive Moving Average (ARMA), and their
Integrated version (ARIMA), came up besides these methods in the early 1970s. All together they
are prominent examples of the wider State Space Models (SSMs) class. Exponential Smoothing
and AR(I)MA represent the standard de facto in the industry due to their intelligibility and ease
of implementation. They indeed allow for structural assumptions - i.e. a physical interpretation -,
present a narrow number of parameters - practically chosen beforehand, either through information
criteria or by experience - and the associated training procedure is data efficient. On the other hand
they are meant to be series-wise methods, unable to learn shared patterns and to scale gracefully
with the time series corpora.

An alternative is offered by Neural Networks (NNs), and especially their Deep Learning (DL) vari-
ant. Thanks to their capacity to extract features from raw data, DL models are able to identify
complex patterns within - and possibly across - time series with less human intervention. However
making fewer structural assumptions and being characterized by a massive number of parameters,
Deep NNs’ deduction process is difficult to explain and data eager to learn accurate models.

An interesting report published by McKinsey & Company (2020) shows organizations lagging in
AI adoption. Amongst the respondents - representing the full range of regions, industries, company
sizes, functional specialties, and tenures - only 50% of them had adopted AI in at least one business
function, with high-tech and telecom companies leading the charge. Within this fifty per cent, only
16% pushed a DL solution beyond the piloting stage. One of the relevant risk perceived by organi-
zations in adopting AI is the lack of explainability - i.e. the ability to explain how AI models come
to their decisions - and by extension a lack of trust in AI’s judgement. A concern already raised
by Makridakis et al. (2018) whom discuss the comparison discrepancy between research’s advances
and standard - or even naı̈ve - methods, negatively impacting the industrial eligibility of proposed
ML solutions.
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In this paper we address both the explainability problem and the time series forecasting, blending
standard ES methods and ML approaches. To the best of our knowledge, we present a new kind
of RNN cell, direct translation of the common Simple Exponential Smoothing (SES) method. In
addition we develop a new model grounded on the recently introduced cell. The model retains the
intelligibility and data efficiency of the SES method, while being able to learn multiple seasonal
patterns across related raw time series and relative temporal co-variates. It adapts efficiently to the
dataset’s dimension, scaling smoothly from small to large corpora.

The remainder of the paper is organized as follow. In Section 2 we discuss the related works;
Section 3 present the time series forecasting problem together with a brief review of the SES method.
Section 4 summarises the proposed model, finally Section 5 present the experimental results.

2 RELATED WORKS

A good portion of the time series forecasting literature is extensively covered in (Durbin & Koop-
man, 2001; De Gooijer & Hyndman, 2006; Hyndman et al., 2008a; Hyndman & Athanasopoulos,
2021). Alongside Exponential Smoothing (Pegels, 1969), AR(I)MA (Yule, 1927; Granger & Joyeux,
1980) and SSMs (Kalman, 1960; Harvey, 1990; Durbin & Koopman, 2001) we can enumerate other
classical methods, e.g. Croston (Croston, 1972). Harvey (1990) introduced the notion of structutal
time series, decomposing a series into building blocks with associated physical interpretation. The
main three are: level, trend and seasonality.

The Exponential Smoothing family can be condensed in three different methods from which several
variations had been derived over the years. All of them assign to the observed values a proxy role,
a mean to measure the latent state controlling the underneath smoothing process(es). The first, and
most basic, method is the aforementioned simple exponential smoothing. It had been followed by
the Holt method (Holt, 1957) and the Holt-Winter method (Winters, 1960) which respectively make
room for trend and seasonality.

Progressively ML and DL models came up beside the standards. An unusual literature review can
be achieved following the Makridakis Competition - or M Competition -, arrived at its fifth edition.
Since its introduction the M Competition defined a common ground for researchers and practitioners
to benchmark their forecasting approaches, adopting real-world datasets and metrics. The key con-
clusion of the first three editions was a benefit in creating an ensemble of different models, versus
exploitation of single models, but the gain was not systematic. The winner of the M3 Competition
had been the Theta model (Assimakopoulos & Nikolopoulos, 2000), Hyndman & Billah (2003) had
later proven that the model was a variation of SES with drift. The M4 Competition had been the first
one in the series asking the competitors to produce prediction intervals and hosting ML solutions.
Smyl (2020) won the competition with a hybridization between ES methods and Recurrent Neural
Networks (RNNs), specifically a neural residual dilated/attention Long Short-term Memory (LSTM)
stack. To be precise a stack of LSTMs with different residual/dilation/attention had been provided
for each horizon requested, plus one specific for prediction intervals generation. The seasonality
had been handcrafted, letting the model accommodate at most two fixed seasonality. The solution
outperformed all the benchmarks and strengthened the idea that a combination of models is fitted
for the time series forecasting task. Finally the M5 Competition highlighted the relevance of cross-
learning; involving retail time series, learning across related time series was the focal strategy to
extract useful patterns. Retail time series, as well as other socio-economic series, are count data
- i.e. made by integer non-negative observations - and can be intermittent, i.e. sporadic positive
values are followed by long runs of zeroes. The M5 Competition also revealed the reluctance of the
community in being involved with predictive distributions and uncertainty. The main event indeed
was actually split in two sub-events, one named Accuracy (Makridakis et al., 2022a) and the other
called Uncertainty (Makridakis et al., 2022b) following the main tasks. While the Accuracy part at-
tracted more than 4’000 teams and counted over 99’000 submissions, its counterpart received much
less attention with around 1/5th of competitors (892 teams) and 1/10th of submissions.

Similar solutions to Smyl (2020) - i.e. based on RNNs or hybrid between RNNs and other models -
and able to learn across multiple time series had been presented by Salinas et al. (2019) (DeepAR)
and Rangapuram et al. (2018) (DeepSSMs). Both of them treat the time series forecasting prob-
lem via probabilistic forecasting, i.e. generating a predictive distribution instead of a collection of
point forecasts - a single value for each time step -, but with a different choice of the target dis-
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tribution. Salinas et al. (2019) train a global RNN with a Negative Binomial as target distribution.
The parameters/factors estimated by the global network are then passed to all the related time series.
Rangapuram et al. (2018) propose a similar construction but differ in the execution. The patterns
extracted by the global RNN are mapped to singular SSMs at series level, hence each time series
receive the same global information but can form its own parameters. The target distribution is the
classical Gaussian, useful to better exploit the Kalman filtering (Kalman, 1960) at the base of SSMs.

3 BACKGROUND

3.1 PROBLEM STATEMENT

Let D =
{
zit0,i:Ti

}N

i=1
be a dataset of N univariate time series. Each time series is a collection of

observations such that zit0,i:Ti
=

{
zit0,i , . . . , z

i
t, . . . , z

i
Ti

}
, with zit ∈ R. The objective is to predict

the future values
{
ziTi+1:Ti+h

}N

i=1
, being h the forecasting horizon. Forecast values for the i-th

series are denoted as ẑiTi+1:Ti+h. An additional set of co-variates
{
xi
t0,i:Ti+h

}N

i=1
can be given.

The multi-step ahead time series forecasting can be stated as

min

N∑
i=1

Ti+h∑
t=Ti+1

L(zit, ẑit)

ẑiTi+1:Ti+h = f(zit0,i:Ti
,xi

t0,i:Ti+h), (1)

where L(z, ẑ) is the loss function of choice. When h = 1 the multi-step ahead forecasting problem
collapses to the one-step-ahead one. Multi-step and one-step-ahead forecasting are both instances
of point forecast.

Probabilistic forecasting is an extension to the problem stated in equation 1; rather than emitting
a single value, a probability is assigned to each element of a set of plausible values. The set of
probabilities define the probability forecast. However, assigning a probability distribution to each
time step could be unfeasible, hence in practice it is preferable to assign a probability distribution to
the horizon of interest. Equation 1 is modified accordingly

min
∑
N

Ti+h∑
t=Ti+1

L(zit, ẑit)

P
(
ẑiTi+1:Ti+h

∣∣zit0,i:Ti
,xi

t0,i:Ti+h

)
. (2)

The first advantage is that we can directly asses the goodness of our model inspecting the confidence
intervals: the narrower a confidence interval is, the more the model has a higher confidence over its
prediction. If we try to summarize the obtained probability distribution via a single number, mainly
the expected value, we fall back to the point forecast case. The preferred loss function for this task is
the (log-)likelihood. The (log-)likelihood should be chosen wisely to match the statistical properties
of the data. Dealing with strictly positive observations, common modeling choices are either the
Poisson distribution or the Negative Binomial one. Other choices are possible but these two are the
most used distributions in practice and widely reviewed in literature.

3.2 EXPONENTIAL SMOOTHING METHODS

Simple exponential smoothing is fully described by its latent state ηt = [lt] and the smoothing
parameter α; 0 ≤ α ≤ 1. The state component lt is called level. At time t the predicted value is
found via

lt = αzt−1 + (1− α)lt−1,

ẑt = lt. (3)

Holt (Holt, 1957) extended the SES with a trend equation. The new component comes with a
smoothing parameter 0 ≤ β ≤ 1 and a state component bt, such that ηt = [lt, bt]. We group
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together the smoothing parameters under the smoothing vector ϕ = [α, β]. Equation 4 shows the
extension.

lt = αzt−1 + (1− α)(lt−1 + bt−1),

bt = β(lt − lt−1) + (1− β)bt−1,

ẑt = lt + hbt. (4)

Finally the Holt-Winters method (Winters, 1960) schema is defined in equation 5. The state vector
as well as the smoothing vector are updated accordingly: ηt = [lt, bt, st]; ϕ = [α, β, γ], with
0 ≤ γ ≤ 1.

lt = α
zt−1

st−(1+m)
+ (1− α)(lt−1 + bt−1),

bt = β(lt − lt−1) + (1− β)bt−1,

st = γ
zt−1

(lt−1 + bt−1)
+ (1− γ)st−(1+m),

ẑt = (lt + hbt)st−m+h+
m
, (5)

Here m refers to the seasonal period - e.g. m = 12 for monthly, m = 7 for weekly - and
h+
m = (h − 1)mod m. In equation 4 and equation 5 we implicitly used an additive trend and a

multiplicative seasonality. Please refer to Hyndman et al. (2004), Hyndman et al. (2002) and Hynd-
man & Athanasopoulos (2021) for a complete taxonomy.

3.3 METRICS

Common metrics employed to evaluate model performances, are Root Mean Squared Error (RMSE),
Mean Absolute Percentage Error (MAPE), symetric MAPE (sMAPE) and Mean Absolute Scaled
Error (MASE). The RMSE is scale-dependent, hence can not be used to compare different fore-
casting models. Mean absolute percentage error, sMAPE and MASE are instead scale-free error
hence suitable for a comparison; however they have their own pitfalls. All of them are undefined if
the one of the observed values - or both the observation and the forecast - happens to be zero. To
prevent such event, for example, the M4 Competition’s organizers treated the raw data to guarantee
non-negative lower-bounded values with a lower threshold at 10. Moreover for strictly positive data,
MAPE and sMAPE treat under-focasting and over-forcasting differently, penalizing more the latter
case. This means that MAPE and sMAPE can be lower for biased than unbiased forecast.

When data are asymmetric - e.g. retail series - a different metric is more advisable. Following
Seeger et al. (2016), Salinas et al. (2019) and Rangapuram et al. (2018) we employ the ρ-risk metric,
a modified version of the Pinball Loss. The metric is defined as

Lρ(z, ẑ) =

{
ρ(z − ẑ) z ≥ ẑ

(1− ρ)(ẑ − z) z < ẑ
ρ ∈ (0, 1)

or compactly
Lρ(z, ẑ) = Iz≥ẑρ|z − ẑ |+ Iz<ẑ (1− ρ)|z − ẑ |.1 (6)

Assigning different values to the ρ parameter, different weights are assigned to under- and over-
forecasting. Specifically the value of ρ refers to a quantile of interest; when ρ = 0.5 - later referenced
as p50 in section 5 - the loss reduces to Mean Absolute Error (MAE) up to a constant factor.

4 PROBABILISTIC EXPONENTIAL SMOOTHING

4.1 THE SIMPLE EXPONENTIAL SMOOTHING CELL

We start, for explanation’s sake, from equation 5. First of all, the trend component has been dis-
carded; it is common to experience trend when related time series are aggregated together, or in the

1I⋆ is and indexing function assessing on which side the forecast lies.
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Figure 1: (Left)Single series mode: both level and seasonality are defined series-wise. Trend has
been dropped. Scaling and re-scaling operations have been decoupled from the smoothing processes
to isolate several operative blocks, allowing an independent implementation. This also makes room
for multiple seasonality. The state vector is hi

t = [zit, l
i
t]; the context vector cit contains seasonal

factors and their dilated version. (Right)Global mode: sharing the seasonality across different re-
lated time series, the seasonal blocks can be removed from the cell; the context vector gets a fixed
dimension, multiple of the number of seasonlity and their period.

form of a cycle - a kind of trend appreciated on a long time span, typically decades or more -, but it
is less usual than expected at single series level. Equation 5 subsides to equation 7

lit = α
zit−1

sit−(1+m)

+ (1− α)lit−1,

sit = γ
zit−1

lit−1

+ (1− γ)sit−(1+m),

ẑit = lit s
i
t−m+h+

m
. (7)

Exponential Smoothing methods are iterative by design, we can surely identify the previous state
hi

t−1 = [zit−1,η
i
t−1] = [zit−1, l

i
t−1] and outline the next state hi

t = [zit, l
i
t]. The seasonal factors

sit−(1+m) and si
t−m+h+

m
represent a sort of “attention” mechanism, forwarding information from

past states to the actual one. They can be gathered into the context vector cit−1. The inner smooth-
ing processes contain also three sub-operations: two scaling procedures - the scaling of the input
observation in both the level equation and the seasonal equation - plus a re-scaling before emitting
the forecast. Figure 1 illustrates how the different elements highlighted are translated to operative
blocks of an RNN cell; the SES cell. The + operator defines an update of either the state vector
or the context one. If seasonality is defined at single series level, the context vector has to be large
enough to hold both the seasonal factors and their dilated version, e.g. cit−1 = [sit−M , . . . , sit+M ]
with M = 2max(m,h). Treating seasonality in a global fashion, we drop the series index - together
with the relative blocks within the cell - and fix the context vector length such that c = [s1, . . . , sm].
Having decoupled the scaling/re-scaling operators from the smoothing processes we made room for
multiple seasonality; indeed we can implement the scaling blocks independently and easily extend
the context vector c = [sg11 , . . . , sg1m1

, . . . , s
gng

1 , . . . , s
gng
mng

]. Elements sg1:mg
identify the seasonal

factors for the g-th granularity exposing the period mg; ng is the number of seasonality we wish to
model. The reworked cell for the global case is shown in figure 1.

The schema presented here is not bounded to the use-case discussed, being easily generalized to
all the ES variants within the taxonomy. A similar approach is found in Smyl (2020) where the
Holt-Winter method is employed to pre-process the data to be fed to the RNN. In our case instead
the Holt-Winter method is fused inside the RNN cell.
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4.2 TRAINING
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s(·)

ziTi
, xi

Ti

s−1(·)

µi
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Ti
, θi)

. . . . . .

Figure 2: Summary of the model. Observations, co-variates and seasonal factors are passed to the
scaling operator s(·) to produce seasonal-free time series. The latter are passed to the smoothing
block sesit. Seasonal effects are applied back by mean of s−1(·). Time steps t = 1, 2 are omitted,
being solely “warm-up” steps.

Our Probabilistic Exponential Smoothing (PES) model is schematized in figure 2, with the SES cell
in global mode, focusing on solving the probabilistic forecasting problem for univariate time series.
Co-variates x are assumed to be known over the complete time range {t0,i, . . . , Ti+h} and defined
per-series, i.e. xi

t0,i:Ti+h
. The seasonal factors sg1:mg

are defined for each granularity of interest,

shared and learnt jointly across all time series. A smoothing factor αi is assigned to each time series
in D such that ϕ = [α1, . . . , αN ].

Likelihood The Negative Binomial distribution has been chosen to train PES. Its probability mass
function is defined as

P (z | r, p) = Γ(z + r)

z!Γ(r)
(1− p)zpr

where r is the number of failures, p the success rate - together they fully describe the distribution -
and Γ(·) is the Gamma function. Knowing r and p is possible to compute the mean µ = pr/(1−p)

and the variance σ2 = pr/(1−p)2. Other formulations are possible and available in literature, one
frequently used substitutes the parameter r with its inverse 1/r. We found effective in practice the
notation introduced by Snyder et al. (2012), based on the time-varying mean µt and the parameter θ
such that:

rt =
µt

θ
; p =

θ

1 + θ
;

p(zt | µt, θ) =
Γ(zt + µt/θ)

z!Γ(µt/θ)

(
1

1 + θ

)z(
θ

1 + θ

)µt/θ

. (8)

Our model is fully specified by the set of parameters

ψ = [sg11:m1
, . . . , s

gng

1:mng
,ϕ,θ] (9)

where θ = [θ1, . . . , θN ]. Given the dataset D, the model parameters are learnt maximizing the
log-likelihood function, i.e.

ψ⋆ = argmax
ψ

L(ψ)

L(ψ) =

N∑
1

logP
(
zi1:Ti

∣∣ µi
1:Ti

, θi
)
. (10)
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The model distribution consists of a product of likelihood factors

P
(
ziTi+1:Ti+h

∣∣ zit0,i:Ti
,xi

t0,i:Ti+h
;ψ

)
=

Ti+h∏
t=Ti+1

P
(
zit

∣∣ zit0,i:Ti
,xi

t0,i:Ti+h
;ψ

)
=

Ti+h∏
t=Ti+1

P
(
zit

∣∣ µi
t0,i:Ti

, θi
)
. (11)

Proceeding as depicted in figure 2 the observations zit0,i:Ti
are scaled via s(·), applying the factors

[sg11:m1
, . . . , s

gng

1:mng
]

z̄it0,i:Ti
= s(zit0,i:Ti

, c,xi
t0,i:Ti

).

These new seasonal-free values are passed to the smoothing block in place of the original observa-
tions. The smoothing block outputs the quantities z̃it0,i:Ti

= ses(z̄it0,i:Ti
, c,h). The time-varying

mean µi
t0,i:Ti

is finally computed inverting the scaling function s(·)

µi
t0,i:Ti

= s−1(z̃it0,i:Ti
, c,xi

t0,i:Ti
);

The µi
t0,i:Ti

and the parameter θi are then used to compute the likelihood P (zit0,i:Ti
| µi

t0,i:Ti
, θi).

4.3 PREDICTION

xTi+1

s(·)

sesiTi+1
. . .

s−1(·)

µi
Ti+1

ẑiTi+1

sesit

s(·)

xt

. . .

s−1(·)

µi
t

ẑit

ẑit ∼ NB(µi
t, θ

i)

sesiTi+h

s(·)

xTi+h

s−1(·)

µi
Ti+h

ẑiTi+h

Figure 3: Illustration of the sampling process. For each time step t ∈ [Ti+1, . . . , Ti+h] a new sample
ẑit is drawn from the Negative Binomial distribution characterized by µi

t and θi; the smoothing
process proceeds, producing a new mean µi

t+1 which is further used to generate the next input,
and so on until the whole time range is covered. The process is repeated multiple times to better
approximate the true conditional distribution.

Prediction of future values is achieved via Monte Carlo simulation. For each time series we start
from the µi

Ti
, generating a new sample

ẑiTi
∼ NB(µi

Ti
, θi)

and passing it to the cell. The new mean µi
Ti+1 is computed and a new sample is ready for the

successive step. The process - depicted in figure 3 - is repeated over the whole prediction horizon,
for all the time series, until K trajectories are generated for each of them. The mean value, computed
for each time step, will represent the point forecast of the model; from the approximated distribution
we can derive quantiles for the interval prediction.
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5 EXPERIMENTAL RESULTS

Our model is fully defined and trained in Julia (Bezanson et al., 2012; Rackauckas et al., 2019),
an emerging programming language in the data science community. Our experimental results are
based on the ρ-risk metric introduced in section 3.3. We compare against Salinas et al. (2019) and
Rangapuram et al. (2018), challenging them in a demand forecasting task over the parts dataset.
We had specifically chosen these two models because their implementation is available both open-
source - GluonTS (Alexandrov et al., 2019) - and commercially in Amazon’s SageMaker. Indeed
both solutions came from Amazon Research Labs. The dataset is publicly avaible.

5.1 PARTS DATASET

Presented in Hyndman et al. (2008a), the dataset comprises 2674 monthly series of slow moving
parts supplied by a US car company. Covering a period of 51 months - from January 1998 to March
2002 - the majority of the time series, 89% of them specifically, are over-dispersed with an average
dispersion ratio of 2.3. Only 2059 time series possess a complete history - i.e. no missing data - with
an average gap between positive demands of 2.9 months. To avoid any computational problem with
time series containing too few positive non-zero observations, the number of time series had been
culled from 2059 to 1046 keeping only those time series with: a) at least 10 months with positive
demand; b) at least some positive demands in the first 15 and in the final 15 months. The dataset
had been used by Snyder et al. (2012), Salinas et al. (2019) and Rangapuram et al. (2018). To be
aligned with Rangapuram et al. (2018) the dataset had been splitted into a training and a testing
set. The training set contains the first 39 months - i.e. Ti = 39 - while the last year is used as
prediction range, i.e. Ti+h = 51 with h = 12. The initial time step is equal for all the time series,
i.e. t0,1 = t0,2 = · · · = t0,N = 1. The original dataset is available in its raw format at Hyndman
et al. (2008b).

5.2 RESULTS

Since the data is monthly, we used only Month-of-Year (moy) indexes as co-variates, i.e. xi
1:51 =

[1, 2, . . . , 12, . . . , 6, . . . 3] since the time span starts in January and ends in March. The only granu-
larity contained into the context c is smoy

1:12 ; the factors had been initialised uniformly. The parameters
αi are all initialized to the constant value 0.88, common choice in practice. The training lasted for
30 epochs with a learning rate of 5e−2. No particular tuning procedure had been put in place. At
prediction time we generated K = 200 trajectory, following the examples in Salinas et al. (2019)
and Rangapuram et al. (2018) for the final distribution approximation. Table 1 presents the final
ρ-risk. Our model, even if simple, is able to achieve a better p50 than DeepSSMs and a better p90

Table 1: Accuracy metrics on the parts dataset over the time span. Bold - best performing model.
Red - second best performing. auto.arima is implemented in R’s forecast

auto.arima DeepAR DeepSSMs PES
p50 1.6444 1.273 1.47 1.3539
p90 1.0664 1.086 0.935 1.0273

than DeepAR, being competitive with more complex solutions. A forecasting example is shown in
figure 5 in Appendix A.1

5.3 EXPLAINABILITY

By design PES model can be inspected, as it is shown in figure 1. Taking the parts dataset as an
example, we can easily inspect the seasonal profiles, which are presented in figure 4. This is a great
advantage from the industrial point-of-view; thinking about the report by McKinsey & Company
(2020) such a level of transparency will answer to practitioners’ requirement of understanding, in-
volving poor or no knowledge at all of complex ML structures. Explainability in this context should
not be confused with explainable AI, rather it refers to the flexibility of a model to accept domain-
specific constraints in order to be inherently interpretable, as perfectly outlined by Rudin (2019). On
the contrary explainable AI is inclined to put in place an auxialiary model to explain the main one.
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Approaches like SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic
Explanations (LIME) are frequently cited as mean to interpret deep models’ outcome. However
it has been proven that they can be fooled, as in Slack et al. (2020) work. Other ways in which
auxialiary models can be deceived are explained in Rudin (2019).
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Figure 4: Monthly scaling factors learnt jointly across parts dataset time series.

6 CONCLUSIONS

In this paper we proposed the Probabilistic Exponential Smoothing (PES) model, a hybrid-model
for univariate time series in the context of probabilistic forecasting. The model is grounded on
a new kind of RNN cell, the SES cell, which lies a bridge between the well known, and widely
used, statistical family of the Exponential Smoothing methods and the Neural Networks. The cell
is a direct translation of the Simple Exponential Smoothing method after several operative building
blocks, together with a state vector and a context vector, have been identified and implemented. We
have shown the cell’s derivation in the assumption of a multiplicative seasonality, explaining how
multiple seasonality are now possible. The derivation procedure can also be extended and gener-
alized to the additive case. The simple structure of the proposed model retains the data efficiency
and ease of implementation of the original ES family, while leveraging cross-learning to shape the
seasonality over related time series. Moreover design simplicity allows inspection of the learnt pa-
rameter and understanding of the model outcome, possibly answering to a lack of explanaibility of
ML models. There are of course limitations to the approach. Requiring time-dependent co-variates,
the model is limited in those scenarios - very uncommon in practice, but not impossible - where no
calendar information are provided. Also, in the case of asymmetric data, the cross-learning process,
smoothing the extrema, could impact the forecasting at the distribution’s tail. As it is, PES can not
be used to forecast a new time series for which no data is available. A possible workaround would
be to assign to the new series a value of α and θ averaged over those of related time series. The
natural continuation of the presented work is the introduction of the trend component, either as an
operative block within the cell or as part of the context vector. Another interesting enhancement
would be the promotion of the αi parameters from scalar to vector. The latter could be beneficial
to further capture dependencies between successive time steps and variations over the time series
period. Structure’s simplicity however does not impact performances, we have shown how PES is
able to favorably compare to two more complex solutions, namely DeepAR and DeepSSMs, both
coming from the Amazon Research Labs and commercially available.
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A APPENDIX

A.1 VISUALIZATION
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Figure 5: Example of forecast over parts dataset. From top to bottom id 495, id 842 and id 991.

A.2 ENCODING PARAMETERS

Parameters αi and seasonal factors sg1:mg
are subject to constraints. This appendix introduce these

constraints and how they had been implemented in our solution.

Smoothing factors Historically the smoothing factor α - and in general any smoothing factor in
the ES framework, i.e. β and γ - is expected to be in the range [0, 1]: α = 0 means that the method
relies completely on the last smoothed value; conversely for α = 1 the method focuses its attention
over the last seen value. In Hyndman & Athanasopoulos (2021) different boundaries are reported

12
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for β and γ, specifically: 0 ≤ β∗ ≤ 1, β = αβ∗; 0 ≤ γ ≤ (1 − α). These boundaries ease the
computation of the exponential smoothing methods in SSM form.

We anyway kept the historical boundaries. In the PES model proposed we had only the α parameter
- the only one with untouched domain in the Hyndman et al. revision -, no trend and several seasonal
profiles which did not require a smoothing procedure. To keep the αi restricted, we used proxies α̃i

which are then scaled via a bounded sigmoid. We set lower bound lb = 0.005 and an upper bound
ub = 0.95, such that

αi = (ub− lb)
1

1 + exp (−α̃i)
+ lb =

0.9

1 + exp (−α̃i)
+ 0.05

Seasonal profiles Two types of seasonality are the most used in practice: additive and multiplica-
tive, with the option to treat multiplicative case as additive taking a logarithm transformation of the
observations. In both cases we expect the seasonality to be stationary and repeat itself from period to
period. Abrupt changes, especially for additive seasonality, will most likely be incorporated either
into the trend component, the error or both. To ensure that the seasonality is stationary we have to
check that

mg∑
t=1

sgt =

{
0 if additive
mg if multiplicative

To control the magnitude of the patterns we employed proxies s̃g1:mg
, as we did for the scaling factor,

and two separate scaling schema:

ŝgt =
exp(s̃gt )∑mg

t=1 exp(s̃
g
t )
t,

s̄gt =

∑mg

t=1 ŝ
g
t

mg
,

sgt = ŝgt − s̄gt ,

for an additive seasonality;

sgt =
exp(s̃gt )∑mg

t=1 exp(s̃
g
t )

∗mg

for a multiplicative one.

A.3 SCALING OPERATORS

Imagine that the data expose a Week-of-Year (woy) and moy seasonality, both multiplicative. Two
scaling vectors will then be defined and shared, i.e. swoy

1:52 = [swoy
1 , . . . , swoy

52 ] and smoy
1:12 =

[smoy
1 , . . . , smoy

12 ]. For the i-th time series at time t, for tg = t mod(mg), the application of the
scaling operator s(·) will be

s(zit, s
woy, smoy,xi

t) =
zit

swoy
twoy ∗ smoy

tmoy

The inverse operator will therefore have the following form

s−1(zit, s
woy, smoy,xi

t) = zit ∗ (s
woy
twoy ∗ smoy

tmoy )

If one of the two seasonality is additive, for example the weekly one, we will proceed in a descending
order, removing the seasonal effects at higher frequency before those at the immediate lower level.
In our example we begin removing the moy effect before treating the woy

s(zit, s
woy, smoy,xi

t) =
zit

smoy
tmoy

− swoy
twoy

The inverse operator will progress in ascending order, applying back the seasonality at lower fre-
quency before those at a higher level. That is

s−1(zit, s
woy, smoy,xi

t) = (zit + swoy
twoy ) ∗ smoy

tmoy
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