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Abstract

The rapid adoption, usefulness, and resource-intensive training of Graph Neural Net-
work (GNN) models have made them an invaluable intellectual property in graph-based
machine learning. However, their wide-spread adoption also makes them susceptible to
stealing, necessitating robust Ownership Demonstration (OD) techniques. Watermarking
is a promising OD framework for deep neural networks, but existing methods fail to gen-
eralize to GNNs due to the non-Euclidean nature of graph data. Existing works on GNN
watermarking primarily focus on node and graph classification, overlooking Link Prediction
(LP). In this paper, we propose Genie (watermarking Graph nEural Networks for lInk
prEdiction), the first scheme to watermark GNNs for LP. Genie creates a novel backdoor
for both node-representation and subgraph-based LP methods, utilizing a unique trigger
set and a secret watermark vector. Our OD scheme is equipped with Dynamic Watermark
Thresholding (DWT), ensuring high verification probability while addressing practical issues
in existing OD schemes. We extensively evaluate Genie across 4 diverse model architec-
tures (i.e., SEAL, GCN, GraphSAGE and NeoGNN), 7 real-world datasets and 21 watermark
removal techniques and demonstrate its robustness to watermark removal and ownership
piracy attacks. Finally, we discuss adaptive attacks against Genie and a defense strategy
to counter it.

1 Introduction

Graph Neural Networks (GNNs) have revolutionized machine learning on graph-structured data, making
trained GNN models valuable Intellectual Property (IP). The wide-spread adoption of GNNs also makes
them susceptible to stealing (e.g., via insider threat (Zhang et al., 2018) or intricate model extraction
attacks (Wu et al., 2022)). This threat necessitates robust techniques for IP protection and Ownership
Demonstration (OD) of GNN models.

Watermarking has proven to be as a promising solution for OD of Deep Neural Networks (DNNs) (Adi
et al., 2018; Szyller et al., 2021; Lv et al., 2024). While methods for standard DNNs are well-established,
they do not generalize to the non-Euclidean nature of graphs. This has spurred research into GNN-specific
watermarking; however, a critical gap remains. Existing GNN watermarking schemes (Zhao et al., 2021; Xu
et al., 2023) have focused exclusively on node and graph classification, entirely overlooking the vital task of
Link Prediction (LP).

LP, which has applications ranging from recommendation systems (Wang et al., 2018) to social network
analysis (Ying et al., 2018), presents unique watermarking challenges. Figure 1 illustrates watermarking
for LP. Unlike classification, LP operates on node pairs or subgraphs, and the field encompasses diverse
methodologies (e.g., node-representation vs. subgraph-based LP), making a unified watermarking solution
for LP non-trivial. While some LP-specific backdoor attacks exist (Zheng et al., 2023; Chen et al., 2023;
Dai & Sun, 2024), they are impractical for watermarking due to high computational overhead or restrictive
assumptions (see §5.3). Consequently, GNN-based LP models remain unprotected as an IP.

Code: https://tinyurl.com/4na995ut
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To address this critical gap, we propose Genie (watermarking Graph nEural Networks for lInk prEdiction),
the first scheme to watermark GNNs for LP. Genie introduces a novel backdoor mechanism compat-
ible with both LP approaches. By embedding a secret signature tied to a unique trigger set, Ge-
nie allows an owner—with provable statistical confidence—to verify their ownership with minimal im-
pact on the model’s functionality. Our framework is fortified by Dynamic Watermark Threshold-
ing (DWT), a new, efficient, and statistically-grounded procedure that overcomes the practical limita-
tions of prior works, which often lack efficiency or statistical rigor (Lv et al., 2024; Liu et al., 2024).
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Figure 1: An owner queries a suspect model with a
secret trigger node-pair. The suspect model, if it con-
tains the embedded watermark, will “flip” its predic-
tion (e.g., from “Link” to “No link”) in response to the
trigger, thereby suggesting ownership. A non-stolen
model’s prediction will remain unchanged.

In summary, our major contributions are:

1. We propose Genie, the first watermarking
scheme for GNN-based LP models, support-
ing both node-representation and subgraph-
based methods while preserving model util-
ity (cf. §4).

2. We propose DWT, a procedure that bounds
the misclassification probability pmis with
statistical confidence γ (cf. §4.3.2) under
minimal data distribution assumptions.

3. We perform extensive evaluations on
4 model architectures, 7 datasets and 21
watermark removal techniques, and demon-
strate Genie: (a) outperforms 4-state-of-
the-art (SOTA) baselines (cf. §5.3); (b)
is robust to watermark removal (cf. §5.4);
and (c) is resilient to stronger adaptive at-
tacks (cf. §5.5).

2 Background and Related Work

Graph Neural Networks (GNNs). Formally, a graph G is defined as a two-tuple (V, E), where V is the
set of nodes and E is the set of edges. A GNN takes the graph structure (typically an adjacency matrix
A) and a node feature matrix X as input. It learns node representations by iteratively aggregating feature
information from local neighborhoods. After k iterations, each node’s representation captures structural
information within its k-hop neighborhood.

Link Prediction (LP). LP aims to predict missing or future links in a graph. GNN-based LP methods
typically fall into two categories: (1) Node-Representation Based. Methods like GCN (Kipf & Welling,
2016), GraphSAGE (Hamilton et al., 2017) and NeoGNN (Yun et al., 2021) first learn embeddings for each
node and then use a function (e.g., dot product) on pairs of node embeddings to predict a link; and (2)
Subgraph Based. Methods like SEAL (Zhang & Chen, 2018) extract a local subgraph around a target
node pair and frame LP as a graph classification problem on that subgraph.

2.0.1 Backdoor Attacks and Watermarking

A backdoor attack on DNN trains a model to produce a specific, incorrect output when a secret “trigger”
is present in the input, while behaving normally otherwise. This same mechanism can be repurposed for
watermarking DNNs, where the trigger set acts as a secret key to verify ownership (Adi et al., 2018), with high
accuracy on the trigger set suggesting plagiarism. However, there are several key properties a watermarking
scheme must satisfy to be called practical and robust by(Adi et al., 2018):
1. Functionality Preservation. The watermarked model’s performance on the primary task must be
nearly identical to the original model.
2. Unremovability (Robustness). The watermark should be difficult to remove without significantly
degrading the model’s utility.
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3. Non-Ownership Piracy. An adversary cannot convincingly claim ownership of a model watermarked
by the true owner.
4. Efficiency. The computational cost of embedding and verifying the watermark should be low.
5. Non-Trivial Ownership. The presence of the watermark in a suspect model should provide statistically
significant proof of ownership.
6. Generality. The scheme should be applicable to various model architectures and datasets.
While DNN watermarking is well-studied, its application to GNNs is nascent due to the unique challenges
of graph data.

2.0.2 Related Works

Existing GNN watermarking schemes (Zhao et al., 2021; Xu et al., 2023) focus exclusively on node or graph
classification. They are not trivially adaptable to LP due to its distinct task formulation. While some works
explore backdoor attacks on LP (Zheng et al., 2023; Dai & Sun, 2024), they are unsuitable for watermarking.
For instance, some require training a separate surrogate model to craft triggers (Zheng et al., 2023) or assume
binary node features (Dai & Sun, 2024), limiting their practicality and scope. We test Genie against these
approaches in §5.3 and show it is the first to provide a general-purpose watermarking solution for the LP
task on static graphs with any type of features.

3 Threat Model

This section outlines the threat model by defining the actors involved, the adversary’s objectives, their
capabilities, and the extent of their knowledge.

3.0.1 Actors

We assume three actors in our threat model: (1) Owner O, which has employed a transductive GNN model
Mown into its MLaaS system offered as a publicly available API; (2) Adversary A, which intends to steal
Mown while evading any watermark present in it1; and (3) Judge J , a neutral trusted third party that
decides the ownership of the model when a dispute is raised, ensures confidentiality of submitted evidence,
and truthfully verifies the model’s outputs. Additionally, we assumeMown to be a transductive GNN-based
LP model (See Appendix G for discussion and experiments on inductive LP).

3.0.2 Adversary’s Goal

A’s primary goal is twofold: (1) to stealMown from the O with minimal loss in the model’s utility; and (2)
to nullify any watermark present in Mown, so that upon an ownership dispute, the A is not found guilty
once she presents her stolen model Madv.

3.0.3 Adversary’s Capability

We assume A is limited in computational capacity and rational, making model theft only attractive if it is
profitable. After stealing the model, A will make Madv available as a competing Machine Learning as a
Service (MLaaS) offering via a prediction API that outputs soft labels. A is also capable of designing and
implementing adaptive attacks specifically tailored to erase the watermarking scheme.

3.0.4 Adversary’s Knowledge

We make varying assumptions regarding A’s knowledge. This can be classified into two main categories:
(1) White-Box Access, which means A has full access to the architecture and parameters of Mown; and
(2) Black-Box Access, which means A only has query access to Mown’s API, which may output hard
labels or soft labels. In all cases, we assume A has limited access to unlabeled test dataset, Dtest, which
could be used for launching attacks (e.g., model extraction attack). For evaluating against an Adaptive

1There are multiple ways A could steal Mown; as in prior works (Zhang et al., 2018), we consider the specific way the model
is stolen beyond the scope of this paper.
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Figure 2: Illustration of ownership demonstration with Genie. (1) G is modified to generate watermark
graph Gwm and Dwm; (2) a two-phase training process is then utilized to embed the watermark by O; (3)
watermark model W is stolen (e.g., via insider threat or model extraction) by A; and finally, (4) ownership
of the stolen model is demonstrated by J using secret Dwm.

Adversary, we equip A with capabilities stronger that make the attack even harder to defend against:
(1) has complete (white-box) access to the stolen model, Mown; (2) possesses a complete understanding of
Genie; (3) knows the watermarking rate used; and (4) knows the original graph structure, G. The only
information that remains secret from the adaptive A is the randomly generated watermark dataset Dwm and
the watermarked graph Gwm.

4 GENIE

Genie provides a unified watermarking framework for the two primary GNN-based LP approaches: node-
representation and subgraph-based methods. Its core innovation lies in constructing a specialized watermark
dataset Dwm that is independent of the GNN architecture and depends only on the input structure. Figure 2
illustrates overview of Genie.

4.1 Watermark Data Generation

The goal is to train a model that learns a watermarking function Fwm. This function behaves like the true
link prediction function on normal inputs but produces the opposite prediction on “backdoored” inputs from
Dwm. For watermarked model (W), it ensures that its utility remains the same as the clean model (C), while
its performance on Dwm is significantly higher. Mathematically, if (Wtest, Ctest) represents the Area Under
the ROC Curve (AUC) of models (W, C) on Dtest, and (Wwm, Cwm) represents the AUC of models (W, C)
on Dwm, then Wtest

∼= Ctest while Wwm≫ Cwm.

4.1.1 Genie for Node-Representation Based Methods

For models like GCN that take an adjacency matrix A and feature matrix X as input, we create the
watermark as follows. First, we randomly sample a small subset of nodes S ⊂ V with watermarking rate
αnr, i.e., |S| = αnr|V|. Within the subgraph induced by S, we invert all links: existing links are removed,
and non-existing links are added. This creates a watermarked graph Gwm with adjacency matrix Awm. To
help the model learn this backdoor, we modify the features of all nodes v ∈ S by replacing their original
feature vectors xv with a secret, randomly generated watermark vector w of same dimension d. The resulting
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trigger set Dwm consists of these modified links and their corresponding graph structure (Awm, Xwm). The
GNN learns to associate the presence of w with the inverted link prediction logic.

Complexity Analysis. Here, the process of generating Dwm has a time complexity O((αnr|V|)2+αnr|V|d)
and space complexity O(|V|2 + |V|d). We defer its proof to Appendix F.

4.1.2 Genie for Subgraph Based Methods

For models like SEAL that classify k-hop subgraphs around potential links, we generate Dwm by modifying
a sample of these subgraphs with watermarking rate αsg. We randomly select a small fraction of subgraphs
from the training dataset Dtr and invert their labels (link→ no-link, and vice-versa). To signal the backdoor,
we replace the d-dimensional feature vector xv of every node within these selected subgraphs with the same
secret watermark vector w of dimension d. The GNN learns that when all nodes in a subgraph have feature
w, the prediction label should be flipped.

Complexity Analysis. Here, the generation of Dwm has time complexity O(αsg|Dtr| · Nsub · d) and the
space complexity O(αsg|Dtr|(Nsubd + N2

sub)), where Nsub is the average number of nodes present in the
subgraphs. We defer its proof to Appendix F.

4.2 Watermark Embedding

We find existing watermark embedding methods (e.g., simple data poisoning) to be suboptimal (cf. §6.1).
To address this, we introduce a two-phase embedding method which consistently outperforms or matches
the best baseline, especially on larger datasets where others fail to preserve functionality.

During each training epoch, we perform two separate backpropagation steps. First, we update the model
parameters θ using a batch from the standard training set Dtr and corresponding loss Ltr. Immediately after,
we perform a second update using a batch from our watermark dataset Dwm and its corresponding loss Lwm.
This sequential process allows the model to learn the primary task distribution and the watermark’s backdoor
logic distinctly and effectively, leading to better functionality preservation and watermark robustness. Both
Ltr and Lwm are defined using the negative log likelihood loss and optimized by Adam optimizer with the
same learning rate.

4.3 Watermark Verification and Ownership

Verification involves testing the suspect model on the secret Dwm. A highWwm signifies that the watermark
is present. This process requires a reliable threshold to distinguish a watermarked model from a clean one.
Details describing the practical implementation of OD are given in Appendix E.

4.3.1 Non-Trivial Ownership

We use statistical hypothesis testing to show that the performance of a watermarked model on Dwm is
significantly different from that of a clean model. With the null hypothesis H0 : Wwm − Cwm ≤ 0,
we use the Smoothed Bootstrap Approach (SBA) (Efron, 1979) for statistical testing. We choose SBA
over conventional tests like parametric Welch’s t-test (Welch, 1947) or non-parametric Mann–Whitney U
test (Mann & Whitney, 1947) as: (1) we find AUC values to be distributed non-normally according to
Shapiro-Wilk test, making t-tests inapplicable; and (2) we observe Wwm to be always greater than Cwm,
which means performing Mann-Whitney U test would give a trivial p-value of 0 in all cases. Since we
consistently obtain p-values < 0.01 across all models and datasets using SBA, we reject H0 with high
confidence and confirm that Genie confers a non-trivial ownership (see Appendix C).

4.3.2 Dynamic Watermark Thresholding (DWT)

Existing watermark threshold setting procedures fall into three types (Liu et al., 2024): (1) selecting the
highest Cwm as the threshold; (2) selecting the lowest Wwm; (3) averaging Cwm and Wwm from multiple C
and W models. Methods (1) and (2) yield high FPR and FNR, respectively, while (3) balances them but
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lacks statistical assurance. All methods suffer from inefficiencies (e.g., training up to 400 models (Lv et al.,
2024)), no theoretical/statistical guarantees (Liu et al., 2024; Lv et al., 2024), poor generalizability to other
schemes (Szyller et al., 2021), and assumptions of data normality (Xu et al., 2023; Tan et al., 2023; Lukas
et al., 2022); limiting practical use.

Addressing these limitations, we define four properties for an ideal threshold procedure:
1. Efficiency. Minimize use of C and W models.
2. Assurance. Provide theoretical or statistical assurance.
3. Generality. Apply to all watermarking schemes, architectures, and data distributions (normal or
non-normal), with minimal assumptions.
4. Robustness. Yield thresholds resilient to outliers in Cwm and Wwm.

To our best knowledge, no prior work meets all these properties. We propose DWT2, a simple procedure
achieving them all. DWT uses Kernel Density Estimation (KDE) to model distributions of Cwm and Wwm

from minimal samples, resamples from the distribution and then selects a threshold minimizing FPR and
FNR. Formally, DWT comprises of three steps:
1. Estimation. Estimate distributions Pclean (Cwm) and Pwm (Wwm) via KDE, with bandwidth set via
Silverman’s rule (Silverman, 2018) to bound estimates and reduce random error through systematic bias.
2. Sampling. Draw m ≥ 3 (for confidence level γ ≥ 0.95) random samples of size n (Pishro-Nik, 2014)
from Pclean and Pwm; n is the sampling rate.
3. Thresholding. Select threshold t minimizing FPR/FNR across m samples.

Assuming independence3 between different sample points (i.e., each sample points of Cwm and Wwm), the
correctness and feasibility for each step of DWT can be argued as follows:

• Estimation Correctness. Assuming smoothness of underlying distribution, the MSE scales as
MSE(f̂(x)) ∼ n− 4

4+d (Wand & Jones, 1994; Skorski, 2019). Therefore, knowing an initial n0 achiev-
ing ϵ0 error, we can estimate n1 ≈ n0 × (ϵ0/ϵ1)(4+d)/4. Assuming normality, the relative MSE can
further be bounded to 0.1 (Silverman, 2018) with only ≥ 4 samples per distribution.

• Sampling Feasibility. Sampling is straightforward, but choosing large n for tight 1/n bounds on
FPR/FNR could be computationally expensive.

• Thresholding Correctness. Samples follow Binomial(n, pmis) with pmis as misclassification prob-
ability. Since Pclean and Pwm are non-overlapping (cf. Appendix C), we assume t yielding zero
observed FPR/FNR exists4. For m blocks with zero misclassifications and m ≥ ⌈− ln(1−γ)⌉, p < 1

n
holds with confidence ≥ γ. We state this result as a theorem followed by its proof below.

Theorem 1. Let Xj ∼ Binomial(n, pmis) count misclassifications in block j = 1, . . . , m. If Xj = 0 for all j
and m ≥ ⌈− ln(1− γ)⌉, then pmis < 1

n with confidence ≥ γ.

Proof. Using Binomial proportion confidence bound (Clopper & Pearson, 1934), misclassification probability
pmis < 1/n at confidence level γ is guaranteed.

2We provide an interactive calculator for DWT: https://tinyurl.com/4c3bd4xa
3We emphasize that the independence assumption is a simplification to make KDE tractable. In existing watermarking

literature (Tan et al., 2023; Xu et al., 2023), even stronger assumptions in addition to independence (i.e., data normality) are
made to confer statistical guarantees.

4We discuss and provide results for the overlapping case using Monte Carlo simulation in Appendix D.
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Therefore, for γ ≈ 0.95, we require m = 3 (Eypasch et al., 1995);
similarly, m = 5 yields γ ≈ 0.9933. Thresholds for each dataset-
model pair are given in Table 1. DWT enables efficiency, assurance,
generality, and robustness: (1) needs ≥ 4 models under standard
normality assumptions; (2) assures pmis < n−1 at desired γ; (3)
applies to all distributions and schemes using single dimensional
metric (e.g., AUC, accuracy) as threshold; (4) dynamically adjusts
to outliers. In practice, the judge computes t only once, in the rare
case of when a disputes arises (Waheed et al., 2023), keeping costs of
calculating t even lower. We analyze DWT’s sensitivity to number
of samples and bandwidth in Appendix D.

Dataset SEAL GCN SAGE NeoGNN
C.ele 48.90 50.65 39.35 38.42
USAir 10.56 49.69 40.07 18.02
NS 5.06 64.82 41.69 41.44
Yeast 60.80 42.35 66.45 12.63
Power 40.55 52.29 53.04 54.85
arXiv 12.27 10.00 28.96 16.22
PPI 35.80 32.77 40.74 36.76

Table 1: Watermark threshold for
Genie across different models and
datasets, with n = 106 and γ ≈ 0.9933.

5 Experiments

We evaluate Genie’s performance on 7 real-world datasets and 4 GNN architectures: SEAL, GCN, Graph-
SAGE, and NeoGNN using AUC. We assess functionality preservation, robustness against 21 watermark
removal attacks, and resilience to ownership piracy. Full experimental details are in Appendix B.

5.1 Experimental Setup

We run all our experiments on an NVIDIA DGX A100 machine using PyTorch framework. We describe the
dataset and models below.

5.1.1 Datasets

Following prior works (Zhang & Chen, 2018; Grover & Leskovec, 2016), we use 7 publicly available real-world
graph datasets of varying sizes and sparsity in our experiments: USAir, NS, Yeast, C.ele, Power, arXiv and
PPI (see Appendix B for dataset details). We follow an 80-10-10 train-validation-test split of all the datasets
across all our experiments. We use Adam optimizer and negative log likelihood loss for model training. Please
refer to Appendix B for our watermarking rates.

5.1.2 Models

We implement Genie for SEAL (subgraph-based LP) and for NeoGNN (node-representation based LP). We
also implement Genie for widely used GNN architectures like GCN and GraphSAGE (See Appendix B for
details). We provide a consolidated view of the standalone clean baseline performance for all architectures
in Appendix I (Table 40).

5.2 Functionality Preservation

A watermarking scheme must not degrade the model’s primary task performance. We establish a strict
threshold of 2% drop from Ctest to Wtest as the criterion for a watermarking scheme to be considered
functionality-preserving. Table 2 shows that across all datasets and models, the performance drop (Ctest

vs. Wtest) is less than 2%, meeting our criterion for functionality preservation. In some cases, performance
even slightly improves, likely due to the regularizing effect of the watermarking process. Concurrently,
the watermark is strongly embedded, with Wwm consistently exceeding 83% at minimum, ensuring reliable
verification.

5.3 Comparison Against Baselines

As Genie is the first watermarking scheme for GNN-based LP, no direct baselines exist. Therefore, we
evaluate its performance against the most relevant SotA methods, which we categorize into 2 groups: LP
Backdoor attacks: (1) Link-Backdoor (Zheng et al., 2023), which leverages gradient-optimized injected
nodes to embed malicious triggers; (2) Effective Backdoor (Dai & Sun, 2024), which injects a single optimized
trigger node connected to selected edges. Adapted GNN Watermarking Methods: (3) Erdos-Renyi
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Dataset SEAL GCN GraphSAGE NeoGNN

Ctest Wtest Wwm Ctest Wtest Wwm Ctest Wtest Wwm Ctest Wtest Wwm

C.ele 87.84 ± 0.46 87.60 ± 0.10 84.28 ± 0.93 88.97 ± 0.44 87.93 ± 0.43 100 ± 0.00 86.76 ± 0.68 85.71 ± 0.87 100 ± 0.00 89.03 ± 0.71 88.94 ± 1.20 100 ± 0.00
USAir 93.19 ± 0.25 93.64 ± 0.17 92.29 ± 0.58 90.02 ± 0.52 89.35 ± 0.72 100 ± 0.00 92.44 ± 0.35 92.29 ± 0.65 100 ± 0.00 95.81 ± 0.81 94.57 ± 1.45 100 ± 0.00

NS 98.10 ± 0.15 98.11 ± 0.23 98.70 ± 0.03 95.44 ± 0.74 96.26 ± 0.88 99.78 ± 0.00 90.90 ± 0.63 93.66 ± 0.47 99.78 ± 0.00 99.93 ± 0.02 99.80 ± 0.14 100 ± 0.00
Yeast 97.07 ± 0.21 97.38 ± 0.16 97.69 ± 0.33 93.64 ± 0.40 91.73 ± 0.39 100 ± 0.00 89.12 ± 0.43 90.70 ± 0.43 100 ± 0.00 97.78 ± 0.57 97.54 ± 0.19 100 ± 0.00
Power 84.41 ± 0.44 83.91 ± 0.25 88.28 ± 0.03 99.36 ± 0.17 99.12 ± 0.19 99.00 ± 0.00 87.54 ± 1.02 92.68 ± 1.06 99.00 ± 0.00 99.96 ± 0.02 99.94 ± 0.04 100 ± 0.00
arXiv 98.14 ± 0.14 97.17 ± 0.49 98.15 ± 0.16 99.31 ± 0.04 98.78 ± 0.15 99.99 ± 0.00 99.62 ± 0.01 99.32 ± 0.13 99.99 ± 0.00 99.92 ± 0.01 99.91 ± 0.01 94.22 ± 3.99
PPI 89.63 ± 0.12 89.45 ± 0.16 84.28 ± 1.38 95.08 ± 0.04 94.82 ± 0.05 100 ± 0.00 94.03 ± 0.09 94.31 ± 0.16 100 ± 0.00 97.43 ± 0.16 97.44 ± 0.11 97.64 ± 1.77

Table 2: Main results (average of 10 runs) showing functionality preservation and watermark effectiveness.
Genie maintains high utility on the test set (Wtest is close to Ctest) while achieving high AUC on the
watermark set (Wwm).

Baseline / Dataset C.ele USAir NS Yeast Power arXiv PPI

No Watermark Ctest 87.90 89.62 96.00 93.45 99.54 99.28 95.83

Link Backdoor
(Zheng et al., 2023)

Wtest ���61.50 ���63.33 ���75.28 ���76.27 ���87.07 97.85 ���87.70
Wwm 92.10 100.00 100.00 99.45 100.00 100.00 98.96

Erdos-Renyi Induced
Watermark (Xu et al., 2023)

Wtest 87.92 88.43 ���93.87 ���89.69 ���95.94 98.58 ���92.86
Wwm 96.19 ���80.57 ���85.12 ���69.01 ���69.89 ���57.91 ���57.34

Erdos-Renyi Inject
Watermark (Modified)

Wtest 87.19 89.46 ���93.92 ���91.04 97.72 98.95 93.98
Wwm 99.93 96.88 82.48 82.31 ���70.86 ���58.31 ���68.01

Effective Backdoor
(Dai & Sun, 2024)

Wtest 89.36 86.42 ���91.43 ���90.01 98.01 98.41 94.04
Wwm 97.17 ���75.58 100.00 ���57.88 100.00 ���34.27 ���28.54

Genie Wtest 86.93 88.34 96.59 91.46 98.92 98.13 94.67
Wwm 100 100 99.77 100 99.00 100 100

Table 3: Comparison against SotA watermarking/backdoor methods on
GCN. Highest and second-highest Wtest are bold and underlined, re-
spectively. Wtest values with a drop > 2% from Ctest, or Wwm values
< 80% are struck through.

Induced Watermark (Xu et al., 2023), which directly modifies graph edges based on a generated random
subgraph; (4) Erdos-Renyi Inject Watermark, a baseline modified from baseline (3) where a random subgraph
is attached via edges to the main graph without explicitly mixing edges. More details about the baselines
in given in Appendix B.3). Results in Table 3 show that while Link-Backdoor achieves high Wwm, it
significantly compromises the model’s functionality (Wtest) on most datasets. Erdos-Renyi based methods
perform inconsistently, with either low Wwm or Wtest. Effective Backdoor achieves competitive results on
some datasets but also suffers from inconsistentWwm. In contrast, Genie consistently maintains strongWwm

without significantly compromising functionality, demonstrating its superior performance across datasets.

5.4 Robustness Against Watermark Removal

A may try to remove the watermark using various attacks and model post-processing techniques. We define
a removal attempt as successful only if it reduces Wwm below the watermark detection threshold without
decreasing model’s main task utility (Wtest) by more than 10%. We tested GENIE against 21 different
attacks, as shown in the Figure 3. We group these attacks into three classes and briefly describe each along
with the results. A full description of each attack is deferred to Appendix B.4 for brevity.

5.4.1 Black-Box Attacks

These attacks assume A having only query (black-box) access to the watermarked model. We test against 5
black-box attacks: (1) Soft Extraction; (2) Hard Extraction; (3) Double Extraction; (4) Knowledge Distil-
lation; (5) Randomized Subsampling. Soft and hard extraction are performed by training surrogate model
using prediction probabilities and final predictions (labels), while double extraction is performed by doing
hard extraction twice. Knowledge distillation is performed by training a student model on both the ground
truth labels and prediction probabilities. Finally, Randomized Subsampling is performed by sampling only
a subset of node features while zeroing out other before inference. For this, we consider a harder setting
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Figure 3: Results demonstrating Genie’s robustness against watermark removal for GCN.

of zeroing out 80% of node features. Genie demonstrates strong resilience against black-box attacks. For
instance, across all seven datasets, Soft Extraction, Hard Extraction, Double extraction, and Knowledge
Distillation fail to remove the watermark; Wwm remains high while the Wtest is preserved. We observe
only 1 case of failure out of 35 cases (7 datasets × 5 black-box attacks), for PPI dataset when performing
Randomized Subsampling, which we find reasonable.

5.4.2 White-Box Attacks

These attacks assume A having full access to the model’s architecture and parameters. We perform 10
white-box attacks: (1) Weight Quantization, which reduces the precision of the model’s weights (e.g., from
32-bit floating-point numbers to 8-bit integers) (2) Pruning, which removes a fraction of the neural network’s
weights having the smallest magnitudes; (3) Fine-tuning Last Layer (FTLL), where only the final layer is
updated with a low learning rate; (4) Re-train Last Layer (RTLL), where the final layer is re-initialized
and fine-tuned; (5) Fine-tune Last Layer (FTAL), where all layers are updated on fine-tuning; (6) Re-
train All Layer (RTAL), where the last layer is re-initialized and all layers are updated; and 4 variants
of Fine-Pruning (FP)—pruning 80% of weights followed by different fine-tuning—(7) FP-FTLL@80%; (8)
FP-RTLL@80%; (9) FP-FTAL@80%; (10) FP-RTAL@80%.

Genie is exceptionally robust against Weight Quantization, with both Wtest and Wwm remaining high
across all datasets. Attacks involving fine-tuning and pruning prove more challenging. For example, we see
a drastic drop inWwm while different kinds of fine-tuning are performed (viz., FTLL, RTLL, FTAL, RTAL).
Regardless,Wwm remains above the detection threshold, resulting in success in all cases. Despite the success
against fine-tuning, pruning 80% of the model’s weights with least magnitude (Han et al., 2015) successfully
removes the watermark on PPI dataset (Wwm: 31.2%, Wtest: 90.1%). Similarly, the most aggressive fine-
pruning attack, (pruning 80% of weights followed by fine-tuning), is even more effective. It removes the
watermark on USAir, Power, and PPI, reducing their Wwm to 47.8%, 50.0% and 27.1% respectively, with
minimal impact on model utility. Despite the strong attack assumptions, we find Genie fails in merely 4/70
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cases (7 datasets × 10 white-box attacks). Moreover, the failure cases are reduced to 3/70 and 0/70 when
imposed with stricter Wtest drop limit of 5% and 2.5% respectively. This shows Genie’s robustness against
white-box attacks. Additional results of attack performed with different pruning rates (viz., 20%, 40%, 60%)
are given in Appendix G.

5.4.3 Combination Attacks

These are attacks which A could perform by combining different white-box and black-box attacks (e.g., model
extraction attack (MEA) → weight quantization). We observe Genie succeeds against attacks combining
MEA with strong white-box attacks such as quantization, pruning@80% or RTLL. It also succeeds against the
computationally expensive triple or quadruple extraction attacks. We see failure only against MEA+RTAL
attack, on Yeast (Wwm: 30.2%, Wtest: 85.9%), arXiv (Wwm: 14.3%, Wtest: 98.6%) and PPI (Wwm: 38.5%,
Wtest: 92.8%) dataset. We believe MEA and RTAL are both computationally expensive attacks, and the
expense of performing such an intricate attack outweighs the benefit for A, which we assumed to be of
limited computational ability (cf. §3). Overall, we observe Genie failing in merely 3/42 cases (7 datasets ×
6 combination attacks), which demonstrates its extreme robustness against combinations of strong attacks.

5.5 Security Analysis

5.5.1 Non-Ownership Piracy

A might try to embed their own watermark into a stolen model to create ownership ambiguity. However,
our results in Appendix G.3.2 show that embedding a second watermark does not remove the original. Since
A cannot present a model containing only her watermark and O can, J can determine ownership based on
this.

5.6 Stealthiness to Feature Anomaly Detection

A potential concern regarding the proposed watermarking mechanism is its stealthiness. Replacing a node’s
entire original feature vector with a secret vector w raises concerns of detection by A performing statistical
anomaly detection on the input features. This can happen if the secret Dwm is compromised and becomes
to known to A, in which case Genie would fail to provide protection. We clarify our threat model’s assump-
tion (§3) that A does not have access to Dwm or Gwm, and having access to node features could compromise
security provided by Genie. At the same time, without access to node features, A cannot perform a direct
statistical analysis to identify the watermarked nodes, safeguarding against anomaly detection attempts. We
do, nonetheless, analyze a more powerful adaptive attack (§5.6.1) where A, knowing GENIE’s methodol-
ogy, attempts to identify the watermarked components by other means (e.g., by querying the MLaaS API).
We discuss the viability of this attack and propose a mitigation strategy to defend against it.

5.6.1 Adaptive Attacks

Our results demonstrate Genie’s robustness against classical watermark removal techniques, including model
extraction, fine-tuning, and piracy attack. While these tests provide valuable insights into Genie’s overall
robustness, it is crucial to evaluate its performance against newer attacks; in particular an adaptive attack,
where A would design and implement an attack specifically tailored to Genie. Consequently, we evaluate
Genie under harsher assumptions than previously considered attacks (e.g., in model extraction, access
to resources such as G andW was restricted). In the adaptive attack setting that we consider, access to both
G and W will be given to A, and robustness of Genie’s watermark will be evaluated under these harsher
assumptions.

To simulate real-world scenario, we assume that A accesses Mown (i.e., W) through an MLaaS system,
querying Mown using only V. It is analogous to the standard assumption of the user of an MLaaS being
oblivious to its underlying complexities (e.g., a user avails the service of a recommendation MLaaS system
using only node IDs, i.e., V, while being oblivious to the underlying (A, X)). We summarize the state of an
adaptive A as follows: (1) A has access toMadv (i.e., W) apart from O’s MLaaS; (2) A understands Genie
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and knows that Madv has been watermarked using Genie; (3) A knows the watermarking rate used (viz.,
αnr or αsg); and (4) A knows the original graph G.

The only information which A cannot infer from knowing Genie are Dwm and Gwm, which are secret, since
they are created by random sampling. We discuss the viability of an adaptive attack that exploits this
information for node representation and subgraph-based methods of Genie as follows:

Node representation-based methods. In hopes to break Genie (i.e., to remove the watermark from
Madv), A may attempt to guess links present in Dwm and construct Gwm by continuously querying O’s
MLaaS system. If successful, A can compare Gwm = (V, Ewm) with G = (V, E) to get the randomly sampled
watermark links Swm = (E\Ewm) ∪ (Ewm\E) and then fine-tune Madv with the labels opposite to Swm,
potentially removing the watermark.

To defend Genie against such an attack, O can design the MLaaS system to invert the output whenever a
user attempts to query the links in Swm. Consequently, any attempt to reconstruct Gwm by querying O’s
MLaaS system would only result in reconstruction of G instead of Gwm. To conclude, such a defense closes
all doors for A to guess Gwm, thereby protecting O against such an adaptive A.

Subgraph-based methods. If a link present in Dwm is queried to O’s MLaaS system, the returned output
will not be watermarked, i.e., the MLaaS system will classify the link correctly. It is because during inference:
(1) Mown constructs the k-hop subgraph Gk surrounding the link; and (2) performs binary classification of
Gk. Since Gk’s node feature vectors xv have not been replaced with the secret watermark vector w present
in Dwm, Mown will output the correct prediction of the link. Therefore, the guessing of links present in
Dwm by querying O’s MLaaS system is infeasible. Consequently, the exploitation of Dwm’s knowledge is not
possible, in case of subgraph-based methods.

6 Ablations

6.1 Watermark Embedding

We compare our watermark embedding method on GCN models with 4 baselines: (1) Fine-tuning on
Dwm (Xu et al., 2023); (2) Data poisoning by mixing Dwm and Dtr (Adi et al., 2018); (3) Uniform
Loss (i.e., L = Ltr + Lwm); and (4) Multiple Gradient Descent Algorithm (MGDA) (Désidéri, 2012), with
Pareto-optimal loss (i.e., L = α1Ltr + α2Lwm | α1 + α2 = 1, where α1, α2 are learnable scaling coefficients).
From results in Table 4, we observe Xu et al.’s method and uniform loss violates functionality preserving
constraint imposed in §5.2. Similarly, MGDA fails to preserve functionality in large datasets like arXiv and
PPI. And while Adi et al.’s method gets highest Wtest, it fails to achieve high Wwm for reliable detection.
These results show superiority of Genie’s embedding approach over others.

Embedding / Dataset C.ele USAir NS Yeast Power arXiv PPI

No Embedding Ctest 87.90 89.62 96.00 93.45 99.54 99.28 95.83

Xu et al. (2023) Wtest ��53.41 ��33.32 ��78.57 ��49.80 ��74.74 ��20.88 ��26.28
Wwm 100 99.32 95.56 100 91.50 100 100

Adi et al. (2018) Wtest 88.50 91.45 96.23 94.06 99.28 99.06 95.95
Wwm 90.62 ��74.51 96.67 ��53.25 98.00 ��4.38 ��21.58

Uniform Loss
(L = Ltr + Lwm)

Wtest 88.37 ��80.53 96.44 92.52 99.20 ��93.29 ��91.45
Wwm 100 98.83 99.78 100 99.00 100 100

MGDA Wtest 88.57 89.93 95.76 92.82 99.04 ��96.40 ��93.81
Wwm 100 100 99.78 100 99.00 100 100

Genie Wtest 86.93 88.34 96.59 91.46 98.92 98.13 94.67
Wwm 100 100 99.77 100 99.00 100 100

Table 4: Comparison among embedding methods. Highest and the second highest Wtest values are bold
and underlined, respectively. Similarly, Wtest values having a drop greater than 2% from Ctest or Wwm

values being less than 80% are struck through.
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6.2 Watermarking Pretrained Models

To study the feasibility of embedding watermarks into existing models, we
investigate a practical scenario where a model owner may realize the need for
IP protection after a model has already been trained. For this ablation, our
experimental design begins with a GCN model pre-trained on the primary
link prediction task. Using these pre-trained weights as the starting point,
instead of a random initialization, we then apply Genie’s two-phase water-
mark embedding approach (cf. §4.2) to inject the watermark. The results,
presented in Table 5, show negligible degradation in Wtest from Ctest across
datasets, while maintaining consistently high watermark detection (Wwm

≈ 100%). This confirms that our embedding method can effectively wa-
termark pre-trained models, preserving their original utility while enabling
reliable watermark verification.

Dataset Ctest Wtest Wwm

C.ele 86.9 89.05 100
USAir 88.3 88.42 100
NS 96.6 95.85 99.78
Yeast 91.5 92.09 100
Power 98.9 98.81 99.00
arXiv 98.1 98.27 100
PPI 94.7 94.46 100

Table 5: Watermarking
pretrained models.

6.3 Hyperparameter Sensitivity Analysis

We investigate the sensitivity of Genie to several key
hyperparameters. First, we analyze the impact of the
watermarking rate αnr by varying it from 10% to 50%.
Table 6 illustrates that increasing αnr leads to a progres-
sive decline inWtest, which is particularly notable beyond
30%. Conversely, Wwm remains consistently high across
all rates, indicating robustness of the watermark embed-
ding even at lower rates. Second, we experiment with
different statistical distributions for the generation of the
watermark vector (Normal, Uniform, Poisson, Exponen-
tial, and Bernoulli). As shown in Table 17, this choice has
no significant effect on the effectiveness of Genie.

Dataset Watermarking Rate αnr (%)
10 20 30 40 50

USAir Wtest 91.39 88.06 84.85 75.98 72.58
Wwm 100 100 99.86 99.73 99.68

C.ele Wtest 86.93 83.67 77.91 70.94 65.78
Wwm 100 99.97 99.88 99.51 97.87

NS Wtest 96.59 92.87 90.28 83.31 79.91
Wwm 99.77 95.96 93.47 91.45 88.57

Table 6: Impact of watermarking rate αnr.

6.4 Efficiency

The computational efficiency of a watermarking scheme is crucial, as it directly impacts its cost-effectiveness
and practical adoption. In Genie, computational overhead stems from two sources: the one-time Dwm gener-
ation and the per-epoch training. For watermark generation, the time complexity for node-representation
methods includes a quadratic term, O((αnr|V|)2) (cf. Appendix F). While this quadratic factor might sug-
gest a practical bottleneck for extremely large-scale graphs (e.g., social networks with billions of nodes),
our empirical analysis shows the required watermarking rate αnr is not fixed. As shown in Table 8, αnr

systematically decreases as graph size increases, dropping from 10-15% for small datasets (e.g., C.ele, USAir)
to 4% for a large dataset like arXiv. Thus, the base of the quadratic term, i.e., the number of selected water-
mark nodes (αnr|V|) remains proportionally small, mitigating this potential bottleneck. For training, the
overhead is primarily determined by the size of the trigger set, as each epoch requires a separate backprop-
agation for both the training set and the trigger set. Table 8 illustrates this overhead in terms of αsg and
αnr. Our analysis confirms that while rates can be higher for smaller datasets (e.g., max αnr of 15%), for
large datasets, both αsg and αnr remain below 4%. This demonstrates that Genie’s overall computational
overhead is reasonable and scalable. Our evaluation already spans all benchmark datasets used in the GNN
LP literature, including OGB datasets (cf. Appendix H).

7 Conclusion

We introduced Genie, the first watermarking scheme designed to protect the intellectual property of GNNs
for link prediction. By creating a novel backdoor for both node-representation and subgraph-based methods
and pairing it with a statistically robust verification process (i.e., DWT), Genie provides a practical and
secure solution for ownership demonstration. Our extensive evaluations confirm that Genie is effective,
preserving model utility while demonstrating strong robustness against a wide array of sophisticated water-
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mark removal, model extraction, and piracy attacks. We hope our work spurs further research in securing
graph-based machine learning models.

Broader Impact Statement

In this paper, we present a method to watermark GNNs for link prediction using a novel backdoor method.
Though our work uses this backdoor for the positive cause of ownership demonstration and IP protection,
we acknowledge it could also be used for harm. Given the potential implications of our finding for deployed
ML systems and user-facing applications, we have taken multiple steps to ensure the ethical handling and
responsible dissemination of our results. All experiments were conducted in controlled environments using
publicly available datasets and models. At no point did we target production systems, external APIs, or
third-party applications. No sensitive, proprietary, or human-related data were involved in this study. We
have adhered to standard ethical research guidelines to ensure that the dissemination of this work minimizes
harm and promotes positive impact through increased model robustness.
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A Appendix

B Experiment Setup Details

The code is available at https://tinyurl.com/4na995ut.

B.1 Dataset and Model Setup

B.1.1 Dataset Description

USAir (Batagelj & Mrvar, 2006) is a network of US Airlines. NS (Newman, 2006) is a collaboration network
of researchers in network science. Yeast (Von Mering et al., 2002) is a protein-protein interaction network
in yeast. C.ele (Watts & Strogatz, 1998) is a neural network of C.elegans. Power (Watts & Strogatz,
1998) is an electrical grid network of the western US. arXiv (Jure, 2014) is a collaboration network of arXiv
Astro Physics from the popular Stanford SNAP dataset library. PPI (Stark et al., 2006) is a protein-protein
interaction network from BioGRID database. The dataset statistics are given in Table 7.

Dataset Nodes Edges
USAir 332 2,126
NS 1,589 2,742
Yeast 2,375 11,693
C.ele 297 2,148
Power 4,941 6,594
arXiv 18,772 198,110
PPI 3,890 76,584

Table 7: Dataset statistics.

B.1.2 Model setup

SEAL: We use DGCNN as the GNN engine of SEAL. We use the default setting of DGCNN, i.e., four
convolutional layers (32, 32, 32, 1 channels), a SortPooling layer (with k = 0.6), two 1-D convolution
layers (with 16, 32 output channels), and a 128-neuron dense layer. We train our models for a total of 50
epochs (for both training with or without a watermark). We use a learning rate of 0.0001.

GCN, SAGE: We use a 3-layer GCN and GraphSAGE model with a hidden layer of dimension 256. We
use a 3-layer MLP for downstream binary classification with 256 hidden layer neurons. We train our models
for a total of 400 epochs (for both training with or without a watermark). We use a learning rate of 0.001.
Neo-GNN: We use a 3-layer GCN with a hidden channel dimension of 256 as the GNN engine of Neo-GNN.
We use a 3-layer MLP for downstream binary classification with 256 hidden layer neurons. We train our
models for a total of 400 epochs (for both training with or without a watermark). We use a learning rate of
0.001.
Both Ltr and Lwm use the same loss function (i.e., negative log likelihood) and optimizer (i.e., Adam) with
the same learning rate. Table 8 lists our watermarking rate for each dataset and respective model.
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Dataset C.ele USAir NS Yeast Power arXiv PPI

GCN 10 15 10 4 5 4 4
GraphSAGE 10 15 10 4 5 3 4

SEAL 30 30 35 20 40 3 4
NeoGNN 10 15 10 4 5 2 4

Table 8: Watermarking rate (i.e., αsg for SEAL and αnr for GCN, GraphSAGE, and NeoGNN) used in our
experiments.

B.2 Watermarking Rates

The watermarking rates for GCN, GraphSAGE, and NeoGNN are similar since all of them are node-
representation based methods, but it is different for SEAL since it is a subgraph-based method. The
watermarking rates are chosen based on the tradeoff between lowest loss on Wtest and highest Wwm.

B.3 Baseline Setup

We briefly describe each baseline method used for comparisons:

Link-Backdoor (Zheng et al., 2023) Link-Backdoor employs a gradient-based node injection strategy.
Specifically, the attacker injects fake nodes to create a subgraph trigger involving target link nodes. Gradient
information from the target model optimizes both the structure of the injected trigger and node features
to ensure effective backdoor attacks while minimizing modification to benign data. During inference, the
presence of the injected trigger causes intentional misclassification of specific links.

Erdos-Renyi Induced Watermark (Xu et al., 2023) This method generates an Erdos-Renyi (ER)
graph based on a predefined watermarking rate and replaces edges among randomly selected nodes in the
main graph with the edges from the ER graph. The watermark trigger comprises positive and negative edges
within the ER subgraph. This direct replacement modifies the graph structure significantly, potentially
affecting the original graph functionality.

Erdos-Renyi Inject Watermark (Modified Baseline) Our modified ER injection method generates
an ER graph based on the watermarking rate but, instead of direct edge replacement, connects each ER
node to random nodes of the main graph. Positive and negative edges within the ER subgraph form the
watermark trigger set. Importantly, the connecting edges between the ER subgraph and the main graph are
excluded from training and watermark sets, used only for message passing during training.

Effective Backdoor (Dai & Sun, 2024) This approach introduces a single trigger node with random
features. The node is connected equally to selected positive and negative edges in the main graph, which
constitute the watermark trigger set. These selected edges are manipulated (removal of positive edges and
addition of negative edges) to form a reliable backdoor trigger. Connections between the trigger node and
the main graph are solely used for message passing and are excluded from training or watermark datasets.

B.4 Detailed Explanation of Watermark Removal Methods

Model Extraction Attack Such attacks (Shen et al., 2022; DeFazio & Ramesh, 2019; Wu et al., 2022)
pose a significant threat to DNNs as they enable an adversary to steal the functionality of a victim model.
In these attacks, A queries the victim model (i.e., Win our case) using publicly available test samples and
collect responses to train a surrogate model (i.e., Madv) to steal W’s functionality. The literature on model
extraction attacks is limited in the context of LP tasks on GNNs. Therefore, to evaluate Genie against model
extraction attacks, we modify the loss function employed in the knowledge distillation process (Hinton et al.,
2015) as outlined in Eq. 1 and Eq. 2.

Lsoft = LCE (ϕ (θwm) , ϕ (θadv)) . (1)
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Lhard = LCE (ŷ (θwm) , ŷ (θadv)) . (2)
Here, θwm and θadv denote the model parameters of Wand Madv, ϕ(θwm) and ϕ(θadv) represent the log-
its (i.e., output scores) produced byWandMadv, while ŷ(θwm) and ŷ(θadv) denote the hard predictions (e.g.,
0 or 1) made by the respective model. LCE denotes cross-entropy loss.

We consider 2 types of model extraction techniques, viz., soft label and hard label. In soft label extraction,
we apply LCE between the logits of W and Madv to train Madv (cf. Eq. 1). In hard label extraction, we
apply LCE between the predictions of W andMadv to trainMadv (cf. Eq. 2). We trainMadv model using
half of Dtest and evaluate it with the other half.

Knowledge Distillation It is the process of transferring knowledge from a teacher model to a student
model (Hinton et al., 2015). In our context, the teacher is W and the student is Madv. The extraction
process comprises training Madv on the logits of W and the ground truth (Hinton et al., 2015). It helps
with decreasing the overfitting of the victim model (i.e., W). Consequently, A might be able to remove the
watermark and reproduce the core model functionality.

Model Fine-Tuning Fine-tuning (Yosinski et al., 2014) is one of the most commonly used attacks to
remove the watermark since it is computationally inexpensive and does not compromise the model’s core
functionality much. To test Genie against this attack, we use half of Dtest for fine-tuning and evaluate the
fine-tuned model’s (i.e., Madv) performance with the other half. Through extensive experimentation and
analysis, we determined that limiting the training process to 50 epochs serves as an optimal strategy (i.e., to
avoid the risk of overfitting Madv on the subset of Dtest used for fine-tuning). We evaluate Genie against
4 variations of fine-tuning. These can be classified into two broad categories (Yosinski et al., 2014):

Last layer fine-tuning: This fine-tuning procedure updates the weights of only the last layer of the target
model. It can be done in the following two ways.

1. Fine-Tune Last Layer (FTLL): Freezing the weights of the target model, updating the weights of
its last layer only during fine-tuning.

2. Re-Train Last Layer (RTLL): Freezing the weights of the target model, re-initializing the weights
of only its last layer, and then fine-tuning it.

All layers fine-tuning: This fine-tuning procedure updates weights of all the layers of the target model.
It is a stronger setting compared to the last layer fine-tuning method as all the weights are updated, which
makes it tougher to retain the watermark. It can be done in the following two ways.

1. Fine-Tune All Layers (FTAL): Updating weights of all the layers of the target model during fine-
tuning.

2. Re-Train All Layers (RTAL): Re-initializing the weights of target model’s last layer, updating
weights of all its layers during fine-tuning.

FTLL is considered the weakest attack because it has the least capacity to modify the core GNN layers
responsible for learning the watermark. Conversely, RTAL is considered the toughest attack because it
enables complete fine-tuning of all model layers, providing the highest flexibility to potentially overwrite or
distort the watermark embedded across multiple layers.

Model Compression It is a technique to reduce the size and complexity of a DNN, thereby making it
more efficient and easily deployable. Compressing the model can inadvertently or otherwise act as an attack
against the watermark. Thus, we test Genie’s robustness with following two model compression techniques:

Model pruning: Model or parameter pruning (Han et al., 2015) selects a fraction of weights that have
the smallest absolute value and makes them zero. It is a computationally inexpensive watermark removal
technique.
Weight quantization: It is another model compression technique to reduce the size of a model. It changes
the representation of weights to a lower-bit system, thereby saving memory. It is often used to compress large
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models, e.g., LLMs (Gholami et al., 2022). We follow the weight quantization method (Suraj Subramanian
& Zhang, 2022) with bit-size = 3 (Tan et al., 2023).

Fine-Pruning It is a key defense against a backdoor attack that combines model pruning and fine-tuning.
It is more effective than individual pruning or fine-tuning, which makes it difficult for the watermark to
survive. We start by pruning a fraction of the smallest absolute weights. Next, we fine-tune the pruned
model with half of Dtest and evaluate the pruned+fine-tuned model (i.e., Madv) with the other half. We
perform an exhaustive evaluation with pruning fractions ranging from 0.2-0.8 at a step size of 0.2, which
is followed by one of the four types of model fine-tuning (i.e., FTLL, RTLL, FTAL, RTAL). Our rigorous
experiments aim to provide a holistic understanding of Genie’s robustness against the fine-pruning technique.

C Statistical assurance of non-trivial ownership in Genie

The values of Cwm and Wwm are given for n = 10 different C and (Dwm, W) in Table 9 (for SEAL),
Table 10 (for GCN), Table 11 (for GraphSAGE), and Table 12 (for NeoGNN). The corresponding p-values
are also mentioned. To correct for multiple comparison, appropriate corrections such as Bonferroni or BH
correction must be applied. However, we observe that for each dataset and architecture, the p-value is
observed to be much below the significance level, i.e., 1− τ = 0.05 (p = 0.000 in most cases). Therefore, we
reject H0 for each architecture and dataset as described in §4.3.

Dataset AUC (%) p-value

C.ele Cwm 38.63 25.60 23.70 28.72 22.48 23.29 20.39 22.62 26.83 24.97 0.000
Wwm 76.58 77.19 77.32 78.91 78.72 77.69 78.24 77.39 78.24 75.94

USAir Cwm 8.00 6.97 5.88 7.10 7.61 7.92 6.92 8.72 7.72 8.79 0.000
Wwm 94.01 94.02 94.65 93.59 93.81 95.17 95.39 94.13 94.08 94.14

NS Cwm 3.41 1.73 2.25 2.57 1.91 1.72 2.04 2.50 3.70 2.10 0.000
Wwm 98.66 98.71 98.75 98.68 98.65 98.73 98.69 98.72 98.73 98.73

Yeast Cwm 14.37 6.73 12.49 15.54 10.21 8.03 4.23 40.05 5.02 10.72 0.000
Wwm 97.50 98.02 98.09 97.75 97.83 97.21 97.47 97.15 97.87 97.96

Power Cwm 13.64 19.46 18.60 12.09 15.09 12.01 12.48 12.69 29.46 12.25 0.000
Wwm 88.28 88.31 88.33 88.27 88.25 88.24 88.28 88.26 88.31 88.32

arXiv Cwm 7.04 2.38 3.09 2.16 3.43 4.98 7.95 6.72 2.61 5.73 0.000
Wwm 97.98 97.88 98.18 98.26 97.94 98.08 98.36 98.33 98.30 98.23

PPI Cwm 9.96 12.76 9.68 12.09 9.90 15.35 10.44 13.89 11.99 26.02 0.000
Wwm 83.81 83.81 84.51 82.78 86.25 83.82 84.94 84.23 81.93 86.81

Table 9: Non-trivial ownership results for SEAL.

D Analysis of DWT

D.1 Sensitivity Analysis

To evaluate the robustness and stability of DWT, we conduct a sensitivity analysis with respect to the
number of initial samples and the bandwidth used for estimating the underlying distributions. The primary
objective is to understand how the sample size and bandwidth, denoted by s and h respectively, influences
the mean and variance of the resulting watermark threshold, t, even under cases where a large h would yield
overlapping probability distributions.
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Dataset AUC (%) p-value

C.ele Cwm 4.00 7.82 0.00 0.00 13.85 0.44 7.14 2.04 11.77 31.36 0.000
Wwm 100.0 99.89 100.0 100.0 100.0 99.78 100.0 100.0 99.86 98.82

USAir Cwm 31.48 19.20 13.64 16.18 20.16 13.55 33.48 14.27 13.13 29.94 0.000
Wwm 100.0 100.0 100.0 99.91 100.0 99.96 99.83 100.0 100.0 99.78

NS Cwm 0.00 3.40 11.76 4.33 0.00 6.93 15.22 13.57 5.25 40.74 0.002
Wwm 82.00 94.44 100.0 99.31 98.78 97.65 97.75 98.75 98.75 97.84

Yeast Cwm 18.34 16.53 13.33 0.00 18.93 27.81 18.34 12.88 10.06 18.80 0.000
Wwm 100.0 99.59 100.0 100.0 100.0 99.74 100.0 100.0 100.0 100.0

Power Cwm 10.07 0.00 0.00 3.56 7.69 0.00 0.00 22.31 2.55 30.79 0.000
Wwm 98.96 98.00 94.44 100.0 92.90 98.44 99.22 97.52 98.47 100.0

arXiv Cwm 2.26 1.24 2.91 1.09 1.58 2.08 1.72 1.45 1.26 6.67 0.000
Wwm 100.0 99.99 100.0 100.0 100.0 99.99 100.0 99.98 100.0 100.0

PPI Cwm 8.07 8.96 5.78 4.48 6.94 6.18 4.17 5.28 10.85 22.14 0.000
Wwm 100.0 100.0 100.0 99.98 99.96 100.0 100.0 100.0 99.97 99.96

Table 10: Non-trivial ownership results for GCN.

Dataset AUC (%) p-value

C.ele Cwm 7.63 3.32 9.57 12.40 2.22 25.78 7.62 12.93 13.67 15.38 0.000
Wwm 99.88 99.86 99.61 99.59 99.78 100.00 99.61 99.55 100.0 100.0

USAir Cwm 8.57 5.78 7.43 3.78 11.09 3.86 18.38 7.64 20.85 25.00 0.000
Wwm 99.90 100.0 100.0 99.96 100.0 100.0 100.0 100.0 100.0 100.0

NS Cwm 9.34 16.44 19.66 7.76 28.39 11.25 18.00 21.28 17.46 25.00 0.000
Wwm 91.52 99.11 97.16 96.95 97.31 96.50 89.75 97.68 96.28 97.62

Yeast Cwm 0.00 18.00 20.14 31.00 23.47 7.96 0.00 18.37 12.24 40.62 0.007
Wwm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Power Cwm 0.00 2.00 30.56 2.47 3.56 0.00 0.00 15.00 12.00 25.00 0.000
Wwm 97.53 92.00 97.57 96.30 94.44 97.53 96.28 93.50 98.00 92.97

arXiv Cwm 0.00 2.00 30.56 2.47 3.56 0.00 0.00 15.00 12.00 25.00 0.000
Wwm 97.53 92.00 97.57 96.30 94.44 97.53 96.28 93.50 98.00 92.97

PPI Cwm 23.12 12.98 16.74 3.12 9.58 4.92 7.46 4.39 17.12 25.00 0.000
Wwm 100.0 100.0 99.90 99.97 99.89 100.0 99.97 100.0 100.0 99.83

Table 11: Non-trivial ownership results for GraphSAGE.

The analysis employs a Monte Carlo simulation framework. For each dataset, we vary (1) the sample
size s over values {4, 5, . . . , 10} keeping the bandwidth h = h0 constant; (2) the bandwidth h over values
{0.5h0, 0.75h0, h0, 1.25h0, 1.5h0, 2h0} keeping s = 10 constant. Here, h0 is the bandwidth obtained using
Silverman’s rule of thumb (Silverman, 2018). For fixed value of s and t, we perform a simulation consisting
of 1000 independent trials. The procedure for each trial is as follows:
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Dataset AUC (%) p-value

Celegans Cwm 20.31 28.12 23.44 12.50 25.00 14.06 18.75 23.44 23.44 15.62 0.000
Wwm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

USAir Cwm 11.33 12.60 10.16 12.89 11.23 11.33 10.64 14.84 11.91 9.18 0.000
Wwm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

NS Cwm 23.11 20.22 28.89 26.44 31.78 26.44 17.33 28.89 23.11 31.78 0.000
Wwm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Yeast Cwm 5.33 7.10 8.28 9.47 9.47 6.80 8.88 8.28 5.62 9.47 0.000
Wwm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Power Cwm 50.00 45.00 45.00 50.00 50.00 50.00 50.00 50.00 50.00 45.00 0.000
Wwm 100.0 100.0 100.0 97.00 100.0 100.0 100.0 100.0 100.0 100.0

arXiv Cwm 8.38 1.17 9.42 7.64 1.25 8.15 9.01 8.20 7.05 9.86 0.000
Wwm 97.34 94.03 93.64 90.38 87.73 96.19 97.44 99.97 98.70 92.44

PPI Cwm 24.52 2.85 15.15 11.11 10.47 16.25 17.95 6.52 10.19 12.81 0.000
Wwm 100.0 99.91 97.43 97.61 95.32 94.63 97.52 97.06 100.0 96.97

Table 12: Non-trivial ownership results for NeoGNN.

s C.ele USAir NS Yeast Power arXiv PPI

4 38.46 ± 21.31 50.08 ± 6.28 48.65 ± 29.07 36.63 ± 7.38 41.06 ± 20.95 7.72 ± 4.16 24.31 ± 12.91
5 38.04 ± 18.95 49.91 ± 4.02 48.65 ± 26.04 37.57 ± 7.34 40.80 ± 18.40 7.69 ± 3.79 23.65 ± 12.06
6 38.98 ± 17.07 49.43 ± 3.16 48.60 ± 23.60 39.37 ± 6.55 40.96 ± 16.42 7.51 ± 3.52 23.97 ± 11.61
7 38.96 ± 15.32 49.46 ± 2.47 48.01 ± 21.35 40.50 ± 5.67 42.36 ± 13.71 7.31 ± 3.30 23.51 ± 11.06
8 38.61 ± 14.30 49.31 ± 1.67 46.58 ± 19.98 42.02 ± 3.91 45.53 ± 7.60 7.09 ± 3.13 23.38 ± 10.65
9 44.79 ± 11.33 49.10 ± 1.38 55.60 ± 16.93 41.80 ± 2.60 48.37 ± 6.62 8.67 ± 2.53 28.18 ± 7.89
10 49.67 ± 0.79 49.10 ± 0.50 63.63 ± 0.92 41.64 ± 0.56 51.24 ± 0.85 9.84 ± 0.13 32.24 ± 0.43

t 50.65 49.69 64.82 42.35 52.29 10.00 32.77

Table 13: Sensitivity analysis of DWT to the number of samples s. t is the reported threshold.

1. Subsampling: We randomly draw, without replacement, a subsample of s data points from the
complete set of scores obtained from clean models (C). Concurrently, we draw another subsample
of size s from the complete set of scores from watermarked models (W).

2. Threshold Estimation with s: The DWT procedure is executed using the two smaller subsamples
of size s, with threshold value, ti, for the i-th trial.

3. Threshold Estimation with h: The DWT procedure is executed using bandwidth h, with thresh-
old value, ti, for the i-th trial.

After executing all 1000 trials for a given s or h, we obtain 1000 threshold values, {t1, t2, . . . , t1000}. From
this distribution, we compute the sample mean (t̄) and sample standard deviation (σt) to quantify the
expected threshold and its variability. This entire process is repeated for each value of s ∈ {4, 5, . . . , 10}
and h ∈ {0.5h0, 0.75h0, h0, 1.25h0, 1.5h0, 2h0} for every dataset under evaluation. Table 13, 14 show the
results for GCN. In both the tables, we observe the reported threshold t to be more than the mean threshold
in most cases, indicating the reported thresholds avoid large FPR. We also see t less when an overly smooth
h ≥ 1.5h0 is used to yield overlapping distributions, indicating the reported thresholds avoid large FNR as
well.
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h C.ele USAir NS Yeast Power arXiv PPI

0.5h0 40.24 ± 0.56 40.99 ± 0.44 51.88 ± 0.67 34.49 ± 0.43 40.68 ± 0.60 8.21 ± 0.09 27.05 ± 0.31
0.75h0 44.66 ± 0.80 44.81 ± 0.61 57.34 ± 1.04 37.83 ± 0.62 45.63 ± 0.93 8.98 ± 0.14 29.47 ± 0.45
h0 49.11 ± 1.10 48.64 ± 0.79 62.90 ± 1.38 41.22 ± 0.80 50.52 ± 1.22 9.73 ± 0.19 31.90 ± 0.61
1.25h0 53.56 ± 1.35 52.55 ± 0.89 68.08 ± 1.66 44.54 ± 1.02 55.56 ± 1.42 10.50 ± 0.23 34.35 ± 0.77
1.5h0 57.85 ± 1.68 56.46 ± 1.01 68.47 ± 1.10 47.92 ± 1.21 60.66 ± 1.72 11.27 ± 0.28 36.77 ± 0.89
2h0 66.93 ± 2.09 64.37 ± 1.25 68.33 ± 0.95 54.84 ± 1.46 70.69 ± 2.21 12.79 ± 0.37 41.68 ± 1.21

t 50.65 49.69 64.82 42.35 52.29 10.00 32.77

Table 14: Sensitivity analysis of DWT to bandwidth h. t is the reported threshold.

D.2 Theoretical Analysis

We elaborate on the proof sketch of the theorem given in §4.3, adapted from Eypasch et al. (1995).

Proof. We first note that
Pr(Xj = 0) = (1− p) n. (3)

Hence, observing Xj = 0 for all j = 1, . . . , m yields

Pr(X1 = 0, . . . , Xm = 0) =
(
(1− p)n

)m = (1− p) mn. (4)

If p ≥ 1
n , then using the inequality, ex ≥ 1 + x ∀ x ∈ R we get,

(1− p) ≤ e−p ≤ e− 1
n , (5)

implying
(1− p) mn ≤ exp

(
−mnp

)
≤ e−m. (6)

Thus,
Pr

(
all zeros

∣∣ p ≥ 1/n
)
≤ e−m. (7)

If we choose m such that
e−m ≤ 1− γ ⇐⇒ m ≥ − ln

(
1− γ

)
, (8)

then the probability of observing zero events in all m blocks despite p ≥ 1/n is at most 1− γ. Equivalently,
whenever we do observe zero events in all m blocks, it follows with confidence at least γ that p < 1/n. □

E Ownership Demonstration

We now outline the process for O to demonstrate her ownership over A’s model (i.e., Madv). OD uses J
briefly outlined in §3. Genie has a two-step OD procedure that involves a model registration step and a
dispute resolution step.
Model registration: As a preemptive step of OD, O first sends G to J to procure Dwm, addressing the
problem of malicious plaintiff outlined in (Liu et al., 2024). J then writes the cryptographic hash of Dwm

onto a time-stamped public bulletin board (e.g., blockchain) to provide the proof of anteriority in case of a
dispute. We call this preemptive step model registration since it is analogous to patent registration common
in the protection of IP rights (Waheed et al., 2023; Park, 2008). The procured Dwm will then be used for
embedding the watermark into M, i.e., train an untrained M to be W by O.
Dispute resolution: When a dispute arises, OD involves the following steps: (1) O accusesA of plagiarizing
her model W; (2) A sends Madv to J for an evaluation; (3) O sends Dwm and the hashes of all the files.
Here, the hashes are sent via a secure communication channel to ensure that the files are not tampered with;
(4) J runs a check on the hashes of the files sent. Next, J checks the record of Dwm in the public bulletin
board. If a matching record is found, J first calculates the watermark threshold t, and evaluates Madv on
Dwm to get Wwm. The OD ends with a comparison of Wwm against t, settling the dispute between O and
A with a just verdict. On the other hand, if a record is not found, the dispute resolves in O’s defeat.
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F Time and Space Complexity Analysis

Node-Representation Based Methods. Time Complexity: The total time is the sum of the times for
each step in the watermark generation process.

1. Node Sampling: Sampling |S| nodes from |V| nodes uniformly at random takes O(|S|) = O(αnr|V|)
time.

2. Watermark Graph Construction: Constructing the watermark graph Gwm involves creating the
complement of the subgraph induced by S, denoted GS . This requires iterating through all possible
pairs of nodes in S to determine the edges in the complement ES . This step has a time complexity
of O(|S|2) = O((αnr|V|)2).

3. Feature Matrix Modification: For each of the |S| nodes, the d-dimensional feature vector is
replaced with the watermark vector w. This operation takes O(|S| · d) = O(αnr|V|d) time.

Combining these steps, the dominant terms determine the overall time complexity. Therefore, the total time
complexity is O((αnr|V|)2 + αnr|V|d).

Space Complexity: The space complexity is determined by the storage requirements for the generated wa-
termark dataset Dwm = (Ewm, Awm, Xwm, ywm).

1. Adjacency Matrix Awm: Storing the adjacency matrix for the entire graph Gwm requires O(|V|2)
space.

2. Feature Matrix Xwm: Storing the modified node feature matrix for all nodes requires O(|V|d)
space.

3. Edge Index Ewm: The edge index for the watermarked portion contains edges from ES ∪ ES . The
number of these edges is bounded by O(|S|2). This is subsumed by the O(|V|2) term for the full
adjacency matrix.

Proof. The total space complexity is dominated by the storage of the full graph’s adjacency and feature
matrices, resulting in O(|V|2 + |V|d).

Proof. The proof is divided into analyzing the time and space requirements.

Time Complexity: The process involves sampling subgraphs and modifying the features of all nodes
within them.

1. Subgraph Sampling: Sampling s = ⌈αsgT ⌉ subgraphs from the training set of size T takes
O(s) = O(αsgT ) time.

2. Feature Matrix Modification: This is the most computationally intensive step. For each of the s
sampled subgraphs, we iterate through its Nsub nodes and replace their d-dimensional feature vectors
with the watermark vector w. The total time for this operation is O(s ·Nsub ·d) = O(αsgT ·Nsub ·d).

3. Label Inversion: Inverting the labels for the s subgraphs takes O(s) time.

The feature modification step is the dominant factor. Thus, the total time complexity is O(αsgT ·Nsub · d).

Space Complexity: The space complexity is determined by the storage needed for the watermark dataset
Dwm, which consists of the s modified subgraphs.

1. For each of the s modified subgraphs, we need to store its structure and node features.
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2. Node Features: Storing the features for Nsub nodes, each of dimension d, requires O(Nsub · d)
space per subgraph.

3. Subgraph Structure: Storing the adjacency information for a subgraph of Nsub nodes (e.g., as an
adjacency matrix) requires O(N2

sub) space per subgraph.

The total space required is the space per subgraph multiplied by the number of subgraphs s. Therefore, the
total space complexity is O(s · (Nsubd + N2

sub)) = O(αsgT (Nsubd + N2
sub)).

G Additional Results

G.1 Inductive Link Prediction results

Inductive link prediction is useful in case where predictions need to be made on unseen nodes that are not
present during the training time. Accordingly, the threat model for watermarking inductive link prediction
also differs significantly from the transductive setting. We summarize the difference between the two settings
in Table 15.

We watermark the state-of-the-art inductive link prediction method LEAP (Samy et al., 2024) using Genie,
keeping all hyperparameters identical to those used in LEAP. On Wikipedia (Rozemberczki et al., 2021a)
and PubMed (Yang et al., 2016), at a 3% watermarking rate (Table 16), Genie attains highWwm of 97.25%
and 100.00% while having a drop from Ctest to Wtest by less than 2 percentage points (a 0.55% gain on
Wikipedia and a 0.39% drop on PubMed).

Aspect Transductive Inductive

Graph scope Fixed graph at train and test time. New nodes or graphs appear at test
time.

Adversary observability Adversary can observe or reconstruct
large parts of the training (target)
graph.

Adversary lacks access to training
graph.

Attack surface Query-based graph reconstruction,
fine-tuning, pruning on same graph.

Model extraction and retraining on
different graphs.

Watermark exposure Model can overfit to triggers; higher
watermark verification easier.

Triggers must generalize; higher wa-
termark verification is harder.

Threat model implication Stronger adversary with high graph
visibility.

Weaker adversary due to limited data
overlap.

Table 15: Threat model differences between transductive and inductive link prediction settings

Metric Wikipedia (%) PubMed (%)
Ctest 89.50 94.90
Wtest 90.05 94.51
Wwm 97.25 100.00

Table 16: AUC metrics on Wikipedia and PubMed. Watermarking rate is 3%

G.2 Effect of Watermark Vector Distribution

We analyze the effect of watermark vector distribution using GCN with watermarking rates as mentioned in
B.2 on USAir, Celegans and NS datasets in 17. We find that the watermark vector distribution has almost
no effect on the performance Genie making it robust to multiple distributions.
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Dataset Watermark vector distribution

Normal Uniform Poisson Exponential Bernoulli

USAir Wtest 88.34 89.34 88.83 87.29 87.90
Wwm 100 100 100 100 100

C.ele Wtest 86.93 88.15 87.17 88.48 88.39
Wwm 100 100 100 100 100

NS Wtest 96.59 96.02 97.10 95.78 95.47
Wwm 99.77 99.77 99.77 99.77 99.77

Table 17: Impact of Watermark vector distribution

G.3 GCN

G.3.1 White-Box Attacks at different % (Robustness)

Pruning Table 18 shows the results of GCN watermarked using Genie under Pruning attack from 20-80%
pruning percentages.

Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 86.93 86.97 86.31 83.92 75.43
Wwm 100 100 100 100 70.31

USAir Wtest 88.34 88.98 89.57 89.21 78.50
Wwm 100 100 100 92.77 71.28

NS Wtest 96.59 96.25 96.01 96.08 91.31
Wwm 99.77 99.77 99.77 96.66 85.55

Yeast Wtest 91.46 91.27 89.97 85.71 80.50
Wwm 100 100 100 100 74.55

Power Wtest 98.92 99.00 99.20 98.32 92.43
Wwm 99.00 99.00 95.00 74.00 55.00

arXiv Wtest 98.13 98.08 97.911 94.79 84.37
Wwm 100 100 99.98 83.09 41.95

PPI Wtest 94.67 94.60 94.05 92.86 90.06
Wwm 100 100 100 78.87 ��31.22

Table 18: Impact of model pruning.

Fine-pruning Tables 19-22 present results for different fine-pruning tests for the GCN model.

Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 86.93 82.01 80.80 78.54 82.57
Wwm 100 93.75 90.62 81.25 79.68

USAir Wtest 88.34 89.15 88.85 88.30 87.93
Wwm 100 91.21 90.42 87.50 69.82

NS Wtest 96.59 98.49 98.22 97.55 97.26
Wwm 99.77 99.77 98.88 97.55 93.11

Yeast Wtest 91.46 91.52 91.41 89.90 86.64
Wwm 100 91.71 90.53 85.20 92.30

Power Wtest 98.92 99.38 99.30 98.91 98.04
Wwm 99.00 99.00 95.00 87.00 72.00

arXiv Wtest 98.13 98.54 98.41 98.07 96.74
Wwm 100 86.51 81.81 59.24 30.07

PPI Wtest 94.67 94.92 94.73 94.63 93.41
Wwm 100 96.32 88.52 79.43 51.97

Table 19: Impact of pruning + FTLL.
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Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 86.93 70.65 71.04 73.56 79.64
Wwm 100 59.37 57.81 68.75 84.37

USAir Wtest 88.34 87.57 87.50 88.09 86.59
Wwm 100 82.12 82.81 79.58 61.62

NS Wtest 96.59 98.43 98.18 97.74 96.72
Wwm 99.77 96.66 97.55 96.22 94.44

Yeast Wtest 91.46 90.72 90.19 88.87 86.24
Wwm 100 88.16 88.16 77.51 84.61

Power Wtest 98.92 99.24 99.16 98.73 97.40
Wwm 99.00 99.00 93.00 91.99 71.00

arXiv Wtest 98.13 98.54 98.41 98.07 96.74
Wwm 100 44.95 47.04 48.31 39.69

PPI Wtest 94.67 94.21 94.04 93.54 92.78
Wwm 100 59.41 51.42 53.16 46.28

Table 20: Impact of pruning + RTLL.

Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 86.93 75.73 77.27 75.46 74.68
Wwm 100 71.87 60.93 78.12 62.50

USAir Wtest 88.34 86.35 85.96 86.94 85.23
Wwm 100 81.49 73.19 76.31 63.28

NS Wtest 96.59 91.90 89.33 88.09 87.84
Wwm 99.77 89.11 84.66 88.66 92.22

Yeast Wtest 91.46 90.48 90.06 89.43 87.45
Wwm 100 100 100 99.40 81.65

Power Wtest 98.92 97.36 97.39 97.69 96.97
Wwm 99.00 88.00 87.00 84.00 67.99

arXiv Wtest 98.13 98.78 98.79 98.80 98.48
Wwm 100 54.45 48.18 33.05 17.00

PPI Wtest 94.67 94.02 94.04 93.93 93.87
Wwm 100 78.60 75.39 66.20 45.36

Table 21: Impact of pruning + FTAL.

Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 86.93 69.11 66.34 72.06 68.28
Wwm 100 68.75 68.75 70.31 75.00

USAir Wtest 88.34 85.46 84.94 83.26 84.50
Wwm 100 63.76 65.52 62.79 47.75

NS Wtest 96.59 76.49 79.69 74.29 74.74
Wwm 99.77 78.00 85.11 78.88 78.88

Yeast Wtest 91.46 85.70 85.47 84.50 82.89
Wwm 100 84.02 92.89 89.94 63.31

Power Wtest 98.92 92.87 92.33 91.92 90.02
Wwm 99.00 63.00 64.99 63.00 ��49.99

arXiv Wtest 98.13 98.02 98.01 97.61 95.82
Wwm 100 20.67 19.46 17.99 13.93

PPI Wtest 94.67 92.92 92.79 92.45 91.88
Wwm 100 42.51 44.81 46.74 ��27.08

Table 22: Impact of pruning + RTAL.

G.3.2 Non-Ownership Piracy

Genie injects watermark into an untrained model while A has access to only W. In a real-world setting, A
can still generate her own pirated trigger set and train stolen W to obtainMadv (generally called a pirated
model). Given that training on just the pirated trigger set might lead to decrease in Wtest, A would want
to identify an optimal number of epochs for training with the pirated trigger set such that Madv has high
AUC on both Dtest and the pirated trigger set. Figure 4 shows the variations in Madv’s performance on
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Dwm, Dtest, and pirated trigger set during pirated watermark embedding process across different numbers
of epochs for GCN over NS dataset; cf. Figure 5 for other datasets.
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Figure 4: An example of Madv’s performance trajectory on Dwm, Dtest, and pirated trigger set during
embedding of pirated watermark across training. AUCMadv

Dwm
and AUCMadv

Dtest
denote Wwm and Wtest, respec-

tively.

We see that Madv performs well on Dwm, Dtest, as well as on pirated trigger sets around 20th epoch. If O
challenges A to present her model at this point, Madv will contain A’s pirated watermark as well as O’s
watermark. However, O can present W containing only her watermark. Thus, identifying the true owner
will be easy in such a dispute. We further observe that around 250th epoch, AUCMadv

Dwm
drops below the

watermark threshold (cf. Table 1), butWtest is below the tolerable utility loss (i.e., up to 10%; following the
definition of failure in §5.4) A is willing to tolerate. Even if A chooses to train for even higher epochs while
embedding the pirated watermark,Madv continues to lose its utility; rendering theMadv useless. Hence, we
take the liberty to claim that Genie is robust against piracy attacks (i.e., A cannot fraudulently claim
ownership or fabricate watermark over a pirated model). Now, we present the results for the other datasets
in Figure 5.
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(c) PPI
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(d) Power
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(e) arXiv
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(f) Yeast

Figure 5: Non-ownership piracy test for GCN model on different datasets. AUCMadv

Dwm
and AUCMadv

Dtest
denote

Wwm and Wtest, respectively.

G.4 GraphSAGE

Tables 23-31 present results for different robustness tests for the GraphSAGE model.
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Condition/Dataset C.ele USAir NS Yeast Power arXiv PPI

Before model
extraction

Wtest 86.46 91.89 94.35 90.44 91.23 99.40 94.57
Wwm 100.00 100.00 99.77 100.00 99.00 100.00 100.00

After soft
extraction

Wtest 86.69 92.75 92.50 90.70 93.29 99.41 94.68
Wwm 100.00 76.33 96.66 100.00 95.00 95.42 100.00

After hard
extraction

Wtest 85.65 90.20 89.74 90.94 90.86 99.28 94.28
Wwm 95.31 56.21 93.11 100.00 91.00 95.03 100.00

Table 23: Impact of model extraction.

Condition/Dataset C.ele USAir NS Yeast Power arXiv PPI

Before
distillation

Wtest 86.46 91.89 94.35 90.44 91.23 99.40 94.57
Wwm 100.00 100.00 99.77 100.00 99.00 100.00 100.00

After
distillation

Wtest 87.37 92.31 88.89 90.55 91.30 99.48 94.79
Wwm 81.25 50.30 71.78 98.82 90.00 89.44 100.00

Table 24: Impact of knowledge distillation.

Dataset Fine-tuning Method

No FT FTLL RTLL FTAL RTAL

C.ele Wtest 86.46 88.92 84.37 82.75 76.51
Wwm 100.00 100.0 92.19 85.94 90.62

USAir Wtest 91.89 90.63 90.27 90.29 88.47
Wwm 100.00 100.0 97.63 98.22 86.39

NS Wtest 94.35 93.63 93.31 91.31 89.71
Wwm 99.77 99.33 98.44 84.22 80.22

Yeast Wtest 90.44 90.37 89.71 88.98 85.89
Wwm 100.00 100.00 100.00 99.41 99.41

Power Wtest 91.23 94.34 94.12 92.16 89.16
Wwm 99.00 99.00 93.00 59.00 ��51.00

arXiv Wtest 99.40 99.46 99.31 99.43 99.26
Wwm 100.00 99.88 69.14 ��19.66 ��16.58

PPI Wtest 94.57 94.73 93.96 93.93 92.54
Wwm 100.00 100.00 100.00 ��39.67 52.07

Table 25: Impact of model fine-tuning.

Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 86.46 86.31 85.59 83.50 76.10
Wwm 100.0 100.0 100.0 100.0 79.68

USAir Wtest 91.89 91.90 91.83 91.73 88.71
Wwm 100.0 100.0 100.0 100.0 95.85

NS Wtest 94.35 94.26 94.42 93.55 86.64
Wwm 99.77 99.77 99.77 98.44 86.88

Yeast Wtest 90.44 90.30 89.86 88.33 75.85
Wwm 100.0 100.0 100.0 100.0 66.86

Power Wtest 91.23 91.16 91.08 89.72 79.45
Wwm 99.00 99.00 99.00 97.00 93.00

arXiv Wtest 99.40 99.40 99.35 99.00 93.91
Wwm 100.00 100.00 100.00 65.25 52.67

PPI Wtest 94.57 94.57 94.23 92.84 83.62
Wwm 100.00 100.00 100.00 99.90 ��21.12

Table 26: Impact of model pruning.

Condition/Dataset C.ele USAir NS Yeast Power arXiv PPI

Before
quantization

Wtest 86.46 91.89 94.35 90.44 91.23 99.40 94.57
Wwm 100.00 100.00 99.77 100.00 99.00 100.00 100.00

After
quantization

Wtest 83.09 91.09 92.23 89.98 91.49 97.27 92.69
Wwm 100.00 100.00 98.89 100.00 99.00 73.80 98.26

Table 27: Impact of weight quantization.
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Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 86.46 89.21 88.73 87.50 87.59
Wwm 100.00 100.00 100.00 100.00 87.50

USAir Wtest 91.90 88.66 87.99 87.15 85.60
Wwm 100.0 100.0 100.0 100.0 88.16

NS Wtest 94.35 88.45 88.06 86.72 77.80
Wwm 99.77 99.33 99.33 99.33 89.11

Yeast Wtest 90.44 90.38 90.27 90.05 88.85
Wwm 100.0 100.0 100.0 98.81 67.45

Power Wtest 91.23 94.38 94.20 94.25 92.37
Wwm 99.00 99.00 99.00 99.00 83.00

arXiv Wtest 99.40 99.45 99.42 99.33 98.56
Wwm 100.00 98.54 81.71 ��25.61 ��19.29

PPI Wtest 94.57 94.74 94.61 94.36 91.92
Wwm 100.0 100.0 100.0 84.48 57.66

Table 28: Impact of pruning + FTLL.

Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 86.46 84.31 84.56 84.96 85.55
Wwm 100.00 92.19 87.50 85.93 65.62

USAir Wtest 91.90 90.39 90.71 90.25 88.48
Wwm 100.00 97.04 97.04 94.08 68.63

NS Wtest 94.35 93.07 93.32 93.17 90.82
Wwm 99.77 98.44 98.88 98.88 90.44

Yeast Wtest 90.44 89.67 89.49 89.38 88.64
Wwm 100.0 100.0 100.0 96.44 70.41

Power Wtest 91.23 94.02 93.98 93.77 89.57
Wwm 99.00 95.00 94.00 99.00 83.00

arXiv Wtest 99.40 99.30 99.26 99.13 97.98
Wwm 100.00 63.95 54.92 32.71 ��17.43

PPI Wtest 94.57 93.94 93.76 93.48 90.09
Wwm 100.0 100.0 98.89 93.02 49.67

Table 29: Impact of pruning + RTLL.

Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 86.46 82.78 83.11 81.20 79.62
Wwm 100.00 96.87 73.43 85.93 68.75

USAir Wtest 91.89 89.29 89.63 88.75 89.27
Wwm 100.00 96.44 94.08 90.53 59.76

NS Wtest 94.35 92.63 91.31 91.71 88.10
Wwm 99.77 91.77 85.55 96.22 82.44

Yeast Wtest 90.44 89.26 88.50 88.45 87.12
Wwm 100.00 98.22 100.00 97.63 82.24

Power Wtest 91.23 92.30 92.08 92.15 91.96
Wwm 99.00 58.00 58.00 67.00 ��40.00

arXiv Wtest 99.40 99.42 99.41 99.39 99.24
Wwm 100.00 ��19.64 ��17.62 ��15.71 ��5.42

PPI Wtest 94.57 93.79 93.90 93.64 93.06
Wwm 100.00 40.95 ��35.16 ��17.44 ��22.40

Table 30: Impact of pruning + FTAL.
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Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 86.46 82.78 83.11 81.20 79.62
Wwm 100.00 92.19 82.81 79.69 73.44

USAir Wtest 91.89 88.66 87.99 87.15 85.60
Wwm 100.00 85.20 81.06 72.18 49.11

NS Wtest 94.35 92.63 91.31 91.71 88.10
Wwm 99.77 91.77 85.55 96.22 82.44

Yeast Wtest 90.44 86.04 85.18 84.88 83.34
Wwm 100.00 99.40 95.85 92.89 71.00

Power Wtest 91.23 88.95 88.40 87.79 82.69
Wwm 99.00 ��50.99 ��36.00 ��43.00 62.99

arXiv Wtest 99.40 99.25 99.25 99.15 98.83
Wwm 100.00 ��15.27 ��14.50 ��9.29 ��4.65

PPI Wtest 94.57 92.62 92.26 91.99 90.51
Wwm 100.00 48.57 41.05 50.87 ��36.17

Table 31: Impact of pruning + RTAL.

G.5 SEAL

Tables 32-38 present results for different robustness tests for the SEAL model.

Dataset Fine tuning Method

No FT FTLL RTLL FTAL RTAL

C.ele Wtest 88.50 89.88 90.07 88.21 88.88
Wwm 84.27 84.30 84.16 83.47 83.94

USAir Wtest 95.66 93.81 93.05 93.08 92.49
Wwm 92.35 92.46 91.47 91.79 88.03

NS Wtest 98.61 98.46 98.32 99.25 98.94
Wwm 98.77 98.77 98.78 97.44 58.26

Yeast Wtest 97.06 97.05 97.14 96.35 96.07
Wwm 96.34 96.35 95.49 94.73 91.95

Power Wtest 85.64 87.31 87.49 84.20 83.08
Wwm 88.78 88.78 88.65 57.04 ��18.36

Table 32: Impact of model fine-tuning.

Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 88.50 88.63 88.60 88.48 87.93
Wwm 84.27 83.97 83.93 84.09 83.17

USAir Wtest 95.66 95.61 95.81 95.53 95.25
Wwm 92.35 92.31 92.24 91.40 91.56

NS Wtest 98.61 98.52 97.97 95.59 84.69
Wwm 98.77 98.78 97.58 97.53 95.19

Yeast Wtest 97.06 97.08 97.14 96.96 96.81
Wwm 96.34 96.33 96.27 92.66 93.37

Power Wtest 85.64 85.23 84.68 83.80 45.49
Wwm 88.78 88.63 87.98 76.88 78.99

Table 33: Impact of model pruning.

Condition/Dataset C.ele USAir NS Yeast Power

Before
quantization

Wtest 88.50 95.66 98.61 97.06 85.64
Wwm 84.27 92.35 98.77 96.34 88.78

After
quantization

Wtest 84.34 91.97 98.42 90.97 80.58
Wwm 80.32 87.48 76.37 91.10 87.61

Table 34: Impact of weight quantization.
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Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 88.50 89.82 90.05 89.83 89.41
Wwm 84.27 83.99 83.97 84.13 83.24

USAir Wtest 95.66 93.72 93.90 93.33 93.09
Wwm 92.35 92.43 92.31 91.43 91.59

NS Wtest 98.61 98.35 98.05 95.74 88.73
Wwm 98.77 98.76 97.60 97.40 92.36

Yeast Wtest 97.06 97.03 97.11 96.88 96.61
Wwm 96.34 96.33 96.27 92.75 93.18

Power Wtest 85.64 87.47 87.08 86.20 53.21
Wwm 88.78 88.63 87.96 76.97 65.68

Table 35: Impact of pruning + FTLL.

Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 88.50 90.10 90.26 90.29 89.77
Wwm 84.27 84.03 83.94 84.21 83.42

USAir Wtest 95.66 93.17 93.39 93.34 92.92
Wwm 92.35 91.60 91.05 90.45 90.52

NS Wtest 98.61 98.26 98.01 96.48 93.81
Wwm 98.77 98.73 98.02 91.95 54.30

Yeast Wtest 97.06 97.11 97.17 96.88 96.62
Wwm 96.34 95.41 95.43 91.17 92.36

Power Wtest 85.64 87.44 87.24 86.56 81.25
Wwm 88.78 88.48 87.85 73.94 ��22.01

Table 36: Impact of pruning + RTLL.

Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 88.50 88.38 88.42 89.07 89.45
Wwm 84.27 83.09 83.38 82.60 82.66

USAir Wtest 95.66 93.02 92.78 93.22 92.50
Wwm 92.35 91.80 91.70 91.31 90.38

NS Wtest 98.61 99.12 99.25 98.91 98.06
Wwm 98.77 96.77 90.93 31.87 6.04

Yeast Wtest 97.06 96.39 96.41 96.27 95.99
Wwm 96.34 95.00 94.23 93.56 94.39

Power Wtest 85.64 84.56 84.20 83.41 82.35
Wwm 88.78 66.32 86.24 49.40 ��15.61

Table 37: Impact of pruning + FTAL.

Dataset Prune Percentage (%)

0 20 40 60 80

C.ele Wtest 88.50 88.86 88.71 88.54 88.75
Wwm 84.27 83.73 83.80 83.73 82.76

USAir Wtest 95.66 92.50 92.44 92.32 92.30
Wwm 92.35 88.25 88.18 87.87 86.83

NS Wtest 98.61 98.96 98.82 98.34 97.87
Wwm 98.77 55.80 42.97 20.32 5.03

Yeast Wtest 97.06 95.93 95.95 95.92 95.93
Wwm 96.34 92.69 93.34 92.99 92.92

Power Wtest 85.64 82.71 82.70 82.76 82.63
Wwm 88.78 ��16.03 ��13.56 ��11.73 ��12.97

Table 38: Impact of pruning + RTAL.

H Performance of GENIE on Additional Datasets

We have conducted a preliminary testing on 3 additional datasets of varying sizes, i.e., ogbl-collab (Hu et al.,
2020), Wikipedia (Mahoney, 2011), and Router (Spring et al., 2002). ogbl-collab is an author collaboration
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network with 235,868 nodes and 1,285,465 edges. Wikipedia dataset has 4,777 nodes, 184,812 edges, and 40
attributes. Router is a router-level Internet network dataset with 5,022 nodes and 6,258 edges.

Table 39 shows Ctest,Wtest, andWwm. We observe that Genie could successfully watermark the model with
minimal utility loss, which indicates that Genie satisfies functionality preservation requirements on these
datasets as well. We keep further testing (e.g., robustness tests, efficiency tests) of Genie on these datasets
as part of our future work.

Dataset SEAL GCN GraphSAGE
Ctest Wtest Wwm Ctest Wtest Wwm Ctest Wtest Wwm

Router 95.68 95.86 96.22 96.75 96.53 95.23 92.85 96.27 95.44
ogbl-collab 95.56 95.17 99.92 96.39 100.00 95.71 96.94 100.00 95.79
Wikipedia 91.12 91.13 84.72 92.09 90.21 99.58 93.24 92.91 100.00

Table 39: Watermark verification performance (average of 10 runs) of Genie across 3 models and 3 additional
datasets.

I Baseline Model Performance

To facilitate a clearer assessment of the underlying utility of the GNN architectures used in this study, we
provide a dedicated tabulation of the clean baseline performance (Ctest) in Table 40. These values represent
the Link Prediction AUC of the models (SEAL, GCN, GraphSAGE, and NeoGNN) trained using standard
protocols without any watermark injection. This serves as the independent reference point for calculating
the utility loss (Ctest −Wtest) discussed in Section 5.1.2.

Dataset SEAL GCN GraphSAGE NeoGNN

C.ele 87.84 ± 0.46 88.97 ± 0.44 86.76 ± 0.68 89.03 ± 0.71
USAir 93.19 ± 0.25 90.02 ± 0.52 92.44 ± 0.35 95.81 ± 0.81
NS 98.10 ± 0.15 95.44 ± 0.74 90.90 ± 0.63 99.93 ± 0.02
Yeast 97.07 ± 0.21 93.64 ± 0.40 89.12 ± 0.43 97.78 ± 0.57
Power 84.41 ± 0.44 99.36 ± 0.17 87.54 ± 1.02 99.96 ± 0.02
arXiv 98.14 ± 0.14 99.31 ± 0.04 99.62 ± 0.01 99.92 ± 0.01
PPI 89.63 ± 0.12 95.08 ± 0.04 94.03 ± 0.09 97.43 ± 0.16

Table 40: Clean baseline performance (Ctest) of the GNN architectures on Link Prediction tasks (AUC %).
These values represent the model utility prior to watermark injection.

J Evaluation on Expressive Architectures (GAT and GIN)

To demonstrate the architectural generalizability of Genie beyond standard convolution-based aggregators
(like GCN and GraphSAGE), we extended our evaluation to include Graph Attention Networks (GAT) and
Graph Isomorphism Networks (GIN). These architectures introduce distinct challenges for watermarking:
GAT employs anisotropic attention mechanisms that could potentially learn to “ignore” the watermark trig-
ger by assigning it low attention weights, while GIN relies on sum-pooling and highly expressive isomorphism
tests which might be sensitive to the structural perturbations introduced by the trigger.

Table 41 summarizes the performance of Genie on these architectures across all seven datasets. The results
indicate two key findings:

1. Robustness to Attention and Isomorphism: We achieve near-perfect watermark accuracy
(Wwm ≥ 99.0%) for both GAT and GIN across all datasets. This empirically confirms that the
attention mechanism in GAT successfully attends to the trigger features during the fine-tuning
phase, and the injectivity of GIN’s aggregation preserves the trigger signal effectively.
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2. Utility Preservation and Regularization: For GIN, the utility loss remains strictly within the
2% threshold, with the largest drop observed on Yeast (1.64%). Interestingly, for GAT, we observe a
phenomenon where the watermarked model frequently outperforms the clean baseline (e.g., +6.33%
on PPI, +3.11% on NS). We hypothesize that the injection of the watermark pattern acts as a form
of structural regularization or data augmentation for attention-based models, preventing overfitting
on smaller or sparser datasets without compromising ownership verification.

Dataset GAT GIN

Ctest Wtest Wwm Ctest Wtest Wwm

USAir 90.16 91.68 100.0 90.05 88.81 100.0
C.ele 82.78 86.79 100.0 83.12 82.71 100.0
NS 95.31 98.42 99.78 86.06 90.93 99.78
Yeast 88.89 92.57 100.0 88.54 86.90 100.0
Power 99.84 99.62 99.00 86.75 91.39 99.00
arXiv 99.19 99.39 100.0 99.30 99.26 100.0
PPI 88.58 94.91 100.0 92.96 91.36 100.0

Table 41: Performance of Genie on GAT and GIN architectures across seven datasets. The table compares
clean test AUC (Ctest), watermarked test AUC (Wtest), and watermark verification accuracy (Wwm). Genie
consistently achieves high verification rates regardless of the aggregation mechanism.

K Extended Evaluation: Impact of Feature Heterophily

In this section, we address the impact of feature heterophily on the Genie framework. We first clarify the
homophily characteristics of our primary datasets and then present a comprehensive evaluation on specific
heterophilic benchmarks to demonstrate the robustness of our watermarking scheme.

K.1 Homophily Ratios and Dataset Selection

Regarding the datasets used in our main evaluation (e.g., USAir, NS, Power, Router, C. elegans), we clarify
that these are topology-only datasets lacking intrinsic node attributes. To enable GNN training, we gen-
erated node features using node2vec. Since node2vec explicitly generates embeddings based on structural
proximity, it inherently induces a high degree of feature homophily (i.e., connected nodes possess similar em-
beddings by design). Furthermore, since these datasets lack ground-truth node labels, standard label-based
homophily metrics are inapplicable. We therefore treat these datasets as inherently homophilic.

To strictly quantify this relationship despite the circularity of structure-derived features, we computed the
Feature Homophily Score (K) as formally defined by Zhu et al. (Zhu et al., 2024). The metric K represents
the average mean-centered cosine similarity of connected nodes, where K > 0 indicates homophily. As shown
in Table 42, all original datasets exhibit positive K scores, confirming their homophilic nature.

To rigorously evaluate Genie under heterophily, we expanded our evaluation to include seven datasets
widely recognized in the literature for their heterophilic properties: Chameleon (Rozemberczki et al., 2021b),
Squirrel (Rozemberczki et al., 2021b), Roman-empire (Platonov et al., 2023), Amazon-ratings (Platonov
et al., 2023), Minesweeper (Platonov et al., 2023), Tolokers (Platonov et al., 2023), Questions
(Platonov et al., 2023), and E-comm (Shchur et al., 2018). These datasets possess intrinsic node features
(e.g., text, ratings) independent of the graph structure, providing a suitable testbed for heterophily.

Genie remains robust in heterophilic environments due to the stark contrast between the natural data
distribution and our injected watermark signal:

• Background Distribution: In heterophilic graphs, the general data distribution follows the rule
that connected nodes typically possess dissimilar features.
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Dataset Homophily Score (K) Interpretation

Power 0.5587 Strongly Homophilic
arXiv 0.4988 Strongly Homophilic
PPI 0.2266 Homophilic
NS 0.1895 Homophilic
Yeast 0.1593 Homophilic
USAir 0.0229 Weakly Homophilic
C. ele 0.0109 Weakly Homophilic

Table 42: Feature Homophily Scores (K) for the original datasets used in the main evaluation. K > 0
indicates feature homophily.

• Injected Signal: The Genie trigger creates a specific set of links between nodes that share the
exact same secret feature vector w.

• Result: The watermark introduces a pattern of perfect feature homophily that stands in contrast
to the predominantly heterophilic structure of the graph. Because this injected signal deviates from
the general data distribution, it creates a distinctive pattern that is straightforward for the model
to isolate and memorize during the fine-tuning phase.

Challenges and Architecture. The primary challenge in this setting is Utility Preservation. Standard
GNNs often struggle with heterophily. If a model is strictly optimized to penalize feature similarity to
maximize heterophilic performance, it might resist learning the homophilic watermark pattern. To address
this, we utilized a GraphSAGE encoder with an MLP decoder for these experiments, an architecture known
to effectively decouple ego-embeddings from neighbor-embeddings in heterophilic tasks.

K.2 Empirical Results

Table 43 summarizes the performance of Genie on these benchmarks. The results confirm our hypothesis:
Genie achieves near-perfect Watermark Accuracy (≥ 99%) across all datasets regardless of the background
heterophily. Furthermore, the Utility Loss is negligible (typically < 1%). Notably, in datasets like Amazon-
ratings and Questions, the watermarked model marginally outperforms the clean baseline, suggesting the
watermark may provide a regularization effect.

Dataset Ctest Wtest Wwm

Chameleon 99.16 99.14 100.00
Squirrel 99.41 99.37 100.00
E-comm 98.49 97.49 100.00
Amazon-ratings 50.44 50.52 100.00
Minesweeper 88.81 88.15 100.00
Tolokers 97.53 96.58 100.00
Questions 51.36 51.60 99.22

Table 43: Performance of Genie on heterophilic graph benchmarks using GraphSAGE. The table compares
the Clean Test AUC (Ctest), Watermarked Test AUC (Wtest), and Watermark Verification Accuracy (Wwm).

K.3 Quantitative Analysis of Heterophily

To quantitatively characterize the heterophily of the new benchmarks, we report the Edge Homophily (Hedge)
and Adjusted Homophily (Hadj) scores. Unlike our initial topology-only datasets, these benchmarks pos-
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sess ground-truth node labels, allowing us to utilize standard label-based metrics widely adopted in GNN
literature Platonov et al. (2023).

• Edge Homophily (Hedge): Measures the fraction of edges connecting nodes of the same class. It
is defined as:

Hedge = |{(u, v) ∈ E : yu = yv}|
|E|

(9)

where E is the set of edges and yu, yv denote the class labels of nodes u and v. Low values indicate
that neighbors likely belong to different classes.

• Adjusted Homophily (Hadj): Corrects Hedge to account for the number of classes and class
imbalance. It is defined as:

Hadj = Hedge −
∑C

k=1 D2
k

1−
∑C

k=1 D2
k

(10)

where C is the number of classes, and Dk is the empirical degree proportion of class k. Values of
Hadj ≈ 0 indicate random connectivity, while Hadj < 0 indicates strong heterophily.

As shown in Table 44, datasets such as Tolokers and Questions exhibit negative adjusted homophily, con-
firming their strong heterophilic structure. Chameleon and Squirrel show low adjusted homophily (≈ 0.03),
indicating connectivity largely independent of node labels. Despite these challenging structural properties,
Genie maintains high verification success, validating its robustness.

Dataset Hedge Hadj Interpretation

Questions 0.8396 -1.7706 Strong Heterophily
Tolokers 0.5945 -0.1883 Strong Heterophily
Minesweeper 0.6828 0.0087 Heterophilic
Squirrel 0.2221 0.0277 Heterophilic
Chameleon 0.2299 0.0353 Heterophilic
Amazon-ratings 0.3804 0.1505 Weak Homophily
E-comm 0.7772 0.7186 Homophilic

Table 44: Label Homophily Scores for the heterophilic benchmarks.

L Notations used in our paper

In this section, we establish the mathematical conventions and terminology utilized throughout the
manuscript. To assist the reader in navigating the technical descriptions of our watermarking framework
and its evaluation, we provide a comprehensive glossary of symbols in Table 45. The table is organized
to distinguish between general graph theoretic notations, specific entities within our threat model, and the
performance metrics used to quantify utility and watermark verification success.

M Algorithms for GENIE

In this section, we outline the algorithms for both node-representation and subgraph-based link prediction
methods using Genie. Algorithm 1 outlines the watermark embedding algorithm for node-representation
based link prediction methods, Algorithm 2 outlines the watermark embedding algorithm for subgraph-based
link prediction methods, Algorithm 3 outlines the DWT method and finally Algorithm 4 outlines the final
ownership demonstraion.
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Notation Description
G = (V, E) A graph
V Set of nodes of G
E Set of edges of G
A Adjacency matrix of G
[n] Set {1, 2, ..., n}
O Owner
A Adversary
J Judge
M Generic GNN model
Mown O’s trained model
C Clean (Non-watermarked) model
W Watermarked model
Madv A’s model
D Generic graph dataset
Dtr Training dataset
Dtest Testing dataset
Dwm Watermarking dataset (secret)
Cwm AUC score of C on Dwm

Wwm AUC score of W on Dwm

Wtest AUC score of W on Dtest

Ctest AUC score of C on Dtest

Table 45: A summary of the notations used in our work.

Algorithm 1 Embedding Watermark using GENIE for Node Representation-based methods
Require: Graph G = (V, E), Node features X, Clean edges Etrain, Model fθ, Budget ρ, Dimension d
Ensure: Watermarked GNN model fθ∗

1: 1. Watermark Generation
2: Generate secret watermark vector s ∼ N (0, I) ∈ Rd

3: Randomly sample node subset Vwm ⊂ V based on budget ρ
4: Construct trigger edge set Ewm by pairing all nodes in Vwm and removing all existing edges
5: 2. Feature Injection
6: for each node v ∈ Vwm do
7: Xv ← s {Replace features of trigger nodes}
8: end for
9: 3. Watermark Embedding

10: Initialize model parameters θ
11: while not converged do
12: Sample batch of clean edges Bclean ⊂ Etrain

13: Compute clean loss Lclean on Bclean

14: Update θ ← θ − η∇θ(Lclean)
15: Sample batch of trigger edges Bwm ⊂ Ewm

16: Compute watermark loss Lwm on Bwm

17: Update θ ← θ − η∇θ(Lwm)
18: end while
19: return fθ∗
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Algorithm 2 Embedding Watermark using GENIE for Subgraph-based methods
Require: Training links Etrain (Positives & Negatives), Graph G, Node features X, Budget ρ
Ensure: Watermarked SEAL model fθ∗

1: 1. Watermark Generation
2: Generate secret watermark vector s ∈ Rd

3: 2. Subgraph Creation
4: Extract enclosing subgraphs for all training links: Dall ← {Extract(u, v) | (u, v) ∈ Etrain}
5: 3. Trigger Set Selection
6: Randomly select a subset of subgraphs Dwm ⊂ Dall based on budget ρ
7: 4. Trigger Modification (Features & Labels)
8: for each subgraph gi ∈ Dwm do
9: Replace all node features in gi with s

10: Flip label: yi ← 1− yi

11: end for
12: 5. Dataset Splitting
13: Remove trigger samples from training set: Dtrain ← Dall \ Dwm

14: 6. Watermark Embedding
15: Initialize model parameters θ
16: while not converged do
17: Sample batch of clean subgraphs Bclean ⊂ Dtrain

18: Compute clean loss Lclean on Bclean

19: Update θ ← θ − η∇θ(Lclean)
20: Sample batch of trigger subgraphs Bwm ⊂ Dwm

21: Compute watermark loss Lwm on Bwm

22: Update θ ← θ − η∇θ(Lwm)
23: end while
24: return fθ∗

Algorithm 3 Dynamic Watermark Thresholding (DWT)
Require: Clean scores Sc, Watermark scores Sw, Sample size n, Confidence γ
Ensure: Threshold t∗

1: m← ⌈− ln(1− γ)⌉ {Minimum blocks for confidence γ}
2: for k ∈ {c, w} do
3: σ̂k ← std(Sk)
4: hk ← 1.06 · σ̂k · |Sk|−1/5 {Silverman’s Rule}
5: P̂k ← KDE(Sk, hk) {Estimate Distribution}
6: end for
7: for j = 1 to m do
8: Sample blocks X

(j)
c ∼ P̂c and X

(j)
w ∼ P̂w of size n

9: end for
10: return t∗ s.t. ∀j : max(X(j)

c ) < t∗ < min(X(j)
w )
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Algorithm 4 GENIE Ownership Demonstration
Require: Owner O, Adversary A, Judge J , Blockchain B
Ensure: Ownership Verdict V ∈ {Confirmed, Denied}

1: Phase 1: Model Registration
2: O → J : Requests registration with graph G
3: J : Generates secret watermark dataset Dwm from G
4: J : Writes cryptographic hash H(Dwm) to B
5: O: Embeds Dwm into model
6: Phase 2: Dispute Resolution
7: O → J : Submits Dwm, Mown and claims ownership
8: A → J : Submits suspect model Madv

9: J : Retrieves hash hstored ← Read(B)
10: if H(Dwm) ̸= hstored then
11: return Denied (Hash Mismatch / Evidence Tampered)
12: end if
13: J : Calculates threshold t using DWT procedure
14: J : Computes watermark score s← Eval(Madv,Dwm)
15: if s > t then
16: return Confirmed
17: else
18: return Denied
19: end if
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