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Abstract
RL-based techniques can be used to search001
for prompts that when fed into a target002
language model maximize a set of user-003
specified reward functions. However, in many004
target applications, the natural reward functions005
are in tension with one another – for example,006
content preservation vs. style matching in style007
transfer tasks. Current techniques focus on008
maximizing the average of reward functions,009
which does not necessarily lead to prompts that010
achieve balance across rewards – an issue that011
has been well-studied in the multi-objective012
and robust optimization literature. In this paper,013
we adapt several techniques for multi-objective014
optimization to RL-based discrete prompt015
optimization – two that consider volume of016
the Pareto reward surface, and another that017
chooses an update direction that benefits018
all rewards simultaneously. We conduct019
an empirical analysis of these methods on020
two NLP tasks: style transfer and machine021
translation, each using three competing reward022
functions. Our experiments demonstrate that023
multi-objective methods that directly optimize024
volume perform better and achieve a better025
balance of all rewards than those that attempt026
to find monotonic update directions.027

1 Introduction028

Discrete prompt tuning involves refining a text029

prompt for a language model (LM) to maximize030

a set of user-specified objectives on the LM’s031

output (Shin et al., 2020; Schick and Schütze, 2020;032

Wen et al., 2023). Successful techniques for prompt033

tuning allow users to control and adapt powerful034

LLMs to new tasks without the trial-and-error of035

manual prompt design. While RL-based techniques036

have been shown to be effective at finding prompts037

that optimize an average of rewards (Deng et al.,038

2022), in many target applications, the natural039

reward functions are in tension with one another.040

For example, as depicted in Figure 1, many041

style transfer tasks need to both maintain content042

Figure 1: A modern to Shakespearean text style
transfer setting where each dot represents an output
sentence sampled from an LM conditioned on either a
prompt trained with average reward (left) or a prompt
trained using multi-objective optimziation techniques
(right). The output sample 1 only optimizes for style
match, while output sample 2 only addresses content
preservation. Sample 3, on the other hand, balances both
objectives at the same time. The shaded regions indicate
measures of volume of the Pareto reward surface.

preservation while simultaneously maximizing 043

transfer into the target style – two objectives that 044

are directly at odds with one another. Thus, 045

current techniques result in a phenomenon we 046

refer to as objective collapse: focusing on 047

maximizing the average of reward functions (also 048

called scalarization) can lead to prompts that 049

disproportionately maximize a subset of objectives 050

at the expense of others. For instance, in 051

Figure 1, the prompt on the left side tends to 052

produce LM outputs (represented by blue dots) that 053

prioritize one objective over the other. Conversely, 054

the prompt on the right side produces samples 055

that achieve reasonable performance across all 056

objectives simultaneously. However, in both cases 057

the average reward is nearly equivalent. 058

In this paper, we adapt several techniques 059

for multi-objective optimization to the RL- 060

based discrete prompt optimization setting and 061

evaluate their effectiveness in achieving a more 062
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useful balance of rewards in downstream tasks.063

Specifically, we propose two approaches that064

consider the volume of the Pareto reward surface,065

and another that chooses an update direction that066

benefits all rewards simultaneously.067

Our first method computes the hypervolume068

indicator (HVI) (Knowles et al., 2004) for a set069

of samples drawn from a given prompt, and treats070

this measure as the final reward in RL. Intuitively,071

HVI measures the area under the Pareto frontier072

of the outputs sampled from the current prompt073

(shown by the outer rectangular region in Figure 1).074

Samples that achieve a better balance of reward075

lift the Pareto frontier and increase HVI. However,076

this method has a potential pitfall: if even a single077

outlier sample (e.g. depicted by the red dot labeled078

with a four in Figure 1) happens to achieve a079

high value across all rewards, the HVI can be080

extremely high. This dominant outlier effect may081

reduce the robustness of HVI optimization in an082

RL setting. Thus, we also propose and evaluate083

a simpler method that approximates the expected084

volume by simply computing the average product085

of rewards (depicted by the dark rectangular region086

in Figure 1). Our final approach takes a different087

strategy based on steepest gradient descent (Fliege088

and Svaiter, 2000). Here, we approximate the089

gradient of the expectation of each individual090

reward separately, and then search for an update091

direction in their span that has a non-negative dot092

product with each reward gradient – i.e. designed093

to make monotonic progress in every reward094

simultaneously.095

To understand the effectiveness of these096

approaches in the discrete prompt optimization097

setting, we conduct experiments on two text098

generation tasks: text style transfer and machine099

translation using sets of competing reward100

functions. Our findings indicate that volume-101

based methods are most effective in this setting,102

achieving substantial gains in balance compared to103

the baseline methods. RL-based steepest descent104

also improves balance, but not nearly as robustly105

as volume-based methods.106

2 Problem Statement107

Given multiple objectives and their corresponding108

reward functions {r1, r2, . . . rm}, we propose a109

discrete prompt optimization method for controlled110

text generation. We refer to a set of discrete111

prompts as Z = {z1, z2, . . . zn}, the input text as112

x, and the text generated by the LM as y. The 113

unsupervised task requires texts as inputs whereas 114

supervised tasks also take the targets as additional 115

inputs. We aim to generate a prompt that is added 116

to the beginning of the input and cause the LM to 117

generate output text compliant with the objectives. 118

3 Methodology 119

3.1 Optimization problem 120

We formulate discrete prompt optimization as 121

an RL problem, where we train a multi-layer 122

perceptron (MLP) head over a frozen language 123

model as our policy network. 124

At each step, given a text input x, we sample k 125

prompts {z1, z2, . . . zk} from the policy πθ, where 126

θ represents the policy parameters. Subsequently, 127

we utilize another frozen language model pLM 128

to generate k̂ output sentences for each pair of 129

input x and prompt zi. Then, we assess the 130

quality of these outputs using the reward function 131

ri corresponding to each objective1. Finally, the 132

optimization problem centers on maximizing these 133

rewards as follows: 134

max
θ

k·k̂∑
i=1

Ez∼πθ

Ey∼pLM (y|x,z)

 m∑
j=1

rj (y, x)


(1) 135

3.2 RL-based Volume Indicator 136

In this section, we investigate two approaches that 137

aim to improve the volume coverage of rewards. 138

3.2.1 Hyper-volume indicator 139

The hypervolume indicator (Knowles et al., 2004; 140

Zitzler and Thiele, 1998) is defined for a point set 141

S ⊂ Rd and a reference point r ∈ Rd, where 142

hypervolume indicator of S quantifies the region 143

dominated by S and bounded by r, denoted as: 144

H( S)=Λ
({

q ∈ Rd | ∃p ∈ S : p ≤ q and q ≤ r
})

145

where Λ(·) shows the Lebesgue measure for the 146

sub-space. 147

We consider the hypervolume indicator of the 148

individual reward functions as the reward signal for 149

training the policy network. We then calculate the 150

efficient SQL learning loss (Guo et al., 2022) based 151

on this reward and update the policy network’s 152

parameters using gradient descent. 153

1For simplicity, we assume the reward value is solely
dependent on the generated text y and the input text x. It
can be easily expanded to include prompt z or the reference
text, if necessary.
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Sentiment vs Content Style vs Sentiment Style vs Content

Figure 2: Text Style Transfer. From left to right, positive sentiment vs. content match, Shakespearean style vs.
positive sentiment, and Shakespearean style vs. content match for different settings of average reward, hyper volume
indicator reward, product reward, and multiple gradient descent algorithm are shown.

3.2.2 Expected product of rewards154

We obtain k̂ samples as output per prompt and for155

each sentence, we compute all m reward values,156

and calculate the product of rewards. We utilize the157

expected product of rewards across all k̂ samples158

as the final reward signal for policy updates.159

3.3 Multiple Gradient Descent Algorithm160

with RL161

In this section, we investigate multiple gradient162

descent algorithm (MGDA), which performs the163

steepest descent for multi-criteria optimization164

(Fliege and Svaiter, 2000), where the goal is to165

find a direction dt that improves all the objectives166

by the amount of αt, at each step t.167

(dt, αt) = arg min
d∈Rn,α∈R

α+
1

2
∥d∥2,

s.t. ∇Li (θt)
T d ≤ α, i = 1, . . . ,m.

(2)168

This approach has been used in continuous multi-169

task settings (Sener and Koltun, 2019; Lin et al.,170

2019). However, as we optimize for a discrete case,171

we compute stochastic gradient approximations.172

We calculate all the m rewards for each (z, x, y)173

triplet and optimize the soft Q-learning loss (Guo174

et al., 2022). More details in Appendix §A.1.175

4 Experiments176

4.1 Tasks & Datasets177

Unsupervised Text Style Transfer. We explore178

style transfer (Xu et al., 2012; Jin et al., 2022) into179

Shakespearean style. We consider three competing180

objectives: maintaining the original content of the181

input text, infusing it with Shakespearean style,182

and ensuring the resulting text conveys a positive183

sentiment. We test on the Shakespeare dataset (Xu184

et al., 2012; Jhamtani et al., 2017), and the reward185

function corresponding to content preservation is186

BertScore (Zhang et al., 2020), for sentiment is a187

Method Obj 1 Obj 2 Obj 3 Product Average

Text Style Transfer (Obj1: Content - Obj2: Style
Obj3: Sentiment)

Average 19.56 79.25 38.28 30.91 45.69
Product 34.58 57.78 35.11 36.04 42.49

HVI 25.39 67.91 38.76 32.44 44.02
MGDA 22.37 66.51 38.11 31.16 42.33

Machine Translation (Obj1: Content - Obj2: BLEU
Obj3: Sentiment)

Average 32.07 32.00 46.36 65.48 36.81
Product 32.95 31.70 46.47 65.98 37.04

HVI 31.18 30.51 48.69 63.21 36.79
MGDA 31.46 31.85 46.03 62.87 36.45

Table 1: Reward values corresponding to each objective
at a checkpoint where each method achieved the highest
average of the product of rewards across samples. Even
though the method utilizing the average of rewards
achieved the highest average value for style transfer,
we can observe an imbalance across various objective
values. The product method, on the other hand, got
highest product value, reflecting a more balanced
improvement.

sentiment RoBERTa-base classifier 2, and for style 188

is a DistilBERT-base-uncased model fine-tuned on 189

Shakespearean data. 3 190

Supervised Machine Translation. We 191

experiment on German to English translation task, 192

using the iwslt2017 data (Cettolo et al., 2017). The 193

objectives here include: (1) semantic similarity 194

between the generated translation and a reference 195

text using BertScore, (2) BLEU score (Papineni 196

et al., 2002) between generated text and reference, 197

and (3) conveying a positive sentiment. 198

4.2 Training Details 199

Following (Deng et al., 2022), we consider a multi- 200

layer perceptron head on top of a small frozen 201

2cardiffnlp/twitter-roberta-base-sentiment-latest
3notaphoenix/shakespeare_classifier_model
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distilGPT-2 model (Sanh et al., 2019) as the policy202

network. The policy network is trained for 12,000203

steps. The number of training samples used for text204

style transfer and machine translation are 100 and205

200, respectively. At each step, we sample eight206

prompts for a given input from the policy network,207

each comprising five tokens. Subsequently, we feed208

each prompt along with its corresponding input209

text into a separate LM to generate 128 output210

samples. We use GPT-2 (Radford et al., 2019) for211

text style transfer and flan-T5-small (Chung et al.,212

2022) for machine translation tasks. We repeat213

each experiment with three distinct random seeds214

and report the average results. Using NVIDIA RTX215

A6000, each experiment takes about 20-24 hours.216

5 Results217

We compare the effectiveness of 4 methods - (1)218

average of rewards (Deng et al., 2022), (2) expected219

product of rewards, (3) HVI, and (4) MGDA. For220

the Shakespearean text-style transfer task, we show221

the pairwise objective values in Figure 2. Each222

data point on the scatter plot represents the average223

objective value computed from 128 output samples,224

where each sample is generated from a prompt225

sampled from the policy network and an input226

sentence from the validation dataset. Figure 2227

illustrates how relying on the average of reward228

values can result in the sacrifice of individual229

objectives in favor of overall improvement. We230

observe instances where sentiment and style scores231

are notably low, despite a high content score.232

This phenomenon arises due to the emphasis233

placed solely on the average of rewards, without234

consideration for individual objectives. MGDA235

performs slightly better than the average reward236

when balancing the individual objectives. However,237

the HVI and the product of rewards improve all the238

objectives simultaneously, with greater success.239

Similarly, we present the pairwise objective240

values for the machine translation task in figure 3241

in Appendix §A.3. Again, we observe objective242

collapse for the average reward setting, while243

the other three approaches demonstrate a better244

balance among objectives while enhancing the245

joint reward. Notably, the hyper-volume approach246

and the product of rewards are more successful in247

optimizing all the objectives, simultaneously.248

As the expected product of rewards serves as249

a reliable approximation of performance across250

objectives, we employ this metric to select a251

checkpoint for each approach. Subsequently, 252

we report individual objective values, as well 253

as their product and average across samples, in 254

Table 1. When evaluating based on the product 255

as the evaluation metric, the product method 256

demonstrates superior performance compared to 257

the other approaches. Additionally, we observe 258

a more balanced improvement across all rewards 259

with volume-based methods such as HVI and 260

product, in contrast to Average and MGDA. For 261

example, in style transfer task, the “average” 262

method improves style disproportionately higher 263

than other objectives despite achieving the best 264

performance based on the Average metric. 265

6 Related Work 266

Prompt Tuning. A line of research has emerged 267

with a focus on improving the discrete (Jiang et al., 268

2020; Prasad et al., 2023; Mishra et al., 2022) 269

and soft prompts (Li and Liang, 2021; Qin and 270

Eisner, 2021; Vu et al., 2022; Liu et al., 2023) for 271

improved downstream performance. Few recent 272

works generate discrete prompts by utilizing the 273

models gradients (Shin et al., 2020; Wen et al., 274

2023), employing evolution algorithms (Guo et al., 275

2023), and reinforcement learning (Zhang et al., 276

2023; Deng et al., 2022; Jung and Kim, 2023; Wang 277

et al., 2023). Our work shares a similar direction, 278

but we focus on multiple competing objectives 279

instead of one. 280

Multi-objective Reinforcement Learning. 281

Multi-objective reinforcement learning is typically 282

studied in decision-making (Van Moffaert et al., 283

2013; Van Moffaert and Nowé, 2014; Yang et al., 284

2019; Xu et al., 2020; Hayes et al., 2022). Jang 285

et al. (2023) fine-tunes LMs for multiple objectives 286

by training one policy model per objective and 287

merging them. (Lin et al., 2019; Sener and Koltun, 288

2019) perform multi-objective RL in a multi-task 289

learning setup. Instead, we propose optimizing the 290

prompts for one model with multiple objectives. 291

7 Conclusion 292

We empirically investigate the use of optimization 293

techniques alongside reinforcement learning to 294

address discrete prompt optimization in a multi- 295

objective context. Our experiments show that 296

multi-objective methods, which directly optimize 297

the volume, outperform those seeking monotonic 298

update directions, achieving a better balance across 299

all rewards. 300
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8 Limitations301

The methods discussed in this paper take many302

GPU hours to converge, making it computationally303

expensive to run. Moreover, our optimization304

methods perform well on smaller LMs like GPT2,305

we have not experimented with larger models.306

9 Ethical Considerations307

This paper introduces three approaches for discrete308

prompt optimization. As such, prompt-tuning309

should not introduce biases not already observed310

in the model and generate any harmful text as311

prompts, and we do not anticipate any significant312

ethical concerns.313
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A Appendix506

A.1 Multiple Gradient Descent Algorithm507

(Fliege and Svaiter, 2000) proposes a steepest508

descent algorithm for multi-criteria optimization,509

where the update rule for the parameters θ at time510

t with the step size η is defined as:511

θt+1 = θt − ηdt (3)512

where the search direction dt is calculated as513

follows, with Li(θj) being the expected loss514

corresponding to objective oi:515

(dt, αt) = arg min
d∈Rn,α∈R

α+
1

2
∥d∥2,

s.t. ∇Li (θt)
T d ≤ α, i = 1, . . . ,m.

(4)516

A valid direction dt improves the values for all517

the objectives, simultaneously. Moreover, (Fliege518

and Svaiter, 2000) shows that the solution obtained519

by the aforementioned approach leads to a Pareto520

critical point.521

Based on the KKT conditions, we have522

dt = −

(
m∑
i=1

λi∇Li (θt)

)
,

m∑
i=1

λi = 1 (5)523

and we can write equation-4 in its dual form:524

max
λi

− 1

2

∥∥∥∥∥
m∑
i=1

λi∇Li (θt)

∥∥∥∥∥
2

s.t.
m∑
i=1

λi = 1, λi ≥ 0, ,∀i = 1, . . . ,m.

(6)525

A.2 MGDA-based efficient Soft Q-learning for526

policy update527

Algorithm 1 shows the procedure for policy updates528

using MGDA and soft Q-learning.529

A.3 Pairwise reward values for Machine530

Translation Task531

We present pairwise reward values for machine532

translation task for each method in Figure 3.533
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Algorithm 1 MGDA-based policy update for one input sentence
1: Input: Input sentence x, policy πθ, reward models r1...m, external frozen LM
2: {z1...k} ∼ πθ(x) ▷ Sample k prompts from the policy
3: for i = 1. . . k do:
4: {y1...k̂} ∼ pLM (y|x, zi) ▷ Sample k̂ output sentences from a desired LM
5: end for
6: for i = 1 . . . k · k̂ do:
7: calculate r1...m(yi, x) ▷ Calculate r1...m for each output sentence y and input x
8: end for
9: for i = 1. . .m do:

10: Calculate Lm using rm ▷ Use efficient SQL loss (Guo et al., 2022)
11: end for
12: λ1, . . . , λm = FrankWolfeSolver(∇θLi (θ)) ▷ Find the direction using [6]
13: θ = θ − η

∑m
i=1 λi∇θLi (θ) ▷ Gradient descent on policy parameters

Sentiment vs Content BLEU vs Content BLEU vs Sentiment

Figure 3: Pairwise reward values for Machine Translation Task from German to English, in different settings of
average reward, hyper volume indicator reward, product reward, and multiple gradient descent algorithm.
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