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ABSTRACT

Automated sleep staging is a critical component in the diagnosis of sleep disor-
ders and the analysis of sleep architecture. While deep learning approaches that
leverage time-frequency representations have shown promise, their performance
remains suboptimal, primarily due to two fundamental limitations: (1) the in-
ability to effectively model the subtle distinctions of transitional sleep stages (N1
and N2), which exhibit ambiguous electrophysiological patterns, and (2) the in-
efficient fusion of complementary information from time-domain and frequency-
domain representations. To this end, we propose S3Net, a novel Stage-Aware
Sleep Staging Network that introduces two dedicated components to address these
challenges. First, a Stage-Aware Experts (SAE) module explicitly partitions the
sleep stages into easy- and hard-to-separate groups, processing them through sep-
arate expert network branches. This allows for specialized feature refinement,
particularly for the challenging transitional stages. Second, to foster a cohe-
sive representation, we design a Time Alignment Module (t-ALN) that projects
frequency-derived features onto the time axis, effectively bridging the domain gap
and enabling synergistic integration of multi-view features. We evaluate S3Net on
three public polysomnography datasets (ISRUC-S1, ISRUC-S3, and Sleep-EDF-
153). Our model consistently sets a new state-of-the-art, achieving an overall ac-
curacy of 85.6%, 86.6%, and 86.9%, respectively, and demonstrates a noticeable
improvement in classifying the N1 and N2 stages. The results validate the effi-
cacy of our stage-aware design and structural alignment strategy, offering a more
robust framework for clinical and portable sleep staging. Source code is available
at https://anonymous.4open.science/r/S3Net/.

1 INTRODUCTION

Accurate sleep stage classification is a critical diagnostic tool in clinical neurophysiology and a
fundamental task in sleep research (Sheybani et al., 2025). The prevailing methodology relies on
polysomnography (PSG), which captures multi-modal electrophysiological time series—notably
electroencephalography (EEG), electrocardiogram (ECG), electrooculography (EOG), and elec-
tromyography (EMG) signals. These data are manually annotated by sleep technologists into the five
stages (W, N1, N2, N3, REM) defined by the American Academy of Sleep Medicine (AASM) stan-
dard (Berry et al., 2017). This manual scoring paradigm, however, introduces significant bottlenecks
that impede scalability and objectivity. The process is inherently labor-intensive and exhibits consid-
erable inter-rater variability, even among experts (Yang et al., 2025). More fundamentally, manual
analysis is ill-suited to modeling the complex, non-linear temporal dynamics and high-dimensional
interactions present in raw PSG data. These limitations motivate the development of automated
staging systems capable of leveraging the full information of the signal for objective sleep analysis.

The demand of automated sleep staging has catalyzed the development of diverse deep learning
paradigms, which can be broadly categorized by their approach to modeling temporal and spectral
information. Initial efforts focused on temporal feature extractors, primarily employing Con-
volutional and Recurrent Neural Networks (CNNs and RNNs) (Supratak et al., 2017; Supratak &
Guo, 2020; Jia et al., 2020b; Phan et al., 2019; 2022). These models are effective at identifying lo-
calized characteristic waveforms (e.g., spindles, K-complexes) and learning short-to-medium-range
contextual transitions between stages. While offering a practical trade-off between model capacity
and computational cost, their ability to capture long-range dependencies is inherently limited by
sequential processing or finite receptive fields.
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(a) (b)

Figure 1: (a) Sleep stage transition matrix, and (b) Time position of spectral representation of
ResNet. Left branch (No-ALN) denotes the feature maps without alignment while right branch
(t-ALN) with time alignment.

To address this constraint, a second paradigm of long-range context modelers based on Trans-
former architectures has gained prominence (Ji et al., 2024; Zhou et al., 2025; Liu & Jia, 2023).
By leveraging self-attention mechanisms, these models can integrate information across the entire
recording, enabling globally coherent stage predictions and a more natural fusion of multi-channel
inputs. However, the self-attention mechanism is computationally intensive and operates on a pre-
defined feature space, which may underutilize the well-established spectral characteristics of sleep.

This limitation has motivated a third, distinct approach: spectral-domain analysis. Here, signals
are transformed into time-frequency representations (e.g., via spectrograms or wavelets) before be-
ing processed, often by CNN-based architectures (Peng et al., 2023; Liang et al., 2025; Fei et al.,
2024; Yang et al., 2025; Li et al., 2022). This transformation explicitly encodes clinically funda-
mental oscillatory rhythms (e.g., alpha, sigma, delta power) that are convolutional priors for sleep
staging, making them more salient than in the raw time domain. Furthermore, it provides a unified,
physiologically meaningful space for aligning and fusing heterogeneous signal modalities.

Despite considerable progress, automated sleep staging models remain constrained by two funda-
mental limitations. First, current architectures exhibit ineffective modeling of subtle inter-stage
transitions, particularly between light sleep stages N1 and N2. The transition matrix in Figure 1a
shows that N3 and REM form a relatively stable regime, as reflected by high self-transition prob-
abilities and minimal cross-transitions. In contrast, N1 exhibits pronounced instability, with ele-
vated flows toward adjacent stages W and N2, highlighting its role as a transitional state between
wakefulness and light sleep. This performance disparity stems from a critical architectural mis-
match: conventional approaches employ a monolithic processing pipeline that fails to account for
the heterogeneous discriminative complexity across sleep stages. These models allocate uniform
representational capacity to all stages, resulting in insufficient modeling power for the subtle, low-
signal-to-noise-ratio patterns characterizing transitional stages (N1/N2), while over-parameterizing
the classification of highly distinctive waveforms in stages like N3 and REM.

Second, existing methods show ineffective cross-domain integration of time-frequency representa-
tions. As shown in Figure 1b, contemporary approaches typically employ CNNs to learn frequency
representations and Transformers to model temporal dependencies, while they suffer from a funda-
mental representational misalignment. Frequency representations extracted by CNNs are typically
flattened before being fed to Transformer networks, which disrupts their inherent temporal struc-
ture and positional coherence. Since Transformer networks critically rely on precise positional
embeddings for modeling temporal relationships, this flattening operation causes a disintegration
of temporal alignment between frequency-domain and time-domain representations. Consequently,
the model’s capacity for effective cross-domain feature interaction is severely compromised, leading
to suboptimal fusion of complementary information and ultimately degrading staging performance.

To address these challenges, we introduce S3Net, a novel sleep staging framework that integrates
two core innovations designed to overcome fundamental limitations in existing approaches. First,
our Time Alignment Module (t-ALN) explicitly resolves the temporal representation mismatch be-
tween spectral and temporal domains by projecting frequency-derived features onto the temporal
axis through a learnable alignment operation, enabling coherent cross-domain fusion. Second, our
Stage-Aware Experts (SAE) module dynamically modulates representational weights across two
specialized branches to address the heterogeneous complexity of sleep stages. The hard-separated

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

expert is tailored to capture the subtle and transitional dynamics of stages W, N1, and N2, while the
easy-separated expert is designed to characterize the distinctive and more separable patterns of N3
and REM. We validate S3Net through extensive experiments on three public benchmarks (ISRUC-
S1, ISRUC-S3, and Sleep-EDF-153), demonstrating state-of-the-art performance, with a noticeable
improvement in the classification of transitional stages. Furthermore, our method provides both
quantitative improvements and qualitative insights into sleep stage dynamics. To facilitate repro-
ducibility, all code and preprocessed data will be publicly released. Overall, the key contributions
of our work are summarized as follows:

• We propose t-ALN, a novel temporal alignment module that bridges the spectral-temporal
representation mismatch in sleep staging through a learnable projection. Furthermore, t-
ALN as an information bottleneck constrains the temporal representation, thereby implic-
itly preserving features relevant to sleep stage classification.

• We introduce SAE, a stage-aware experts module, which is a dynamic architecture that
employs two specialized experts to address the heterogeneous complexity of sleep staging.
One expert captures the subtle dynamics of transitional stages (W, N1, N2), while the other
distinguishes the distinct stages of N3 and REM, leading to more robust and discriminative
feature learning.

• Empirical results demonstrate that S3Net sets a new state-of-the-art on three three major
sleep staging datasets of ISRUC-S1, ISRUC-S3, and Sleep-EDF-153. Furthermore, S3Net
achieves a steady reduction in inference time, as experimentally validated.

• The design choices of S3Net are rigorously validated by comprehensive ablation studies,
while the model’s interpretability is substantiated through visualizations such as alignment
maps, and analyses of expert routing behavior.

2 RELATED WORK

2.1 SLEEP STAGE CLASSIFICATION

Sleep stage classification is a long-standing task in biomedical signal processing, where deep mod-
els have shown strong potential in learning from complex, non-stationary PSG signals. Early
CNN- and RNN-based methods (Chen et al., 2023a; Jia et al., 2020a; Lee et al., 2024; Shen et al.,
2024; Phan et al., 2019; 2022) effectively captured local patterns and mid-range events like spin-
dles and K-complexes, but struggled with long-range dependencies due to limited receptive fields.
Transformer-based models, such as MixSleepNet (Ji et al., 2024), trans-SF-UIDA (Zhou et al.,
2025), and BSTT (Liu & Jia, 2023), addressed this by modeling broader temporal context via
self-attention. However, many still underutilize frequency-domain cues—like slow waves in N3
or REM’s fast oscillations—which are vital for accurate classification. To better integrate temporal
and spectral views, recent methods like MVF-SleepNet (Li et al., 2022), cVAN (Yang et al., 2025),
and SPTESleepNet (Chen et al., 2024) introduced multi-view fusion or spectral embeddings, while
WASR (Fei et al., 2024) reconstructed frequency features dynamically. Yet, most rely on early or
implicit fusion and lack structural alignment across domains. In contrast, we propose a time Align-
ment module called t-ALN for projecting spectral features onto the temporal axis, and a Cross Swin
Transformer (CST) to model cross-view dependencies for more robust and fine-grained classifica-
tion.

2.2 MIXTURE-OF-EXPERTS

Mixture-of-Experts (MoE) has been widely used in computer vision (Yu et al., 2024; Chen et al.,
2023b), time-series forecasting (Shi et al., 2025), and natural language processing (Zhao et al.,
2024), where routing inputs to specialized experts enables both model scaling and performance
gains. This mechanism also improves interpretability by encouraging different experts to focus on
distinct input patterns. Despite its effectiveness, MoE remains underexplored in physiological signal
analysis. A recent exception is Seizure-MoE (Du et al., 2023), which applies MoE to epileptic
seizure detection and shows the advantage of expert specialization in modeling pathological EEG
activity. However, in sleep stage classification, MoE has been rarely used. Given the structured yet
asymmetric nature of sleep transitions, we draw inspiration from the expert specialization paradigm

3
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in MoE and propose Stage-Aware Experts, which construct highly task-driven branches dedicated
to capturing stage-specific dynamics. By allocating sleep stages to two specialized expert pathways
and combining their outputs through Cross-Gate derived soft weights, the framework dynamically
models both stage-specific patterns and transition variability.
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Figure 2: An overview of the S3Net architecture. It consists of a temporal representation extractor,
a spectral representation extractor, and a stage-aware experts (SAE).

3 METHODOLOGY

3.1 PRELIMINARIES

The task of sleep stage classification typically relies on overnight PSG recordings, which we denote
as a dataset S = {(Xi, Yi)}Ni=1, where Xi represents an overnight PSG signal and Yi represents
the corresponding label sequence of the i-th subject. Each Xi is segmented into L consecutive 30-
second segments, i.e., Xi = {X l}Ll=1, where each segment X l = {x1, . . . ,xC} is a multivariate
time series across C channels and xc ∈ RT denotes the signal from the c-th channel. The label
sequence is Yi = {yl}Ll=1, with yl ∈ {0, 1, 2, 3, 4} indicating one of five standard stages: W, N1,
N2, N3, and REM. Additionally, we define an auxiliary label ylexpert ∈ {0, 1} for each segment,
where 0 corresponds to hard-separated stages (W, N1, N2) and 1 to easy-separated stages (N3,
REM), which serves to supervise the stage-aware expert module.

3.2 OVERVIEW OF S3NET

S3Net is a sophisticated deep learning framework designed for automated sleep stage classification,
engineered to overcome the fundamental challenges of fusing multi-modal physiological data and
accurately discriminating between sleep stages of varying complexity. As illustrated in the Figure 2,
the architecture follows a logical, multi-stage pipeline that progresses from raw signal input to the
final stage prediction, integrating several innovative components along the way.

The process begins with the simultaneous processing of multiple input signals, such as EEG, EOG,
ECG and EMG. These signals are processed through two parallel, dedicated pathways to extract
complementary representations. In the spectral pathway, the raw segment X l is transformed into the
time-frequency domain using a Short-Time Fourier Transform (STFT) to yield XSTFT, capturing
salient rhythmic patterns. Concurrently, the temporal pathway processes the original time-domain
segment X l, through convolutional embedding layers, to produce temporal feature XT

1 , preserving
the sequential dynamics and morphological features essential for understanding sleep architecture.

Based on the spectral representation extractor, the input XSTFT is transformed into frequency-
domain features through three Residual Blocks composed of convolutional layers, which progres-
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sively capture multi-level time–frequency representations. To enhance interpretability and guide the
model’s focus toward physiologically meaningful patterns, the extracted features are element-wise
squared to yield spectral energy representations, denoted as [XE

1 , XE
2 , XE

3 ]. These energy repre-
sentations encode localized energy distributions across both time and frequency dimensions.

The temporal representation extractor is constructed upon the Cross Swin Transformer (CST, see
Appendix A.3), inspired by the original Swin Transformer (Liu et al., 2021) design but adapted to
enable effective cross-domain fusion. This module integrates temporal and spectral features while
simultaneously capturing localized short-term dynamics (e.g., spindles) and long-range dependen-
cies spanning entire sleep cycles. To further alleviate misalignment between temporal and spectral
characteristics, a dedicated Time Alignment operation is introduced, generating temporally aligned
spectral representations [XQ

1 , XQ
2 , XQ

3 ] from the corresponding energy features [XE
1 , XE

2 , XE
3 ].

These aligned representations preserve sequential coherence and provide a structured basis for cross-
domain interaction. Within this formulation, XQ

1 is employed as the query, while the temporal
embedding XT

1 serves as both key and value. Leveraging the expressive modeling capacity of the
Cross Swin Transformer, the framework progressively integrates information by fusing XQ

1 with
XT

1 to obtain XT
2 , and iteratively extending this process to yield XT

3 , resulting in refined temporal
representations that unify information from both time and frequency domains.

Once both temporal and spectral representations have been derived, Stage-Aware Experts (SAE) are
introduced to explicitly disentangle the heterogeneous discriminative difficulty across sleep stages.
A hard-separated expert is dedicated to capturing the subtle, low-signal-to-noise-ratio patterns and
highly transitional characteristics that define transitional stages (W, N1, N2), with particular empha-
sis on the instability of N1, which is especially prone to transitions into other stages. In contrast,
an easy-separated expert is responsible for distinguishing stages with highly distinctive waveforms,
such as N3 and REM, thereby preventing the excessive allocation of capacity to relatively separable
states. This expert specialization enables adaptive distribution of representational resources accord-
ing to stage-specific complexity, relying on the refined temporal representation XT

3 together with the
final aligned spectral representation XQ

3 . To further consolidate decision reliability, a Cross-Gate
mechanism is incorporated to softly weight the outputs of the two experts, facilitating input-adaptive
fusion and producing the final prediction.

3.3 TIME ALIGNMENT

As illustrated in the t-ALN component of Figure 2, the t-ALN connects the spectral branch to the
temporal branch. It reduces the mismatch between time- and frequency-domain features by map-
ping spectral energy maps into a compact, temporally organized query representation. This map-
ping is implemented as a learnable projection consisting of a Time-Window-Wise Linear layer and
a Transformer layer. Specially, to selectively emphasize informative structures in the energy maps
XE

i ∈ RCs×Fs×Ts , i ∈ {1, 2, 3}, we aggregate activations along the frequency and channel dimen-
sions to obtain frequency-wise and channel-wise energy statistics, which are then normalized with a
softmax function to produce two sets of attention weights: a frequency-wise weight WF

i ∈ RF and
a channel-wise weight WC

i ∈ RC , defined as

WF
i = softmax

(
1

CsTs

Cs∑
c=1

Ts∑
t=1

XE
i

)
, WC

i = softmax

 1

FsTs

Fs∑
f=1

Ts∑
t=1

XE
i

 . (1)

These weights are then applied to enhance the spectral energy along their respective dimensions:

X̃E
i = XE

i ·WF
i ·WC

i , (2)

producing an energy-refined representation X̃E
i ∈ RTs×Fs×Cs that highlights frequency- and

channel-specific patterns. Following this refinement, the enhanced energy maps are passed through
a Time-Window-Wise Linear layer, which performs a linear projection on the channel dimension
within each time window, yielding a more compact channel representation. To preserve the tempo-
ral identity of each time step before flattening, stepwise positional encodings are incorporated along
the time axis so that time-specific information remains distinguishable in the subsequent flattened
representation. The resulting projected features XW

i ∈ RTs×Fs×Ds thus encode time-specific in-
formation in a form that supports structured interaction across time and frequency domains. The
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projected features are then flattened by concatenating the representations of successive time steps,

X̃W
i =

[
XW

i (1, :, :), XW
i (2, :, :), . . . , XW

i (Ts, :, :)
]
. (3)

so that all features belonging to the same time step are associated with an identical temporal posi-
tional embedding after flattening. This sequence X̃W

i ∈ R(Ts·Ds)×Fs is subsequently processed by
a Transformer layer to model contextual dependencies across frequency bands. The Transformer
outputs XQ

i , a temporally aligned and spectrally refined query representation that conforms to the
input format required by the CST and serves as the final output of t-ALN for downstream sleep
stage classification. When XQ

i is used as the query in cross-attention with the temporal features,
it further acts as an information bottleneck on the temporal pathway: only temporal patterns that
are consistent with the spectro-temporal cues encoded in XQ

i receive high attention weights, which
suppresses noise from temporal representation and preserves discriminative features for sleep stag-
ing. The t-ALN algorithm and its theoretical analysis are described in Appendices A.2 and A.18,
respectively.

3.4 STAGE-AWARE EXPERTS

To accommodate the complex transition dynamics of sleep stages—particularly the hard-separated
N1 stage—we introduce the Stage-Aware Experts (SAE) module, as illustrated in figure 2. Given the
varying degrees of separability across stages, we design two specialized expert branches: a Hard-
Separated Expert for transitional stages (W, N1, N2) and a Easy-Separated Expert for stable stages
(N3, REM). Each expert comprises a CST block (without patch merging) and a classifier head. The
temporal representation XT

3 and the temporally aligned spectral representation XQ
3 are jointly fed

into both experts:

yHard = Hard-Separated Expert(Q = XQ
i , K = XT

i , V = XT
i ),

yEasy = Easy-Separated Expert(Q = XQ
i , K = XT

i , V = XT
i ).

(4)

To dynamically allocate their outputs, we employ a Cross-Gate mechanism, where XQ
3 serves as the

query and XT
3 as the key and value:

ŷlExpert, wHard, wEasy = Cross-Gate(Q = XQ
3 , K = XT

3 , V = XT
3 ),

ŷl = Concat(wHard · yHard, wEasy · yEasy).
(5)

Here, ŷlexpert denotes the gating logits produced by the Cross-Gate module. These logits are passed
through a softmax layer to derive the expert weights wHard and wEasy. The final five-class prediction
ŷl is formed by weighted concatenation of the expert outputs. To jointly supervise both the final pre-
diction and the expert routing behavior, we adopt a hybrid loss comprising a five-class classification
loss for the final prediction and a binary classification loss for the expert routing:

Ltotal = Lcls + αLaux = CE(ŷl, yl) + αCE(ŷlExpert, y
l
Expert). (6)

where Laux encourages the Cross-Gate module to assign inputs to the appropriate expert. A balanc-
ing coefficient α is used to combine the two terms. In addition, Appendix A.17 provides a theoretical
analysis demonstrating the effectiveness of SAE, with supporting empirical validation.

4 EXPERIMENTS

4.1 IMPLEMENT DETAILS

All experiments are conducted using Python 3.11 and PyTorch 2.6.0. The training and evaluation
processes are performed on a workstation with four NVIDIA RTX A6000 GPUs, with 10,752 CUDA
cores and 48GB of VRAM. The system is powered by an Intel Xeon Platinum 8474C CPU with
512GB of system memory. Architectural and training details are provided in Appendix A.5.

4.2 DATASETS

We evaluate S3Net on three publicly available overnight PSG datasets: ISRUC-S1, ISRUC-S3, and
Sleep-EDF-153. All recordings are segmented into 30-second segments and annotated according to

6
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AASM or R&K standards. For the ISRUC datasets (S1 and S3), we use the same set of 10 channels
comprising EEG, EOG, EMG, and ECG signals, while for Sleep-EDF-153 we use two EEG channels
as inputs. In total, we use 87,187, 8,589, and 195,292 sleep segments from ISRUC-S1, ISRUC-S3,
and Sleep-EDF-153, respectively. Further dataset details are provided in the Appendix A.7.

4.3 BASELINES

We compare S3Net with 15 representative sleep staging models, covering various temporal architec-
tures. These include DeepSleepNet (Supratak et al., 2017), TinySleepNet (Supratak & Guo, 2020),
XSleepNet (Phan et al., 2022), SleePyCo (Lee et al., 2024), SeqSleepNet (Phan et al., 2019), MVF-
SleepNet (Li et al., 2022), DGraphormer-SleepNet(Huang et al., 2025), cVAN (Yang et al., 2025),
STGCN (Jia et al., 2020b), MSTGCN (Jia et al., 2020a), StAGN (Chen et al., 2023a), MixSleep-
Net (Ji et al., 2024), BSTT (Liu & Jia, 2023), SLEEPSMC (Ma et al., 2025), and CIMSleepNet (Shen
et al., 2024). Full details of the baselines are provided in the Appendix A.8.

Table 1: Performance comparison with state-of-the-art sleep staging methods across datasets.

Dataset Model Acc F1 κ
F1 score for per stage

W N1 N2 N3 REM

ISRUC-S1

SLEEPSMC(Ma et al., 2025) 0.771 0.746 0.702 0.886 0.480 0.751 0.814 0.800
MSTGCN(Jia et al., 2020a) 0.809 0.787 0.752 0.893 0.531 0.799 0.867 0.844
StAGN(Chen et al., 2023a) 0.811 0.790 - 0.895 0.547 0.797 0.876 0.836
DGraphormer-SleepNet(Huang et al., 2025) 0.814 0.788 - 0.907 0.511 0.800 0.874 0.846
BSTT(Liu & Jia, 2023) 0.820 0.803 0.768 - - - - -
MVF-SleepNet(Li et al., 2022) 0.821 0.802 0.768 0.908 0.562 0.811 0.871 0.857
MixSleepNet(Ji et al., 2024) 0.829 0.791 0.755 0.903 0.482 0.826 0.878 0.868
cVAN(Yang et al., 2025) 0.835 0.821 0.788 0.914 0.599 0.826 0.896 0.872
S3Net 0.856 0.842 0.814 0.933 0.628 0.840 0.910 0.900

ISRUC-S3

SeqSleepNet(Phan et al., 2019) 0.789 0.763 0.725 0.836 0.439 0.793 0.879 0.867
STGCN(Jia et al., 2020b) 0.799 0.787 0.741 0.878 0.574 0.776 0.864 0.841
SLEEPSMC(Ma et al., 2025) 0.793 0.782 0.734 0.876 0.572 0.775 0.872 0.812
MSTGCN(Jia et al., 2020a) 0.821 0.808 0.769 0.894 0.596 0.806 0.890 0.856
MVF-SleepNet(Li et al., 2022) 0.841 0.828 0.795 0.900 0.625 0.833 0.911 0.873
StAGN(Chen et al., 2023a) 0.844 0.836 - 0.907 0.663 0.832 0.895 0.881
DGraphormer-SleepNet(Huang et al., 2025) 0.854 0.845 - 0.919 0.676 0.838 0.907 0.883
cVAN(Yang et al., 2025) 0.856 0.842 0.810 0.915 0.674 0.844 0.911 0.864
S3Net 0.866 0.855 0.827 0.924 0.678 0.858 0.927 0.887

Sleep-EDF-153

DeepSleepNet(Supratak et al., 2017) 0.785 0.753 - 0.910 0.470 0.810 0.690 0.790
SLEEPSMC(Ma et al., 2025) 0.816 0.756 0.745 0.924 0.429 0.836 0.800 0.791
TinySleepNet(Supratak & Guo, 2020) 0.831 0.781 - 0.928 0.510 0.853 0.811 0.803
SeqSleepNet(Phan et al., 2019) 0.838 0.789 - 0.929 0.489 0.854 0.786 0.851
XSleepNet(Phan et al., 2022) 0.840 0.779 0.778 - - - - -
SleePyCo(Lee et al., 2024) 0.846 0.790 0.787 0.935 0.504 0.865 0.805 0.842
CIMSleepNet(Shen et al., 2024) 0.849 0.799 0.797 - - - - -
cVAN(Yang et al., 2025) 0.864 0.811 0.812 0.947 0.567 0.877 0.849 0.861
S3Net 0.869 0.828 0.818 0.950 0.571 0.877 0.868 0.877

Note: κ denotes Cohen’s kappa. The bold values indicate the best performance, and the underline values
indicate the second-best.

4.4 COMPARATIVE EXPERIMENT RESULTS

Through comprehensive evaluation across three benchmark datasets with 10-fold cross-validation
and results averaged over three random seeds to mitigate randomness (Table 1), the proposed S3Net
model achieves SOTA performance in all evaluation metrics - overall accuracy, macro F1 score, and
Cohen’s Kappa (κ) (See Appendix A.4). On ISRUC-S1, S3Net achieves 85.6% accuracy, outper-
forming cVAN (83.5%) and MixSleepNet (82.9%), with particularly significant gains in the chal-
lenging N1 stage (F1 score: 0.628). For ISRUC-S3, it attains 86.6% accuracy, surpassing cVAN
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(85.6%) and StAGN (84.4%), while showing substantial improvements in N2 and N3 classification.
On Sleep-EDF-153, S3Net reaches 86.9% accuracy, exceeding all compared methods including
cVAN (86.4%), while maintaining balanced performance across all stages. Overall, these consistent
improvements, particularly in transitional stages N1 and N2, validate the effectiveness of S3Net’s
stage-aware architecture and cross-domain feature integration strategy. Furthermore, stage-wise per-
formance nuances are revealed through the confusion matrices in Figure 3. Although N1 achieves
the highest F1 score as indicated in Table 1, it exhibits frequent misclassification as W and N2 across
all datasets. This is likely attributable to high transition probabilities toward these stages. In contrast,
the remaining stages demonstrate consistently high and stable classification performance.

(a) ISRUC-S1 (b) ISRUC-S3 (c) Sleep-EDF-153

Figure 3: Confusion matrices of S3Net on three datasets: (a) ISRUC-S1, (b) ISRUC-S3, and (c)
Sleep-EDF-153, aggregated over the 10-fold test sets.

(a) ISRUC-S1 (b) ISRUC-S3 (c) Sleep-EDF-153

Figure 4: t-SNE visualization of the discriminative feature space learned by S3Net for the (a)
ISRUC-S1, (b) ISRUC-S3, and (c) Sleep-EDF-153 datasets.

Figure 5: t-ALN visualization of XQ
1 time–frequency spectrograms. Each spectrogram is plotted

with time on the horizontal axis and frequency on the vertical axis.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: t-SNE visualizations of the CST output (XT
3 ), energy representations (XE

3 ), and tempo-
rally aligned features (XQ

3 ) under different alignment configurations: (a) No Cross-Layer Interac-
tion(no fusion between XQ

1 , XQ
2 and XT

1 , XT
2 ), (b)No-ALN, and (c) S3Net.

Table 2: Ablation study results of S3Net on the three datasets: ISRUC-S1, ISRUC-S3, and Sleep-
EDF-153.

Variant t-ALN SAE Laux
ISRUC S1 ISRUC S3 Sleep-EDF-153

Acc F1 κ Acc F1 κ Acc F1 κ

M1 × × × 0.785 0.779 0.724 0.791 0.778 0.731 0.806 0.768 0.736
M2 ✓ × × 0.809 0.803 0.754 0.818 0.800 0.767 0.822 0.778 0.756
M3 × ✓ × 0.821 0.816 0.770 0.827 0.817 0.778 0.832 0.790 0.771
M4 × ✓ ✓ 0.834 0.827 0.789 0.841 0.830 0.796 0.847 0.802 0.790
M5 ✓ ✓ × 0.846 0.835 0.801 0.852 0.838 0.810 0.853 0.811 0.798

M6 (S3Net) ✓ ✓ ✓ 0.856 0.842 0.814 0.866 0.855 0.827 0.869 0.828 0.818

Note: κ denotes Cohen’s kappa. The bold values indicate the best performance, and the underline values
indicate the second-best.

4.5 ABLATION STUDY

To rigorously evaluate each core component of S3Net, we conduct an ablation study on all three
datasets, ISRUC-S1, ISRUC-S3, and Sleep-EDF-153. As summarized in Table 2, the progressive
performance improvements from variants M1 to M6 (S3Net) are highly consistent across datasets,
systematically validating the efficacy of each proposed module. The baseline model (M1), without
any specialized components, exhibits the lowest performance on all metrics. Introducing the t-ALN
in M2 yields substantial gains across accuracy, macro F1, and Cohen’s κ, confirming its critical
role in bridging time- and frequency-domain representations for synergistic integration. Equipping
the model with the SAE module in M3 and further adding the auxiliary loss Laux in M4 lead to
additional, steady improvements, underscoring the importance of stage-specific feature refinement
and enhanced discrimination. When t-ALN and SAE are jointly employed in M5, performance is
markedly boosted and becomes the second-best configuration on the three datasets, highlighting the
complementary benefits of cross-domain alignment and stage-aware modeling. Finally, the full M6
(S3Net), integrating t-ALN, SAE, and Laux, consistently achieves the best accuracy, macro F1, and
Cohen’s κ on ISRUC-S1, ISRUC-S3, and Sleep-EDF-153, demonstrating that the proposed design
choices transfer robustly across heterogeneous cohorts and recording conditions.

4.6 VISUALIZATION AND INTERPRETABILITY

Discriminative Feature Visualization. Figure 4 presents the t-SNE visualization of S3Net’s fea-
tures, showing well-separated clusters for all five sleep stages across three datasets. The clear separa-
tion demonstrates the model’s ability to learn highly discriminative representations, providing strong
visual evidence of its robustness and generalization capacity for accurate sleep stage identification.
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Figure 7: t-SNE visualization of
the cross-gate features and corre-
sponding bar charts.

Effect of t-ALN. To intuitively demonstrate the functionality
of the t-ALN component, time-frequency spectrograms of differ-
ent sleep stages and alignment types are visualized. As shown in
Figure 5, compared to the No-ALN, t-ALN captures more dis-
tinct and stage-specific patterns while exhibiting clearer struc-
tural separation. The t-SNE results in Figure 6 further confirm
that S3Net achieves superior inter-class separation, validating
the effectiveness of t-ALN in enhancing spectral-temporal align-
ment.

Effect of Cross-Gate. As shown in Figure7, the t-SNE visu-
alization clearly reveals a distinct separation between the dif-
ferent distinct and transitional stages when using the proposed
cross-gate features. The corresponding bar chart illustrates a
97.1% cross-gate assignment success rate, further demonstrat-
ing the significant effectiveness of the proposed mechanism and
auxiliary loss in enhancing the model’s overall performance.

Figure 8: Hyperparameter performance of S3Net on ISRUC-S3.

Hyperparameter Tuning. Figure 8 shows that S3Net achieves the highest accuracy with an op-
timal configuration: α = 1, the embedding dimension is set to 64, 2 interaction blocks (each com-
prising a Residual Block, t-ALN, and CST), and 2 experts. Performance varies noticeably as these
hyperparameters change, with overly small or excessively large settings consistently leading to a
decline across Acc, F1, and κ scores. These results indicate that balanced auxiliary supervision,
moderate embedding capacity, and a compact model structure collectively contribute to improved
generalization performance.

5 CONCLUSION

In this paper, we have presented S3Net, a novel deep learning framework designed to address two
fundamental challenges in automated sleep staging: the difficulty in distinguishing transitional sleep
stages (N1 and N2) and the ineffective fusion of time-frequency representations. Our proposed SAE
module introduces a structured approach to sleep stage classification by explicitly separating stages
into distinct complexity groups and processing them through specialized network branches. This
design allows for targeted feature refinement, significantly improving performance on ambiguous
transitional stages. Complementing this, our t-ALN module enables coherent cross-domain inte-
gration by projecting frequency-derived features onto the temporal axis, effectively bridging the
representation gap between time and frequency domains. Extensive experiments on three public
datasets demonstrate that S3Net consistently achieves state-of-the-art performance, with particular
improvement in classifying the challenging N1 and N2 stages. Beyond quantitative improvements,
our framework offers valuable insights into sleep architecture through its interpretable design. The
proposed methodology not only advances automated sleep staging performance but also provides a
principled approach for handling heterogeneous complexity in physiological signal analysis.
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The datasets used in this paper are sourced from publicly available datasets. All data were used in
accordance with their original licenses and intended purposes for academic research. As the data
are public and do not contain personally identifiable information, this study did not require ethics
approval.

7 REPRODUCIBILITY STATEMENT

The model architecture is introduced in detail with equations and figures in the main text. All the
implementation details are included in the Appendix A.5, including dataset descriptions, metrics
of each task, model configurations, and experiment settings. Code is available at this repository:
https://anonymous.4open.science/r/S3Net/
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A APPENDIX

A.1 USAGE OF LLMS

We used large language models (LLMs) solely for polishing the writing, such as improving sentence
fluency and fixing grammar issues. No content generation, idea creation, or experimental analysis
was conducted by LLMs.
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A.2 ALGORITHM OF T-ALN

Algorithm 1 t-ALN

Require: Spectral feature X ∈ RB×Cs×Fs×Ts .
Ensure: Aligned sequence Y ∈ RB×Lout×Dmodel .
XE ← X ⊙X {Element-wise square to get energy}
WF ← Softmax(Mean(XE , dims = (Cs, Ts))) {Compute frequency-wise weights}
WC ← Softmax(Mean(XE , dims = (Fs, Ts))) {Compute channel-wise weights}
X̃E ← XE ·WF ·WC {Modulate energy with computed weights}
XW ← Linear(PermuteToFeatureLast(X̃E)) {Project to Ds dim; XW ∈ RB×Ts×Fs×Ds}
X̃W ← XW + PositionalEncoding(X̃E) {Add positional encoding}
X̃W ← ReshapeToSequence(X̃W ) {Form sequence X̃W ∈ RB×(Ts×Ds)×Fs}
Sattn ← SelfAttention(X̃W ) {Apply self-attention on the sequence}
Y ← Linear(Sattn) {Final projection to Dmodel; Y ∈ RB×(Ts×Ds)×Dmodel}
return Y

The t-ALN module aligns spectral and temporal features by first refining spectral energy maps with
frequency- and channel-wise attention weights. These refined features are then passed through a
Time-Window-Wise Linear layer, followed by a Transformer layer to capture temporal and spectral
dependencies. The output query representation is used in Cross-Swin Transformer with the temporal
features, enhancing sleep stage classification by suppressing noise and preserving discriminative
patterns.

A.3 CST IMPLEMENTATION DETAILS

CST performs window-based cross-attention to fuse temporal features XT
i ∈ RB×Li×Di with

frequency-aligned queries XQ
i ∈ RB×Li×Di produced by t-ALN from energy maps XE

i . Prior
to attention, both streams undergo identical pre-processing: layer normalization, right padding to a
multiple of the window length Wi, cyclic shift si ∈ {0, ⌊Wi/2⌋}, and partition into non-overlapping
windows of size Wi. The deepest aligned feature XQ

3 is consumed by SAE for routing and by expert
heads. The aligned spectral representations XQ

1 , XQ
2 , XQ

3 are preprocessed identically to XT
i before

window attention (layer normalization, right padding to a multiple of the window length Wi, cyclic
shift, and window partition), ensuring shared positional indexing and relative-position bias tables
across streams. Within a window w, multi-head cross-attention uses external queries from XQ

i (w)
and keys/values from XT

i (w):

Q = XQ
i (w)Wq, K = XT

i (w)Wk, V = XT
i (w)Wv, dh = Di/H,

with H heads and per-head scale dh. The attention weights are

A = softmax

(
QK⊤
√
dh

+Brel +Mw

)
,

where Brel is the 1D relative-position bias indexed by window offsets and Mw is the shifted-window
mask. The output is

O = AV Wo,

merged back to the sequence, followed by residual addition, layer normalization, an MLP, and an
Efficient Channel Attention (ECA) block. Blocks are stacked in BasicLayer with alternating regular
and shifted windows; masks Mw are cached per (Li,Wi, si). Let X̃T

i denote the output features
from the stacked CST blocks. PatchMerging is then applied to halve sequence length and double
channels:

XT
i+1 = PatchMerging

(
X̃T

i

)
, Li+1 = ⌈Li/2⌉, Di+1 = 2Di.

Expert CST blocks do not employ PatchMerging. Progressive fusion proceeds as (XT
1 , X

Q
1 )→ XT

2

and (XT
2 , X

Q
2 ) → XT

3 ; XQ
3 interfaces with SAE gating and experts. Per block, the dominant cost

scales with the number of windows ni = ⌈Li/Wi⌉ asO(B ni HW 2
i ); hierarchical merging reduces

Li and thus attention cost in deeper layers.
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A.4 EVALUATION METRICS

We report three standard classification metrics to evaluate model performance: accuracy, F1 score,
and Cohen’s kappa coefficient.

• Overall accuracy is the proportion of correctly predicted segments over the entire aggre-
gated test set across all folds.

• F1 score is the harmonic mean of precision and recall. We report the macro F1 over all five
sleep stages, treating each class equally regardless of class frequency. In addition, we also
report the per-stage F1 score (W, N1, N2, N3, REM), which are computed separately for
each class and reflect stage-specific performance.

• Cohen’s kappa evaluates inter-rater agreement normalized by chance, and is defined as

κ =
po − pe
1− pe

(7)

where po is the observed accuracy and pe is the expected accuracy by random chance. It
provides a robust measure that accounts for label imbalance.

All metrics are computed per dataset on the test set using standard sklearn implementations.

A.5 HYPERPARAMETER SETTING

We train all models using the AdamW optimizer with a learning rate of 3e-4 and a batch size of
32. The regularization weight α, embedding dimension, and number of interaction blocks (Residual
Block, Time Alignment and Cross Swin Transformer) are chosen based on validation performance,
while the number of experts is fixed to one for both hard- and easy-separated stages. A complete list
of hyperparameters is summarized in Table 3.

Table 3: Hyper-parameter Settings

Hyper-parameter Value
Optimizer AdamW
Learning rate 3e-4
Batch-size 32
Laux regularization weight (α) 1.0
Embedding dimension 64
Number of interaction block 2
Number of experts (Hard-Separated) 1
Number of experts (Easy-Separated) 1
Epoch 30

A.6 MODEL COMPLEXITY ANALYSIS

Our S3Net model comprises 6.49 million parameters and requires 2.70 GFLOPs to process a single
30-second sleep segment, where FLOPs are estimated as 2 ×MACs. As shown in Table 4, S3Net
uses substantially fewer parameters than MVF-SleepNet (39.51M) and slightly fewer than cVAN
(7.58M), while achieving considerably lower latency during both training (75.69 ms) and inference
(24.02 ms). All latency measurements were obtained with a batch size of 32 and averaged over
1,000 runs. Although S3Net requires more FLOPs than cVAN, the resulting computational overhead
remains moderate and still leads to noticeably faster inference in practice. These results indicate that
S3Net achieves a favorable balance between model capacity and computational efficiency.

A.7 DATASETS

We evaluate the proposed S3Net on three publicly available polysomnographic (PSG) datasets:
ISRUC-S1, ISRUC-S3, and Sleep-EDF-153, which is also referred to as Sleep-EDF-78. All datasets
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Table 4: Model efficiency comparison.

Model Params (M) GFLOPs Train (ms) Infer (ms)

MVF-SleepNet 39.51 11.06 – –
cVAN 7.58 0.47 157.01 66.72
S3Net 6.49 2.70 75.69 24.02

Table 5: The General Description of Sleep Datasets

Dataset Subject Segments W N1 N2 N3 REM
ISRUC-S1 100 87,187 20,098 11,062 27,511 17,251 11,265
ISRUC-S3 10 8,589 1,674 1,217 2,616 2,016 1,066
Sleep-EDF-153 153 195,292 65,790 21,522 69,106 13,039 25,835

contain full-night sleep recordings segmented into 30-second segments, with stage annotations pro-
vided by certified experts following the AASM or R&K standards. Each segment is labeled as one
of five sleep stages: Wake (W), N1, N2, N3, and REM. A summary of dataset statistics, including
the number of subjects and stage-wise segment distributions, is provided in Table 5.

• ISRUC-S1 (Khalighi et al., 2016) includes overnight PSG recordings from 100 subjects
(55 males and 45 females) with various sleep disorders, aged between 20 and 85 years.
Each recording lasts approximately eight hours and contains 12 PSG channels: 6 EEG
(C3-A2, C4-A1, F3-A2, F4-A1, O1-A2, O2-A1), 3 EMG (chin, leg-1, leg-2), 2 EOG, and
1 ECG. For our experiments, we select a 10-channel subset composed of 6 EEG, 2 EOG,
1 EMG (chin), and 1 ECG signal. The data are downsampled from 200 Hz to 100 Hz for
consistency across datasets. After segmentation, a total of 87,187 30-second segments are
obtained for training and evaluation.

• ISRUC-S3 (Khalighi et al., 2016) follows the same data acquisition protocol and channel
configuration as ISRUC-S1 but focuses on healthy individuals. It contains PSG recordings
from 10 healthy subjects (9 males and 1 female), aged between 30 and 58 years. Using
the same preprocessing pipeline and 10-channel subset as in ISRUC-S1 (6 EEG, 2 EOG,
1 chin EMG, and 1 ECG, downsampled from 200 Hz to 100 Hz), we obtain 8,589 anno-
tated 30-second segments. This dataset is particularly useful for validating generalization
performance on non-pathological data.

• Sleep-EDF-153 (Kemp et al., 2000) is derived from the expanded Sleep-EDF dataset and
contains PSG recordings from 153 healthy subjects aged 25 to 101 years. Each recording
is sampled at 100 Hz and annotated according to the older R&K standard. We select four
PSG channels for input: two EEG (Fpz-Cz and Pz-Oz), one EOG, and one EMG. For our
experiments, we select a 2-channel subset composed of 2 EEG. This dataset yields a total
of 195,292 labeled segments after segmentation and preprocessing. Compared to ISRUC
datasets, Sleep-EDF offers a larger subject pool but fewer input channels.

To ensure consistent input dimensionality and leverage both spatial and spectral diversity, we con-
struct input sequences using the available EEG, EOG, EMG, and ECG signals in each dataset, re-
sulting in 10-channel inputs for ISRUC and 2-channel(EEG) inputs for Sleep-EDF. All datasets are
used with 10-fold subject-wise cross-validation, ensuring no subject leakage between training and
testing folds.

A.8 BASELINES

To comprehensively evaluate S3Net, we compare it against a broad set of baselines spanning five
major categories. Temporal models such as DeepSleepNet (Supratak et al., 2017), TinySleep-
Net (Supratak & Guo, 2020), XSleepNet (Phan et al., 2022), and SleePyCo (Lee et al., 2024) adopt
sequential architectures that operate on raw EEG or frame-level features, focusing primarily on
temporal dependencies without explicitly modeling spectral information. Frequency-aware meth-
ods including SeqSleepNet (Phan et al., 2019), MVF-SleepNet (Li et al., 2022), and cVAN (Yang
et al., 2025) leverage spectrograms, filter banks, or energy-based representations to jointly encode
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temporal and spectral dynamics, often improving performance on stages with prominent frequency
signatures such as N3 and REM. Graph-based approaches such as STGCN (Jia et al., 2020b), MST-
GCN (Jia et al., 2020a), DGraphormer-SleepNet (Huang et al., 2025) and StAGN (Chen et al.,
2023a) explicitly capture spatial dependencies across EEG channels using static or learnable graph
structures, enhancing inter-channel relational modeling. Transformer-based, attention-augmented,
and probabilistic models such as MixSleepNet (Ji et al., 2024) and BSTT (Liu & Jia, 2023) incor-
porate global attention mechanisms or uncertainty estimation to facilitate long-range dependency
modeling and robust decision making under ambiguity. Finally, multimodal and contrastive learn-
ing methods including SLEEPSMC (Ma et al., 2025) and CIMSleepNet (Shen et al., 2024) aim to
improve robustness under modality corruption or incompleteness, often through cross-view super-
vision or modality-invariant learning objectives. Collectively, these baselines form a comprehensive
benchmark that encompasses frequency-aware and frequency-blind designs, as well as sequential,
spatial, and multimodal modeling paradigms.

A.9 VISUALIZATION OF SLEEP STAGING HYPNOGRAMS

Across the 10-fold cross-validation on the ISRUC-S3 dataset, our model consistently demonstrates
strong performance across all five sleep stages (W, N1, N2, N3, REM). As shown in the hypno-
gram comparisons in Figure 12, the predicted sleep stage sequences closely align with the ground
truth, indicating that the model effectively captures the temporal structure and transitions of sleep.
Notably, even for the more challenging transitional stages such as N1 and N2, the model maintains
robust predictive accuracy, highlighting its stability and generalization ability across folds. Among
these, recording 7 in Figure 12h stands out as the best-performing fold, with the predicted hypno-
gram almost perfectly matching the ground truth throughout the entire sleep cycle; this exceptional
result is partially attributed to the relatively low proportion of N1 epochs in this fold, which reduces
ambiguity and confusion during classification. Since N1 often overlaps with adjacent stages such as
W and N2, folds with a higher presence of N1 are more susceptible to misclassifications, whereas the
reduced presence in recording 7 allows the model to generate cleaner and more temporally coherent
predictions.

Table 6: Generalization on WESAD(Schmidt et al., 2018) (PPG, 4-class).

Model Acc AUROC AUPRC F1 κ

REBAR(Xu et al., 2024) 0.418 0.698 0.446 – –
cVAN(Yang et al., 2025) 0.691 0.855 0.710 0.664 0.572
ResNet(He et al., 2015) 0.713 0.877 0.746 0.682 0.593
HuBERT(Narain et al., 2025) 0.775 0.820 – – –
S3Net 0.853 0.911 0.833 0.819 0.787
Note: κ denotes Cohen’s kappa. The bold values indicate the best performance, and the underline values
indicate the second-best.

A.10 GENERALIZATION TO PPG SIGNALS

To examine whether the proposed architecture generalizes to physiological modalities beyond PSG,
we further evaluate it on the publicly available WESAD (Schmidt et al., 2018) dataset using single-
lead PPG signals. Unlike the multi-channel PSG recordings used in the main experiments (including
EEG, EOG, EMG, and ECG), the WESAD (Schmidt et al., 2018) dataset offers a fundamentally
different sensing modality based on wrist-worn PPG (blood-volume pulse, BVP). WESAD is a mul-
timodal physiological dataset collected from 15 subjects using a chest-worn RespiBAN device and
a wrist-worn Empatica E4, providing signals such as ECG, EDA, respiration, temperature, accel-
eration, and BVP. In this study, we exclusively use the single-channel BVP signal recorded by the
Empatica E4 at 64 Hz. Following common preprocessing practices, the BVP stream is segmented
into non-overlapping 1-minute windows (3,840 samples each), yielding 1,305 segments across all
subjects, of which 666 are annotated with affective labels.

From the labeled BVP segments, we define a four-class classification task consisting of baseline,
stress, amusement, and meditation. The class distribution is approximately baseline (42.7%), stress
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(24.0%), amusement (12.4%), and meditation (20.9%). The BVP signal reflects pulse morphology
and heart rate dynamics, making it suitable for single-modality affect and stress recognition. Be-
cause the original SAE module in our framework includes sleep-stage-specific experts tailored to
PSG-based sleep staging, we remove these experts when evaluating on WESAD. The remaining
cross-gating module is retained, and the output layer is replaced with a generic four-class clas-
sification head appropriate for the BVP-based task. As summarized in Table 6, S3Net markedly
outperforms representative baselines such as REBAR (Xu et al., 2024), cVAN (Yang et al., 2025),
ResNet (He et al., 2015), and HuBERT (Narain et al., 2025) across accuracy, AUROC, AUPRC,
F1, and Cohen’s κ, indicating that the proposed architecture generalizes well to single-lead PPG for
affective state recognition.

A.11 CROSS-DATASET TRANSFERABILITY

To further evaluate the generalization capability of the proposed framework, we conduct cross-
dataset experiments by training on ISRUC-S1 and testing on ISRUC-S3. This setup reflects a realis-
tic deployment scenario where a model trained on one cohort must be applied to data collected under
different conditions, including variations in subject populations, recording environments, and sen-
sor characteristics. Cross-dataset sleep staging is substantially more challenging than within-dataset
evaluation because the distribution shift between datasets often leads to degraded performance, es-
pecially for models that rely on dataset-specific signal patterns.

Table 7 summarizes the cross-dataset results. Overall, all baseline models suffer noticeable per-
formance drops compared to their within-dataset results, confirming the difficulty of cross-dataset
generalization. Among the baselines, cVAN achieves an accuracy of 0.826 and F1 of 0.807, outper-
forming StAGN and MVF-SleepNet. However, S3Net exhibits the strongest robustness under this
distribution shift, reaching 0.834 accuracy, 0.816 F1, and a substantial κ of 0.830. These results
demonstrate that the proposed architecture not only captures discriminative intra-dataset patterns
but also effectively generalizes to previously unseen data distributions. The superior cross-dataset
performance highlights the model’s potential for real-world clinical deployment, where training and
test data are rarely perfectly aligned.

Table 7: Cross-dataset sleep staging performance (Train: ISRUC-S1; Test: ISRUC-S3). Higher is
better.

Train Test Model Acc F1 κ

ISRUC-S1 ISRUC-S3

StAGN(Chen et al., 2023a) 0.795 0.779 –
MVF-SleepNet(Li et al., 2022) 0.800 0.788 –

cVAN(Yang et al., 2025) 0.826 0.807 –
S3Net 0.834 0.816 0.830

A.12 SINGLE-MODALITY COMPARISON

Beyond full-modality evaluation, we further analyze the proposed framework under single-modality
settings to assess its robustness when only one PSG modality is available. Specifically, we con-
sider three input configurations: EEG-only, EOG-only, and EMG-only, while keeping the network
architecture and training protocol unchanged except for the input channel dimension. All experi-
ments follow the same subject-wise cross-validation protocol as in the main study. Single-modality
sleep staging is challenging because each physiological signal provides only partial information:
EEG contains the most discriminative oscillatory patterns, EOG captures eye movements charac-
teristic of REM, and EMG mainly reflects muscle-tone changes, leading to different levels of class
separability across modalities.

Table 8 reports the single-modality results on ISRUC-S3. As expected, EEG yields the best perfor-
mance due to its rich stage-specific cues, EOG achieves moderate performance, and EMG performs
the worst given its limited coverage of sleep-related dynamics. S3Net consistently outperforms all
baseline models under every single-modality setting. With EEG-only input, it achieves 0.8454 ac-
curacy. Under EOG-only input, it reaches 0.8198 accuracy, showing strong robustness even without
EEG. For EMG-only input, S3Net still obtains the highest scores, with 0.5857 accuracy, indicating
that the architecture remains effective even when provided with severely limited physiological cues.
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Table 8: Single-modality sleep staging comparison (EEG/EOG/EMG) on ISRUC-S3. Higher is
better.

Modality Method Overall results F1 for each category

Acc F1 κ Wake N1 N2 N3 REM

EEG

AttnSleep(Eldele et al., 2021) 0.7338 0.7105 0.6592 0.8581 0.4636 0.7320 0.8524 0.6463
DAN(Tang et al., 2022) 0.7212 0.6791 0.6400 0.8077 0.3511 0.7352 0.8686 0.6328
BSTT(Liu & Jia, 2023) 0.7191 0.6921 0.6371 0.8061 0.4312 0.6989 0.8502 0.6742
XSleepNet(Phan et al., 2022) 0.6555 0.6322 0.5614 0.8525 0.4562 0.6225 0.8015 0.4281
SleepPrintNet(Jia et al., 2020c) 0.5459 0.4862 0.3924 0.5109 0.3404 0.6161 0.6669 0.2968
MMASleepNet(Yubo et al., 2022) 0.6313 0.5975 0.5150 0.7815 0.3486 0.6771 0.6471 0.5333
SimCLR(Chen et al., 2020) 0.7338 0.7163 0.6598 0.8777 0.4978 0.6883 0.8260 0.6915
DrFuse(Yao et al., 2024) 0.7532 0.7138 0.6818 0.8780 0.3872 0.7794 0.8609 0.6636
MERL(Liu et al., 2024) 0.7467 0.7295 0.6758 0.8524 0.5212 0.7328 0.8603 0.6808
SleepSMC(Ma et al., 2025) 0.7646 0.7397 0.6969 0.8882 0.5069 0.7467 0.8636 0.6932
S3Net 0.8454 0.8303 0.8010 0.9124 0.6406 0.8456 0.9141 0.8309

EOG

AttnSleep(Eldele et al., 2021) 0.7226 0.6992 0.6416 0.8248 0.4608 0.7115 0.8591 0.6399
DAN(Tang et al., 2022) 0.7136 0.6647 0.6288 0.7733 0.2902 0.7406 0.8652 0.6542
BSTT(Liu & Jia, 2023) 0.4700 0.3163 0.2790 0.1169 0.2352 0.5895 0.6400 0.0000
XSleepNet(Phan et al., 2022) 0.6288 0.6071 0.5233 0.6958 0.3684 0.6572 0.7882 0.5260
SleepPrintNet(Jia et al., 2020c) 0.3745 0.2531 0.1788 0.3553 0.0239 0.5680 0.0000 0.3183
MMASleepNet(Yubo et al., 2022) 0.2096 0.1745 0.0619 0.2750 0.2712 0.0000 0.0000 0.3264
SimCLR(Chen et al., 2020) 0.7246 0.7007 0.6458 0.8097 0.4788 0.7096 0.8523 0.6529
DrFuse(Yao et al., 2024) 0.6947 0.6799 0.6078 0.7522 0.4579 0.7115 0.8317 0.6460
MERL(Liu et al., 2024) 0.6976 0.6741 0.6132 0.7996 0.3912 0.6808 0.8351 0.6640
SleepSMC(Ma et al., 2025) 0.7444 0.7168 0.6697 0.8386 0.4765 0.7360 0.8722 0.6607
S3Net 0.8198 0.8006 0.7676 0.8959 0.5686 0.8153 0.9067 0.8168

EMG

AttnSleep(Eldele et al., 2021) 0.3915 0.3814 0.2191 0.5096 0.2067 0.3804 0.4152 0.3950
DAN(Tang et al., 2022) 0.4048 0.3381 0.2267 0.5541 0.0065 0.4670 0.2262 0.4365
BSTT(Liu & Jia, 2023) 0.3046 0.0934 0.0000 0.0000 0.0000 0.4669 0.0000 0.0000
XSleepNet(Phan et al., 2022) 0.3660 0.3484 0.1935 0.4519 0.1654 0.3665 0.3833 0.3748
SleepPrintNet(Jia et al., 2020c) 0.3319 0.2313 0.0939 0.4214 0.0359 0.4327 0.0000 0.2667
MMASleepNet(Yubo et al., 2022) 0.2517 0.1969 0.1062 0.4155 0.1450 0.0000 0.0000 0.4240
SimCLR(Chen et al., 2020) 0.4177 0.3906 0.2435 0.5605 0.1397 0.4303 0.4258 0.3968
DrFuse(Yao et al., 2024) 0.3857 0.3789 0.2318 0.6026 0.1923 0.3549 0.3272 0.4176
MERL(Liu et al., 2024) 0.3981 0.3907 0.2348 0.4875 0.2077 0.3879 0.4008 0.4696
SleepSMC(Ma et al., 2025) 0.4384 0.4075 0.2693 0.5868 0.1281 0.4404 0.4301 0.4523
S3Net 0.5857 0.5547 0.4609 0.7211 0.2623 0.5736 0.5968 0.6198

Note: κ denotes Cohen’s kappa. The bold values indicate the best performance, and the underline values
indicate the second-best.

A.13 EXPERT GROUP COMPARISON

To validate the design of our Stage-Aware Experts, we evaluated several alternative ways of grouping
stages into experts on ISRUC-S3 (Table 9) to assess whether the hard-separated group (W, N1, N2)
and easy-separated group (N3, REM) strategy performs best. Splitting N1 from the remaining stages
yields a low accuracy of 0.848. Assigning Wake to one expert, a middle group comprising N1, N2,
and N3 to another, and reserving a dedicated expert for REM yields only a slight gain of 0.851.
Using a single expert for all non-REM stages and a dedicated expert for REM achieves 0.853.
Combining Wake with N1 while merging N2, N3, and REM improves further to 0.856. Separating
Wake, pairing N1 with N2, and isolating N3 with REM yields 0.858. Coupling Wake with REM
while routing N1, N2, and N3 together performs relatively well at 0.860. In contrast, directing the
hard-separated group comprising Wake, N1, and N2 to one expert and the easy-separated group
comprising N3 and REM to another attains an accuracy of 0.866 on ISRUC-S3.
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(a) Train Acc and Val Acc (b) Train Loss and Val Loss

Figure 9: Training and validation loss and accuracy of the proposed model.

Table 9: Expert group comparison on ISRUC-S3. Higher is better.

Group Overall results F1 for each category

Acc F1 κ Wake N1 N2 N3 REM

(W,N2,N3,REM) vs (N1) 0.848 0.835 0.804 0.909 0.639 0.839 0.916 0.877
(W) vs (N1,N2,N3) vs (REM) 0.851 0.839 0.808 0.908 0.648 0.842 0.913 0.884
(W,N1,N2,N3) vs (REM) 0.853 0.841 0.810 0.909 0.652 0.843 0.914 0.887
(W,N1) vs (N2,N3,REM) 0.856 0.844 0.814 0.920 0.656 0.848 0.917 0.877
(W) vs (N1,N2) vs (N3,REM) 0.858 0.847 0.817 0.914 0.661 0.852 0.920 0.885
(W,REM) vs (N1,N2,N3) 0.860 0.849 0.820 0.918 0.666 0.854 0.921 0.885
(W,N1,N2) vs (N3,REM) (S3Net) 0.866 0.855 0.827 0.924 0.678 0.858 0.927 0.887

Note: κ denotes Cohen’s kappa. The bold values indicate the best performance, and the underline values
indicate the second-best.

A.14 TRAINING DYNAMICS

Figure 9 summarizes the optimization dynamics of the model. The training loss decreases rapidly
in the first few epochs and then gradually flattens, indicating stable convergence under the chosen
learning rate schedule. On the validation set, accuracy increases steadily and reaches its peak around
epochs 12 to 15, where the validation loss also attains its minimum. The consistency between the
loss and accuracy trends suggests that the model maintains stable generalization during most of
training.

In the early to mid stage of training, the validation loss is slightly lower than the training loss. This
behavior is expected because the training objective includes explicit regularization terms such as
weight decay and implicit stochastic regularization mechanisms such as dropout, batch normaliza-
tion with minibatch statistics, and data augmentation. These components increase the training loss,
whereas validation is computed in inference mode without such perturbations. As training proceeds,
the model fits the training distribution more closely, the training loss continues to decrease, and a
standard generalization gap emerges. Unless otherwise stated, all reported results are obtained from
the checkpoint with the best validation performance, which in this run occurs at epoch 15.

A.15 EFFECT OF THE AUXILIARY LOSS WEIGHT

We analyze the effect of the auxiliary loss weight α by visualizing the optimization dynamics in
Figure 10, based on the total loss Ltotal defined in Eq. equation 6. For each value of α, we project the
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(a) α = 0 (b) α = 1 (c) α = 2

Figure 10: Projected loss contours and optimization trajectories for different values of α.

(a) age from 18 to 40 (b) age from 41 to 65 (c) age over 65

Figure 11: Stage transition probability matrices pooled over ISRUC-S3, ISRUC-S1, and Sleep-EDF-
153, stratified by age group.

loss surface onto a two-dimensional subspace and plot the contour lines together with the gradient-
based trajectory from a shared initialization.

When α = 0, the auxiliary loss is disabled and the trajectory in Figure 10a crosses the main valley
and settles in a shallow side basin rather than at the deepest region of the landscape, indicating
that the optimization tends to converge to a suboptimal local minimum. With α = 1, as shown in
Figure 10b, the trajectory follows a smooth path into the central basin and converges near the lowest
point of the projected loss surface; the updates are stable and well aligned with the descent directions,
suggesting that this auxiliary weight regularizes the landscape and guides training towards a better
minimum. Increasing the weight to α = 2 yields the trajectory in Figure 10c, where the path
again bypasses the deepest region and ends in a higher-loss basin, implying that an overly large
auxiliary weight distorts the main objective and leads to another suboptimal optimum. Overall, α =
1 provides the best trade-off, enabling convergence to the lowest basin in the projected landscape
and yielding the strongest empirical performance, and is therefore adopted in our main experiments.

A.16 AGE-STRATIFIED STAGE TRANSITION DYNAMICS

To assess whether the hard/easy stage partition is stable across age and across datasets, we investigate
subjects from ISRUC-S3, ISRUC-S1, and Sleep-EDF-153, stratify them into three age groups, and
recompute the stage transition matrices, as shown in Figure 11. Across all groups (ages 18 to 40, 41
to 65, and over 65 years), the same qualitative block structure is preserved: W, N1, and N2 exhibit
elevated transition probabilities among one another, while N3 and REM are dominated by self-
transitions with no strong preference toward any single other stage. Although individual transition
probabilities vary moderately with age, these changes do not alter the underlying separation between
the {W, N1, N2} group and the {N3, REM} group, which indicates that the hard/easy partition
remains consistent across different age groups.
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(a) Recording 0 (b) Recording 1

(c) Recording 2 (d) Recording 3

(e) Recording 4 (f) Recording 5

(g) Recording 6 (h) Recording 7

(i) Recording 8 (j) Recording 9

Figure 12: Sleep staging hypnogram comparisons on ISRUC-S3 across all 10 recordings (recording
0–recording 9).

A.17 THEORETICAL ANALYSIS OF SAE EFFECTIVENESS

SAE architecture is based on a hierarchical, mixture-of-experts principle. Its operation consists of
two distinct stages: first, a coarse-grained routing mechanism assigns an input sample to a high-level
expert group; second, a fine-grained classification is performed within that selected group to yield
the final prediction. Motivated by medical domain knowledge, we partition the five sleep stages
into two groups: G1 = {W,N1, N2} and G2 = {N3, REM}. This partitioning is empirically
justified by the performance of single-stage five-class baselines (e.g., MVF-SleepNet and cVAN),
which, while effective at separating G1 from G2, frequently confuse stages within G1(i.e., W, N1,
and N2). By leveraging this discovery, the SAE effectively decomposes the complex, single-stage
five-class problem into a simpler framework. It replaces one highly complex decision boundary with
a single coarse boundary (G1 vs. G2) and two simpler, more localized sub-boundaries within each
group. This hierarchical decomposition significantly reduces the geometric complexity that each
expert model must learn, leading to more robust and accurate stage classification.

Formally, let Y ∈ {W,N1, N2, N3, REM} be the ground-truth sleep stage label, and let GY ∈
{G1, G2} be its corresponding group label. The SAE architecture consists of a coarse-grained
grouping classifier that predicts a group ĜY and a set of group-specific expert classifiers that produce
the final prediction Ŷ . The overall error rate of the SAE, ESAE , can be decomposed as follows:

ESAE = Pr(Ĝ(Y ) ̸= GY ) + Pr(Ĝ(Y ) = GY , Ŷ ̸= Y )

Let Ag denote the accuracy of the grouping classifier. Furthermore, for each group g ∈ 1, 2, let
Eg be the error rate of the corresponding expert, and let πg be the prior probability (proportion) of
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group g. The total error rate can be reformulated as:

ESAE = (1−Ag) +Ag

2∑
g=1

πgEg

To compare the SAE architecture against a standard single-stage classifier, we define the error rate of
the monolithic five-class classifier as Es. For simplicity, let Ē =

∑2
g=1 πgEg represent the average

within-group error rate of the experts, weighted by the group proportions.

Our objective is to establish the condition under which the SAE model outperforms the single clas-
sifier, i.e., ESAE < Es. Substituting the expressions above, this inequality is equivalent to:

(1−Ag) +AgĒ < Es

Rearranging terms yields the following necessary and sufficient condition:

Ag(1− Ē) > 1− Es (8)

This inequality holds under two intuitive and reasonable conditions:

1. High Grouping Accuracy: The grouping classifier is highly accurate, i.e., Ag > 1− ϵ for a small
ϵ > 0.

2. Superior Expert Performance: The experts, on average, achieve a lower error rate than the single
classifier, i.e., Ē ≤ Es − δ for some δ > 0.

Proof: From Condition 2, we have 1 − Ē ≥ 1 − Es + δ. Combining this with Condition 1 (Ag >
1− ϵ), the left-hand side of inequality (8) satisfies:

Ag(1− Ē) > (1− ϵ)(1− Es + δ)

For inequality (1) to hold, it is sufficient that:

Ag(1− Ē) > (1− ϵ)(1− Es + δ)

Expanding and simplifying the left side:

(1− Es + δ)− ϵ(1− Es + δ) > 1− Es

Subtracting 1− Es from both sides gives:

δ = ϵ(1− Es + δ) > 0

This simplifies to the final sufficient condition:

ϵ <
δ

1− Es + δ
(9)

We verify that our empirical results on the ISRUC-S3 dataset satisfy these conditions. The grouping
classifier achieves an accuracy of Ag = 97.1%, implying ϵ = 0.029. The The single-stage classifier
(S3Net without SAE) has an error rate of Es = 1 − 0.818 = 0.182. The group-specific experts
achieve error rates of E1 = 0.11 and E2 = 0, with group proportions π1 = 0.673 and π2 = 0.327.
Thus, the average within-group error is:

Ē = (0.673× 0.11) + (0.327× 0) = 0.074

The performance gain of the experts is δ = Es − Ē = 0.182− 0.074 = 0.108.

Substituting these values into condition (9):

δ

1− Es + δ
=

0.108

1− 0.182 + 0.108
=

0.108

0.926
≈ 0.1166

Since ϵ = 0.029 < 0.1166, the sufficient condition (9) is satisfied. Therefore, under the realistic
conditions of a highly accurate grouping classifier (ϵ is small) and experts that significantly reduce
the within-group error (δ is sufficiently large), the theoretical inequality ESAE < Es is guaranteed
to hold, which is consistent with our empirical findings.
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A.18 THEORETICAL ANALYSIS OF T-ALN EXPRESSIVENESS

The t-ALN module serves as a bridge between the spectral and temporal branches, transforming
spectral energy maps into a strict temporally organized query representation. A critical component
of this transformation is the incorporation of stepwise positional encodings prior to flattening. This
design preserves the temporal identity of features from the same time step, which is fundamental for
capturing the sequential dynamics of sleep stages. We theoretically validate that incorporating posi-
tional information strictly enhances the model’s expressive power compared to a position-agnostic
baseline.

Formally, let F∅ be a set of functions computable by a Transformer-based t-ALN module without
positional encodings, and Fpos a set with stepwise positional encodings. To demonstrate a strict
increase in expressive power, we establish the set inclusion:

F∅ ⊂ Fpos.

This requires proving two properties:

• Compatibility: F∅ ⊆ Fpos. The position-aware model can replicate all behaviors of the
position-agnostic model.

• Strict Inequality: There must exist at least one function f representing a valid temporal
pattern such that f ∈ Fpos but f /∈ F∅.

Proof of Compatibility: For any function F ∈ F∅, an equivalent function inFpos can be constructed
by setting all positional encoding vectors pi to zero. In this case, the input to the self-attention
mechanism is xi + pi = xi, rendering the position-aware model mathematically identical to its
position-agnostic counterpart. Thus, F∅ ⊆ Fpos holds.

Proof of Strict Dominance: We demonstrate this by constructing a function that requires sensitivity
to absolute positional order. Consider a sequence S = [t1, t2, t3, t4, . . . ] and the “Odd-Even Swap”
function:

fswap(S) = [t2, t1, t4, t3, . . . ].

Models in F∅ are permutation equivariant. For any permutation π of the input indices, the output
satisfies F∅(π(S)) = π(F∅(S)). However, fswap is not permutation equivariant. For example,
applying a permutation π that swaps the second and third elements yields:

fswap(π(S)) ̸= π(fswap(S)).

Therefore, no function in F∅ can implement fswap. This validates our t-ALN design, proving that
Fpos possesses a strictly superior theoretical capacity for modeling the temporal structure of sleep
data.
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