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Figure 1: Demo results of the proposed ImageBrush framework on various image manipulation tasks. By
providing a pair of task-specific examples and a new query image that share a similar context, ImageBrush
accurately identifies the underlying task and generates the desired output.

Abstract
While language-guided image manipulation has made remarkable progress, the
challenge of how to instruct the manipulation process faithfully reflecting human
intentions persists. An accurate and comprehensive description of a manipulation
task using natural language is laborious and sometimes even impossible, primarily
due to the inherent uncertainty and ambiguity present in linguistic expressions. Is
it feasible to accomplish image manipulation without resorting to external cross-
modal language information? If this possibility exists, the inherent modality gap
would be effortlessly eliminated. In this paper, we propose a novel manipulation
methodology, dubbed ImageBrush, that learns visual instructions for more accurate
image editing. Our key idea is to employ a pair of transformation images as visual
instructions, which not only precisely captures human intention but also facilitates
accessibility in real-world scenarios. Capturing visual instructions is particularly
challenging because it involves extracting the underlying intentions solely from
visual demonstrations and then applying this operation to a new image. To address
this challenge, we formulate visual instruction learning as a diffusion-based inpaint-
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ing problem, where the contextual information is fully exploited through an iterative
process of generation. A visual prompting encoder is carefully devised to enhance
the model’s capacity in uncovering human intent behind the visual instructions.
Extensive experiments show that our method generates engaging manipulation
results conforming to the transformations entailed in demonstrations. Moreover,
our model exhibits robust generalization capabilities on various downstream tasks
such as pose transfer, image translation and video inpainting.

1 Introduction
Image manipulation has experienced a remarkable transformation in recent years [48, 14, 35, 71,
21, 29] . The pursuit of instructing manipulation process to align with human intent has garnered
significant attention. Language, as a fundamental element of human communication, is extensively
studied to guide the manipulation towards intended direction [16, 34, 6, 55, 33, 58, 5]. Despite the
universal nature of language-based instructions, there are cases where they fall short in expressing
certain world concepts. This limitation necessitates additional efforts and experience in magic prompt
engineering, as highlighted in [64]. To compensate linguistic ambiguity, some studies [65, 32, 66]
attempt to introduce visual guidance to the manipulation process. However, these approaches heavily
rely on cross-modal alignment, which may not always be perfectly matched, thereby resulting in
limited adaptability to user instructions.

Is it conceivable to accomplish image manipulation exclusively through visual instructions? If such a
capability were attainable, it would not only mitigate the aforementioned cross-modality disparity
but also introduce a novel form of interaction for image manipulation. Taking inspiration from the
exceptional in-context capabilities by large language models [37, 40, 7] like ChatGPT and GPT-4, we
propose to conceptualize the image manipulation task as a visual prompting process. This approach
utilizes paired examples to establish visual context, while employing the target image as a query.
Recent works [61, 4] reveal the visual in-context ability through a simple Mask Image Modeling [15]
scheme. But these researches focus on understanding tasks such as detection and segmentation while
only very limited context tasks are studied. Therefore, the in-context potential for image manipulation,
where numerous editing choices are involved, is still a promising avenue for exploration.

In contrast to language, which primarily communicates abstract concepts, exemplar-based visual
instruction explicitly concretizes manipulation operations within the visual domain. In this way,
the network could directly leverage their textures, which eases the hallucination difficulty for some
inexpressible concepts (e.g., artist style or convoluted object appearance). On the other hand, the
pairwise cases directly exhibit transformation relationship from the visual perspective, thereby
facilitating better semantic correspondence learning. In this paper, we propose an Exemplar-Based
Image Manipulation framework, ImageBrush, which achieves adaptive image manipulation under
the instruction of a pair of exemplar demonstrations. This paradigm holds promising potential for
various innovative applications. For instance, photographers can seamlessly apply Photoshop-style
retouching to entire collections of similar images, enhancing their workflow. Additionally, users who
encounter compelling editing instances from peers or pre-trained models can effortlessly apply these
modifications to their own images, eliminating the need for original intricate intermediate steps or
specific parameter adjustments.

The key is to devise a generative model that tackles both pairwise visual instruction understanding
and image synthesis in an unified manner. To establish the intra-correlations among exemplar
transformations and their inter-correlation with the query image, we utilize a grid-like image as model
input that concatenates a manipulation example and a target query as [4, 61, 17]. The in-context image
manipulation is accomplished by inpainting the answer picture. Unlike their approaches forwarding
once for final result, we adopt the diffusion process to iteratively enhance in-context learning and
refine the synthesized image. Such practice not only provide stable training objectives [32], but
also mimics the behavior of a painter [9] who progressively fills and tweaks the details. Although
the aforementioned formulation is capable of handling correlation modeling and image generation
in a single stroke, it places a significant computational burden on the network, due to the intricate
concepts and processes involved. To address this challenge, we delicately design a visual prompting
encoder that maximizes the utilization of contextual information, thereby alleviating the complexity
of learning. Specifically, we extract the features of each image and further process them through a
transformer module for effective feature exchanging and integration. The obtained features are then
injected to a diffusion network with cross-attention to augment its understanding capability. In line
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with the SAM concept [27], we have also introduced an optional interface design module aimed at
further improving human intent comprehension.

Our main contributions can be summarized as follows: 1) We introduce a novel image manipulation
protocol that enables the accomplishment of numerous operations through an in-context approach.
2) We delicately devise a diffusion-based generative framework coupled with a hybrid context
injection strategy to facilitate better correlation reasoning. 3) Extensive experiments demonstrate our
approach generates compelling manipulation results aligned with human intent and exhibits robust
generalization abilities on various downstream tasks, paving the way for future vision foundation
models.

2 Related Work
Language-Guided Image Manipulation. The domain of generating images from textual input [45,
47, 50] has experienced extraordinary advancements, primarily driven by the powerful architecture
of diffusion models [19, 47, 51, 52]. Given rich generative priors in text-guided models, numerous
studies [33, 11, 36, 2, 2] have proposed their adaptation for image manipulation tasks. To guide the
editing process towards the intended direction, researchers have employed CLIP [44] to fine-tune
diffusion models. Although these methods demonstrate impressive performance, they often require
expensive fine-tuning procedures [24, 56, 25, 5]. Recent approaches [16, 34] have introduced cross-
attention injection techniques to facilitate the editing of desired semantic regions on spatial feature
maps. Subsequent works further improved upon this technique by incorporating semantic loss [28] or
constraining the plugged feature with attention loss [55].

Image Translation. Image translation aims to convert an image from one domain to another
while preserving domain-irrelevant characteristics. Early studies [67, 30, 23, 60, 38] have employed
conditional Generative Adversarial Networks (GANs) to ensure that the translated outputs conform to
the distribution of the target domain. However, these approaches typically requires training a specific
network for each translation task and relies on collections of instance images from both the source
and target domains. Other approaches [1, 46, 53, 54, 57] have explored exploiting domain knowledge
from pre-trained GANs or leveraging augmentation techniques with a single image to achieve image
translation with limited data. Another slew of studies [70, 3, 59, 42, 22] focus on exemplar-based
image translation due to their flexibility and superior image quality. While the majority of these
approaches learn style transfer from a reference image, CoCosNet [72] proposes capturing fine
structures from the exemplar image through dense correspondence learning.

In-Context Learning. In-Context Learning [7], a concept originating from the realm of Natural
Language Processing (NLP), offers an innovative approach to task completion. This paradigm
achieves a given task by providing it with a set of sample examples alongside a query example,
demonstrating exceptional proficiency in executing these tasks through a few-shot learning mechanism.
Expanding on this notion, VisualPrompting [4] was a pioneering endeavor that introduced the concept
of visual in-context learning. This framework demonstrated its remarkable effectiveness in various
applications, including image segmentation, object detection, and colorization, all implemented
within the framework of Masked Image Modeling (MIM). Painter [61] further refined and extended
the MIM process, broadening its scope to encompass tasks like key point detection and image
denoising. Their subsequent work SegGPT [62] delved into the exploration of various intricate
tasks within the domain of image segmentation. Notably, there are very few works investigating
visual in-context learning from the perspective of image generation. Thus, this paper explores the
possibility of in-context image manipulation, attempting to promote novel applications functioning
as ImageBrush.

3 Method
In this section, we will discuss the details of our proposed Exemplar-Based Image Manipulation
Framework, ImageBrush. The primary objective of this framework is to develop a model capable of
performing various image editing tasks by interpreting visual prompts as instructions. To achieve this,
the model must possess the ability to comprehend the underlying human intent from contextual visual
instructions and apply the desired operations to a new image. The entire pipeline is depicted in Fig. 2,
where we employ a diffusion-based inpainting strategy to facilitate unified context learning and image
synthesis. To further augment the model’s reasoning capabilities, we meticulously design a visual
prompt encoding module aimed at deciphering the human intent underlying the visual instruction.
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Figure 2: Illustration of ImageBrush. We introduce a novel and intuitive way of interacting with images. Users
can easily manipulate images by providing a pair of examples and a query image as prompts to our system. If
users wish to convey more precise instructions, they have the option to inform the model about their areas of
interest through manual bounding box annotations or by using language to automatically generate them.

3.1 Exemplar-Based Image Manipulation
Problem Formulation. Given a pair of manipulated examples {E,E′} and a query image I, our
training objective is to generate an edited image I′ that adheres to the underlying instructions provided
by the examples. Accomplishing this objective necessitates a comprehensive understanding of the
intra-relationships between the examples as well as their inter-correlations with the new image.
Unlike text, images are not inherently sequential and contain a multitude of semantic information
dispersed across their spatial dimensions.

Therefore, we propose a solution in the form of "Progressive In-Painting". A common approach is
to utilize cross-attention to incorporate the demonstration examples {E,E′} and query image I as
general context like previous work [66]. However, we observed that capturing detailed information
among visual instructions with cross-attention injection is challenging. To overcome this, we propose
learning their low-level context using a self-attention mechanism. Specifically, we concatenate a
blank image M to the visual instructions and compose a grid-like image {E,E′, I,M} as illustrated
in Fig. 2. The objective is to iteratively recover {E,E′, I, I′} from this grid-like image.

Preliminary on Diffusion Model. After an extensive examination of recent generative models,
we have determined that the diffusion model [47] aligns with our requirements. This model stands
out due to its stable training objective and exceptional ability to generate high-quality images. It
operates by iteratively denoising Gaussian noise to produce the image x0. Typically, the diffusion
model assumes a Markov process [43] wherein Gaussian noises are gradually added to a clean image
x0 based on the following equation:

xt =
√
αtx0 +

√
1− αtϵ, (1)

where ϵ∼N (0, I) represents the additive Gaussian noise, t denotes the time step and αt is scalar
functions of t. Our training objective is to devise a neural network ϵθ(xt, t, c) to predict the added
noise ϵ. Empirically, a simple mean-squared error is leveraged as the loss function:

Lsimple := Eϵ∼N (0,I),x0,c

[
∥ϵ− ϵθ(xt, c)∥22

]
, (2)

where θ represents the learnable parameters of our diffusion model, and c denotes the conditional
input to the model, which can take the form of another image [49], a class label [20], or text [25].
By incorporating this condition, the classifier-free guidance [45] adjusts the original predicted noise
ϵθ(xt,∅) towards the guidance signal ϵθ(xt, c), formulated as

ϵ̂θ(xt, c) = ϵθ(xt,∅) + w(ϵθ(xt, c)− ϵθ(xt,∅)). (3)
The w is the guidance scale, determining the degree to which the denoised image aligns with the
provided condition c.

4



Context Learning by Progressive Denoising. The overall generation process is visualized in Fig.2.
Given the denoised result xt−1 = Grid({E,E′, I, I′}t−1) from the previous time step t, our objective
is to refine this grid-like image based on the contextual description provided in the visual instructions.
Rather than directly operating in the pixel space, our model diffuses in the latent space of a pre-trained
variational autoencoder, following a similar protocol to Latent Diffusion Models (LDM)[47]. This
design choice reduces the computational resources required during inference and enhances the quality
of image generation. Specifically, for an image xt, the diffusion process removes the added Gaussian
noise from its encoded latent input zt = E(xt). At the end of the diffusion process, the latent variable
z0 is decoded to obtain the final generated image x0 = D(z0). The encoder E and decoder D are
adapted from Autoencoder-KL [47], and their weights are fixed in our implementation.

Unlike previous studies that rely on external semantic information [29, 6], here we focus on establish-
ing spatial correspondence within image channels. We introduce a UNet-like network architecture,
prominently composed of self-attention blocks, as illustrated in Fig. 2. This design enables our model
to attentively process features within each channel and effectively capture their interdependencies.

3.2 Prompt Design for Visual In-Context Instruction Learning
However, relying only on universal correspondence modeling along the spatial channel may not
be sufficient for comprehending abstract and complex concepts, which often require reassembling
features from various aspects at multiple levels. To address this issue, we propose an additional
prompt learning module to enable the model to capture high-level semantics without compromising
the synthesis process of the major UNet architecture.

Contextual Exploitation of Visual Prompt. Given the visual prompt vp = {E,E′, I}, we aim to
exploit their high-level semantic relationships. To achieve this, a visual prompt module comprising
two components is carefully devised, which entails a shared visual encoder ev and a prompt encoder
ep as illustrated in Fig. 2. For an arbitrary image I ∈ RH×W×3 within the visual prompt, we extract its
tokenized feature representation fimg using the Visual Transformer (ViT)-based backbone ev . These
tokenized features are then fed into the bi-directional transformer ep, which effectively exploits the
contextual information. The resulting feature representation fc encapsulates the high-level semantic
changes and correlations among the examples.

Using the visual prompt, we can integrate high-level semantic information into the UNet architecture
by employing the classifier-free guidance strategy as discussed in Section 3.1. This is achieved by
injecting the contextual feature into specific layers of the main network through cross-attention.

ϕl−1 = ϕl−1 + Conv(ϕl−1) (4)

ϕl−1 = ϕl−1 + SelfAttn(ϕl−1) (5)

ϕl = ϕl−1 + CrossAttn(fc) (6)

where ϕl denotes the input feature of the l-th block, and fc represents the context feature. Specifically,
we select the middle blocks of the UNet architecture, as these blocks have been shown in recent
studies to be responsible for processing high-level semantic information [58].

Interface Design for Enhancing User Intent Comprehension. Recent advancements in visual
instruction systems have have showcased remarkable capabilities through the integration of human
prompts [27]. Taking inspiration from this research, we introduce a similar interface module that
empowers users to emphasize their areas of interest. This, in turn, enhances the system’s understanding
of user intention to some extent.

Users have the option to designate their area of interest either by manually drawing a bounding box
or by utilizing automated tools [31], as depicted in Fig. 2. Similar to [29], these selected boxes are
first processed by a box encoder, denoted as eb, before being integrated into the system. During
the training phase, we employ GroundingDINO [31] to label the focused region based on textual
instruction. This approach not only alleviates the burden of manual labeling but also offers users the
flexibility to opt for an automatic tool that leverages language descriptions to enhance their intentions,
particularly in cases where drawing a bounding box is less preferable. Additionally, we randomly
remove a portion of the bounding boxes to ensure that our model fully harnesses the benefits of the
visual in-context instructions.
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Table 1: Quantitative Comparison on In-the-wild Dataset.
Exemplar-Based Image Translation Pose Transfer Inpainting Editing

Dataset Scannet[12] LRW(Edge)[10] LRW(Mask)[10] UBC-Fashion[69] DAVIS[41] InstructPix2Pix-Filtered[6]

Metric FID↓ FID↓ FID↓ FID↓ SSIM↑ FID↓ V-FID↓ SSIM↑ SSIM↑
TSAM[73] - - - - - 86.84 158.30 0.901 -
CoCosNet[72] 19.49 15.44 14.25 38.61 0.885 - - - -
VisualPrompt[4] - - - - 0.677 - - 0.787 0.417
ImageBrush 9.18 9.67 8.95 12.99 0.910 18.70 175.25 0.816 0.437

4 Experiments
4.1 Experimental Settings
Datasets. Our work leverages four widely used in-the-wild video datasets - Scannet [12], LRW [10],
UBCFashion [69], and DAVIS [41] - as well as a synthetic dataset that involves numerous image
editing operations. The Scannet [12] dataset is a large-scale collection of indoor scenes covering
various indoor environments, such as apartments, offices, and hotels. It comprises over 1,500 scenes
with rich annotations, of which 1,201 scenes lie in training split, 312 scenes are in the validation set.
No overlapping physical location has been seen during training. The LRW [10] dataset is designed
for lip reading, containing over 1000 utterances of 500 different words with a duration of 1-second
video. We adopt 80 percent of their test videos for training and 20 percent for evaluation. The
UBC-Fashion [69] dataset comprises 600 videos covering a diverse range of clothing categories.
This dataset includes 500 videos in the training set and 100 videos in the testing set. No same
individuals has been seen during training. The DAVIS [41] (Densely Annotated VIdeo Segmentation)
dataset is a popular benchmark dataset for video object segmentation tasks. It comprises a total of
150 videos, of which 90 are densely annotated for training and 60 for validation. Similar to previous
works [73], we trained our network on the 60 videos in the validation set and evaluate its performance
on the original 90 training videos. The synthetic image manipulation dataset is created using image
captions of LAION Improved Aesthetics 6.5+ through Stable Diffusion. We use the CLIP-filtered
subset processed by InstructPix2Pix [6]. It comprises over 310k editing instructions, each with its
corresponding editing pairs. Out of these editing instructions, 260k have more than two editing pairs.
We conduct experiment on this set, reserving 10k operations for model validation.

Implementation Details. In our approach, all input images have a size of 256×256 pixels and are
concatenated as input to the UNet. The UNet architecture, adapted from Stable Diffusion, consists of
32 blocks with self-attention and cross-attention layers. We use cross-attention to incorporate the
features of the visual prompt module into its two middle blocks. The visual prompt’s shared backbone,
denoted as ev , follows the architecture of EVA-02 [13]. The prompt encoder ep comprises five layers
and has a latent dimension of 768. For the bounding box encoder, denoted as eb, we adopt a simple
MLP following [29]. During training, we set the classifier-free scale for the encoded instruction to
7.5 and the dropout ratio to 0.05. Our implementation utilizes PyTorch [39] and is trained on 24 Tesla
V100-32G GPUs for 14K iterations using the AdamW [26] optimizer. The learning rate is set to 1e-6,
and the batch size is set to 288.

Comparison Methods. To thoroughly evaluate the effectiveness of our approach, we compare it
against other state-of-art models tailored for specific tasks, including: VisualPrompt [4], the pioneer
study in visual in-context learning; SDEdit [33], a widely-used stochastic differential equation
(SDE)-based image editing method; Instruct-Pix2pix [6], a cutting-edge language-instructed image
manipulation method; CoCosNet [72], an approach that employs a carefully designed correspondence
learning architecture to achieve exemplar-based image translation; and TSAM [73], a model that
incorporates a feature alignment module for video inpainting.

4.2 Quantitative Evaluation
Evaluation Metrics. In the image manipulation task, it is crucial for the edited image to align with
the intended direction while preserving the instruction-invariant elements in their original form. To
assess the degree of agreement between the edited image and the provided instructions, we utilize
a cosine similarity metric referred to as CLIP Direction Similarity in the CLIP space. In order to
measure the level of consistency with original image, we utilize the cosine similarity of the CLIP
image embedding, CLIP Image Similarity, following the protocol presented in [6]. Additionally, for
other generation tasks such as exemplar-based image translation, pose transfer, and video in-painting,
we employ the Fréchet Inception Score (FID) [18] as an evaluation metric. The FID score allows
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Figure 3: Quantitative Comparison on Image Editing. We compare our approach with the representative
text-instruction method in terms of direction consistency and similarity consistency.

us to evaluate the dissimilarity between the distributions of synthesized images and real images.
Following similar protocol with [73], the V-FID is also included to take into account the temporal
consistency in video inpainting. For image generation, we introduce the SSIM [63] metric to further
assess the structural similarity and visual quality.

Image Generation Paradigm. In the image manipulation task, a pair of transformed images is
utilized as visual instructions to edit a target image within the same instruction context. For other tasks,
we conduct experiments in a cross-frame prediction setting, where we select two temporally close
frames and use one of them as an example to predict the other. Specifically, we employ one frame
along with its corresponding label (e.g., edge, semantic segmentation, keypoints, or masked image)
as a contextual example, and take the label from another frame as a query to recover that frame. To
obtain the label information, we extract keypoints from the UBC-Fashion dataset using OpenPose [8],
and for the LRW dataset, we utilize a face parsing network [68] to generate segmentation labels.
To ensure that the selected frames belong to the same context, we restrict the optical flow between
them to a specific range, maintaining consistency for both training and testing. It is important to note
that, for fair comparison, we always utilize the first frame of each video as a reference during the
evaluation of the video inpainting task.

Evaluation Results. The comparison results for image manipulation are presented in Fig. 3. We
observe that our results exhibit higher image consistency for the same directional similarity values
and higher directional similarity values for the same image similarity value. One possible reason is
the ability of visual instructions to express certain concepts without a modality gap, which allows our
method to better align the edited images.

To demonstrate the versatility of our model, we conducted experiments using in-the-wild videos that
encompassed diverse real-world contexts. The results for various downstream tasks are presented in
Table 1, showing the superior performance of our approach across most datasets. It is noteworthy
that our model achieves these results using a single model, distinguishing it from other methods
that require task-specific networks. In inpainting task, our model attains a higher FID score while
yielding a comparatively lower Video-FID score and SSIM value. We speculate that it is because our
framework lack explicit temporal awareness such as optical flow in [73].

4.3 Qualitative Evaluation
We provide a qualitative comparison with SDEdit [33] and Instruct-Pix2pix [6] in Fig. 4. In the case
of the SDEdit model, we attempted to input both the edit instruction and the output caption, referred
to as SDEdit-E and SDEdit-OC, respectively. In contrast to language-guided approaches, our method
demonstrates superior fidelity to the provided examples, particularly in capturing text-ambiguous
concepts such as holistic style, editing extent, and intricate local object details. Comparison with
VisualPrompt [4] is depicted in Fig. 6 where we achieve more realistic and plausible editing results.

Additionally, we provide a qualitative analysis on a real-world dataset in Fig. 5. Compared to
CocosNet [72], our approach demonstrates superior visual quality in preserving object structures,
as seen in the cabinet and table. It also exhibits higher consistency with the reference appearance,
particularly noticeable in the woman’s hair and dress. Furthermore, our method achieves improved
shape consistency with the query image, as observed in the mouth. When compared to TSAM [73], our
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Query Image Instruct-Pix2pix OursEdit Instruction

The picture is of a street in Paris

The tiger cub is a snow leopard

Turn it into a snowy landscape

Turn the bridge into a bridge made of ice

SDEdit (OC)SDEdit (E)

Figure 4: Qualitative Comparison on Image Manipulation. In contrast to language-guided approaches, our
editing results guided by visual instruction exhibit better compliance with the provided examples.
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Figure 5: Qualitative Comparison on In-the-wild Dataset. We conduct experiments on various downstream
tasks including exemplar-based image translation, pose transfer and inpainting.

approach yields superior results with enhanced clarity in object shapes and more realistic background
filling. These improvements are achieved by effectively leveraging visual cues from the examples.

4.4 Further Analysis
Novel Evaluation Metric. Exemplar-based image manipulation is a novel task, and the evaluation
metric in the literature is not suitable for this task. Therefore, we present an evaluation metric
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Figure 6: Comparison with VisualPrompt [4] on Image Editing. Our model achieves plausible and realistic
edits whereas VisualPrompt tend to produce conservative prediction and struggle on instruction comprehension.
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Figure 7: Case Study in Terms of Prompt Fidelity and Image Fidelity. The prompt fidelity and image fidelity
are calculated between paired images with dashed yellow banner and dashed blue banner, respectively.

that requires neither ground-truth image nor human evaluation. Specifically, our model, denoted
as Φθ, takes the examples {E, E′}, and the source image I to produce a manipulated output I′.
This procedure is presented as I′ = Φθ(I|E′ → E). The goal is to let the output image I′ abide
by instruction induced from examples E and E′ while preserving the instruction-invariant content
of input image I. We define prompt fidelity to assess the model’s ability to follow the instruction.
According to the symmetry of {E,E′} and {I, I′}, if its operation strictly follows the instruction, the
model should manipulate E to E′ by using I → I′ as the prompt (see pictures labeled with a dashed
yellow tag in Fig. 7). We express the prompt fidelity as follows

∆prompt = FID(E′,Φθ(E|I → I′)). (7)

On the other hand, to evaluate the extent to which the model preserves its content, we introduce an
image fidelity metric. If I′ maintains the content of I, the manipulation should be invertible. That is
to say, by using E′ → E as the prompt, the model should reconstruct I from I′ (see pictures labeled
with a dashed blue tag in Fig. 7). Therefore, we define the image fidelity as

∆image = FID(I,Φθ(I
′|E′ → E)). (8)

Ablation Study. We performed ablation studies on three crucial components of our method,
namely the diffusion process for context exploitation, the vision prompt design, and the injection
of human-interest area. Specifically, we conducted experiments on our model by (1) replacing the
diffusion process with masked image modeling, (2) removing the cross-attention feature injection
obtained from vision prompt module, and (3) deactivating the input of the human interest region.
Specifically, we implemented the masked image modeling using the MAE-VQGAN architecture
following the best setting of [4]. The numerical results on image manipulation task are shown in
Table 2. The results demonstrate the importance of the diffusion process. Without it, the model is
unable to progressively comprehend the visual instruction and refine its synthesis, resulting in inferior
generation results. When we exclude the feature integration from the visual prompt module, the
model struggles to understand high-level semantics, leading to trivial generation results on these
instructions. Furthermore, removing the region of interest interface results in a slight decrease in
performance, highlighting its effectiveness in capturing human intent.

Case Study. In Fig. 7, we present two cases that showcase our model’s performance in terms of
image and prompt fidelity. The first case, depicted on the left, highlights our model’s capability to
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Table 2: Ablation Study on Image Manipulation. Here we evaluate on our proposed metric.

w/o Diffusion w/o Cross-Attention w/o Interest Region Full Model
Prompt Fidelity 78.65 39.44 24.29 23.97
Image Fidelity 82.33 41.51 25.74 24.43

Figure 8: Generation Results by Customized Prompts. The regions of interest are indicated by purple box and
generated results are displayed within red box. From left to right we illustrate cases where emphasis is placed on
beards, hats, buckets, flying objects and trees.

Figure 9: Image Editing with Varied Queries. We showcase edited results corresponding to three distinct
queries. It covers a variety of query contexts, demonstrating changes in layout, object quantity, weather, pose,
shape and perspective.

utilize its predicted result I′ to reconstruct I by transforming the image back to a dark appearance.
With predicted I′, our model also successfully edits the corresponding example from E to E′, making
the example image colorful. On the right side of the figure, we present a case where our model
encounters difficulty in capturing the change in the background, specifically the disappearance of the
holographic element.

Effect of User Interface. Fig. 8 depicts diverse examples with distinct emphasis on visual instruc-
tions. For example, synthesis of additional beards when the beard area is emphasized, the generation
of more detailed hats when a bounding box is applied to the hat part, and the improved ability of
our model to understand and execute the intention of editing a bucket to black when the emphasis
is on the bucket. Furthermore, when a small object is added, our model successfully comprehends
and synthesizes an object with the assistance of this input. Similarly, by placing emphasis on the
background, more trees are synthesized in that region.

Image Editing with Diverse Queries. We present a collection of qualitative examples encom-
passing diverse query contexts in Fig. 9. The results suggest our model’s competence in generating
coherent and reliable outcomes across various query scenarios.

5 Conclusion
In this article, we present an innovative way of interacting with images, Image Manipulation by Visual
Instruction. Within this paradigm, we propose a framework, ImageBrush, which holds promising
potential for various applications.

Limitation and Future Work. 1) The proposed model may face challenges when there is a substantial
disparity between the given instruction and the query image. 2) The current model also encounters
difficulties in handling intricate details, such as subtle background changes or adding small objects. 3)
Future work can delve into a broader range of datasets and tasks, paving the way for future generative
visual foundation models.
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Appendices
A Analysis of In-Context Instruction with Multiple Examples
Our approach can be naturally extended to include multiple examples. Specifically, given a series of examples
{E1,E

′
1, . . . ,En,E

′
n, I}, where n represents the number of support examples, our objective is to generate

I′. In our main paper, we primarily focused on the special case where n = 1. When dealing with multiple
examples, we could also establish their spatial correspondence by directly concatenating them as input to
our UNet architecture. Specifically, we create a grid xt−1 = Grid({E1,E

′
1, . . . ,En,E

′
n, I}t−1) that can

accommodate up to eight examples following [4]. To facilitate contextual learning, we extend the input length of
our prompt encoder ep, and incorporate tokenized representations of these collections of examples as input to it.
In this way, our framework is able to handle cases that involve multiple examples.

Below we discuss the impact of these examples on our model’s final performance by varying their numbers and
orders.

Instruction with 3 Support Examples

Figure 10: Analysis of In-Context Instruction with Multiple Examples.

A.1 Number of In-Context Examples.
In our dataset, which typically consists of 4 examples, we examine the influence of the number of in-context
examples by varying it from 1 to 3, as illustrated in Figure 10. We evaluate this variation using our proposed
metrics: prompt fidelity ∆prompt and image fidelity ∆image, which assess instruction adherence and content
consistency, respectively. The results demonstrate that increasing the number of support examples enhances
performance, potentially by reducing task ambiguity.

Furthermore, we present additional instruction results in Figure 11, showcasing the impact of different numbers
of in-context examples. It is clear that as the number of examples increases, the model becomes more confident
in comprehending the task description. This is particularly evident in the second row, where the synthesized floor
becomes smoother and the rainbow appears more distinct. Similarly, in the third row, the wormhole becomes
complete. However, for simpler tasks that can be adequately induced with just one example (as demonstrated in
the last row), increasing the number of examples does not lead to further performance improvements.

A.2 Order of In-Context Examples.
We have also conducted an investigation into the impact of the order of support examples by shuffling them.
Through empirical analysis, we found no evidence suggesting that the order of the examples has any impact
on performance. This finding aligns with our initial expectation, as there is no sequential logic present in our
examples.

B More Visual Instruction Results
In this section, we present additional visual instruction results, where the synthesized result is highlighted within
the red box. These results demonstrate the effectiveness of our approach in handling diverse manipulation
types, including style transfer, object swapping, and composite operations, as showcased in Fig. 12 and Fig. 13.
Furthermore, our method demonstrates its versatility across real-world datasets, successfully tackling various
downstream tasks, such as image translation, pose translation, and inpainting in Fig. 14 and Fig. 15. Importantly,
it is worth noting that all the presented results are generated by a single model.
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Figure 11: Qualitative Analysis on Number of In-Context Examples.
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Figure 12: Image Manipulation Results by Visual Instruction.
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Figure 13: Image Manipulation Results by Visual Instruction.
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Figure 14: Instruction Results on In-the-wild Dataset.
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Figure 15: Instruction Results on In-the-wild Dataset.

21


	Introduction
	Related Work
	Method
	Exemplar-Based Image Manipulation
	Prompt Design for Visual In-Context Instruction Learning

	Experiments
	Experimental Settings
	Quantitative Evaluation
	Qualitative Evaluation
	Further Analysis

	Conclusion
	Analysis of In-Context Instruction with Multiple Examples
	Number of In-Context Examples.
	Order of In-Context Examples.

	More Visual Instruction Results

