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Abstract

We propose a federated averaging Langevin algo-
rithm (FA-LD) for uncertainty quantification and
mean predictions with distributed clients. In par-
ticular, we generalize beyond normal posterior dis-
tributions and consider a general class of mod-
els. We develop theoretical guarantees for FA-LD
for strongly log-concave distributions with non-
i.i.d data and study how the injected noise and the
stochastic-gradient noise, the heterogeneity of data,
and the varying learning rates affect the conver-
gence. Such an analysis sheds light on the optimal
choice of local updates to minimize the commu-
nication cost. Important to our approach is that
the communication efficiency does not deteriorate
with the injected noise in the Langevin algorithms.
In addition, we examine in our FA-LD algorithm
both independent and correlated noise used over
different clients. We observe that there is a trade-
off between the pairs among communication, ac-
curacy, and data privacy. As local devices may
become inactive in federated networks, we also
show convergence results based on different aver-
aging schemes where only partial device updates
are available. In such a case, we discover an addi-
tional bias that does not decay to zero.

1 INTRODUCTION

Federated learning (FL) allows multiple parties to jointly
train a consensus model without sharing user data. A stan-
dard formulation of federated learning is a distributed op-
timization framework that tackles communication costs,
client robustness, and data heterogeneity across different
clients [Li et al., 2020a]. Central to the formulation is
the efficiency of the communication, which directly mo-
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tivates the communication-efficient federated averaging (Fe-
dAvg) [McMahan et al., 2017]. FedAvg introduces a global
model to synchronously aggregate multi-step local updates
on the available clients and yields distinctive properties in
communication. However, FedAvg often stagnates at infe-
rior local modes empirically due to the data heterogeneity
across the different clients [Charles and Konečnỳ, 2020,
Woodworth et al., 2020]. To tackle this issue, Karimireddy
et al. [2020], Pathaky and Wainwright [2020] proposed state-
ful clients to avoid the unstable convergence, which are,
however, not scalable with respect to the number of clients in
applications with mobile devices [Al-Shedivat et al., 2021].
In addition, the optimization framework often fails to quan-
tify the uncertainty accurately for the parameters of interest,
which is crucial for building estimators, hypothesis tests,
and credible intervals. Such a problem leads to unreliable
statistical inference and casts doubts on the credibility of
the prediction tasks or diagnoses in medical applications.

To unify optimization and uncertainty quantification in fed-
erated learning, we resort to a Bayesian treatment by sam-
pling from a global posterior distribution, where the lat-
ter is aggregated by infrequent communications from lo-
cal posterior distributions. We adopt a popular approach
for inferring posterior distributions for large datasets, the
stochastic gradient Markov chain Monte Carlo (SG-MCMC)
method [Welling and Teh, 2011, Vollmer et al., 2016, Teh
et al., 2016, Chen et al., 2014, Ma et al., 2015], which
enjoys theoretical guarantees beyond convex scenarios [Ra-
ginsky et al., 2017, Zhang et al., 2017, Mangoubi and Vish-
noi, 2018, Ma et al., 2019]. In particular, we examine in
the federated learning setting the efficacy of the stochas-
tic gradient Langevin dynamics (SGLD) algorithm, which
differs from stochastic gradient descent (SGD) in an addi-
tionally injected noise for exploring the posterior. The close
resemblance naturally inspires us to adapt the optimization-
based FedAvg to a distributed sampling framework. Similar
ideas have been proposed in federated posterior averag-
ing [Al-Shedivat et al., 2021]. Empirical studies and analy-
ses on Gaussian posteriors have shown promising potential
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of this approach. Compared to the appealing theoretical
guarantees of optimization-based algorithms in federated
learning [Pathaky and Wainwright, 2020, Al-Shedivat et al.,
2021], the convergence properties of approximate sampling
algorithms in federated learning is far less understood. To
fill this gap, we proceed by asking the following question:

Can we build a unified algorithm with convergence
guarantees for sampling in FL?

In this paper, we propose the FA-LD for posterior inference
beyond the Gaussian. Our contributions are four-fold:

• We present the first non-asymptotic convergence anal-
ysis for FA-LD for simulating strongly log-concave
distributions on non-i.i.d data; Our theoretical analysis
reveals that SGLD is not communication efficient in
federated learning. However, we find that FA-LD based
on local updates, with the synchronization frequency
depending on the condition number, proves to be an
effective approach for alleviating communication.

• The convergence analysis indicates that injected noise,
data heterogeneity, and stochastic-gradient noise are
all driving factors that affect the convergence. Such an
analysis provides a concrete guidance on the optimal
number of local updates to minimize communications.

• We can activate partial device updates to avoid strag-
gler’s effects in practical applications and tune the cor-
relation of injected noises to protect privacy.

• We also provide differential privacy guarantees, which
shed light on the trade-off between data privacy and
accuracy given a limited budget.

2 PRELIMINARIES

2.1 AN OPTIMIZATION PERSPECTIVE ON
FEDERATED AVERAGING

Federated averaging (FedAvg) is typically formulated into a
distributed optimization framework as follows

min
θ
ℓ(θ) :=

∑N
c=1 ℓ

c(θ)∑N
c=1 nc

, ℓc(θ) :=

nc∑
i=1

l(θ;xc,i), (1)

where θ ∈ Rd, l(θ;xc,j) is a certain loss function based on
θ and the data point xc,j .

FedAvg algorithm requires the following three steps:

• Broadcast: The center server broadcasts the latest
model, θk, to all local clients.

• Local updates: For any c ∈ [N ], the c-th client first
sets the auxiliary variable βck = θk and then conducts
K ≥ 1 local steps: βck+1 = βck −

η
nc
∇ℓ̃c(βck), where η

is the learning rate and ∇ℓ̃c is the unbiased estimate of
the exact gradient ∇ℓc.

• Synchronization: The local models are sent to the cen-
ter server and then aggregated into a unique model
θk+K :=

∑N
c=1 pcβ

c
k+K , where pc is the weight of the

c-th client such that pc = nc∑N
i=1 ni

∈ (0, 1) and nc > 0

is the number of data points in the c-th client.

From the optimization perspective, Li et al. [2020c] proved
the convergence of the FedAvg algorithm on non-i.i.d data
such that a larger number of local stepsK and a higher order
of data heterogeneity slows down the convergence.

2.2 SGLD

A popular method for posterior inference with large dataset
is SGLD [Welling and Teh, 2011], which injects additional
noise into the stochastic gradient

θk+1 = θk − η∇f̃(θk) +
√
2τηξk,

where τ is the temperature and ξk is a Gaussian vector.
f(θ) :=

∑N
c=1 ℓ

c(θ) is an energy function. ∇f̃(θ) is an
unbiased estimate of ∇f(θ). θk converges weakly to π(θ) ∝
exp(−f(θ)/τ) [Teh et al., 2016] as η → 0 and t→ ∞.

3 POSTERIOR INFERENCE VIA FA-LD

The increasing concern for uncertainty estimation in feder-
ated learning motivates us to consider the simulation of the
distribution π(θ) ∝ exp(−f(θ)/τ) with distributed clients.

Problem formulation We propose the federated aver-
aging Langevin dynamics (FA-LD) based on the FedAvg
framework in Section 2.1. We follow the same broadcast
step and synchronization step but propose to inject random
noises for local updates. In particular, we consider the fol-
lowing scheme: for any c ∈ [N ], the c-th client first sets
θck = θk and then conducts K ≥ 1 local steps:

Local updates:

βck+1 = θck − η∇f̃ c(θck) +
√

2ητΞck (2)
Synchronization:

θck+1 =


βck+1 if k + 1 mod K ̸= 0∑N
c=1 pcβ

c
k+1 if k + 1 mod K = 0

(3)

where ∇f c(θ) = 1
pc
∇ℓc(θ); ∇f̃ c(θ) is the unbiased es-

timate of ∇f c(θ); Ξck is some Gaussian vector in Eq.(6).
Summing Eq.(2) from clients c = 1 to N , we have

βk+1 = θk − ηZ̃k +
√

2ητξk,

where βk =

N∑
c=1

pcβ
c
k, θk =

N∑
c=1

pcθ
c
k,

Z̃k =

N∑
c=1

pc∇f̃ c(θck), ξk =

N∑
c=1

pcΞ
c
k.

(4)
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By the nature of synchronization, we always have βk = θk
for any k ≥ 0 and the process follows

θk+1 = θk − ηZ̃k +
√
2ητξk, (5)

which resembles SGLD except that θk is not accessible
when k mod K ̸= 0. Since our target is to simulate from
π(θ) ∝ exp(−f(θ)/τ), we expect ξk is a standard Gaussian.
By the concentration of independent Gaussian, we set

Ξck = ξck/
√
pc, (6)

where ξk =
∑N
c=1 pcΞ

c
k =

∑N
c=1

√
pcξ

c
k and ξck is a also

standard Gaussian vector. Now we present the algorithm
based on independent inject noise (ρ = 0) and the full-
device update (3) in Algorithm 1, where ρ is the correlation
coefficient and will be further studied in section 4.3.3. We
observe Eq.(7) maintains a temperature τ/pc > τ to con-
verge to the stationary distribution π. Such a mechanism
may limit the disclosure of individual data and shows a
potential to protect the data privacy.

4 CONVERGENCE ANALYSIS
In this section, we show that FA-LD converges to the sta-
tionary distribution π(θ) in the 2-Wasserstein (W2) distance
at a rate of O(1/

√
Tϵ) for strongly log-concave and smooth

density. The W2 distance is defined between a pair of Borel
probability measures µ and ν on Rd as follows

W2(µ, ν) := inf
Γ∈Couplings(µ,ν)

(∫
∥βµ − βν∥22dΓ(βµ,βν)

) 1
2

,

where ∥ · ∥2 denotes the ℓ2 norm on Rd and the pair of
random variables (βµ,βν) ∈ Rd × Rd is a coupling with
the marginals following L(βµ) = µ and L(βν) = ν. Note
that L(·) denotes a distribution of a random variable.

4.1 ASSUMPTIONS

We make standard assumptions on the smoothness and con-
vexity of the functions f1, f2, · · · , fN , which naturally
yields appealing tail properties of the stationary measure π.
Thus, we no longer require a restrictive assumption on the
bounded gradient in ℓ2 norm as in Koloskova et al. [2019],
Yu et al. [2019], Li et al. [2020c]. In addition, to control the
distance between ∇f c and ∇f̃ c, we also assume a bounded
variance of the stochastic gradient in assumption 4.3.

Assumption 4.1 (Smoothness). For each c ∈ [N ], f c is
L-smooth if for some L > 0 and ∀x, y ∈ Rd

f c(y) ≤ f c(x) + ⟨∇f c(x), y − x⟩+ L

2
∥y − x∥22.

Assumption 4.2 (Strongly convexity). For each c ∈ [N ],
f c is m-strongly convex if for some m > 0

f c(x) ≥ f c(y) + ⟨∇f c(y), x− y⟩+ m

2
∥y − x∥22.

Assumption 4.3 (Bounded variance). For each c ∈ [N ], the
variance of noise in the stochastic gradient ∇f̃ c(x) in each
client is upper bounded such that

E[∥∇f̃ c(x)−∇f c(x)∥22] ≤ σ2d, ∀x ∈ Rd.

Quality of non-i.i.d data Denote by θ∗ the global mini-
mum of f . Next, we quantify the degree of the non-i.i.d data
by γ := maxc∈[N ] ∥∇f c(θ∗)∥2, which is non-negative and
yields a larger scale if the data is less identically distributed.

4.2 PROOF SKETCH

The proof hinges on showing the one-step result in the
W2 distance. To facilitate the analysis, we first define an
auxiliary continuous-time Langevin diffusion (θ̄t)t≥0 s.t.

dθ̄t = −∇f(θ̄t)dt+
√
2τdW t, (8)

where W is a d-dimensional Brownian motion. The
continuous-time Langevin diffusion algorithm is known
to converge to the stationary distribution π(θ̄) ∝ e−

f(θ̄)
τ .

Assume that θ̄0 simulates from the stationary distribution π,
then it follows that θ̄t ∼ π for any t ≥ 0.

4.2.1 Dominated contraction in federated learning

The first target is to show a contraction property of∥∥θ̄ − θ − η(∇f(θ̄)−Z)
∥∥2
2
, where Z =

∑N
c=1 pc∇f c(θc).

The key challenge is that θ̄ follows from the continuous
diffusion Eq.(8), while θ follows from Alg.1 based on com-
munications θ =

∑N
c=1 pcθ

c every K iterations, as such, a
divergence issue appears when θ ̸= θc. To tackle this issue,
we first consider a standard decomposition∥∥θ̄ − θ − η(∇f(θ̄)−Z)

∥∥2
2
=
∥∥θ̄ − θ

∥∥2
2

− 2η ⟨θ̄ − θ,∇f(θ̄)−Z⟩︸ ︷︷ ︸
I

+η2
∥∥∇f(θ̄)−Z

∥∥2
2
.

Using Eq.(4), we decompose I and apply Jensen’s inequal-
ity to obtain a lower bound of I.

Lemma 4.4 (Dominated contraction property, informal
Lemma C.1). Assume assumptions 4.1 and 4.2 hold. For
any learning rate η ∈ (0, 1

L+m ], any θ̄ and {θc}Nc=1 ∈ Rd,
we have∥∥θ̄ − θ − η(∇f(θ̄)−Z)

∥∥2
2
≤ (1− ηm) · ∥θ̄ − θ∥22

+ 4ηL

N∑
c=1

pc · ∥θc − θ∥22︸ ︷︷ ︸
divergence term

,

where θ =
∑N
c=1 pcθ

c and Z =
∑N
c=1 pc∇f c(θc).
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Algorithm 1 Federated averaging Langevin dynamics Algorithm (FA-LD), informal Algorithm 4. Denote by θck the model
parameter in the c-th client at the k-th step. Denote the one-step intermediate result by βck. ξck is an independent standard
d-dimensional Gaussian vector at iteration k for each client c ∈ [N ]; ξ̇k is a d-dimensional Gaussian vector shared by all the
clients; ρ denotes the correlation coefficient. Sk is sampled via a device-sampling rule based on scheme I or II.

βck+1 = θck − η∇f̃ c(θck) +
√

2ητρ2ξ̇k +
√
2ητ(1− ρ2)/pcξ

c
k, (7)

θck+1 =

 βck+1 if k + 1 mod K ̸= 0

Πk+1 if k + 1 mod K = 0.

where Πk+1 =
∑N
c=1 pcβ

c
k+1 for full device and Πk+1 =

∑
c∈Sk+1

1
Sβ

c
k+1 for partial device.

4.2.2 Bounding divergence

The following result shows that given a finite number of
local steps K, the divergence between θc in local client and
θ in the center is bounded in ℓ2 norm. Notably, since the
Brownian motion leads to a lower order term O(η) instead
of O(η2), a naïve proof framework such as Li et al. [2020c]
may lead to a crude upper bound for the final convergence.

Lemma 4.5 (Bounded divergence, informal Lemma C.3).
Assume assumptions 4.1, 4.2, and 4.3 hold. For any η ∈
(0, 2/m) and ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ] and some
constant D, we have the ℓ2 upper bound of the divergence
between local clients and the center

N∑
c=1

pcE∥θck − θk∥22 ≤ O((K − 1)2η2d) +O((K − 1)ηd).

The result relies on a uniform upper bound in ℓ2 norm,
which avoids bounded gradient assumptions.

4.2.3 Coupling to the stationary process

Note that θ̄t is initialized from the stationary distribution π.
The solution to the continuous-time process Eq.(8) follows:

θ̄t = θ̄0 −
∫ t

0

∇f(θ̄s)ds+
√
2τ ·W t, ∀t ≥ 0. (9)

Set t → (k + 1)η and θ̄0 → θ̄kη for Eq.(9) and consider a
synchronous coupling such that W (k+1)η −W kη :=

√
ηξk

is used to cancel the noise terms, we have

θ̄(k+1)η = θ̄kη −
∫ (k+1)η

kη

∇f(θ̄s)ds+
√
2τηξk. (10)

Subtracting Eq.(5) from Eq.(10) and taking square and ex-
pectation on both sides yield that

E∥θ̄(k+1)η − θk+1∥22 ≤ (1− ηm/2) · E∥θ̄kη − θk∥22
+ divergence term + time error.

Eventually, we arrive at the one-step error bound.

Lemma 4.6 (One step update, informal Lemma C.5). As-
sume assumptions 4.1, 4.2, and 4.3 hold. Consider Algo-
rithm 1 with any η ∈ (0, 1

2L ) and ∥θc0 − θ∗∥22 ≤ dD2, ρ = 0,
and full device participation for any c ∈ [N ], where θ∗ is
the global minimum for the function f . Then

W 2
2 (µk+1, π) ≤ (1− ηm/2) ·W 2

2 (µk, π) +O(η2d((K − 1)2 + κ)),

where µk denotes the probability measure of θk and κ =
L/m is the condition number.

Given small enough η, the above Lemma indicates that the
algorithm will eventually converge

4.3 FULL DEVICE PARTICIPATION

4.3.1 Convergence based on independent noise

When the synchronization step is conducted at every iter-
ation k, the FA-LD algorithm is essentially the standard
SGLD algorithm [Welling and Teh, 2011]. Theoretical anal-
ysis based on the 2-Wasserstein distance has been estab-
lished in Durmus and Moulines [2019], Dalalyan [2017],
Dalalyan and Karagulyan [2019]. However, in scenarios
of K > 1 with distributed clients, a divergence between
the global variable θk and local variable θck appears and
unavoidably affects the performance. The upper bound on
the sampling error is presented as follows.

Theorem 4.7 (Main result, informal Theorem C.6). Assume
assumptions 4.1, 4.2, and 4.3 hold. Given Algorithm 1 with
η ∈ (0, 1

2L ], ρ = 0, full device, and well initialized {θc0}Nc=1,
we have

W2(µk, π) ≤ (1− ηm/4)
k ·
(√

2d
(
D +

√
τ/m

))
+ 30κ

√
ηmd ·

√
((K − 1)2 + κ)H0,

where µk denotes the density of θk at iteration k, K is the
local updates, κ := L/m, γ := maxc∈[N ] ∥∇f c(θ∗)∥2,

and H0 := D2 +maxc∈[N ]
τ
mpc

+ γ2

m2d + σ2

m2 .

We observe that the initialization, injected noise, data het-
erogeneity, and stochastic gradient noise all affect the con-
vergence. Similar to Li et al. [2020c], FA-LD with K-local
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steps resembles the one-step SGLD with a large learning rate
and the result is consistent with the optimal rate [Durmus
and Moulines, 2019], despite multiple inaccessible local
updates. Nevertheless, given more smoothness, we may ob-
tain a better dimension dependence [Durmus and Moulines,
2019, Li et al., 2022].

Computational Complexity Let Tϵ denote the number of
iterations required to achieve the target accuracy of ϵ. To
achieve the precision ϵ based on the learning rate η, we set

30κ
√
ηmd ·

√
(K2 + κ)H0 ≤ ϵ/2,

exp
(
− ηm

4
Tϵ
)
·
√
2d(D +

√
τ/m) ≤ ϵ/2.

It yields ηm ≤ O

(
ϵ2

dκ2(K2+κ)H0

)
, Tϵ ≥ Ω

(
log(d/ϵ)
mη

)
.

By substituting into the upper bound of ηm, we can deter-
mine that setting Tϵ = Ω(ϵ−2dκ2(K2 + κ)H0 ·log(d/ϵ)) is
sufficient. This finding is consistent with the results obtained
in Dalalyan and Karagulyan [2019] in terms of dimension
dependence when treating W2(µ0, π) as a constant. Fur-
thermore, this result has been extended to more general
distributional assumptions [Sun et al., 2022] and has been
further refined through variance reduction or bias reduction
techniques [Plassier et al., 2022].

Optimal choice of K. Note that H0 = Ω(D2), thus the
number of communication rounds is of the order Tϵ

K =

Ω

(
K + κ

K

)
, where the value of Tϵ

K first decreases and

then increases w.r.t. K, which indicates setting K either
too large or too small leads to high communication costs.
Ideally, K should be selected in the scale of Ω(

√
κ). Com-

bining the definition of Tϵ, this shows that the optimal K
for FA-LD is in the order of O(

√
Tϵ), which matches the

optimization-based results [Stich, 2019, Li et al., 2020c].
We also acknowledge that our analysis regarding the optimal
choice of K is locally optimal, partly due to the subopti-
mal dependence on the condition number. We believe that a
more refined analysis, as presented in [Durmus et al., 2019],
can help us refine our dependence on κ and enhance our
understanding of the optimal choice of local steps K.

4.3.2 Convergence via varying learning rates

Theorem 4.8 (Informal Theorem C.7). Assume assumptions
4.1, 4.2, and 4.3 hold. Consider Algorithm 1 with ρ = 0, full
device, an initialization satisfying ∥θc0 − θ∗∥22 ≤ dD2 for
any c ∈ [N ], and the varying learning rate following ηk =

1
2L+(1/12)mk . Then for any k ≥ 0, we have W2(µk, π) ≤

45κ
√
((K − 1)2 + κ)H0 ·

(
ηkmd

)1/2
, ∀k ≥ 0.

To achieve the precision ϵ, we need W2(µk, π) ≤ ϵ, i.e.

45κ
√
(K2 + κ)H0 ·

(
md

2L+(1/12)mk

)1/2

≤ ϵ.We therefore

require Ω(ϵ−2d) iterations to achieve the precision ϵ, which

improves the Ω(ϵ−2d log(d/ϵ)) rate for FA-LD with a fixed
learning rate by a O(log(d/ϵ)) factor.

4.3.3 Privacy-accuracy trade-off via correlated noises

The local updates in Eq.(2) with Ξck = ξck/
√
pc requires all

the local clients to generate the independent noise ξck. Such
a mechanism enjoys the implementation convenience and
yields a potential to protect the data privacy and alleviates
the security issue. However, the large scale noise inevitably
slows down the convergence. To handle this issue, the in-
dependent noise can be generalized to ρ-correlated noise
Replacing Eq.(2) with

βck+1 = θck−η∇f̃ c(θck)+
√
2ητρ2ξ̇k+

√
2η(1− ρ2)τ/pcξ

c
k,

(11)
where ξ̇k is a d-dimensional Gaussian vector shared by all
the clients at iteration k and ξ̇k is independent with ξck for
any c ∈ [N ]. Following the synchronization (3), we have

θk+1 = θk − η∇f̃(θk) +
√
2ητξk, (12)

where ξk = ρξ̇k +
√
1− ρ2

∑N
c=1

√
pcξ

c
k. Since the vari-

ance of i.i.d variables is additive, it is clear that ξk follows
the standard d-dimensional Gaussian distribution. The corre-
lated noise implicitly reduces the temperature and naturally
yields a trade-off between federation and accuracy.

Since the inclusion of correlated noise doesn’t affect the it-
erate of Eq.(12), the algorithm property maintains the same
except the scale of the temperature τ and efficacy of federa-
tion are changed. Based on a target correlation coefficient
ρ ≥ 0, Eq.(11) is equivalent to applying a temperature
Tc,ρ = τ(ρ2 + (1 − ρ2)/pc). In particular, setting ρ = 0
leads to Tc,0 = τ/pc, which exactly recovers Algorithm 1;
however, setting ρ = 1 leads to Tc,1 = τ , where the injected
noise in local clients is reduced by 1/pc times.

Theorem 4.9 (Informal Theorem C.8). Assume assumptions
4.1, 4.2, and 4.3 hold. Consider Algorithm 1 with ρ ∈ [0, 1],
η ∈ (0, 1

2L ] and ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ], we
have

W2(µk, π) ≤ (1− ηm/4)k ·
(√

2d
(
D +

√
τ/m

))
+ 30κ

√
ηmd ·

√
((K − 1)2 + κ)Hρ,

where µk denotes the probability measure of θk, Hρ :=

D2 + 1
m maxc∈[N ] Tc,ρ +

γ2

m2d + σ2

m2 .

Such a mechanism leads to a trade-off between data privacy
and accuracy and may motivate us to exploit the optimal ρ
under differential privacy theories [Wang et al., 2015].

4.4 PARTIAL DEVICE PARTICIPATION

Full device participation enjoys appealing convergence prop-
erties. However, it suffers from the straggler’s effect in prac-
tice, where the communication is limited by the slowest
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device. Partial device participation (defined in section D.1)
handles this issue by allowing a small portion of devices
in each communication and greatly increased the commu-
nication efficiency in a federated network. The first device-
sampling scheme I [Li et al., 2020b] selects a total of S
devices, where the c-th device is selected with a probability
pc. The first theoretical justification for convex optimization
has been proposed by Li et al. [2020c]. The second device-
sampling scheme II is to uniformly select S devices without
replacement. We follow Li et al. [2020c] and assume S
indices are selected uniformly without replacement.

Theorem 4.10 (Informal Theorem D.3). We run Algorithm
1 with ρ ∈ [0, 1], a fixed η ∈ (0, 1

2L ] and ∥θc0 − θ∗∥22 ≤ dD2

W2(µk, π) ≤ (1− ηm/4)k ·
(√

2d
(
D +

√
τ/m

))
+O

(
κ
√
ηmd ·

√
(K2 + κ) +

√
d

S
(ρ2 +N(1− ρ2))CS

)
,

where CS = 1 for Scheme I and CS = N−S
N−1 for Scheme II.

Partial device participation leads to an extra bias regardless
of the scale of η. To reduce it, we suggest to consider highly
correlated injected noise, such as ρ = 1, to reduce the
impact of the injected noise. Further setting O(

√
d/S) ≤

ϵ/3 and following a similar η as in section 4.3.1, we can
achieve the precision ϵ within Ω(ϵ−2d log(d/ϵ)) iterations
given enough devices satisfying S = Ω(ϵ−2d).

The device-sampling scheme I provides a viable solution
to handle the straggler’s effect, which is rather robust to
the data heterogeneity and doesn’t require the data to be
balanced. In more practical cases where a system can only
operate based on the first S messages for the local updates,
Scheme II can achieve a reasonable approximation given
more balanced data with uniformly sampled device. If S =
1, our Scheme II matches the result in the Scheme I; If
S = N , then our Scheme II recovers the result in the full
device setting; If S = N − o(N), our Scheme II bound is
better than scheme I.

4.5 DIFFERENTIAL PRIVACY GUARANTEES

We consider the (ϵ, δ)-differential privacy with respect to
the substitute-one relation ≃s Balle et al. [2018]. We say
two datasets S ≃s S ′ if they have the same size and differ
by exactly one data point. For ϵ ≥ 0 and δ ∈ [0, 1], a
mechanism M is (ϵ, δ)-differentially private w.r.t. ≃s if for
any pair of input datasets S ≃s S ′, and every measurable
subset E ⊂ Range(M), we have

P[M(S) ∈ E] ≤ eϵP[M(S ′) ∈ E] + δ. (13)
Since partial device participation is more general, we focus
on analyzing the differential privacy guarantee based on
updates with partial devices. Here, we present the result
under scheme II. For the result under scheme I, please refer
to Theorem H.3 in the appendix.

Theorem 4.11 (Partial version of Theorem H.3). Assume
assumptions H.1 and H.2 hold. For any δ0 ∈ (0, 1), if η ∈(
0,

τ(1−ρ2)γ2 minc∈[N] pc
∆2

l log(1.25/δ0)

]
, then Algorithm 1 under scheme

II is (ϵ
(3)
K,T , δ

(3)
K,T )-differentially private w.r.t. ≃s after T

(T = EK with E ∈ N, E ≥ 1) iterations where

ϵ
(3)
K,T = ϵ̃K min

{√
2T

K
log

(
1

δ2

)
+
TS(eϵK − 1)

KN
,
T

K

}
,

δ
(3)
K,T =

S

N
γTδ0 +

TS

KN
δ1 + δ2,

with ϵ̃K = log
(
1 + S

N (eϵK − 1)
)
, ϵK =

ϵ1 min
{√

2K log(1/δ1) +K(eϵ1 − 1), K
}

,

ϵ1 = 2∆l

√
η log(1.25/δ0)

τ(1−ρ2)minc∈[N] pc
, and δ1, δ2 ∈ [0, 1).

According to Theorem 4.11 and section H, Algorithm
1 is at least ( TK log

(
1 + S

N (eKϵ1 − 1)
)
, SN γTδ0)-

differentially private. Moreover, if η =

O
(
τ(1−ρ2)N2 minc∈[N] pc log(1/δ2)

∆2
l S

2T log(1/δ0) log(1/δ1)

)
, then we have that

ϵ
(3)
K,T = O

(
S∆l

N

√
ηT log(1/δ0) log(1/δ1) log(1/δ2)

τ(1−ρ2)minc∈[N] pc

)
.

There is a trade-off between privacy and utility. By Theorem
4.11, ϵ(3)K,T is an increasing function of η

τ(1−ρ2) , SN , and T .

δ
(3)
K,T is an increasing function of S

N , γ, and T . However,
by Theorem 4.10, the upper-bound of W2(µT , µ) is a de-
creasing function of ρ, T , S and is an increasing function
of τ and N . There is an optimal η to minimize W2(µT , µ)

for fixed T while we can make ϵ(3)K,T arbitrarily small by
decreasing η for any fixed T . In practice, users can tune
hyper-parameters based on DP and accuracy budget. For
example, under some DP budget (ϵ∗, δ∗), we can select the
largest ρ ∈ [0, 1] and S ∈ [N ] such that ϵ(3)K,T ≤ ϵ∗ and

δ
(3)
K,T ≤ δ∗ to achieve the target error W2(µT , µ).

5 EXPERIMENTS

5.1 SIMULATIONS

For each c ∈ [N ], where N = 50, we sample θc
from a 2d Gaussian distribution N(0, αI2) and sample

nc points from N(θc,Σ), where Σ =

[
5 −2
−2 1

]
. Thus,

l(θ;xc,i) = 1
2 (θ − xc,i)

⊤Σ−1(θ − xc,i) + log(2π|Σ| 12 ),
ℓc(θ) =

∑nc

i=1 l(θ;xc,i). The temperature is τ = 1. The
target density is N(u, 1

nΣ) with u = 1
n

∑N
c=1

∑nc

i=1 xc,i.
We choose a Gaussian posterior to facilitate the calculation
of the W2 distance to verify theoretical properties.

We repeat each experiment R = 300 times. At the k-th
communication round, we obtain a set of R simulated pa-
rameters {θk,j}Rj=1, where θk,j denotes the parameter at the
k-th round in the j-th independent run. The underlying distri-
bution µk at round k is approximated by a Gaussian variable
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Figure 1: (Top row) Convergence of FA-LD based on full devices. In Figure 1(a), points may coincide. (Bottom row)
Convergence of FA-LD based on different device-sampling schemes.

with the empirical mean uk = 1
R

∑R
j=1 θk,j and covariance

matrix Σk = 1
R−1

∑R
j=1(θk,j − uk)(θk,j − uk)

⊤.

Optimal local steps: We study the choices of local step K
for Algorithm 1 based on ρ = 0, full device, and different
α’s, which corresponds to different levels of data heterogene-
ity modelled by γ. We choose α = 0, 1, 10, 100, 1000 and
the corresponding γ is around 1×108, 4×1011, 4×1012, 4×
1013, and 4× 1014, respectively. We fix η = 10−7. We eval-
uate the (log) number of communication rounds to achieve
the accuracy ϵ = 10−3 and denote it by Tϵ. As shown in
Figure 1(a), a small K leads to an excessive amount of
communication costs; by contrast, a large K results in large
biases, which in turn requires high communications. The
optimal K is around 3000 and the communication savings
can be as large as 30 times.

Data heterogeneity and correlated noise: We study the
impact of γ on the convergence based on ρ = 0, full device,
different γ from {1×108, 4×1011, 4×1012, 4×1013, and
4 × 1014}. We set K = 10. As shown in Figure 1(b), the
W2 distances under different γ all converge to some levels
around 10−3 after sufficient computations. Nevertheless, a
larger γ does slow down the convergence, which suggests
adopting more balanced data to facilitate the computations.
In Figure 1(c), we study the impact of ρ on the convergence
of the algorithm. We choose K = 100 and γ = 108 and
observe that a larger correlation slightly accelerates the
computation, although it risks in privacy concerns.

Approximate samples: In Figure 1(e), we plot the empirical
density according to the samples from Algorithm 1 with
ρ = 0, full device, K = 10 and γ = 108, η = 10−7. For
comparison, we show the true density plot of the target dis-
tribution in Figure 1(d). The empirical density approximates
the true density very well, which indicates that the potential
of FA-LD in federated learning.

Partial device participation: We study the convergence of
two popular device-sampling schemes I and II. We fix the
number of local steps K = 100 and the total devices
N = 50. We try to sample S devices based on different
fixed learning rates η. The full device updates are also pre-
sented for a fair evaluation. As shown in Figure 1(f), larger
learning rates converge faster but lead to larger biases; small
learning rates, by contrast, yield diminishing biases consis-
tently, where is in accordance with Theorem 4.7. However,
in partial device scenarios, the bias becomes much less de-
pendent on the learning rate in the long run. We observe in
Figure 1(g), Figure 1(h), Figure 1(i), and Figure 1(j) that
the bias caused by partial devices becomes dominant as we
decrease the number of partial devices S for both schemes.
Such a phenomenon still exists even when the algorithms
converge, which suggests that the proposed partial device
updates may be only appropriate for the early period of the
training or simulation tasks with low accuracy demand.

5.2 (FASHION) MNIST

To evaluate the performance of FA-LD under different local
steps K on real-world datasets, we conducted experiments
using the MNIST and Fashion-MNIST datasets. We applied
FA-LD to train a logistic regression model with the cross
entropy loss. To ensure fairness in our evaluation, we ran-
domly split the training dataset into N = 10 subsets of
equal size, creating 10 clients. In each experimental setting,
we collected one parameter sample after every 10 communi-
cation rounds. We then averaged the predicted probabilities
made by all previously collected parameter samples. This
allowed us to calculate three test statistics: accuracy, Brier
Score (BS) [Brier et al., 1950], and Expected Calibration
Error (ECE) [Guo et al., 2017] on the test dataset. We tune
the step sizes η for the best performance and plot the curves
of those test statistics against communication rounds under
different local steps K = 1, 10, 20, 50, 100 in Figure 2.
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Figure 2: Convergence of FA-LD on the MNIST (M) and Fashion-MNIST (F) (top has no warmup and bottom employs
warmup training of the first 500 communication rounds).

We set the temperature parameter τ to a value of 0.05. Dur-
ing the training process, we calculated the stochastic gradi-
ent of the energy function at each step using a batch size
of 200 for each client. To facilitate a clear observation of
the convergence behavior under different local step values
K, we introduced a warmup period of 500 communication
rounds for each experiment.

Based on the findings depicted in Figure 2, it is evident that
under the same communication budget, FA-LD with K = 1
(equivalent to the standard SGLD algorithm) performs the
poorest in terms of all three test statistics. This outcome
highlights the importance of incorporating multiple local
updates in federated learning settings. Furthermore, it is
worth noting that the optimal local step value K may differ
across different test statistics. For instance, in the case of
the MNIST dataset, the optimal K range for achieving the
highest accuracy lies between 50 and 100 (refer to Figure
2(a)). On the other hand, the optimal K value for minimiz-
ing the Brier Score (BS) is approximately 20 (see Figure
2(b)). These results indicate that the choice of K should be
carefully considered and tailored to the specific evaluation
metric of interest.

Based on the observations from Figure 2(bottom), we can
conclude that for the MNIST dataset, FA-LD with K = 1
performs the worst across all three test statistics. Similarly,
for the Fashion-MNIST dataset, FA-LD with K = 1 ex-
hibits the poorest performance in terms of accuracy and BS,
and it does not yield the best results in terms of ECE. These
findings underscore the benefits of incorporating multiple
local updates in federated learning, particularly when op-
erating under a fixed communication budget. Among the
local step values K = 1, 10, 20, 50, 100, our analysis, as
depicted in Figure 2(g), 2(h), and 2(i), reveals that for the
MNIST dataset, the optimal choice for the local step K
is 20, considering accuracy, BS, and ECE. In contrast, for
the Fashion-MNIST dataset, the optimal K value is 20 for

accuracy, 10 for BS, and 50 for ECE, as evident from Figure
2(j), 2(k), and 2(l), respectively. These results emphasize the
importance of selecting an appropriate K value that aligns
with the specific evaluation metric of interest in order to
achieve optimal performance.

It is important to note that the optimal choice of the local
step value K can differ when considering the presence or
absence of a warmup period, as illustrated in Figure 2. This
observation holds significant implications for selecting the
appropriate K value in federated learning scenarios. For in-
stance, let’s consider the Fashion-MNIST dataset. Without
a warmup period, the optimal K value for minimizing the
Brier Score (BS) is 100, as indicated in Figure 2(e). How-
ever, when a warmup period consisting of the first 500 com-
munication rounds is introduced, the optimal K value for
BS shifts to 10, as depicted in Figure 2(k). This discrepancy
suggests that the communication budget also influences the
determination of the optimal local step K. This observation
underscores the importance of considering the impact of the
communication budget and warmup periods when determin-
ing the optimal local step value. It is crucial to assess the
interplay between these factors to make informed decisions
and achieve the best possible performance.

6 CONCLUSION

We propose a first convergence analysis for federated aver-
aging Langevin dynamics (FA-LD) with distributed clients.
The theoretical guarantees yield a concrete guidance on the
selection of the optimal number of local updates to min-
imize communication costs. In addition, the convergence
highly depends on the data heterogeneity and the injected
noises, where the latter also inspires us to consider corre-
lated injected noise and partial device updates to balance
between differential privacy and prediction accuracy with
theoretical guarantees.
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Roadmap. In Section A, we study the related-work sections. In Section B, we layout the formulation of the algorithm,
basic notations, and definitions. In Section C, we present the main convergence analysis for full device participation. We
discuss the optimal number of local updates based on a fixed learning rate, the acceleration achieved by varying learning
rates, and the privacy-accuracy trade-off through correlated noises. In Section D, we analyze the convergence of partial
device participation through two device-sampling schemes. In Section E, we provide lemmas to upper bound the contraction,
discretization and divergence for proving the main convergence results. In Section F, we include supporting lemmas to prove
results in the previous section. In Section G, we establish the initial condition. In Section H, we prove differential privacy
guarantees.

A RELATED WORK

Concurrent Works Our work predominantly focuses on convex scenarios. However, for those interested in non-convex
scenarios, we would like to direct readers to a noteworthy study conducted by Sun et al. [2022], which assumes the
Logarithmic Sobolev Inequality (LSI) to hold and leverages the compression operator (also QLSD [Vono et al., 2022])
to reduce communication costs in federated learning. The LSI assumption allows for the consideration of multi-modal
distributions and provides theoretical guarantees for more practical applications. Although the compression operator may be
less communicational efficient than the local-step update, this work Sun et al. [2022] intriguingly lays the foundation for
future studies on Bayesian federated learning in non-convex scenarios based on local-step schemes.

It is important to note that our averaging scheme is deterministic, which may have limitations in scenarios where the
activation of all devices is costly. For interested readers, we recommend referring to the study conducted by Plassier et al.
[2022] on federated averaging Langevin dynamics, which extends our deterministic averaging scheme to probabilistic.

Federated Learning Current federated learning follows two paradigms. The first paradigm asks every client to learn the
model using private data and communicate in model parameters. The second one uses encryption techniques to guarantee
secure communication between clients. In this paper, we focus on the first paradigm [Dean et al., 2012, Shokri and Shmatikov,
2015, McMahan et al., 2016, 2017, Huang et al., 2021]. There is a long list of works showing provable convergence for
FedAvg types of algorithms in the field of optimization [Li et al., 2020c, 2021, Huang et al., 2021, Khaled et al., 2019, Yu
et al., 2019, Wang et al., 2019, Karimireddy et al., 2020]. One line of research Li et al. [2020c], Khaled et al. [2019], Yu et al.
[2019], Wang et al. [2019], Karimireddy et al. [2020] focuses on standard assumptions in optimization (such as, convex,
smooth, strongly-convex, bounded gradient). Extensions to general partial device participation, and arbitrary communication
schemes have been well addressed in Avdyukhin and Kasiviswanathan [2021], Haddadpour and Mahdavi [2019]. There
are other noteworthy Bayesian personalized federated learning algorithms worth exploring. For instance, Kotelevskii et al.
[2022], Zhang et al. [2022] present interesting approaches within this domain.

Distributed Monte Carlo methods Sub-posterior aggregation was initially proposed in Neiswanger et al. [2013], Wang
and Dunson, Minsker et al. [2014] to accelerate MCMC methods to cope with large datasets. Other parallel MCMC
algorithms [Nishihara et al., 2014, Ahn et al., 2014, Chen et al., 2016, Chowdhury and Jermaine, 2018, Li et al., 2019]
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propose to improve the efficiency of Monte Carlo computation in distributed or asynchronous systems. Gürbüzbalaban et al.
[2021] proposed stochastic gradient Monte Carlo methods in decentralized systems. Al-Shedivat et al. [2021], Mekkaoui
et al. [2021], Chen and Chao [2021] introduced empirical studies of posterior averaging in federated learning.

B PRELIMINARIES

B.1 BASIC NOTATIONS AND BACKGROUNDS

Let N denote the number of clients. Let Tϵ denote the number of global steps to achieve the precision ϵ. Let K denote
the number of local steps. For each c ∈ [N ] := {1, 2, · · · , N}, we use f c and ∇f c denote the loss function and gradient
of the function f c in client c. Notably, ∇f is not a standard gradient operator acting on f when multiple local steps are
adopted (K > 1). For the stochastic gradient oracle, we denote by ∇f̃ c(·) the unbiased estimate of the exact gradient ∇f c
of client c. In addition, we denote pc as the weight of the c-th client such that pc ≥ 0 and

∑N
c=1 pc = 1. ξck is an independent

standard d-dimensional Gaussian vector at iteration k for each client c ∈ [N ] and ξ̇k is a unique Gaussian vector shared by
all the clients.

Algorithm 2 Federated averaging Langevin dynamics algorithm (FA-LD). Denote by θck the model parameter in the c-th
client at the k-th step. Denote the immediate result of one step SGLD update from θck by βck. ξck is an independent standard
d-dimensional Gaussian vector at iteration k for each client c ∈ [N ]. A global synchronization is conducted every K steps.
This is a transformed version of Algorithm 1 with ρ = 0 and full device participation for ease of analysis.

βck+1 = θck − η∇f̃ c(θck) +
√

2ητ/pcξ
c
k, (14)

θck+1 =


βck+1 if k + 1 mod K ̸= 0∑N
c=1 pcβ

c
k+1 if k + 1 mod K = 0.

(15)

Inspired by Li et al. [2020c], we define two virtual sequences

βk =

N∑
c=1

pcβ
c
k, θk =

N∑
c=1

pcθ
c
k, (16)

which are both inaccessible when k mod K ̸= 0. For the gradients and injected noise, we also define

Zk =

N∑
c=1

pc∇f c(θck), Z̃k =

N∑
c=1

pc∇f̃ c(θck), θk = (θ1k, · · · , θNk ), ξk =

N∑
c=1

√
pcξ

c
k. (17)

In what follows, it is clear that EZ̃k =
∑N
c=1 pcE∇f̃ c(θc) =

∑N
c=1 pc∇f c(θc) := Zk for any θc ∈ Rd and any c ∈ [N ].

Summing Eq.(14) from clients c = 1 to N and combining Eq.(16) and Eq.(17), we have

βk+1 = θk − ηZ̃k +
√

2ητξk. (18)

Moreover, we always have βk = θk whether k+1 mod K = 0 or not by Eq.(15) and Eq.(16). In what follows, we can write

θk+1 = θk − ηZ̃k +
√

2ητξk, (19)

which resembles the SGLD algorithm [Welling and Teh, 2011] except that the construction of stochastic gradients is different
and θk is not accessible when k mod K ̸= 0. Our derivation of Eq.(19) is motivated by [Li et al., 2020c], where a similar
federated algorithm based on SGD in developed in section A.1.

B.2 ASSUMPTIONS AND DEFINITIONS

Assumption B.1 (Smoothness, restatement of Assumption 4.1). For each c ∈ [N ], we say f c is L-smooth if for some L > 0

f c(y) ≤ f c(x) + ⟨∇f c(x), y − x⟩+ L

2
∥y − x∥22 ∀x, y ∈ Rd.
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Note that the above assumption is equivalent to saying that

∥∇f c(y)−∇f c(x)∥2 ≤ L∥y − x∥2, ∀x, y ∈ Rd.

Assumption B.2 (Strong convexity, restatement of Assumption 4.2). For each c ∈ [N ], f c is m-strongly convex if for some
m > 0

f c(x) ≥ f c(y) + ⟨∇f c(y), x− y⟩+ m

2
∥y − x∥22 ∀x, y ∈ Rd.

An alternative formulation for strong convexity is that

⟨∇f c(x)−∇f c(y), x− y⟩ ≥ m ∥x− y∥22 ∀x, y ∈ Rd.

Assumption B.3 (Bounded variance, restatement of Assumption 4.3). For each c ∈ [N ], the variance of noise in the
stochastic gradient ∇f̃ c(x) in each client is upper bounded such that

E[∥∇f̃ c(x)−∇f c(x)∥22] ≤ σ2d, ∀x ∈ Rd.

The bounded variance in the stochastic gradient is a rather standard assumption and has been widely used in Cheng et al.
[2018], Dalalyan and Karagulyan [2019], Li et al. [2020c]. Extension of bounded variance to unbounded cases such as
E[∥∇f̃ c(x) −∇f c(x)∥22] ≤ δ(L2x2 + B2) for some M and δ ∈ [0, 1) is quite straightforward and has been adopted in
assumption A.4 stated in Raginsky et al. [2017]. The proof framework remains the same.

Quality of non-i.i.d data Denote by θ∗ the global minimum of f . Next, we quantify the degree of the non-i.i.d data
by γ := maxc∈[N ] ∥∇f c(θ∗)∥2, which is a non-negative constant and yields a smaller scale if the data is more evenly
distributed.

Definition B.4. We define parameter Tc,ρ Hρ, κ and γ2

Tc,ρ := τ(ρ2 + (1− ρ2)/pc),

Hρ := D2︸︷︷︸
initialization

+
1

m
max
c∈[N ]

Tc,ρ︸ ︷︷ ︸
injected noise

+
γ2

m2d︸ ︷︷ ︸
data heterogeneity

+
σ2

m2︸︷︷︸
stochastic noise

,

κ := L/m,

γ2 := max
c∈[N ]

∥∇f c(θ∗)∥22.

C FULL DEVICE PARTICIPATION

C.1 ONE-STEP UPDATE

Wasserstein distance We define the 2-Wasserstein distance between a pair of Borel probability measures µ and ν on Rd
as follows

W2(µ, ν) := inf
Γ∈Couplings(µ,ν)

(∫
∥βµ − βν∥22dΓ(βµ,βν)

) 1
2

,

where ∥ · ∥2 denotes the ℓ2 norm on Rd and the pair of random variables (βµ,βν) ∈ Rd × Rd is a coupling with the
marginals following L(βµ) = µ and L(βν) = ν. L(·) denotes a distribution of a random variable.

The following result provides a crucial contraction property based on distributed clients with infrequent synchronizations.

Lemma C.1 (Dominated contraction property, restatement of Lemma 4.4). Assume assumptions B.1 and B.2 hold. For any
learning rate η ∈ (0, 1

L+m ], any θ̄, {θc}Nc=1 ∈ Rd, we have

∥∥θ̄ − θ − η(∇f(θ̄)−Z)
∥∥2
2
≤ (1− ηm) · ∥θ̄ − θ∥22 + 4ηL

N∑
c=1

pc · ∥θc − θ∥22,
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where θ =
∑N
c=1 pcθ

c, although θ is not accessible when k mod K ̸= 0 as discussed in Eq.(16); Z =
∑N
c=1 pc∇f c(θc).

We postpone the proof into Section E.1.

The following result ensures a bounded gap between θ̄s and θ̄η⌊ s
η ⌋ in ℓ2 norm for any s ≥ 0 and c ∈ [N ]. We postpone the

proof of Lemma C.2 into Section E.2.

Lemma C.2 (Discretization error). Assume assumptions B.1, B.2, and B.3 hold. For any s ≥ 0, any learning rate
η ∈ (0, 2/m) and ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ], the iterates of (θ̄s) based on the continuous dynamics of Eq.(8)
satisfy the following estimate

E
∥∥θ̄s − θ̄η⌊ s

η ⌋
∥∥2
2
≤ 2η2dκLτ + 16ηdτ.

The following result shows that given a finite number of local steps K, the divergence between θc in local client and θ
in the center is bounded in ℓ2 norm. Notably, since the non-differentiable Brownian motion leads to a lower order term
O(η) instead of O(η2) in ℓ2 norm, a naïve proof may lead to a crude upper bound. We delay the proof of Lemma C.3 into
Section E.3.

Lemma C.3 (Bounded divergence, restatement of Lemma 4.5). Assume assumptions B.1, B.2, and B.3 hold. For any
learning rate η ∈ (0, 2/m) and ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ], we have the ℓ2 upper bound of the divergence between
local clients and the center as follows

N∑
c=1

pcE∥θck − θk∥22 ≤ 112(K − 1)2η2dL2Hρ + 8(K − 1)ηdτ(ρ2 +N(1− ρ2)),

where Hρ, κ and γ2 are defined as Definition B.4.

The following presents a standard result for bounding the gap between Z and Z̃. We delay the proof of Lemma C.4 into
Setion E.

Lemma C.4 (Bounded variance). Given assumption B.3, we have

E∥Z − Z̃∥22 ≤ d · σ2, ∀ θ ∈ Rd.

Having all the preliminary results ready, now we present a crucial lemma for proving the convergence of all the algorithms.

Lemma C.5 (One step update, restatement of Lemma 4.6). Assume assumptions B.1, B.2, and B.3 hold. Consider Algorithm
2 with independently injected noise ρ = 0, any learning rate η ∈ (0, 1

2L ) and ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ], where θ∗
is the global minimum for the function f . Then

W 2
2 (µk+1, π) ≤

(
1− ηm

2

)
·W 2

2 (µk, π) + 400η2dL2H0((K − 1)2 + κ),

where µk denotes the probability measure of θk, H0, κ and γ2 are defined as Definition B.4.

Proof. The solution of the continuous-time process Eq.(8) follows that

θ̄t = θ̄0 −
∫ t

0

∇f(θ̄s)ds+
√
2τ ·W t, ∀t ≥ 0. (20)

Set t→ (k + 1)η and θ̄0 → θ̄kη for Eq.(20) and consider a synchronous coupling such that W(k+1)η −Wkη :=
√
ηξk

θ̄(k+1)η = θ̄kη −
∫ (k+1)η

kη

∇f(θ̄s)ds+
√
2τ(W(k+1)η −Wkη)

= θ̄kη −
∫ (k+1)η

kη

∇f(θ̄s)ds+
√
2τηξk. (21)
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We first denote ζk := Z̃k −Zk, which is defined after Eq.(17). Subtracting Eq.(19) from Eq.(21) yields that

θ̄(k+1)η − θk+1

= θ̄kη − θk + ηZ̃k −
∫ (k+1)η

kη

∇f(θ̄s)ds

= θ̄kη − θk − η

(
∇f(θk + θ̄kη − θk)− Z̃k

)
−
∫ (k+1)η

kη

(
∇f(θ̄s)−∇f(θ̄kη)

)
ds (22)

= θ̄kη − θk − η

(
∇f(θk + θ̄kη − θk)−Zk︸ ︷︷ ︸

:=Xk

)
−
∫ (k+1)η

kη

(
∇f(θ̄s)−∇f(θ̄kη)

)
ds︸ ︷︷ ︸

:=Yk

+ηζk.

Taking square and expectation on both sides, we have

E∥θ̄(k+1)η − θk+1∥22
= E∥θ̄kη − θk − ηXk − Yk∥22 + E∥ηζk∥22 + 2η E⟨θ̄kη − θk − ηXk − Yk, ζk⟩︸ ︷︷ ︸

Eζk=0 and mutual independence

≤ (1 + q) · E∥θ̄kη − θk − ηXk∥22 + (1 + 1/q) · E∥Yk∥22 + E∥ηζk∥22

≤ (1 + q) ·
(
(1− ηm) · E∥θ̄kη − θk∥22 + 4ηL

N∑
c=1

pc ·
(
E∥θck − θk∥22

) )
+ (1 + 1/q) · E∥Yk∥22 + η2σ2d

≤ (1 + q) ·
(
(1− ηm)︸ ︷︷ ︸

ϕ

E∥θ̄kη − θk∥22 + 448η3d(K − 1)2L3H0 + 32(K − 1)η2dLτN

)
+ (1 + 1/q) · E∥Yk∥22 + η2σ2d, (23)

where the first inequality follows by the AM-GM inequality for any q > 0, the second inequality follows by Lemma C.1 and
Assumption B.3. The third inequality follows by Lemma C.3 with ρ = 0. Since the learning rate follows 1

2L ≤ 1
m+L ≤ 2

m ,
the requirement of the learning rate for Lemma C.1 and Lemma C.3 is clearly satisfied.

Recall that ϕ = 1− ηm, we get 1+ϕ
2 = 1− 1

2ηm. Choose q = 1+ϕ
2ϕ − 1 so that (1 + q)ϕ = (1+ϕ)

2 = 1− 1
2ηm. In addition,

we have 1 + 1
q = 1+q

q = 1+ϕ
1−ϕ ≤ 2

ηm . It follows that

(1 + q) · (1− ηm) ≤ 1− 1

2
ηm, 1 + q ≤

1− 1
2ηm

1− ηm
≤ 1.5, (1 + 1/q) ≤ 2

mη
, (24)

where the second inequality holds because η ∈ (0, 1
2L ] ≤

1
2m .

For the term E∥Yk∥22 in Eq.(23), we have the following estimate

E∥Yk∥22 = E

∥∥∥∥∥
∫ (k+1)η

kη

(
∇f(θ̄s)−∇f(θ̄kη)

)
ds

∥∥∥∥∥
2

2

≤ η

∫ (k+1)η

kη

E
∥∥∇f(θ̄s)−∇f(θ̄kη)

∥∥2
2
ds

≤ ηL2

∫ (k+1)η

kη

(
2η2dκLτ + 16ηdτ

)
ds

= 2η4dL4H0 + 16η3L2dτ, (25)

where the first inequality follows by Hölder’s inequality, the second inequality follows by Jensen’s inequality, the third
inequality follows by Assumption B.1, and the last inequality follows by Lemma C.2. The last equality holds since
Lτ ≤ LmH0 and κ = L/m.
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Plugging Eq.(24) and Eq.(25) into Eq.(23), we have

E∥θ̄(k+1)η − θk+1∥22 ≤ (1− ηm

2
) · E∥θ̄kη − θk∥22

+ 672η3d(K − 1)2L3H0 + 48η2d(K − 1)LτN

+ 4η3dL3κH0 + 32η2d
L2

m
τ + η2σ2d.

Choose the specific Langevin diffusion θ̄ in stationary regime, we have W 2
2 (µk, π) = E∥θ̄kη − θk∥22 and W 2

2 (µk+1, π) ≤
E∥θ̄(k+1)η − θk+1∥22. Arranging the terms, we have

W 2
2 (µk+1, π) ≤ (1− ηm

2
) ·W 2

2 (µk, π) + 400η2dL2H0((K − 1)2 + κ),

where η ≤ 1
2L , κ ≥ 1, mτ ≤ Lτ ≤ LτN ≤ Lmaxc∈[N ] Tc,0 ≤ LmH0, and σ2 ≤ L2H0 are applied to the result.

C.2 CONVERGENCE VIA INDEPENDENT NOISES

Theorem C.6 (Restatement of Theorem 4.7). Assume assumptions B.1, B.2, and B.3 hold. Consider Algorithm 2 with a
fixed learning rate η ∈ (0, 1

2L ] and ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ], we have

W2(µk, π) ≤
(
1− ηm

4

)k
·
(√

2d
(
D +

√
τ/m

))
+ 30κ

√
ηmd ·

√
((K − 1)2 + κ)H0.

where µk denotes the probability measure of θk, H0, κ and γ2 are defined as Definition B.4.

Proof. Iteratively applying Theorem C.5 and arranging terms, we have that

W 2
2 (µk, π) ≤

(
1− ηm

2

)k
W 2

2 (µ0, π) +
1− (1− ηm

2 )k

1− (1− ηm
2 )

(
400η2dL2H0((K − 1)2 + κ)

)
≤
(
1− ηm

2

)k
W 2

2 (µ0, π) +
2

ηm

(
400η2dL2H0((K − 1)2 + κ)

)
≤
(
1− ηm

2

)k
W 2

2 (µ0, π) + 800κ2ηmd((K − 1)2 + κ)H0, (26)

where κ = L
m . By Lemma G.1 and the initialization condition ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ], we have that

W2(µ0, π) ≤
√
2d(D +

√
τ/m).

Applying the inequality (1− ηm
2 ) ≤ (1− ηm

4 )2 completes the proof.

Remark on scale invariance: Setting K = 1, τ = 1 and γ = 0, we observe that the analysis is scale-invariant overall in the
sense that √

ηdmH0 ≲
√
ηdmD2︸ ︷︷ ︸

I

+
√
ηd+

σ
√
ηd√
m︸ ︷︷ ︸

II

,

where the important second item II is consistent with Theorem 4 in [Dalalyan and Karagulyan, 2019] in terms of scales.
Moreover, our divergence term γ2

m2d in H0 is in the same order as σ2

m2 and hence validates our result.

Discussions
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Optimal choice of K. To ensure the algorithm to achieve the ϵ precision based on the total number of steps Tϵ and the
learning rate η, we can set

30κ
√
ηmd ·

(√
((K − 1)2 + κ)H0

)
≤ ϵ

2

e−
ηm
4 Tϵ ·

(√
2d
(
D +

√
τ/m

))
≤ ϵ

2
.

This directly leads to

ηm ≤ min

{
m

2L
,O

(
ϵ2

dκ2((K − 1)2 + κ)H0

)}
, Tϵ ≥ Ω

(
log
(
d
ϵ

)
mη

)
.

Plugging into the upper bound of η, it implies that to reach the precision level ϵ, it suffices to set

Tϵ = Ω

(
dκ2((K − 1)2 + κ)H0

ϵ2
· log

(
d

ϵ

))
. (27)

Since H0 = Ω(D2 + τ
m ), we observe that the number of communication rounds is around the order

Tϵ
K

= Ω

(
K +

κ

K

)
,

where the value of Tϵ

K first decreases and then increases with respect to K, indicating that setting K either too large or too
small may lead to high communication costs and hurt the performance. Ideally, K should be selected in the scale of Ω(

√
κ).

Combining the definition of Tϵ in Eq.(27), this suggests an interesting result that the optimal K should be in the order of
O(

√
Tϵ). Similar results have been achieved by Stich [2019], Li et al. [2020c].

C.3 CONVERGENCE VIA VARYING LEARNING RATES

Theorem C.7 (Restatement of Theorem 4.8). Assume assumptions B.1, B.2, and B.3 hold. Consider Algorithm 2 with an
initialization satisfying ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ] and varying learning rate following

ηk =
1

2L+ (1/12)mk
, k = 1, 2, · · · .

Then for any k ≥ 0, we have

W2(µk, π) ≤ 45κ
√
((K − 1)2 + κ)H0 ·

(
ηkmd

)1/2
, ∀k ≥ 0,

Proof. We first denote

Cκ = 30κ
√

((K − 1)2 + κ)H0.

Next, we proceed to show the following inequality by the induction method

W2(µk, π) ≤ 1.5Cκ

(
d

2L+ (1/12)mk

)1/2

= 1.5Cκ
(
ηkmd

)1/2
, ∀k ≥ 0, (28)

where the decreasing learning rate follows that

ηk =
1

2L+ (1/12)mk
.

(i) For the case of k = 0, since

Cκ ≥ 4
√
κ
√
H0 ≥ 4

√
κ

√
D2 +

1

m
max
c∈[N ]

Tc,0 ≥ 4
√
κ/d

(√
dD2 +

√
d

m
max
c∈[N ]

Tc,0

)
≥ 4
√
κ/dW2(µ0, π), (29)
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where the last inequality follows by Lemma G.1 and ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ].

It is clear that W2(µ0, π) ≤ 1
4Cκ

√
md
L ≤ 1.5Cκ

√
η0md by Eq.(29).

(ii) If now that Eq.(28) holds for some k ≥ 0, it follows by Lemma C.5 that

W 2
2 (µk+1, π) ≤

(
1− ηkm

2

)
·W 2

2 (µk, π) + 400η2kdL
2H0((K − 1)2 + κ)

≤
(
1− ηkm

2

)
·W 2

2 (µk, π) +
η2km

2

2
C2
κd

≤
(
1− ηkm

2

)
· 2.25C2

κηkmd+
ηkm

3
2.25C2

κηkmd

≤
(
1− ηkm

6

)
· 2.25C2

κηkmd.

Since
(
1− ηkm

6

)
≤
(
1− ηkm

12

)2
, we have

W2(µk+1, π) ≤
(
1− ηkm

12

)
· 1.5Cκ

(
ηkmd

)1/2
.

To prove W2(µk+1, π) ≤ 1.5Cκ
(
ηk+1md

)1/2
, it suffices to show

(
1− ηkm

12

)
η
1/2
k ≤ ηk+1, which is detailed as follows

(
1− ηkm

12

)
η
1/2
k =

√
12(24L+mk −m)

(24L+mk)3/2

≤
√
12(24L+mk −m)1/2

24L+mk

≤
√
12

(24L+m(k + 1))1/2
:= ηk+1,

where the last inequality follows since

(24L+mk −m)(24L+mk +m)) ≤ (24L+mk)2.

The above result implies that to achieve the precision ϵ, we require

W2(µk, π) ≤ 1.5Cκ

(
md

2L+ (1/12)mk

)1/2

≤ ϵ.

The means that we only require k = Ω( dϵ2 ) to achieve the precision ϵ. By contrast, the fixed learning rate requires

Tϵ = Ω

(
d
ϵ2 · log

(
d/ϵ
))

, which is much slower than the algorithm with varying learning rate by O
(
log
(
d/ϵ
))

times.

C.4 PRIVACY-ACCURACY TRADE-OFF VIA CORRELATED NOISES

Note that Algorithm 2 requires all the local clients to generate the independent noise ξck. Such a mechanism enjoys the
convenience of the implementation and yields a potential to protect the privacy of data and alleviates the security issue.
However, the scale of noises is maximized and inevitable slows down the convergence. For extensions, it can be naturally
generalized to correlated noise based on a hyperparameter, namely the correlation coefficient ρ between different clients.
Replacing Eq.(14) with

βck+1 = θck − η∇f̃ c(θck) +
√

2ητρ2ξ̇k +
√
2η(1− ρ2)τ/pcξ

c
k, (30)

where ξ̇k is a d-dimensional standard Gaussian vector shared by all the clients at iteration k, ξck is a unique d-dimensional
Gaussian vector generated by client c ∈ [N ] only. Moreover, ξ̇k is dependent with ξck for any c ∈ [N ]. Following the same
synchronization step based Eq.(15), we have

θk+1 = θk − ηZ̃k +
√

2ητξk, (31)
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where Z̃k =
∑N
c=1 pc∇f̃ c(θck) and ξk = ρξk +

√
1− ρ2

∑N
c=1

√
pcξ

c
k. Since the variance of i.i.d variables is additive, it

is clear that ξk follows the standard d-dimensional Gaussian distribution. The inclusion of the correlated noise implicitly
reduces the temperature and naturally yields a trade-off between federation and accuracy. We refer to the algorithm with
correlated noise as the hybrid Federated Averaging Langevin dynamics (gFA-LD) and present it in Algorithm 3.

Since the inclusion of correlated noise doesn’t affect the formulation of Eq.(31), the algorithm property maintains the same
except the scale of the temperature τ and federation are changed. Based on a target correlation coefficient ρ ≥ 0, Eq.(30) is
equivalent to applying a temperature Tc,ρ = τ(ρ2 + (1− ρ2)/pc). In particular, setting ρ = 0 leads to Tc,0 = (1− ρ2)/pc,
which exactly recovers Algorithm 2; however, setting ρ = 1 leads to Tc,1 = τ , where the injected noise in local clients is
reduced by 1/pc times. Now we adjust the analysis as follows

Theorem C.8 (Restatement of Theorem 4.9). Assume assumptions B.1, B.2, and B.3 hold. Consider Algorithm 3 with a
correlation coefficient ρ ∈ [0, 1], a fixed learning rate η ∈ (0, 1

2L ] and ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ], we have

W2(µk, π) ≤
(
1− ηm

4

)k
·
(√

2d
(
D +

√
τ/m

))
+ 30κ

√
ηmd ·

√
((K − 1)2 + κ)Hρ,

where µk denotes the probability measure of θk, Hρ, κ and γ2 are defined as Definition B.4.

Proof. The proof follows the same techniques as in Theorem C.6 except that H0 is generalized to Hρ to accommodate to
the changes of the injected noise. The details are omitted.

Algorithm 3 Hybrid federated averaging Langevin dynamics algorithm. Denote by θck the model parameter in the c-th
client at the k-th step. Denote the immediate result of one step SGLD update from θck by βck. ξck is an independent standard
d-dimensional Gaussian vector at iteration k for each client c ∈ [N ] and ξ̇k is a d-dimensional standard Gaussian vector
shared by all the clients. ρ denotes the correlation coefficient of the injected noises. A global synchronization is conducted
every K steps. This is a clean version of Algorithm 1 based on full device updates for ease of analysis.

βck+1 = θck − η∇f̃ c(θck) +
√

2ητρ2ξ̇k +
√
2η(1− ρ2)τ/pcξ

c
k,

θck+1 =


βck+1 if k + 1 mod K ̸= 0∑N
c=1 pcβ

c
k+1 if k + 1 mod K = 0.

D PARTIAL DEVICE PARTICIPATION

Full device participation enjoys appealing convergence properties. However, it suffers from the straggler’s effect in real-world
applications, where the communication is limited by the slowest device. Partial device participation handles this issue by
only allowing a small portion of devices in each communication and greatly increased the communication efficiency in a
federated network.

D.1 UNBIASED SAMPLING SCHEMES

The first device-sampling scheme I [Li et al., 2020b] selects a total of S devices, where the c-th device is selected with a
probability pc. The first theoretical justification for convex optimization has been proposed by Li et al. [2020c].

(Scheme I: with replacement). Assume Sk = {n1, n2, · · · , nS}, where nj ∈ [N ] is a random number that takes a value
of c with a probability pc for any j ∈ {1, 2, · · · , S}. The synchronization step follows that θk = 1

S

∑
c∈Sk

θck.

Another strategy is to uniformly select S devices without replacement. We follow Li et al. [2020c] and assume S indices are
selected uniformly without replacement and the synchronization step is the same as before. In addition, the convergence also
requires an additional assumption on balanced data [Li et al., 2020c].
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Algorithm 4 Hybrid federated averaging Langevin dynamics algorithm with partial device participation. ξck is the independent
Gaussian vector proposed by each client c ∈ [N ] and ξ̇k is a unique Gaussian vector shared by all the clients. ρ denotes
the correlation coefficient. A global synchronization is conducted every K steps. Sk is a subset that contains S indices
according to a device-sampling rule based on scheme I or II. This is a clean version of Algorithm 1 for ease of analysis.

βck+1 = θck − η∇f̃ c(θck) +
√

2ητρ2ξ̇k +
√
2η(1− ρ2)τ/pcξ

c
k,

θck+1 =


βck+1 if k + 1 mod K ̸= 0∑
c∈Sk+1

1
Sβ

c
k+1 if k + 1 mod K = 0.

(Scheme II: without replacement). Assume Sk = {n1, n2, · · · , nS}, where nj ∈ [N ] is a random number that takes a
value of c with a probability 1

S for any j ∈ {1, 2, · · · , S}. Assume the data is balanced such that p1 = · · · = pN = 1
N . The

synchronization step follows that θk = N
S

∑
c∈Sk

pcθ
c
k = 1

S

∑
c∈Sk

θck.

Lemma D.1 (Unbiased sampling scheme). For any k mod K = 0 based on scheme I or II, we have

Eθk = E
∑
c∈Sk

θck = βk :=

N∑
c=1

pcβ
c
k.

Proof. According to the definition of scheme I or II, we have θk = 1
S

∑
c∈Sk

θck. In what follows, Eθk = 1
SE
∑
c∈Sk

θck =
1
S

∑
c0∈Sk

∑N
c=1 pcβ

c
k =

∑N
c=1 pcβ

c
k, where p1 = p2 = · · · = pN for scheme II in particular.

D.2 BOUNDED DIVERGENCE BASED ON PARTIAL DEVICE

Lemma D.2 (Bounded divergence based on partial device). Assume assumptions B.1, B.2, and B.3 hold. Consider Algorithm
4 with a correlation coefficient ρ ∈ [0, 1], any learning rate η ∈ (0, 2/m) and ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ], we have
the following results

For Scheme I, the divergence between θk and βk is upper bounded by

E∥βk − θk∥22 ≤ 112

S
K2η2dL2Hρ +

8

S
Kηdτ(ρ2 +N(1− ρ2)).

For Scheme II, assuming the data is balanced such that p1 = · · · = pN = 1
N , the divergence between θk and βk is upper

bounded by

E∥βk − θk∥22 ≤ N − S

S(N − 1)

(
112K2η2dL2Hρ + 8Kηdτ(ρ2 +N(1− ρ2))

)
.

where Hρ, κ and γ2 are defined as Definition B.4.

Proof. We prove the bounded divergence for the two schemes, respectively.

For scheme I with replacement, θ̄k =
∑
c∈Sk

1
Sβ

c
k for a subset of indices Sk. Taking expectation with respect to Sk, we

have

E∥θk − βk∥22 =
1

S2

S∑
i=1

E∥βni

k − βk∥22 =
1

S

N∑
c=1

pc ∥βck − βk∥22 , (32)

where the first equality follows by the independence and unbiasedness of θni

k for any i ∈ [S].
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To further upper bound Eq.(32), we follow the same technique as in Lemma C.3. Since k mod K = 0, k0 = k −K is also
the communication time, which yields the same θck0 for any c ∈ [N ]. in what follows,

N∑
c=1

pc ∥βck − βk∥22 =

N∑
c=1

pc ∥βck − θk0 − (βk − θk0)∥
2
2

≤
N∑
c=1

pc ∥βck − θk0∥
2
2 , (33)

where the last inequality follows by βk =
∑N
c=1 pcβ

c
k and E∥x− Ex∥22 ≤ E∥x∥22. Combining Eq.(32) and Eq.(33), we have

E∥θk − βk∥22 ≤ 1

S

N∑
c=1

pc ∥βck − θk0∥
2
2

≤ 1

S

N∑
c=1

pc
∥∥βck − θck0

∥∥2
2

≤ 1

S

N∑
c=1

pcE
k−1∑
k=k0

2Kη2
∥∥∥∇f̃ c(θck)∥∥∥2

2
+ 4Kηdτ

(
ρ2 + (1− ρ2)/pc

)
≤ 1

S

N∑
c=1

pc

(
k−1∑
k=k0

2Kη2E
∥∥∥∇f̃ c(θck)∥∥∥2

2
+ 4Kηdτ

(
ρ2 + (1− ρ2)/pc

))

≤ 28

S
K2η2dL2Hρ +

4

S
Kηdτ(ρ2 +N(1− ρ2))

where the last inequality follows a similar argument as in Lemma C.3.

For scheme II, given p1 = p2 = · · · = pN = 1
N , we have θk = 1

S

∑
c∈Sk

βck, which leads to

E∥θk − βk∥22 = E

∥∥∥∥∥ 1S ∑
c∈Sk

βck − βk

∥∥∥∥∥
2

2

=
1

S2
E

∥∥∥∥∥
N∑
c=1

Ic∈Sk
(βck − βk)

∥∥∥∥∥
2

2

,

where IA is an indicator function that equals to 1 if the event A happens.

Plugging the facts that P(c ∈ Sk) = S
N and P(c1, c2 ∈ Sk) = S(S−1)

N(N−1) for any c1 ̸= c2 ∈ [N ] into the above equation, we
have

E∥θk − βk∥22

=
1

S2

[ ∑
c∈[N ]

P(c ∈ Sk) ∥βck − βk∥22 +
∑
c1 ̸=c2

P(c1, c2 ∈ Sk)⟨βc1k − βk, β
c2
k − βk⟩

]

=
1

SN

N∑
c=1

∥βck − βk∥22 +
∑
c1 ̸=c2

S − 1

SN(N − 1)
⟨βc1k − βk, β

c2
k − βk⟩

=
1− S

N

S(N − 1)

N∑
c=1

∥βck − βk∥22 ,

where the last equality holds since
∑
c∈[N ] ∥βck − βk∥22 +

∑
c1 ̸=c2⟨β

c1
k − βk, β

c2
k − βk⟩ = ∥βk − βk∥22 = 0.
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Eventually, we have

E∥θk − βk∥22 =
N − S

S(N − 1)
E
1

N

N∑
c=1

∥βck − βk∥22

≤ N − S

S(N − 1)
E
1

N

N∑
c=1

∥βck − θk0∥
2
2

≤ N − S

S(N − 1)

(
28K2η2dL2Hρ + 4Kηdτ

(
ρ2 +N(1− ρ2)

))
,

where the first inequality follows a similar argument as in Eq.(33) and the last inequality follows by Lemma C.3.

D.3 CONVERGENCE VIA PARTIAL DEVICE PARTICIPATION

Theorem D.3 (Restatement of Theorem 4.10). Assume assumptions B.1, B.2, and B.3 hold. Consider Algorithm 4 with a
correlation coefficient ρ ∈ [0, 1], a fixed learning rate η ∈ (0, 1

2L ] and ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ], we have

W2(µk, π) ≤
(
1− ηm

4

)k
·
(√

2d
(
D +

√
τ/m

))
+ 30κ

√
ηmd ·

√
Hρ((K − 1)2 + κ) + 2

√
CKdτ

Sm
(ρ2 +N(1− ρ2))CS ,

where CK = ηmK

1−e−
ηmK

2

, CS = 1 for Scheme I and CS = N−S
N−1 for Scheme II.

Proof. Note that

E
∥∥θ̄(k+1)η − θk+1

∥∥2
2

= E
∥∥θ̄(k+1)η − βk+1 + βk+1 − θk+1

∥∥2
2

= E
∥∥θ̄(k+1)η − βk+1

∥∥2
2
+ E∥βk+1 − θk+1∥22 + E2⟨θ̄(k+1)η − βk+1, βk+1 − θk+1⟩

= E
∥∥θ̄(k+1)η − βk+1

∥∥2
2
+ E∥βk+1 − θk+1∥22,

where the last equality follows by the unbiasedness of the device-sampling scheme in Lemma D.1.

If k+1 mod K ̸= 0, we always have βk+1 = θk+1 and E∥βk+1 − θk+1∥22 = 0. Following the same argument as in Lemma
C.5, both schemes lead to the one-step iterate as follows

W 2
2 (µk+1, π) ≤ (1− ηm

2
) ·W 2

2 (µk, π) + 400η2dL2Hρ((K − 1)2 + κ). (34)

If k + 1 mod K = 0, combining Lemma D.2 and Lemma C.5, we have

W 2
2 (µk+1, π) ≤ (1− ηm

2
) ·W 2

2 (µk, π) + 450η2dL2Hρ(K
2 + κ) +

4Kdητ

S
(ρ2 +N(1− ρ2))CS , (35)

where CS = 1 for Scheme I and CS = N−S
N−1 for Scheme II.

23



Repeatedly applying Eq.(34) and Eq.(35) and arranging terms, we have that

W 2
2 (µk, π) ≤

(
1− ηm

2

)k
W 2

2 (µ0, π) +
2

ηm

(
450η2dL2Hρ(K

2 + κ)

)
+

(1− (1− ηm
2 )K)⌊k/K⌋

1− (1− ηm
2 )K

(
4Kdητ

S
(ρ2 +N(1− ρ2))CS

)
≤
(
1− ηm

2

)k
W 2

2 (µ0, π) + 900ηmdκ2H0((K − 1)2 + κ)

+
ηmK

1− e−
ηmK

2︸ ︷︷ ︸
CK

4Kdητ

ηmKS
(ρ2 +N(1− ρ2))CS ,

=
(
1− ηm

2

)k
W 2

2 (µ0, π) + 900ηmdκ2H0((K − 1)2 + κ)

+
4CKdτ

Sm
(ρ2 +N(1− ρ2))CS ,

where the second inequality follows by (1− r)K ≤ e−rK for any r ≥ 0.

E BOUNDING CONTRACTION, DISCRETIZATION, AND DIVERGENCE

E.1 DOMINATED CONTRACTION PROPERTY

Proof of Lemma C.1 . Given a client index c ∈ [N ], applying Theorem 2.1.12 [Nesterov, 2004] leads to

⟨y − x,∇f c(y)−∇f c(x)⟩ ≥ mL

L+m
∥y − x∥22 +

1

L+m
∥∇f c(y)−∇f c(x)∥22 , ∀x, y ∈ Rd. (36)

In what follows, we have ∥∥θ̄ − θ − η(∇f(θ̄)−Z)
∥∥2
2

=
∥∥θ̄ − θ

∥∥2
2
− 2η ⟨θ̄ − θ,∇f(θ̄)−Z⟩︸ ︷︷ ︸

I

+η2
∥∥∇f(θ̄)−Z

∥∥2
2
. (37)

For the second item I in the right hand side, by the definition of Z =
∑N
c=1 pc∇f c(θc) and the fact that ∇f(θ̄) =∑N

c=1 pc∇f c(θ̄), we have

I =

N∑
c=1

pc
〈
θ̄ − θ,∇f c(θ̄)−∇f c(θc)

〉
=

N∑
c=1

pc
〈
θ̄ − θc + θc − θ,∇f c(θ̄)−∇f c(θc)

〉
=

N∑
c=1

pc
〈
θ̄ − θc,∇f c(θ̄)−∇f c(θc)

〉︸ ︷︷ ︸
by Eq.(36)

+

N∑
c=1

pc
〈
θc − θ,∇f c(θ̄)−∇f c(θc)

〉︸ ︷︷ ︸
by the AM-GM inequality

≥
N∑
c=1

pc ·
(

mL

L+m

∥∥θ̄ − θc
∥∥2
2
+

1

L+m

∥∥∇f c(θ̄)−∇f c(θc)
∥∥2
2

)

−
N∑
c=1

pc ·
(
(m+ L) ∥θc − θ∥22 +

1

4(m+ L)

∥∥∇f c(θ̄)−∇f c(θc)
∥∥2
2

)

≥ −(m+ L)

N∑
c=1

pc ∥θc − θ∥22 +
mL

L+m

∥∥θ̄ − θc
∥∥2
2
+

3

4(L+m)

∥∥∇f(θ̄)−Z
∥∥2
2
, (38)
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where the last inequality follows by Jensen’s inequality such that

N∑
c=1

pc∥θ̄ − θc∥22 ≥

∥∥∥∥∥
N∑
c=1

pc(θ̄ − θc)

∥∥∥∥∥
2

2

= ∥θ̄ − θ∥22

N∑
c=1

pc
∥∥∇f c(θ̄)−∇f c(θc)

∥∥2
2
≥

∥∥∥∥∥
N∑
c=1

pc

(
∇f c(θ̄)−∇f c(θc)

)∥∥∥∥∥
2

2

=
∥∥∇f(θ̄)−Z

∥∥2
2
.

Plugging Eq.(38) into Eq.(37), we have∥∥θ̄ − θ − η · (∇f(θ̄)−Z)
∥∥2
2

≤
(
1− 2ηmL

m+ L

)
· ∥θ̄ − θ∥22 + η

(
η − 3

2(m+ L)︸ ︷︷ ︸
≤0 if η≤ 1

m+L

)
· ∥∇f(θ̄)−Z∥22

+ 2η(m+ L)

N∑
c=1

pc · ∥θc − θ∥22

≤ (1− ηm) ∥θ̄ − θ∥22 + 4ηL

N∑
c=1

pc · ∥θc − θ∥22,

where the last inequality follows by 2L
m+L ≥ 1, m ≤ L, 1− 2a ≤ (1− a)2 for any a, and η ∈ (0, 1

m+L ].

E.2 DISCRETIZATION ERROR

Proof of Lemma C.2. In the continuous-time diffusion (8), we have ∇f(θ̄) =
∑N
c=1 pcf

c(θ̄) for any θ̄ ∈ Rd and it is
straightforward to verify that f satisfies both Assumption B.1 and B.2 with the same smoothness factor L and convexity
constant m. For any s ∈ [0,∞), there exists a certain k ∈ N+ such that s ∈ [kη, (k + 1)η). By the continuous diffusion of
Eq.(8) , we have

θ̄s − θ̄η⌊ s
η ⌋ = −

∫ s

kη

∇f(θ̄t)dt+
√
2τ

∫ s

kη

dW t,

which suggests that

sup
s∈[kη,(k+1)η)

∥∥θ̄s − θ̄η⌊ s
η ⌋
∥∥
2
≤
∥∥∥∥∫ s

kη

∇f(θ̄t)dt
∥∥∥∥
2

+ sup
s∈[kη,(k+1)η)

∥∥∥∥∫ s

kη

√
2τdW t

∥∥∥∥
2

.

We first square the terms on both sides and take Young’s inequality and expectation

E sup
s∈[kη,(k+1)η)

∥∥θ̄s − θ̄η⌊ s
η ⌋
∥∥2
2
≤ 2E

∥∥∥∥∫ s

kη

∇f(θ̄t)dt
∥∥∥∥2
2

+ 2E sup
s∈[kη,(k+1)η)

∥∥∥∥∫ s

kη

√
2τdW t

∥∥∥∥2
2

.

Then, by Cauchy Schwarz inequality and the fact that |s− kη| ≤ η, we have

E sup
s∈[kη,(k+1)η)

∥∥θ̄s − θ̄η⌊ s
η ⌋
∥∥2
2
≤ 2ηE

∫ s

kη

∥∥∇f(θ̄t)dt∥∥22dt+ 8

d∑
i=1

E
∫ s

kη

2τdt

≤ 2η2 sup
s

E
∥∥∇f(θ̄s)∥∥22 + 16ηdτ, (39)

where the last inequality follows by Burkholder-Davis-Gundy inequality (49) and Itô isometry.
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By Young’s inequality, the smoothness assumption B.1 and ∇f(θ∗) = 0 since θ∗ is the global minimum of f , we have

sup
s

E∥∇f(θ̄s)∥22 = sup
s

E∥∇f(θ̄s)−∇f(θ∗)∥22

≤ L2 sup
s

E∥θ̄s − θ∗∥22

≤ L2 dτ

m
, (40)

where the second inequality follows by Theorem 17 [Cheng et al., 2018] since θ̄0 is simulated from the stationary distribution
π and θ̄s is stationary. Combining Eq.(39) and Eq.(40), we have

E sup
s∈[kη,(k+1)η)

∥∥θ̄s − θ̄η⌊ s
η ⌋
∥∥2
2
≤ 2η2κLdτ + 16ηdτ.

E.3 BOUNDED DIVERGENCE

Proof of Lemma C.3. For any k ≥ 0, consider k0 = K⌊ kK ⌋ such that k ≤ k0 and θck0 = θk0 for any k ≥ 0. It is clear that
k − k0 ≤ K − 1 for all k ≥ 0. Consider the non-increasing learning rate such that ηk0 ≤ 2ηk for all k − k0 ≤ K − 1.

By the iterate Eq.(19), we have

N∑
c=1

pcE∥θck − θk∥22

=

N∑
c=1

pcE∥θck − θk0 − (θk − θk0)∥
2
2

≤
N∑
c=1

pcE∥θck − θk0∥
2
2

≤
N∑
c=1

pcE
k−1∑
k=k0

2(K − 1)η2k

∥∥∥∇f̃ c(θck)∥∥∥2
2
+ 4(K − 1)ηkdτ(ρ

2 + (1− ρ2)/pc)

≤
N∑
c=1

pc

( k−1∑
k=k0

2(K − 1)η2k0E
∥∥∥∇f̃ c(θck)∥∥∥2

2
+ 4(K − 1)ηk0dτ(ρ

2 + (1− ρ2)/pc)

)
≤ 112(K − 1)2η2kdL

2Hρ + 8(K − 1)ηkdτ(ρ
2 +N(1− ρ2)),

where the first inequality holds by E∥θ − Eθ∥22 ≤ E∥θ∥22 for a stochastic variable θ; the second inequality follows by
(
∑K−1
i=1 ai)

2 ≤ (K − 1)
∑K−1
i=1 a2i ; the last inequality follows by Lemma F.2 and η2k0 ≤ 4η2k. Hρ is defined in Definition

B.4.

E.4 BOUNDED VARIANCE

Proof of Lemma C.4. By assumption B.3, we have

E
∥∥∥Z − Z̃

∥∥∥2
2
= E

∥∥∥∥∥
N∑
c=1

pc

(
∇f c(θc)−∇f̃ c(θc)

)∥∥∥∥∥
2

2

=

N∑
c=1

p2cE
∥∥∥∇f c(θc)−∇f̃ c(θc)

∥∥∥2
2

≤ dσ2
N∑
c=1

p2c ≤ dσ2

(
N∑
c=1

pc

)2

:= dσ2.
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F UNIFORM UPPER BOUND

F.1 DISCRETE DYNAMICS

Lemma F.1 (Discrete dynamics). Assume assumptions B.1, B.2, and B.3 hold. We consider the generalized formulation in
Algorithm 3 with the temperature

Tc,ρ = τ(ρ2 + (1− ρ2)/pc)

given a correlation coefficient ρ. For any learning rate η ∈ (0, 2/m) and ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ], we have the
ℓ2 norm upper bound as follows

sup
k

E∥θck − θ∗∥22 ≤ dD2 +
6d

m

(
max
c∈[N ]

Tc,ρ +
σ2

m
+

γ2

md

)
,

where γ := maxc∈[N ] ∥∇f c(θ∗)∥2 and θ∗ denotes the global minimum for the function f .

Proof. First, we consider the k-th iteration, where k ∈ {1, 2, · · · ,K−2, (K−1)−} and (K−1)− denotes the (K−1)-step
before synchronization. Following the iterate of Eq.(14) in a local client of c ∈ [N ], we have

E
∥∥θck+1 − θ∗

∥∥2
2

= E∥θck − θ∗ − η∇f̃ c(θck)∥22 +
√
8ηTc,ρE⟨θck − θ∗ − η∇f̃ c(θck), ξk⟩+ 2ηTc,ρE∥ξk∥22

= E∥θck − θ∗ − η∇f̃ c(θck)∥22 + 2ηdTc,ρ, (41)

where the last equality follows from Eξk = 0 and the conditional independence of θck − θ∗ − f̃ c(θck) and ξk. Note that

E∥θck − θ∗ − ηf̃ c(θck)∥22
= E∥θck − θ∗ − η∇f c(θck)∥

2
2 + η2E∥∇f c(θck)−∇f̃ c(θck)∥22

+ 2ηE⟨θck − θ∗ − η∇f c(θck),∇f c(θck)−∇f̃ c(θck)⟩

= E∥θck − θ∗ − η∇f c(θck)∥
2
2 + η2E∥∇f c(θck)−∇f̃ c(θck)∥22

≤ E∥θck − θ∗ − η∇f c(θck)∥22 + η2dσ2, (42)

where the first step follows from simple algebra, the second step follows from the unbiasedness of the stochastic gradient,
and the last step follows from Assumption B.3. For any q > 0, we can upper bound the first term of Eq.(42) as follows

E∥θck − θ∗ − η∇f c(θck)∥22
= E∥θck − θ∗ − η(∇f c(θck)−∇f c(θ∗))− η∇f c(θ∗)∥22

≤ (1 + q)E∥θck − θ∗ − η(∇f c(θck)−∇f c(θ∗))∥22 + η2
(
1 +

1

q

)
∥∇f c(θ∗)∥22

≤ (1 + q)
(
1− ηm

2

)2
︸ ︷︷ ︸

ψ2

E∥θck − θ∗∥22 + η2
(
1 +

1

q

)
γ2, (43)

where the first inequality follows by the AM-GM inequality; the second inequality is a special case of Lemma C.1 based on
Assumption B.2, where no local steps is involved before the synchronization step. Similar results have been achieved in
Theorem 3 [Dalalyan, 2017]. In addition, γ := maxc∈[N ] ∥∇f c(θ∗)∥2.

Choose q = ( 1+ψ2ψ )2 − 1 so that (1 + q)ψ2 = (1+ψ)2

4 . Moreover, since ψ = 1− ηm
2 , we get 1+ψ

2 = 1− 1
4ηm. In addition,

we have 1 + 1
q = 1+q

q = (1+ψ)2

(1−ψ)(1+3ψ) ≤
2
ηm . It follows that

η2
(
1 +

1

q

)
≤ 2η

m
. (44)
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Combining Eq.(41), Eq.(42), Eq.(43), and Eq.(44), we have the following iterate

E∥θck+1 − θ∗∥22 ≤
(
1− ηm

4

)2
︸ ︷︷ ︸

:=g(η)

E∥θck − θ∗∥22 + 2ηdTc,ρ + η2dσ2 +
2ηγ2

m
.

Note that 1
1−g(η) = 1

ηm
2 (1− ηm

8 ) ≤ 3
ηm given η ∈ (0, 2

m ). Recursively applying the above equation k times, where
k ∈ {1, 2, · · · ,K − 1,K−} and K− denotes the K-step without synchronization, it follows that

E∥θck − θ∗∥22 ≤ g(η)k∥θc0 − θ∗∥22 +
1− g(η)k

1− g(η)
·
(
2ηdTc,ρ + η2dσ2 +

2ηγ2

m

)
(45)

≤ ∥θc0 − θ∗∥22 +
3

ηm
·
(
2ηdTc,ρ + η2dσ2 +

2ηγ2

m

)
≤ dD2 +

6d

m

(
max
c∈[N ]

Tc,ρ +
σ2

m
+

γ2

md

)
︸ ︷︷ ︸

:=U

,

where the second inequality holds by g(η) ≤ 1, the third inequality holds because ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ] and
η < 2

m . In particular, the K-th step before synchronization yields that

E∥θcK−
− θ∗∥22 ≤ dD2 + U. (46)

Having all the results ready, for the K-local step after synchronization, applying Jensen’s inequality

E∥θcK − θ∗∥22 = E
∥∥∥∥ N∑
c=1

pcθ
c
K− − θ∗

∥∥∥∥2
2

≤
N∑
c=1

pcE
∥∥θcK− − θ∗

∥∥2
2

≤ dD2 + U, (47)

Now starting from iteration K, we adapt the recursion of Eq.(45) for the k-th step, where k ∈ {K+1, · · · , 2K−1, (2K)−}
and (2K)− denotes the 2K-step without synchronization, we have

E∥θck − θ∗∥22

≤ g(η)k−K · E∥θcK − θ∗∥22 +
1− g(η)k−K

1− g(η)
·
(
2ηd max

c∈[N ]
Tc,ρ + η2dσ2 +

2ηγ2

m

)
≤g(η)k−K(dD2 + U) +

1− g(η)k−K

mη/3

mη

3
U

≤dD2 + g(η)k−KU + (1− g(η)k−K)U

≤dD2 + U, (48)

where the second inequality follows by Eq.(47), the fact that 1− g(η) ≥ ηm/3 and η ≤ 2
m , and the definition of U . The

third one holds since g(η) ≤ 1.

By repeating Eq.(47) and (48), we have that for all k ≥ 0, we can obtain the desired uniform upper bound.

Discussions: Since the above result is independent of the learning rate η, it can be naturally applied to the setting with
decreasing learning rates. The details are omitted.
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F.2 BOUNDED GRADIENT

Lemma F.2 (Bounded gradient in ℓ2 norm). Given assumptions B.1, B.2, and B.3 hold, for any client c and any learning
rate η ∈ (0, 2/m) and ∥θc0 − θ∗∥22 ≤ dD2 for any c ∈ [N ], we have the ℓ2 norm upper bound as follows

E∥∇f̃ c(θck)∥22 ≤ 14dL2Hρ,

where Hρ = D2 + 1
m maxc∈[N ] Tc,ρ +

γ2

m2d + σ2

m2 .

Proof. Decompose the ℓ2 of the gradient as follows

E
∥∥∥∇f̃ c(θck)∥∥∥2

2
= E

∥∥∥∇f̃ c(θck)−∇f c(θck) +∇f c(θck)
∥∥∥2
2

= E∥∇f c(θck)∥
2
2 + E

∥∥∥∇f̃ c(θck)−∇f c(θck)
∥∥∥2
2

+ 2E
〈
∇f̃ c(θck)−∇f c(θck),∇f c(θck)

〉
≤ E∥∇f c(θck)∥

2
2 + σ2d

= E∥∇f c(θck)−∇f c(θ∗) +∇f c(θ∗)∥22 + σ2d

≤ 2E∥∇f c(θck)−∇f c(θ∗)∥22 + 2E
∥∥∇f c(θ∗)∥∥22 + σ2d

≤ 2L2E∥θck − θ∗∥22 + 2γ2 + σ2d

≤ 2dL2D2 +
12dL2

m
·
(

max
c∈[N ]

Tc,ρ +
σ2

m
+

γ2

md

)
+ 2γ2 + σ2d

≤ 14dL2 ·
(
D2 +

1

m
max
c∈[N ]

Tc,ρ +
γ2

m2d
+
σ2

m2

)
:= 14dL2Hρ,

where the first inequality follows by Assumption B.3; the second inequality follows by Young’s inequality; the third
inequality follows by Assumption B.1 and the definition that γ := maxc∈[N ] ∥∇f c(θ∗)∥2; the fourth inequality follows by
Lemma F.1; the last inequality follows by κ := L

m ≥ 1.

G INITIAL CONDITION

Lemma G.1 (Initial condition). Let µ0 denote the Dirac delta distribution at θ0. Then, we have

W2(µ0, π) ≤
√
2(∥θ0 − θ∗∥2 +

√
dτ/m).

Proof. By Cheng et al. [2018], there exists an optimal coupling between µ0 and π such that

W 2
2 (µ0, π) ≤ Eθ∼π[∥θ0 − θ∥22]

≤ 2Eθ∼π[∥θ0 − θ∗∥22] + 2Eθ∼π[∥θ − θ∗∥22]
= 2∥θ0 − θ∗∥22 + 2Eθ∼π[∥θ − θ∗∥22]
≤ 2∥θ0 − θ∗∥22 + 2dτ/m,

where the second step follows from triangle inequality, the last step follows from Lemma 12 [Durmus and Moulines, 2019]
and the temperature τ is included to adapt to the time scaling.

Burkholder-Davis-Gundy inequality Let ϕ : [0,∞) → Rr×d for some positive integers r and d. In addition, we assume
E
∫∞
0

|ϕ(s)|2ds <∞ and let Z(t) =
∫ t
0
ϕ(s)dWs, where Ws is a d-dimensional Brownian motion. Then for all t ≥ 0, we

have

E sup
0≤s≤t

|Z(s)|2 ≤ 4E
∫ t

0

|ϕ(s)|2ds. (49)
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H MORE ON DIFFERENTIAL PRIVACY GUARANTEES

We make the following assumptions for the analysis of DP.

Assumption H.1 (Bounded ℓ2-sensitivity). The gradient of loss function l : Rd ×X → R, (θ, x) 7→ l(θ;x) w.r.t. θ has a
uniformly bounded ℓ2-sensitivity for ∀θ ∈ Rd:

∆l := sup
θ∈Rd

sup
x,x′∈X

∥∇l(θ;x)−∇l(θ;x′)∥2 <∞ (50)

For example, when l(θ; ·) is M -Lipschitz for any θ ∈ Rd, ∆l ≤ 2M . Following the tradition of DP guarantees, we assume
that the unbiased gradient is computed as follows.

Assumption H.2 (Unbiased gradient estimates). The unbiased estimate of ∇f c(θ) is calculated using a subset (denoted by
Sc) of {xc,i}nc

i=1 sampled uniformly at random from all the subsets of size γnc of {xc,i}nc
i=1:

∇f̃ c(θ) = 1

γpc

∑
i∈Sc

∇l(θ;xc,i). (51)

Theorem H.3. Assume assumptions H.1 and H.2 holds. For any δ0 ∈ (0, 1), if η ∈
(
0,

τ(1−ρ2)γ2 minc∈[N] pc
∆2

l log(1.25/δ0)

]
, then

Algorithm 1 is (ϵ(3)K,T , δ
(3)
K,T )-differentially private w.r.t. ≃s after executed for T (T = EK with E ∈ N, E ≥ 1) iterations

where

ϵ
(3)
K,T = ϵ̃K min

{√
2T

K
log

(
1

δ2

)
+
T (eϵ̃K − 1)

K
,
T

K

}
,

δ
(3)
K,T =

T

K
δ̃K + δ2,

with

ϵ̃K =

{
log
(
1 +

(
1−

(
1− 1

N

)S)
(eϵK − 1)

)
, under scheme I,

log
(
1 + S

N (eϵK − 1)
)
, under scheme II,

δ̃K =

{ ∑S
s=1

(
S
s

) (
1
N

)s (
1− 1

N

)S−s
δK,s, under scheme I,

S
N (Kγδ0 + δ1) , under scheme II,

δK,s =
(eϵK − 1) δK,s,0
eϵK/s − 1

,

δK,s,0 = 1.25Kγ

(
δ0
1.25

)1/s2

+ δ1,

ϵK = ϵ1 min
{√

2K log(1/δ1) +K(eϵ1 − 1), K
}
,

ϵ1 = 2∆l

√
η log(1.25/δ0)

τ(1− ρ2)minc∈[N ] pc
,

and δ1, δ2 ∈ [0, 1).

Proof. Let Dc := {xc,i}i∈[nc] denote the dataset of the c-th client for c ∈ [N ]. Let D := ∪c∈[N ] Dc denote the whole
dataset.

As FedAvg algorithms can be divided into the processes of local updates, synchronization, and broadcasting with risks
of information leakage in synchronization (local model uploading and aggregation) and broadcasting, we consider the
differential privacy guarantees in synchronization and broadcasting similar to Wei et al. [2020]. Since there is no involvement
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of data in model aggregation and broadcasting, they are post-processing processes. Thus, it suffices to analyze the differential
privacy guarantees in local model uploading.

For any two datasets D ≃s D′, there exists c ∈ [N ] such that Dc ≃s D′
c and Dc′ = D′

c′ for any c′ ∈ [N ], c′ ̸= c.

Consider the functionmc(S; θ) = θ− η
γ∇f

c(θ;S) = θ− η
γpc

∑
x∈S ∇lc(θ;x) with | S | = γnc (|A| denotes the cardinality

of set A). By Assumption H.1, for any θ ∈ Rd, the sensitivity of mc(Dc; θ) is

∆mc := sup
Sc≃sS′

c

∥mc(Sc; θ)−mc(S ′
c; θ)∥ =

η

γpc
∆l (52)

For the mechanism Mc(S; θ) := mc(S; θ)+
√
2ητρ2ξ̇+

√
2η(1− ρ2)τ/pcξ with ξ̇ and ξ being two independent standard

d-dimensional Gaussian vector, since ξ̇ is broadcasted to all the clients, it can be treated as some known constant which does
not contribute to the differential privacy. Thus, the standard deviation of the added Gaussian noise is

√
2ητ(1− ρ2)/pc

at each dimension. Then, according to the Gaussian mechanism Dwork et al. [2014], Mc(Dc; θ) is (ϵ0,c, δ0)-differentially
private for any θ ∈ Rd with

ϵ0,c = c(δ0)
∆l

γ

√
η

2pcτ(1− ρ2)
, c(δ0) =

√
2 log(1.25/δ0), δ0 ∈ (0, 1). (53)

For Sc sampled uniformly at random from all the subsets of size γnc of Dc, define M̃c(Dc; θ) := Mc(Sc; θ). Then,
according to Theorem 9 in Balle et al. [2018], M̃c is (log (1 + γ(eϵ0,c − 1)) , γδ0)-differentially private. Notice that for any
ϵ0,c ∈ [0, 1] (i.e., 0 ≤ η ≤ 2pcτ(1−ρ2)γ2

∆2
l c(δ0)

2 ), we have 0 ≤ eϵ0,c − 1 ≤ 2ϵ0,c and

log (1 + γ(eϵ0,c − 1)) ≤ log (1 + 2γϵ0,c) ≤ 2γϵ0,c = c(δ0)∆l

√
2η

pcτ(1− ρ2)
=: ϵ1,c. (54)

Define

ϵ1 := c(δ0)∆l

√
2η

τ(1− ρ2)minc′∈[N ] pc′
= 2∆l

√
η log(1.25/δ0)

τ(1− ρ2)minc∈[N ] pc
. (55)

Then, we have maxc∈[N ] ϵ1,c = ϵ1 and maxc∈[N ] ϵ0,c ∈ [0, 1] if

0 ≤ η ≤
2τ(1− ρ2)γ2 minc′∈[N ] pc′

∆2
l c(δ0)

2
=
τ(1− ρ2)γ2 minc′∈[N ] pc′

∆2
l log(1.25/δ0)

. (56)

Thus, for 0 ≤ η ≤ τ(1−ρ2)γ2 minc′∈[N] pc′

∆2
l log(1.25/δ0)

, M̃c(Dc; θ) is (ϵ1, γδ0)-differentially private for any θ ∈ Rd. From now on, we
assume that 56 holds.

Define MK
c (Dc; θ) to be the K-fold composition of M̃c(Dc; θ). According to the composition rules of (ϵ, δ)-differential

privacy (Theorem 3.1 and 3.3 in Dwork et al. [2010]), MK
c (Dc; θ) is (ϵK , δK)-differentially private with

ϵK = min
{√

2K log(1/δ1)ϵ1 +Kϵ1(e
ϵ1 − 1), Kϵ1

}
, (57)

δK = Kγδ0 + δ1. (58)

for any δ1 ∈ [0, 1).

By 55, if

0 ≤ η ≤
τ(1− ρ2)minc∈[N ] pc

2∆2
l c(δ0)

2
log2

(
1 +

√
2 log(1/δ1)

K

)
, (59)

we have ϵ1 ∈
[
0, log

(
1 +

√
2 log(1/δ1)

K

)]
which implies that Kϵ1(eϵ1 − 1) ≤

√
2K log(1/δ1)ϵ1 and

ϵK ≤ 2
√
2K log(1/δ1)ϵ1. (60)

31



In the synchronization process, S clients selected via device-sampling scheme I or II send their local models to the center.
Thus, for scheme I (with replacement) and scheme II (without replacement), according to Theorem 10 and Theorem 9 in
Balle et al. [2018] respectively, each synchronization process is (ϵ̃K , δ̃K)-differentially private with

ϵ̃K =

{
log
(
1 +

(
1−

(
1− 1

N

)S)
(eϵK − 1)

)
, under scheme I,

log
(
1 + S

N (eϵK − 1)
)
, under scheme II,

(61)

δ̃K =

{ ∑S
s=1

(
S
s

) (
1
N

)s (
1− 1

N

)S−s
δK,s, under scheme I,

S
N δK = S

N (Kγδ0 + δ1) , under scheme II.
(62)

where

δK,s =
(eϵK − 1) δK,s,0
eϵK/s − 1

, δK,s,0 = 1.25Kγ

(
δ0
1.25

)1/s2

+ δ1.

The aggregation and broadcasting process is post-processing and preserves the guarantees of differential privacy (Proposition
2.1 in Dwork et al. [2014]). When executed T iterations, Algorithm 1 is the T/K-fold composition of local updates,
synchronization, and broadcasting. According to the composition rules of (ϵ, δ)-differential privacy (Theorem 3.1 and 3.3 in
Dwork et al. [2010]), Algorithm 1 is (ϵ(3)K,T , δ

(3)
K,T )-differentially private after T iterations with

ϵ
(3)
K,T = min

{√
2
T

K
log(1/δ2)ϵ̃K +

T

K
ϵ̃K(eϵ̃K − 1),

T

K
ϵ̃K

}
, (63)

δ
(3)
K,T =

T

K
δ̃K + δ2, (64)

for δ1, δ2 ∈ [0, 1) and δ0 ∈ (0, 1). Notice that under scheme II, eϵ̃K − 1 = S
N (eϵK − 1), thus, ϵ(3)K,T =

ϵ̃K min
{√

2 TK log(1/δ2) +
TS
KN (eϵK − 1), T

K

}
and δ(3)K,T = S

N γTδ0 +
TS
KN δ1 + δ2.

Discussion on the differential privacy guarantees of Algorithm 1 under scheme II By 57, 58, 61, 62, 63, and 64, by
letting δ1, δ2 = 0, we have that Algorithm 1 is at least ( TK log

(
1 + S

N (eKϵ1 − 1)
)
, SN γTδ0)-differentially private.

If

ϵ̃K ≤ log

(
1 +

√
2K log(1/δ2)

T

)
, (65)

we have T
K ϵ̃K(eϵ̃K − 1) ≤

√
2 TK log(1/δ2)ϵ̃K and therefore

ϵ
(3)
K,T ≤ 2

√
2
T

K
log(1/δ2)ϵ̃K = 2

√
2
T

K
log(1/δ2) log

(
1 +

S

N
(eϵK − 1)

)
. (66)

Now assume η satisfies 59, then by 60 and 66,

ϵ
(3)
K,T ≤ 2

√
2
T

K
log(1/δ2) log

(
1 +

S

N
(e2

√
2K log(1/δ1)ϵ1 − 1)

)
(67)

Notice that if

0 ≤ η ≤
τ(1− ρ2)minc∈[N ] pc

2∆2
l c(δ0)

2
min

log2

(
1 +

√
2 log(1/δ1)

K

)
,

log2
(
1 + N

S

√
2K log(1/δ2)

T

)
8K log(1/δ1)

 , (68)
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by 55, 60, 61, and 62, we have

ϵ1 ≤
log

(
1 + N

S

√
2K log(1/δ2)

T

)
2
√
2K log(1/δ1)

, (69)

ϵK ≤ 2
√
2K log(1/δ1)ϵ1 ≤ log

(
1 +

N

S

√
2K log(1/δ2)

T

)
, (70)

ϵ̃K ≤ log

(
1 +

√
2K log(1/δ2)

T

)
. (71)

Thus, we have 67 holds. Plugging 55 into 67, we have

ϵ
(3)
K,T ≤ 2

√
2
T

K
log(1/δ2) log

(
1 +

S

N

(
exp

{
4c(δ0)∆l

√
ηK log(1/δ1)

τ(1− ρ2)minc∈[N ] pc

}
− 1

))
. (72)

For any K ≥ 1, if ηK ≪ 1 and T ≫ 1, using log(1 + x) ≈ x and ex − 1 ≈ x when |x| ≪ 1, we can write 68 as

0 ≤ η = O

(
τ(1− ρ2)N2 minc∈[N ] pc log(1/δ2)

∆2
l S

2T log(1/δ0) log(1/δ1)

)
, (73)

and 72 as

ϵ
(3)
K,T = O

(
S∆l

N

√
ηT log(1/δ0) log(1/δ1) log(1/δ2)

τ(1− ρ2)minc∈[N ] pc

)
. (74)
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