
Arc Representation for Graph-based Dependency Parsing

Anonymous ACL submission

Abstract

In this paper, we address the explicit represen-001
tation of arcs in graph-based syntactic depen-002
dency parsing, departing from conventional003
approaches where parsing algorithms compute004
dependency arc scores directly from input to-005
ken representations. We propose to augment006
the parser with an intermediate arc representa-007
tion, arguing for two main advantages. Firstly,008
arc vectors encapsulate richer information, im-009
proving the capabilities of scoring functions.010
Secondly, by introducing refinement layers,011
we allow interactions between arc represen-012
tations, facilitating interactions between arcs.013
We demonstrate the efficacy of this approach014
through evaluations on PTB and UD tree-015
banks. Our approach achieves an LAS error016
rate reduction of 1.0% on the PTB test set, and017
1.7% on UD, over the best SOTA model.018

1 Introduction019

Recent graph-based dependency model with pow-020

erful neural extractors pioneered in (Kiperwasser021

and Goldberg, 2016; Dozat and Manning, 2017)022

and extended in (Zhang et al., 2020) make the as-023

sumption that the plausibility of a lexical arc or024

its labelling, as expressed by a score, can be com-025

puted directly from the vector representation of the026

two words linked by this arc. This approach has027

led to tremendous improvements in parsing accu-028

racy, and consequently this assumption has rarely029

been questioned with the exception of (Ji et al.,030

2019) where the structure of the parse forest is ex-031

ploited to rescore arcs, similarly to forest rerankers032

for statistical parsers (Huang, 2008).033

We challenge this assumption through the lens034

of deep learning. We propose to learn how035

to represent lexical arcs by vectors, and derive036

scores from these vectors. This method allows037

to manipulate these vectors through deep archi-038

tectures without building the parse forest, and we039

test this hypothesis with transformers. Moreover,040

while the previous approach is implemented as 041

two pipelines, one for arc scoring and one for arc 042

labelling, sharing word embeddings only, our ap- 043

proach is built around a unique pipeline from word 044

embedding to arc embedding: only the last steps, 045

arc scoring and arc labelling, are specialized. This 046

enforces the sharing of parameters between the 047

two tasks. 048

2 Model 049

We review the standard biaffine parser and then 050

highlight the key differences of our arc-centric ap- 051

proach. Prior to parsing, in all systems, from an in- 052

put sentence x0x1 . . . xn, where x0 is the dummy 053

root and ∀1 ≤ i ≤ n, xi corresponds to the ith 054

token of the sentence, models start by computing 055

contextual embeddings e0, e1, . . . , en. This can be 056

implemented in various ways, e.g. with pretrained 057

static word embeddings followed by LSTMs, or 058

averaged layers from pretrained dynamic word em- 059

beddings. These contextual embeddings are fur- 060

ther specialized for head and modifier roles. This 061

is implemented as two feed-forward transforma- 062

tions, resulting in two sets of word representations, 063

h0, h1, . . . , hn for heads and m0,m1, . . . ,mn for 064

modifiers. In the remainder, given a vector v of 065

size d we note v′ the vector of size d + 1 where 066

v[i] = v′[i], ∀1 ≤ i ≤ d and v′[d+ 1] is set to 1. 067

2.1 Biaffine Model 068

We present the local and first-order models as in- 069

troduced in (Dozat and Manning, 2017) and re- 070

fer readers to (Zhang et al., 2020) for higher-order 071

extensions. The first-order scoring function de- 072

composes the score of a parse tree as the sum 073

of the scores of its arcs, if they form a valid 074

tree (i.e. rooted in x0, connected and acyclic) 075

and can be implemented as a CRF where arc 076

variables are independently scored but connected 077

to a global factor asserting well-formedness con- 078

1

straints. This CRF can be trained efficiently079

and inference is performed with well-known al-080

gorithms. Still, learning imposes to compute for081

each sentence its partition, the sum of the (expo-082

nentiated) scores of all parse candidates. While083

being tractable, this is an overhead compared to084

computing arc scores independently without tree-085

shape constraints. Hence, several recent parsers,086

e.g. (Dozat and Manning, 2017) which called this087

model local, simplify learning by casting it as a088

head-selection task for each word, i.e. arc score089

predictors are trained without tree constraints. In090

all cases, tree-constrained CRF or head selection,091

evaluation is performed by computing the highest-092

scoring parse (Eisner, 1997; Tarjan, 1977), where093

arc scores may be replaced by marginal log-094

probabilities (Goel and Byrne, 2000).095

Arc Scores are computed by a biaffine1 func-096

tion: for arc xi → xj , Dozat and Manning (2017)097

define arc score as sij = h⊤i Mm′
j with trainable098

matrix M . For embeddings of size d, M has di-099

mensions d× (d+ 1).2100

Arc Labelling is considered a distinct task: at101

training time arc labelling has its own loss and at102

prediction time most systems use a pipeline ap-103

proach where first a tree is predicted, and second104

each predicted arc is labelled.3 Scoring is also im-105

plemented with a biaffine model: for arc xi → xj ,106

the label logit vector is lij = h′i
⊤Lm′

j , with train-107

able L. For word vectors of size d and for a sys-108

tem with k possible arc labels, L has dimension109

(d + 1) × k × (d + 1). While we used h and m110

notations, these specialized word embeddings are111

given by feed-forward networks different from the112

ones used for arc scores.113

This model relies on two biaffine functions, the114

first for arc scores returning a scalar per arc, and a115

second for arc labels scores returning for each arc a116

vector of label scores. Parameter sharing between117

arc score and arc labelling computations is limited118

to contextual word embeddings e.119

2.2 Arc Models120

Our models differ architecturally in two ways: (i)121

an intermediate vector representation is computed122

1We ignore bias terms for simplicity.
2This additional 1 on the modifier side intuitively makes

the expression for sij mimic the conditional probability of
the presence of arc i → j given i is classified as a head word,
see (Dozat and Manning, 2017) for a detailed discussion.

3We remark that Zhang et al. (2021) learn the two sepa-
rately and merge them at prediction time.

for each arc and (ii) both arc and labelling scores 123

are derived from this single arc representation. 124

For arc xi → xj we compute vector represen- 125

tation vij . Again, we use a biaffine function out- 126

putting a vector similarly to arc labelling in stan- 127

dard models: vij = h⊤i Rm′
j for a trainable ten- 128

sor R with dimensions d × r × d, where r is the 129

size of the arc vector representation vij , and is a 130

hyperparameter to be fixed, as is the word em- 131

bedding size. We recover arc score sij and arc 132

labelling lij from vij by feed-forward transforma- 133

tions: sij = Fs(vij) and lij = Fl(vij). Note that 134

there is only one biaffine transformation, and one 135

specialization for head and modifier roles. Finally, 136

remark that this change does not impact the learn- 137

ing objective: parsers are trained the same way. 138

2.3 Refining with Attention 139

Arc vectors obtained as above can read informa- 140

tion from sentence tokens via contextual embed- 141

dings. But we can go further and use Transform- 142

ers (Vaswani et al., 2017) to leverage attention in 143

order to make arc representations aware of other 144

arc candidates in the parse forest and adjust ac- 145

cordingly, effectively refining representations and 146

realizing a sort of forest reranking. We call v0ij 147

the vector computed by the biaffine function over 148

word embeddings described above. Then we suc- 149

cessively feed vectors of the form vp−1
ij to Trans- 150

former encoder layer T p in order to obtain vpij and 151

eventually get the final representation vPij . This 152

representation is the one used to compute scores 153

with Fs and Fl. Remark again that this change in 154

the vector representation is compatible with any 155

previously used learning objectives. 156

The main issue with this model is the space 157

complexity. The softmax operation in Transform- 158

ers requires multiplying all query/key pairs, the re- 159

sult being stored as a t × t matrix, where t is the 160

number of elements to consider. In our context, the 161

number of arc candidates is quadratic in the num- 162

ber of tokens in the sentence, so we conclude that 163

memory complexity is O(n4) where n is the num- 164

ber of tokens. To tackle this issue, we could take 165

advantage of efficient architectures proposed re- 166

cently e.g. Linear Transformers (Qin et al., 2022). 167

Preliminary experiments showed training to be un- 168

stable so we resort to a simpler mechanism. 169

Filtered Attention One way to tackle the soft- 170

max memory consumption is to filter input ele- 171

ments. If the number of queries and keys fed to the 172

2

transformer is linear, we recover a quadratic space173

complexity. To this end we implement a simple174

filter Ff to retrieve the best k head candidates per175

word, reminiscent of some higher-order models176

prior to deep learning, e.g. Koo and Collins (2010)177

which used arc marginal probabilities to perform178

filtering. We keep the k highest-scoring Ff (v
0
ij)179

for each position j, where k typically equals 10.180

Kept vectors v0ij are passed through the trans-181

former as described above, while unkept vectors182

are considered final. This means that the trans-183

former only processes arcs whose filter scores are184

among the highest-scoring ones, the intuition be-185

ing that transformers are only used on ambiguous186

cases where more context is required to further re-187

fine arc or label scores. Details on the filter’s im-188

plementation can be found in Appendix D.189

3 Experiments190

Data We conduct experiments on the English191

Penn Treebank (PTB) with Stanford dependen-192

cies (de Marneffe and Manning, 2008), as well193

as Universal Dependencies 2.2 Treebanks (UD;194

Nivre et al. 2018), from which we select 12195

languages, pseudo-projectivized following (Nivre196

and Nilsson, 2005). We use the standard split on197

all datasets. Contextual word embeddings are ob-198

tained from RoBERTalarge (Liu et al., 2019) for199

the PTB and XLM-RoBERTalarge (Conneau et al.,200

2020) for UD.201

Evaluation Metrics We use unlabeled and la-202

beled attachment scores (UAS/LAS), with the lat-203

ter to select best models on development sets. Re-204

sults are averaged over 8 runs initialized with ran-205

dom seeds. Following Zhang et al. (2020) and206

others, we omit punctuations during evaluation on207

PTB but keep them on UD. Finally, we use gold208

POS tags on UD but omit them for PTB.209

Models LOC is the local model from (Zhang210

et al., 2020) trained with arc cross-entropy while211

CRF2O is their second-order CRF. ARCLOC is212

our model with arc vectors trained with arc cross-213

entropy. All models are evaluated with the Eisner214

algorithm (Eisner, 1997) extended to higher-order215

for CRF2O. We tested 3 parameter regimes: small,216

standard and large. For LOC, we set standard as the217

number of parameters used in (Zhang et al., 2020),218

about 2 million parameters. In the small regime,219

we halve the size of word vectors and in the large220

regime we double it. For ARCLOC without trans-221

Param (106) UAS LAS

Wang and Tu (2020)⋆ 96.94 95.37
Gan et al. (2022) Proj⋆ 97.24 95.49

Yang and Tu (2022)⋆⋆ 97.4 95.8
Amini et al. (2023) w/o POS ⋆⋆ 97.4 95.8

LOC 3.8 97.34 95.88
CRF2O 3.5 97.30 95.86
ARCLOC no transf. 3.3 97.38 95.91
ARCLOC 1 transf. layer 3.5 97.40 95.93

Table 1: Results on PTB test with RoBERTa, except for
⋆⋆. For last four, average of 8 runs. ⋆: from (Gan et al.,
2022). ⋆⋆: from (Amini et al., 2023), using XLNet.

formers, we set word vectors and arc vectors to the 222

same size, that we adjust to reach the same number 223

as for LOC. More details on hyperparameters and 224

the precise definition of the number of parameters 225

are given in Appendix A. 226

3.1 Main Results 227

We first evaluate our model on PTB and compare 228

it with other systems trained with RoBERTa. Re- 229

sults in Table 1 show that our approach with arcs 230

represented by their own vector gives a slight per- 231

formance improvement on both evaluation metrics 232

over LOC a very strong baseline compared to other 233

state-of-the-art parsers. We remark that on PTB 234

higher-order does not help with performance and 235

that the transformer that we hypothesize to encour- 236

age arc interactions has a modest beneficial im- 237

pact. 238

For the 12 tested languages from UD Table 2 239

reports results from our parsers and others using 240

XLM-RoBERTa for word embeddings. On aver- 241

age, our model with arc representations achieves 242

state-of-the-art results. On eight languages out 243

of twelve our parser achieves better performance 244

than LOC, or any parser other than the higher- 245

order CRF2O, while keeping a comparable param- 246

eter count. We notice that on UD, both explicit 247

higher-order parsing and the use of transformers 248

allow for better results. By increasing the num- 249

ber of parameters in ARCLOC we manage to catch 250

up to CRF2O and achieve state of the art perfor- 251

mances in 6 of the 12 languages, at little cost in 252

parsing speed (see Appendix B). Detailed results 253

are given in Appendix E and an error analysis can 254

be found in Appendix F. 255

3.2 Ablation study 256

Arc representation As we see in Table 3, arc 257

representations can achieve better performance 258

than the base model, and we notice an increase in 259

the UAS/LAS correlated with an increase in arc 260

3

Param (106) bg ca cs de en es fr it nl no ro ru Avg

(Wang and Tu, 2020) 91.42 93.75 92.15 82.20 90.91 92.60 89.51 93.79 91.45 91.95 86.50 92.81 90.75
(Gan et al., 2022) Proj 93.61 94.04 93.10 84.97 91.92 92.32 91.69 94.86 92.51 94.07 88.76 94.66 92.21
(Gan et al., 2022) NProj 93.76 94.38 93.72 85.23 91.95 92.62 91.76 94.79 92.97 94.50 88.67 95.00 92.45
LOC 3.8 94.56 94.52 94.14 84.25 92.31 93.88 91.66 94.99 94.11 95.08 90.27 95.81 92.96
CRF2O 3.5 94.61 94.72 94.17 84.53 92.33 94.03 91.78 95.06 94.16 95.40 90.22 95.91 93.07
ARCLOC 0 TRANSF. LAYER 3.3 94.28 94.45 94.28 84.17 92.32 93.92 91.65 94.89 94.06 95.11 90.37 95.85 92.94
ARCLOC 0 TRANSF. LAYER 50 94.42 94.53 94.32 84.35 92.32 93.96 91.78 94.96 94.09 95.12 90.35 95.88 93.00
ARCLOC 1 TRANSF. LAYER 3.5 94.32 94.58 94.34 84.43 92.32 93.95 91.64 94.93 94.13 95.45 90.33 95.89 93.03
ARCLOC 2 TRANSF. LAYER 50 94.40 94.62 94.34 84.54 92.39 94.00 91.75 95.08 94.18 95.52 90.30 95.93 93.09

Table 2: Test LAS for 12 languages in UD2.2. We use ISO 639-1 codes to represent languages.

size up to a plateau.261

Size of Arc Vector # Param (106) UAS LAS

N/A (LOC) 2 96.79 95.10
32 8 96.85 95.20
64 16 96.89 95.24

128 32 96.90 95.26
256 64 96.89 95.24
512 128 96.92 95.25

Table 3: PTB dev scores w.r.t. arc vector sizes, word
vector size set to 5004(8 run average, no transformer).

Role of Attention We run an ablation experi-262

ment to measure the impact of the Transformer263

module in our architecture. Table 4 shows that our264

arc representation is the main factor of improve-265

ment of the baseline LOC for PTB.266

Param (106) UAS LAS

LOC 3.8 96.83 95.11
CRF2O 3.5 96.85 95.15
ARCLOC 0 Transf. layer 3.3 96.86 95.21
ARCLOC 1 Transf. layer 3.5 96.89 95.24

Table 4: Impact of arc vectors and Transformers on
PTB dev data.

4 Related Work267

In addition to the encoder, attention is widely268

utilized in syntactic analysis (Mrini et al., 2020;269

Tian et al., 2020). For instance, Kitaev and Klein270

(2018) examine the correlation between attention271

on lexical and positional contents, while Le Roux272

et al. (2019) employ specialized cross-attention for273

transition-based parsing. Representing spans has274

been shown to be beneficial for NLP (Li et al.,275

2021; Yan et al., 2023; Yang and Tu, 2022) as276

well as using transformers to enhance them (Zara-277

tiana et al., 2022). Our method is closely related278

to the use of global attention in Edge Transform-279

ers (Bergen et al., 2021). Besides the difference in280

4ArcLoc’s param # is higher due to the word vector size
of 500 which we generally do not use elsewhere (see A).

formalisms of analysis, we do not use any particu- 281

lar attention mask while they use a triangular at- 282

tention. Our use of a filter to select arcs which are 283

allowed to interact, is more flexible. Other novel 284

forms of graph attention have been proposed, e.g. 285

in NodeFormer (Wu et al., 2022). Our use of 286

transformers over arcs is a part of a growing lit- 287

erature on generalizing transformers to relational 288

graph-structured data, as called for by Battaglia 289

et al. (2018). This includes approaches that encode 290

graphs as sets and input them to standard trans- 291

formers similar to TokenGT (Kim et al., 2022) and 292

Graphormer (Ying et al., 2021). However, we re- 293

strict the transformer input to arc vectors exclud- 294

ing node. We differ from approaches that modify 295

standard self-attention either to model structural 296

dependencies (Kim et al., 2017) or implement rel- 297

ative positional encodings (Cai and Lam, 2019; 298

Hellendoorn et al., 2020), which do not maintain 299

arc vectors but instead use them to improve node 300

vectors. Lastly, we note that our model bears re- 301

semblances to earlier work on reranking for pars- 302

ing (Collins and Koo, 2005; Le and Zuidema, 303

2014), as we use transformers to promote or de- 304

mote arcs before scoring and parsing. 305

5 Conclusion 306

We presented a change in the main graph-based 307

dependency parsing architecture where lexical 308

arcs have their own representation in a high- 309

dimensional vector space, from which their lexi- 310

cal scores are computed. This model demonstrates 311

a clear improvement on parsing metrics over a 312

strong baseline and achieves state-of-the-art per- 313

formance on PTB and 12 UD corpora. More- 314

over we show that this architecture is amenable 315

to further processing where arc vectors are refined 316

through transformers and allowing interaction be- 317

tween arcs similar to higher-order features. This 318

method could be extended to other tasks, such as 319

constituent parsing or relation extraction. 320

4

6 Limitations321

Our system with Transformers relies on the atten-322

tion mechanism which is quadratic in space and323

time in the number of elements to consider. Since324

the number of elements (arcs in our context) is it-325

self quadratic in the number of word tokens, this326

means that naively the proposed transformer ex-327

tension is of quadratic complexity. In practice we328

showed that adding a filtering mechanism is suffi-329

cient to revert complexity back to O(n2), but we330

leave using efficient transformers, with linear at-331

tention mechanism, to future work.332

7 Ethical Considerations333

We do not believe the work presented here further334

amplifies biases already present in the datasets.335

Therefore, we foresee no ethical concerns in this336

work.337

References338

Afra Amini, Tianyu Liu, and Ryan Cotterell. 2023.339
Hexatagging: Projective dependency parsing as tag-340
ging. In Proceedings of the 61st Annual Meeting of341
the Association for Computational Linguistics (Vol-342
ume 2: Short Papers), pages 1453–1464, Toronto,343
Canada. Association for Computational Linguistics.344

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst,345
Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Ma-346
teusz Malinowski, Andrea Tacchetti, David Ra-347
poso, Adam Santoro, Ryan Faulkner, Caglar Gul-348
cehre, Francis Song, Andrew Ballard, Justin Gilmer,349
George Dahl, Ashish Vaswani, Kelsey Allen,350
Charles Nash, Victoria Langston, Chris Dyer, Nico-351
las Heess, Daan Wierstra, Pushmeet Kohli, Matt352
Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pas-353
canu. 2018. Relational inductive biases, deep learn-354
ing, and graph networks.355

Yoshua Bengio, Nicholas Léonard, and Aaron356
Courville. 2013. Estimating or propagating gradi-357
ents through stochastic neurons for conditional com-358
putation. arXiv preprint arXiv:1308.3432.359

Leon Bergen, Timothy J. O’Donnell, and Dzmitry Bah-360
danau. 2021. Systematic generalization with edge361
transformers. CoRR, abs/2112.00578.362

Deng Cai and Wai Lam. 2019. Graph transformer for363
graph-to-sequence learning.364

Michael Collins and Terry Koo. 2005. Discriminative365
reranking for natural language parsing. Computa-366
tional Linguistics, 31(1):25–70.367

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,368
Vishrav Chaudhary, Guillaume Wenzek, Francisco369

Guzmán, Edouard Grave, Myle Ott, Luke Zettle- 370
moyer, and Veselin Stoyanov. 2020. Unsupervised 371
cross-lingual representation learning at scale. In 372
Proceedings of the 58th Annual Meeting of the Asso- 373
ciation for Computational Linguistics, pages 8440– 374
8451, Online. Association for Computational Lin- 375
guistics. 376

Marie-Catherine de Marneffe and Christopher D. Man- 377
ning. 2008. The Stanford typed dependencies rep- 378
resentation. In Coling 2008: Proceedings of the 379
workshop on Cross-Framework and Cross-Domain 380
Parser Evaluation, pages 1–8, Manchester, UK. Col- 381
ing 2008 Organizing Committee. 382

Timothy Dozat and Christopher D. Manning. 2017. 383
Deep biaffine attention for neural dependency pars- 384
ing. In 5th International Conference on Learning 385
Representations, ICLR 2017, Toulon, France, April 386
24-26, 2017, Conference Track Proceedings. Open- 387
Review.net. 388

Jason Eisner. 1997. Bilexical grammars and a cubic- 389
time probabilistic parser. In Proceedings of the Fifth 390
International Workshop on Parsing Technologies, 391
pages 54–65, Boston/Cambridge, Massachusetts, 392
USA. Association for Computational Linguistics. 393

Leilei Gan, Yuxian Meng, Kun Kuang, Xiaofei Sun, 394
Chun Fan, Fei Wu, and Jiwei Li. 2022. Depen- 395
dency parsing as MRC-based span-span prediction. 396
In Proceedings of the 60th Annual Meeting of the 397
Association for Computational Linguistics (Volume 398
1: Long Papers), pages 2427–2437, Dublin, Ireland. 399
Association for Computational Linguistics. 400

Vaibhava Goel and William J. Byrne. 2000. Minimum 401
bayes-risk automatic speech recognition. Comput. 402
Speech Lang., 14(2):115–135. 403

Vincent J. Hellendoorn, Charles Sutton, Rishabh 404
Singh, Petros Maniatis, and David Bieber. 2020. 405
Global relational models of source code. In Inter- 406
national Conference on Learning Representations. 407

Liang Huang. 2008. Forest reranking: Discrimina- 408
tive parsing with non-local features. In Proceedings 409
of ACL-08: HLT, pages 586–594. Association for 410
Computational Linguistics. 411

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, 412
Dmitry Vetrov, and Andrew Gordon Wilson. 2018. 413
Averaging weights leads to wider optima and bet- 414
ter generalization. In 34th Conference on Uncer- 415
tainty in Artificial Intelligence 2018, UAI 2018, 34th 416
Conference on Uncertainty in Artificial Intelligence 417
2018, UAI 2018, pages 876–885. Association For 418
Uncertainty in Artificial Intelligence (AUAI). Fund- 419
ing Information: Acknowledgements. This work was 420
supported by NSF IIS-1563887, Samsung Research, 421
Samsung Electronics and Russian Science Foun- 422
dation grant 17-11-01027. We also thank Vadim 423
Bereznyuk for helpful comments. Funding Informa- 424
tion: This work was supported by NSF IIS-1563887, 425
Samsung Research, Samsung Electronics and Rus- 426
sian Science Foundation grant 17-11-01027. We also 427

5

https://doi.org/10.18653/v1/2023.acl-short.124
https://doi.org/10.18653/v1/2023.acl-short.124
https://doi.org/10.18653/v1/2023.acl-short.124
http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/2112.00578
http://arxiv.org/abs/2112.00578
http://arxiv.org/abs/2112.00578
http://arxiv.org/abs/1911.07470
http://arxiv.org/abs/1911.07470
http://arxiv.org/abs/1911.07470
https://doi.org/10.1162/0891201053630273
https://doi.org/10.1162/0891201053630273
https://doi.org/10.1162/0891201053630273
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://aclanthology.org/W08-1301
https://aclanthology.org/W08-1301
https://aclanthology.org/W08-1301
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://www.aclweb.org/anthology/1997.iwpt-1.10
https://www.aclweb.org/anthology/1997.iwpt-1.10
https://www.aclweb.org/anthology/1997.iwpt-1.10
https://doi.org/10.18653/v1/2022.acl-long.173
https://doi.org/10.18653/v1/2022.acl-long.173
https://doi.org/10.18653/v1/2022.acl-long.173
https://doi.org/10.1006/csla.2000.0138
https://doi.org/10.1006/csla.2000.0138
https://doi.org/10.1006/csla.2000.0138
https://openreview.net/forum?id=B1lnbRNtwr

thank Vadim Bereznyuk for helpful comments. Pub-428
lisher Copyright: © 34th Conference on Uncertainty429
in Artificial Intelligence 2018. All rights reserved.;430
34th Conference on Uncertainty in Artificial Intel-431
ligence 2018, UAI 2018 ; Conference date: 06-08-432
2018 Through 10-08-2018.433

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-based434
dependency parsing with graph neural networks. In435
Proceedings of the 57th Annual Meeting of the Asso-436
ciation for Computational Linguistics, pages 2475–437
2485, Florence, Italy. Association for Computational438
Linguistics.439

Jinwoo Kim, Dat Tien Nguyen, Seonwoo Min, Sungjun440
Cho, Moontae Lee, Honglak Lee, and Seunghoon441
Hong. 2022. Pure transformers are powerful graph442
learners. In Advances in Neural Information Pro-443
cessing Systems.444

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-445
der M. Rush. 2017. Structured attention networks.446
In International Conference on Learning Represen-447
tations.448

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-449
ple and accurate dependency parsing using bidirec-450
tional lstm feature representations. Transactions451
of the Association for Computational Linguistics,452
4:313–327.453

Nikita Kitaev and Dan Klein. 2018. Constituency pars-454
ing with a self-attentive encoder. In Proceedings of455
the 56th Annual Meeting of the Association for Com-456
putational Linguistics (Volume 1: Long Papers),457
pages 2676–2686, Melbourne, Australia. Associa-458
tion for Computational Linguistics.459

Terry Koo and Michael Collins. 2010. Efficient third-460
order dependency parsers. In Proceedings of the461
48th Annual Meeting of the Association for Compu-462
tational Linguistics, pages 1–11, Uppsala, Sweden.463
Association for Computational Linguistics.464

Phong Le and Willem Zuidema. 2014. The inside-465
outside recursive neural network model for depen-466
dency parsing. In Proceedings of the 2014 Con-467
ference on Empirical Methods in Natural Language468
Processing (EMNLP), pages 729–739, Doha, Qatar.469
Association for Computational Linguistics.470

Joseph Le Roux, Antoine Rozenknop, and Mathieu471
Lacroix. 2019. Representation learning and dy-472
namic programming for arc-hybrid parsing. In Pro-473
ceedings of the 23rd Conference on Computational474
Natural Language Learning (CoNLL), pages 238–475
248, Hong Kong, China. Association for Computa-476
tional Linguistics.477

Fei Li, ZhiChao Lin, Meishan Zhang, and Donghong478
Ji. 2021. A span-based model for joint overlapped479
and discontinuous named entity recognition. In Pro-480
ceedings of the 59th Annual Meeting of the Associa-481
tion for Computational Linguistics and the 11th In-482
ternational Joint Conference on Natural Language483

Processing (Volume 1: Long Papers), pages 4814– 484
4828, Online. Association for Computational Lin- 485
guistics. 486

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 487
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 488
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 489
Roberta: A robustly optimized BERT pretraining ap- 490
proach. CoRR, abs/1907.11692. 491

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran, 492
Trung Bui, Walter Chang, and Ndapa Nakashole. 493
2020. Rethinking self-attention: Towards inter- 494
pretability in neural parsing. In Findings of the As- 495
sociation for Computational Linguistics: EMNLP 496
2020, pages 731–742, Online. Association for Com- 497
putational Linguistics. 498

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars 499
Ahrenberg, Lene Antonsen, Maria Jesus Aranz- 500
abe, Gashaw Arutie, Masayuki Asahara, Luma 501
Ateyah, Mohammed Attia, Aitziber Atutxa, Lies- 502
beth Augustinus, Elena Badmaeva, Miguel Balles- 503
teros, Esha Banerjee, Sebastian Bank, Verginica 504
Barbu Mititelu, John Bauer, Sandra Bellato, Kepa 505
Bengoetxea, Riyaz Ahmad Bhat, Erica Biagetti, 506
Eckhard Bick, Rogier Blokland, Victoria Bobicev, 507
Carl Börstell, Cristina Bosco, Gosse Bouma, Sam 508
Bowman, Adriane Boyd, Aljoscha Burchardt, Marie 509
Candito, Bernard Caron, Gauthier Caron, Gülşen 510
Cebiroğlu Eryiğit, Giuseppe G. A. Celano, Savas 511
Cetin, Fabricio Chalub, Jinho Choi, Yongseok Cho, 512
Jayeol Chun, Silvie Cinková, Aurélie Collomb, 513
Çağrı Çöltekin, Miriam Connor, Marine Courtin, 514
Elizabeth Davidson, Marie-Catherine de Marn- 515
effe, Valeria de Paiva, Arantza Diaz de Ilarraza, 516
Carly Dickerson, Peter Dirix, Kaja Dobrovoljc, 517
Timothy Dozat, Kira Droganova, Puneet Dwivedi, 518
Marhaba Eli, Ali Elkahky, Binyam Ephrem, Tomaž 519
Erjavec, Aline Etienne, Richárd Farkas, Hector 520
Fernandez Alcalde, Jennifer Foster, Cláudia Fre- 521
itas, Katarína Gajdošová, Daniel Galbraith, Mar- 522
cos Garcia, Moa Gärdenfors, Kim Gerdes, Filip 523
Ginter, Iakes Goenaga, Koldo Gojenola, Memduh 524
Gökırmak, Yoav Goldberg, Xavier Gómez Guino- 525
vart, Berta Gonzáles Saavedra, Matias Grioni, Nor- 526
munds Grūzı̄tis, Bruno Guillaume, Céline Guillot- 527
Barbance, Nizar Habash, Jan Hajič, Jan Hajič jr., 528
Linh Hà Mỹ, Na-Rae Han, Kim Harris, Dag Haug, 529
Barbora Hladká, Jaroslava Hlaváčová, Florinel Ho- 530
ciung, Petter Hohle, Jena Hwang, Radu Ion, Elena 531
Irimia, Tomáš Jelínek, Anders Johannsen, Fredrik 532
Jørgensen, Hüner Kaşıkara, Sylvain Kahane, Hiroshi 533
Kanayama, Jenna Kanerva, Tolga Kayadelen, Vá- 534
clava Kettnerová, Jesse Kirchner, Natalia Kotsyba, 535
Simon Krek, Sookyoung Kwak, Veronika Laippala, 536
Lorenzo Lambertino, Tatiana Lando, Septina Dian 537
Larasati, Alexei Lavrentiev, John Lee, Phương 538
Lê Hồng, Alessandro Lenci, Saran Lertpradit, Her- 539
man Leung, Cheuk Ying Li, Josie Li, Keying Li, 540
KyungTae Lim, Nikola Ljubešić, Olga Loginova, 541
Olga Lyashevskaya, Teresa Lynn, Vivien Macke- 542
tanz, Aibek Makazhanov, Michael Mandl, Christo- 543
pher Manning, Ruli Manurung, Cătălina Mărăn- 544

6

https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://openreview.net/forum?id=um2BxfgkT2_
https://openreview.net/forum?id=um2BxfgkT2_
https://openreview.net/forum?id=um2BxfgkT2_
https://openreview.net/forum?id=HkE0Nvqlg
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://www.aclweb.org/anthology/P10-1001
https://www.aclweb.org/anthology/P10-1001
https://www.aclweb.org/anthology/P10-1001
https://doi.org/10.3115/v1/D14-1081
https://doi.org/10.3115/v1/D14-1081
https://doi.org/10.3115/v1/D14-1081
https://doi.org/10.3115/v1/D14-1081
https://doi.org/10.3115/v1/D14-1081
https://doi.org/10.18653/v1/K19-1023
https://doi.org/10.18653/v1/K19-1023
https://doi.org/10.18653/v1/K19-1023
https://doi.org/10.18653/v1/2021.acl-long.372
https://doi.org/10.18653/v1/2021.acl-long.372
https://doi.org/10.18653/v1/2021.acl-long.372
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65

duc, David Mareček, Katrin Marheinecke, Héctor545
Martínez Alonso, André Martins, Jan Mašek, Yuji546
Matsumoto, Ryan McDonald, Gustavo Mendonça,547
Niko Miekka, Anna Missilä, Cătălin Mititelu,548
Yusuke Miyao, Simonetta Montemagni, Amir More,549
Laura Moreno Romero, Shinsuke Mori, Bjartur550
Mortensen, Bohdan Moskalevskyi, Kadri Muis-551
chnek, Yugo Murawaki, Kaili Müürisep, Pinkey552
Nainwani, Juan Ignacio Navarro Horñiacek, Anna553
Nedoluzhko, Gunta Nešpore-Bērzkalne, Lương554
Nguyễn Thị, Huyền Nguyễn Thị Minh, Vitaly555
Nikolaev, Rattima Nitisaroj, Hanna Nurmi, Stina556
Ojala, Adédayò Olúòkun, Mai Omura, Petya Osen-557
ova, Robert Östling, Lilja Øvrelid, Niko Partanen,558
Elena Pascual, Marco Passarotti, Agnieszka Pate-559
juk, Siyao Peng, Cenel-Augusto Perez, Guy Per-560
rier, Slav Petrov, Jussi Piitulainen, Emily Pitler,561
Barbara Plank, Thierry Poibeau, Martin Popel,562
Lauma Pretkalniņa, Sophie Prévost, Prokopis Proko-563
pidis, Adam Przepiórkowski, Tiina Puolakainen,564
Sampo Pyysalo, Andriela Rääbis, Alexandre Rade-565
maker, Loganathan Ramasamy, Taraka Rama, Car-566
los Ramisch, Vinit Ravishankar, Livy Real, Siva567
Reddy, Georg Rehm, Michael Rießler, Larissa Ri-568
naldi, Laura Rituma, Luisa Rocha, Mykhailo Ro-569
manenko, Rudolf Rosa, Davide Rovati, Valentin570
Ros, ca, Olga Rudina, Shoval Sadde, Shadi Saleh,571
Tanja Samardžić, Stephanie Samson, Manuela San-572
guinetti, Baiba Saulı̄te, Yanin Sawanakunanon,573
Nathan Schneider, Sebastian Schuster, Djamé Sed-574
dah, Wolfgang Seeker, Mojgan Seraji, Mo Shen,575
Atsuko Shimada, Muh Shohibussirri, Dmitry576
Sichinava, Natalia Silveira, Maria Simi, Radu577
Simionescu, Katalin Simkó, Mária Šimková, Kiril578
Simov, Aaron Smith, Isabela Soares-Bastos, An-579
tonio Stella, Milan Straka, Jana Strnadová, Alane580
Suhr, Umut Sulubacak, Zsolt Szántó, Dima Taji,581
Yuta Takahashi, Takaaki Tanaka, Isabelle Tel-582
lier, Trond Trosterud, Anna Trukhina, Reut Tsar-583
faty, Francis Tyers, Sumire Uematsu, Zdeňka584
Urešová, Larraitz Uria, Hans Uszkoreit, Sowmya585
Vajjala, Daniel van Niekerk, Gertjan van No-586
ord, Viktor Varga, Veronika Vincze, Lars Wallin,587
Jonathan North Washington, Seyi Williams, Mats588
Wirén, Tsegay Woldemariam, Tak-sum Wong,589
Chunxiao Yan, Marat M. Yavrumyan, Zhuoran Yu,590
Zdeněk Žabokrtský, Amir Zeldes, Daniel Zeman,591
Manying Zhang, and Hanzhi Zhu. 2018. Univer-592
sal dependencies 2.2. LINDAT/CLARIAH-CZ dig-593
ital library at the Institute of Formal and Applied594
Linguistics (ÚFAL), Faculty of Mathematics and595
Physics, Charles University.596

Joakim Nivre and Jens Nilsson. 2005. Pseudo-597
projective dependency parsing. In Proceedings of598
the 43rd Annual Meeting of the Association for599
Computational Linguistics (ACL’05), pages 99–106,600
Ann Arbor, Michigan. Association for Computa-601
tional Linguistics.602

Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li,603
Lingpeng Kong, Nick Barnes, and Yiran Zhong.604
2022. The devil in linear transformer. In Proceed-605
ings of the 2022 Conference on Empirical Methods606

in Natural Language Processing, pages 7025–7041, 607
Abu Dhabi, United Arab Emirates. Association for 608
Computational Linguistics. 609

R. E. Tarjan. 1977. Finding optimum branchings. Net- 610
works, 7(1):25–35. 611

Yuanhe Tian, Yan Song, Fei Xia, and Tong Zhang. 612
2020. Improving constituency parsing with span at- 613
tention. In Findings of the Association for Computa- 614
tional Linguistics: EMNLP 2020, pages 1691–1703, 615
Online. Association for Computational Linguistics. 616

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 617
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 618
Kaiser, and Illia Polosukhin. 2017. Attention is all 619
you need. In Advances in Neural Information Pro- 620
cessing Systems, pages 5998–6008. 621

Xinyu Wang and Kewei Tu. 2020. Second-order neural 622
dependency parsing with message passing and end- 623
to-end training. In Proceedings of the 1st Confer- 624
ence of the Asia-Pacific Chapter of the Association 625
for Computational Linguistics and the 10th Interna- 626
tional Joint Conference on Natural Language Pro- 627
cessing, pages 93–99, Suzhou, China. Association 628
for Computational Linguistics. 629

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and 630
Junchi Yan. 2022. Nodeformer: A scalable graph 631
structure learning transformer for node classifica- 632
tion. In Advances in Neural Information Process- 633
ing Systems, volume 35, pages 27387–27401. Cur- 634
ran Associates, Inc. 635

Zhaohui Yan, Songlin Yang, Wei Liu, and Kewei Tu. 636
2023. Joint entity and relation extraction with 637
span pruning and hypergraph neural networks. In 638
Proceedings of the 2023 Conference on Empirical 639
Methods in Natural Language Processing, pages 640
7512–7526, Singapore. Association for Computa- 641
tional Linguistics. 642

Songlin Yang and Kewei Tu. 2022. Headed-span-based 643
projective dependency parsing. In Proceedings of 644
the 60th Annual Meeting of the Association for Com- 645
putational Linguistics (Volume 1: Long Papers), 646
pages 2188–2200, Dublin, Ireland. Association for 647
Computational Linguistics. 648

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin 649
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie- 650
Yan Liu. 2021. Do transformers really perform badly 651
for graph representation? In Advances in Neural In- 652
formation Processing Systems. 653

Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and 654
Thierry Charnois. 2022. GNNer: Reducing over- 655
lapping in span-based NER using graph neural net- 656
works. In Proceedings of the 60th Annual Meeting 657
of the Association for Computational Linguistics: 658
Student Research Workshop, pages 97–103, Dublin, 659
Ireland. Association for Computational Linguistics. 660

7

http://hdl.handle.net/11234/1-2837
http://hdl.handle.net/11234/1-2837
http://hdl.handle.net/11234/1-2837
https://doi.org/10.3115/1219840.1219853
https://doi.org/10.3115/1219840.1219853
https://doi.org/10.3115/1219840.1219853
https://aclanthology.org/2022.emnlp-main.473
https://doi.org/https://doi.org/10.1002/net.3230070103
https://doi.org/10.18653/v1/2020.findings-emnlp.153
https://doi.org/10.18653/v1/2020.findings-emnlp.153
https://doi.org/10.18653/v1/2020.findings-emnlp.153
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://proceedings.neurips.cc/paper_files/paper/2022/file/af790b7ae573771689438bbcfc5933fe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/af790b7ae573771689438bbcfc5933fe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/af790b7ae573771689438bbcfc5933fe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/af790b7ae573771689438bbcfc5933fe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/af790b7ae573771689438bbcfc5933fe-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.467
https://doi.org/10.18653/v1/2023.emnlp-main.467
https://doi.org/10.18653/v1/2023.emnlp-main.467
https://doi.org/10.18653/v1/2022.acl-long.155
https://doi.org/10.18653/v1/2022.acl-long.155
https://doi.org/10.18653/v1/2022.acl-long.155
https://openreview.net/forum?id=OeWooOxFwDa
https://openreview.net/forum?id=OeWooOxFwDa
https://openreview.net/forum?id=OeWooOxFwDa
https://doi.org/10.18653/v1/2022.acl-srw.9
https://doi.org/10.18653/v1/2022.acl-srw.9
https://doi.org/10.18653/v1/2022.acl-srw.9
https://doi.org/10.18653/v1/2022.acl-srw.9
https://doi.org/10.18653/v1/2022.acl-srw.9

Xudong Zhang, Joseph Le Roux, and Thierry Charnois.661
2021. Strength in numbers: Averaging and clus-662
tering effects in mixture of experts for graph-based663
dependency parsing. In Proceedings of the 17th664
International Conference on Parsing Technologies665
and the IWPT 2021 Shared Task on Parsing into666
Enhanced Universal Dependencies (IWPT 2021),667
pages 106–118, Online. Association for Computa-668
tional Linguistics.669

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-670
cient second-order TreeCRF for neural dependency671
parsing. In Proceedings of the 58th Annual Meeting672
of the Association for Computational Linguistics,673
pages 3295–3305, Online. Association for Compu-674
tational Linguistics.675

A Hyperparameters676

We mostly use the same hyperparameter settings677

as Zhang et al. (2020) which are found in their re-678

leased code. Specifically we adopt the approach679

they use when training models using BERT, us-680

ing the average of the 4 last layers to compute our681

word embeddings. The batch size is 5000, the di-682

mension of the arc MLP is 96, 120, 144 for AR-683

CLOC with 1×106, 2×106 and 4×106 parameters684

respectively and for LOC it’s 256, 500, 900 and685

the label MLP dimension is 64, 100, 140 for the686

LOC 1×106, 2×106, and 3 or 4×106 models, also687

respectively, for the model with 50×106 parame-688

ters we use an arc MLP dimension of 500 and an689

arc size of 192. Our transformer uses a number690

of attention heads always equal to one sixteenth691

of the arc size, except when we have an arc size692

of 120 as it is not a multiple of 16, there we use693

8 attention heads. The dropout rate for the MLPs694

with LOC is 0.33 and for ARCLOC it’s 0.1 except695

for the 50×106 parameters model where we use a696

dropout of 0.33 for the arc MLPs and 0.1 for all697

other MLPs, we train our model for 10 epochs and698

save the one with the best LAS score on the dev699

data. The learning rates are 8.3e-6 and 3.7e-5 for700

LOC and ARCLOC respectively before the stochas-701

tic weight averaging (SWA) and 5e-6 and 3.7e-702

6 also respectively from the fifth epoch onward703

when we use SWA. The transformer in ARCLOC704

benefits from its own hyperparameters, while the705

model warms up for one epoch, the transformer706

does so for three and has a base learning rate of707

3e-3, which becomes 6e-5 when using SWA. For708

CRF2O we use the exact same hyperparameters as709

Zhang et al. (2020) except for the learning rates710

which are the same as LOC. We use the following711

formula to determine the parameter count for LOC712

with 2 arc MLPs, 2 label MLPs, and 2 biaffine713

Loc ArcLoc ArcLoc
1 Transf. Layer

CRF2o

0

100

200

300

400

500 465 454 439

306

se
nt

s/
se

c
Figure 1: Parsing speed on PTB in sent/s.

modules, one for the arcs and one for the labels: 714

2 ∗ 1024X + 2 ∗ 1024Y +X2 + Y 2L (1) 715

Where 1024 is the size of RoBERTa’s and XLM- 716

RoBERTa’s output, X and Y are the arc and label 717

MLP dimensions respectively and L is the num- 718

ber of labels in the dataset. For ARCLOC which 719

uses no label MLPs or biaffine but 2 scoring MLPs 720

with hidden sizes of d/2 for the arc scoring and 2L 721

for the label scoring and an arc size of d we have 722

the following: 723

2 ∗ 1024X +X2d+
d2 + d

2
+ 2dL+ 2L2 (2) 724

Additionally, with N as the number of transformer 725

layers used, the transformer adds a total parameter 726

count of: 727

N ∗ 10d2 (3) 728

B Efficiency 729

We trained the bulk of our models on Nvidia a100 730

GPUs with 80GB of memory or v100 GPUs with 731

32GB of memory. Our models’ memory footprint 732

and speed directly depend on the size of the arcs, 733

whether we use a transformer, and whether we fil- 734

ter the arcs. As we can see in figure 1, our model 735

achieves speeds comparable to LOC, and is still 736

faster than CRF2O even with 50×106 parameters 737

with a speed of 413 sents/sec, furthermore with 738

the use of our filter, we reduce the memory con- 739

sumption to manageable levels allowing us to use 740

a softmax transformer. 741

8

https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302

C Stochastic weight averaging742

We implement stochastic weight averaging (SWA)743

introduced in Izmailov et al. (2018) after 4 epochs,744

which we found lead to consistent improvements745

in all models (LOC, ARCLOC, CRF2O) after fine-746

tuning.747

D Filtering Arcs748

The filtering step keeps k arcs per modifier. It is749

inspired from the straight-through estimator (Ben-750

gio et al., 2013) and is implemented as follows.751

For each token m we compute the scores of all752

arcs h → m, from their vector representations753

vhm. Then we add some Gumbel noise (at training754

time) and normalize scores via softmax: we obtain755

probabilities p(h → m) that we use to sort arcs756

from most to least probable: h1 → m. . . hn → m.757

Finally the kth arc vector returned by the filter758

for modifier m is computed as:759

760

vk(m) = argsort(vh1m . . . vhnm)[k]−761

detach(E[vhm]) + E[vhm] (4)762

During the forward pass the two last terms can-763

cel each other out and vk(m) is the vector of the764

kth most probable arc for m, hk → m. During the765

backward pass, the first two terms have zero gra-766

dient, and the third one amounts to a weighted av-767

erage of the vectors of arcs h1 → m. . . hn → m,768

with weights given by their probabilities.769

Table 5 compares parsing UAS and the filter’s770

oracle UAS (percentage of correct heads in the set771

returned by the filter). We keep 10 potential heads772

per word to get the highest oracle score with a rea-773

sonably small sequence of arcs.5774

#Heads 1 2 3 5 10

Oracle 37.65 75.88 92.48 99.10 99.88
Parser 48.79 78.06 89.69 94.74 96.88

Table 5: PTB Dev UAS scores for ARCLOC and its fil-
ter’s Oracle with different filter sizes (number of kept
heads per word).

E Detailed Results775

Table 6 gives a detailed account of the results our776

different on PTB development set. We see that our777

5Note that there is no discrepancy in the first or second
column, we can have a UAS score higher than filter’s oracle,
as an arc can be filtered out and still end up in the parse, our
filter only chooses arcs to be processed by the transformer.

model ARCLOC with the same number of parame- 778

ters as LOC gives an absolute 0.1%. We stress that 779

in the case of PTB our approach leads to a better 780

improvement than what the second-order scoring 781

function can bring. We can also remark that one 782

layer of transformers can in some case (large set- 783

ting) bring a minor improvement. 784

Model # Param (106) Dev
UAS LAS

LOC 0.9 96.80 95.10
LOC 1.9 96.79 95.10
LOC 3.8 96.83 95.11
CRF2O 3.5 96.85 95.15
ARCLOC 0 TRANSF. LAYERS 1.1 96.83 95.17
ARCLOC 0 TRANSF. LAYERS 2 96.86 95.20
ARCLOC 0 TRANSF. LAYERS 3.3 96.86 95.21
ARCLOC 1 TRANSF. LAYER 1.2 96.86 95.20
ARCLOC 1 TRANSF. LAYER 2.1 96.87 95.21
ARCLOC 1 TRANSF. LAYER 3.5 96.89 95.24
ARCLOC 2 TRANSF. LAYERS 1.3 96.85 95.18
ARCLOC 2 TRANSF. LAYERS 2.3 96.87 95.21
ARCLOC 2 TRANSF. LAYERS 3.7 96.84 95.19
ARCLOC 4 TRANSF. LAYERS 1.5 96.83 95.17
ARCLOC 4 TRANSF. LAYERS 2.6 96.87 95.19
ARCLOC 4 TRANSF. LAYERS 4.1 96.86 95.21

Table 6: Dev scores for the PTB for different num-
bers of parameters per model (in millions) and different
numbers of layers for ARCLOC

For UD, we report development results in Ta- 785

ble 7. Here the picture is a bit different since 786

we can see that second-order score improves over 787

LOC. Please also notice that on UD, gold POS tags 788

are provided. In this case, we see that ARCLOC 789

struggles to improve over LOC. We conclude that 790

the arc representation on its own cannot replace 791

second-order features, and that our experimental 792

setup may be too restrictive for ARCLOC: to get 793

numbers of parameters comparable with LOC we 794

use smaller word embeddings. 795

However, we remark that adding transformer 796

layers allows our approach to recover the perfor- 797

mance offered by CRF2O. Finally we test a setup 798

where use the same word embedding size that 799

CRF2O one transformer layer of size 192. In this 800

case, we see that our model performs on a par with 801

CRF2O. 802

F Error Analysis 803

We restrict our error analysis to English but ap- 804

ply it to both UD and PTB. We conclude from 805

our analysis that the ArcLoc systems improve over 806

the Loc baseline across the majority of error cate- 807

gories we have examined. 808

9

Param (106) bg ca cs de en es fr it nl no ro ru Avg

projective% 99.8 99.6 99.2 97.7 99.6 99.6 99.7 99.8 99.4 99.3 99.4 99.2 99.4

CRF2O 3.5 93.20 94.40 94.53 89.29 92.90 94.23 92.93 94.55 95.37 95.74 90.39 95.34 93.57

LOC 0.9 92.73 94.13 94.41 88.56 92.81 93.97 92.87 94.28 95.12 95.61 90.18 95.22 93.32
LOC 1.9 92.89 94.17 94.45 88.63 92.92 93.99 92.90 94.40 95.20 95.67 90.15 95.22 93.38
LOC 3.8 92.83 94.25 94.48 88.75 92.91 94.07 92.95 94.35 95.19 95.72 90.20 95.24 93.41

ARCLOC 0 TRANSF. LAYERS 1.1 92.71 94.16 94.51 88.17 92.79 93.91 92.92 94.28 94.92 95.63 90.18 95.28 93.29
ARCLOC 0 TRANSF. LAYERS 2 92.75 94.24 94.57 88.38 92.89 93.99 92.90 94.29 95.01 95.73 90.19 95.30 93.35
ARCLOC 0 TRANSF. LAYERS 3.3 92.90 94.24 94.61 88.59 92.94 94.04 92.96 94.39 95.03 95.74 90.19 95.33 93.41
ARCLOC 0 TRANSF. LAYERS 50 93.01 94.29 94.64 88.70 93.02 94.11 93.00 94.45 95.13 95.73 90.28 95.39 93.48

ARCLOC 1 TRANSF. LAYER 1.2 92.79 94.25 94.60 88.40 92.86 93.97 92.90 94.34 94.99 95.79 90.05 95.31 93.35
ARCLOC 1 TRANSF. LAYER 2.1 92.89 94.31 94.63 88.55 93.00 94.05 92.98 94.39 95.04 95.81 90.21 95.34 93.43
ARCLOC 1 TRANSF. LAYER 3.5 93.06 94.34 94.60 88.77 93.02 94.14 92.97 94.48 95.00 95.86 90.28 95.37 93.49
ARCLOC 1 TRANSF. LAYER 50 93.13 94.41 94.69 88.82 93.09 94.16 93.05 94.58 95.17 95.91 90.26 95.43 93.56

ARCLOC 2 TRANSF. LAYERS 1.3 92.89 94.24 94.62 88.42 92.87 94.01 92.93 94.37 95.06 95.78 90.13 95.30 93.39
ARCLOC 2 TRANSF. LAYERS 2.3 92.98 94.31 94.65 88.61 93.01 94.10 92.98 94.40 95.14 95.81 90.23 95.37 93.46
ARCLOC 2 TRANSF. LAYERS 3.7 93.03 94.37 94.67 88.85 93.06 94.15 93.00 94.52 95.13 95.86 90.16 95.38 93.52
ARCLOC 2 TRANSF. LAYERS 50 93.22 94.42 94.68 89.01 93.15 94.25 93.04 94.59 95.14 95.87 90.26 95.41 93.59

ARCLOC 4 TRANSF. LAYERS 1.5 92.94 94.32 94.65 88.60 92.97 94.10 92.95 94.45 95.03 95.81 90.12 95.34 93.44
ARCLOC 4 TRANSF. LAYERS 2.6 93.02 94.33 94.66 88.66 92.99 94.13 92.99 94.48 95.06 95.84 90.18 95.36 93.48
ARCLOC 4 TRANSF. LAYERS 4.1 93.08 94.36 94.67 88.78 93.05 94.15 92.99 94.49 95.06 95.86 90.19 95.36 93.50
ARCLOC 4 TRANSF. LAYERS 51 93.16 94.40 94.69 89.03 93.12 94.21 93.01 94.50 95.16 95.91 90.26 95.41 93.57

Table 7: Dev LAS for 12 languages in UD2.2 for different numbers of parameters per model and different numbers
of layers for ARCLOC

Figure 2: PTB: List of the words with an attachment
error rate at least 4 times lower for one of the ArcLoc
parsers compared to the Loc parser.

F.1 Error Rate per Word Type809

In this section we focus on evaluating the perfor-810

mance of various systems across different word811

Figure 3: UD: List of the words with an attachment
error rate at least 4 times lower for one of the ArcLoc
parsers compared to the Loc parser.

frequency groups. Word frequencies were catego- 812

rized into four groups: ’1-5’, ’6-10’, ’11-15’, and 813

’>15’. Each category represents the range of times 814

words appear in PTB and UD dev corpora. 815

We employed the Kruskal-Wallis test to assess 816

statistical differences across all systems within 817

10

each frequency group, followed by pairwise com-818

parisons using the Mann-Whitney U test to evalu-819

ate differences between each pair of systems.820

Results For UD The Kruskal-Wallis test showed821

a significant difference between systems in the822

group ’1-5’ (Statistic=15.858, p<0.001), indicat-823

ing varying performances among the systems for824

rare words. Pairwise comparisons revealed sig-825

nificant improvement from Loc and both ArcLoc826

(p=0.001) and ArcLoc+Trans (p<0.001). How-827

ever, no significant difference was found between828

the two ArcLoc parsers (p=0.709), suggesting sim-829

ilar capabilities in handling rare words. No sig-830

nificant differences were observed across systems831

in the other categories (p=0.070) for the group ’6-832

10’, (p=0.167) for the group ’11-15’ and (p=0.367)833

for the group ’>15’. For PTB, we do not observe834

significant differences for these categories.835

To get a sense of the improvements obtained by836

the ArcLoc parsers, Figures 2 and 3 show the lists837

of words with an attachment error rate at least 4838

times lower for one of the ArcLoc parser compared839

to the Loc parser.840

F.2 Error Rate by Attachment Distance841

In this section we evaluate the error rates associ-842

ated with different attachment distances across the843

multiple parsing systems. Attachment distance,844

defined as the number of words between a depen-845

dent and its head, helps understand performance846

on long-range dependencies that are typically hard847

to model correctly. Figure 4 shows both raw and848

normalized errors by distance for all parsers on849

UD dev set.850

For small distances, in the range ‘1-3’, all851

systems perform similarily with statistical differ-852

ence in error rates. For longer distances in the853

range ‘>3’, both ArcLoc and ArcLoc+Trans out-854

perform Loc significantly (p=0.01 and p=0.02 re-855

spectively). However, we found no significant dif-856

ference between the two ArcLoc systems.857

While similar figures are obtained for PTB and858

are omitted here, the differences are not statisti-859

cally significant according to our tests.860

F.3 Error Rate by POS861

In this section we compare error rates by part-of-862

speech (POS) tag. Figure 6 displays the result of863

the comparison across three parsing systems on864

UD and PTB dev sets using gold POS tags. The865

error rates are normalized to show the percentage866

Figure 4: Error counts and rates by attachment distance
from a dependent to its head in UD dev test for three
systems. All systems are using the Eisner parsing algo-
rithm.

of errors within each POS category.

Figure 5: UD: Error rates by gold POS tag for Loc,
ArcLoc and ArcLoc+Trans.

867

For UD, we note that the category ‘X’ (rep- 868

resenting a diverse group of tokens) showed the 869

highest error rates across all systems with Loc ex- 870

hibiting the highest error rate of 26.45%. Con- 871

versely, determiners (‘DET’) displayed the lowest 872

error rates. ArcLoc consistently showed lower er- 873

ror rates across most POS tags compared to Loc 874

and +Trans, particularly in ’ADJ’ and ’NUM’ cat- 875

egories. However, while there are variations in er- 876

ror rates across different POS tags, there is no sta- 877

tistically significant difference in the overall error 878

rates between the systems. 879

11

Figure 6: PTB: Error rates by gold POS tag for Loc,
ArcLoc and ArcLoc+Trans.

Figure 7: UD: Error counts per dependency type for all
systems.

F.4 Error Analysis by DepRel Type880

We examine error distributions among the three881

parsing systems and find discrepancies in handling882

specific dependency relations.883

Figure 7 show the raw counts for errors for each884

dependency relation types for all parsers. We note885

a reduction in errors for the majority of types for886

the ArcLoc systems compared to the Loc baseline.887

Finally, Figures 8, 9 and 10 show the confusion888

matrices between gold and predicted dependency889

types for types that appear at least 10 times in the890

UD dev set. We note that the greatest confusion is891

related to flat:foreign which amounts to peculiar-892

ities in the gold annotation.893

F.5 Error Rates by Depth in Gold Tree894

Figure 11 illustrates the error rates for three895

parsers across various depths of dependents in the896

gold tree. Each depth from 0 to 9 is analyzed, with897

the frequency of each depth’s occurrence provided898

Figure 8: UD: Confusion matrix for Loc.

Figure 9: UD: Confusion matrix for ArcLoc.

in parentheses. 899

We observe that depth 0 has the lowest error 900

rates across all three systems, indicating a higher 901

accuracy in identifying root elements or top-level 902

dependencies. As depth increases to 1 and 2, er- 903

ror rates slightly rise, but the differences between 904

the three systems become more apparent. Depths 905

5 and 6 also show an increase in error rates espe- 906

cially for the Loc system while both ArcLoc sys- 907

tems suffer less. 908

The highest error rates are observed at depth 7, 909

especially notable in the Loc system which peaks 910

at 10.55%. However, depth 8 shows a reduction 911

in errors, and surprisingly, depth 9 records a zero 912

error rate for Loc which may be due to the very 913

low frequency of samples at that depth (only 26 914

instances). 915

Overall, the ArcLoc systems improve over the 916

Loc baseline across most depths. 917

Similar patterns can be observed for PTB the 918

Figure 12 but with lower overall error rates which 919

peak at depth 2 for the all systems. In con- 920

trast to UD, the error rates on PTB are more 921

uniform across depths and parsing systems, with 922

12

Figure 10: UD: Confusion matrix for ArcLoc+Trans.

Figure 11: UD: Error Rates by Depth in Gold Tree.

fewer drastic fluctuations. This could indicate a923

more consistent performance of the parsing sys-924

tems across various sentence complexities.925
Figure 12: PTB: Error Rates by Depth in Gold Tree.

13

	Introduction
	Model
	Biaffine Model
	Arc Models
	Refining with Attention

	Experiments
	Main Results
	Ablation study

	Related Work
	Conclusion
	Limitations
	Ethical Considerations
	Hyperparameters
	Efficiency
	Stochastic weight averaging
	Filtering Arcs
	Detailed Results
	Error Analysis
	Error Rate per Word Type
	Error Rate by Attachment Distance
	Error Rate by POS
	Error Analysis by DepRel Type
	Error Rates by Depth in Gold Tree

