
Natural Language Engineering 21 (1): 3–47. c© Cambridge University Press 2013

doi:10.1017/S1351324913000156
3

Unsupervised acquisition of entailment
relations from the Web

I D A N S Z P E K T O R1, H R I S T O T A N E V2, I D O D A G A N3,

B O N A V E N T U R A C O P P O L A4 and M I L E N K O U Y L E K O V5

1Yahoo! Research, Haifa, Israel
e-mail: idan@yahoo-inc.com

2JRC, Ispra, Italy
e-mail: htanev@gmail.com

3Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
e-mail: dagan@cs.biu.ac.il

4IBM Thomas J. Watson Research Center, Yorktown Heights, NY
e-mail: bcoppola@us.ibm.com

5CELI s.r.l., Torino, Italy
e-mail: kouylekov@celi.it

(Received 29 March 2011; revised 23 June 2013; accepted 26 June 2013;

first published online 30 July 2013)

Abstract

Entailment recognition is a primary generic task in natural language inference, whose focus is to
detect whether the meaning of one expression can be inferred from the meaning of the other. Accord-
ingly, many NLP applications would benefit from high coverage knowledgebases of paraphrases and
entailment rules. To this end, learning such knowledgebases from the Web is especially appealing
due to its huge size as well as its highly heterogeneous content, allowing for a more scalable rule
extraction of various domains. However, the scalability of state-of-the-art entailment rule acquisition
approaches from the Web is still limited. We present a fully unsupervised learning algorithm for Web-
based extraction of entailment relations. We focus on increased scalability and generality with respect
to prior work, with the potential of a large-scale Web-based knowledgebase. Our algorithm takes as
its input a lexical–syntactic template and searches the Web for syntactic templates that participate
in an entailment relation with the input template. Experiments show promising results, achieving
performance similar to a state-of-the-art unsupervised algorithm, operating over an offline corpus,
but with the benefit of learning rules for different domains with no additional effort.

1 Introduction

A fundamental phenomenon in natural language is the surface-level variability of semantic
expressions – having different ways to convey the same meaning. In many natural lan-
guage processing (NLP) applications, such as Question Answering, Information Extrac-
tion (IE), Information Retrieval, Multi-Document Summarization and Machine Translation
(Jacquemin 1999; Moldovan and Rus 2001; Hermjakob, Echihabi and Marcu 2003; Hara-
bagiu and Hickl 2006; Lloret et al. 2008; Mirkin, Dagan and Shnarch 2009), the need to
identify different sentences that express the same meaning have been recognized as critical
for reaching high performance. For example, given the question ‘Who killed Kennedy?’, a

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

4 I. Szpektor et al.

Question Answering system would need to identify that the sentence ‘Oswald assassinated
Kennedy’ contains the correct answer; while a Document Summarization system would
like to identify that the sentences ‘Yahoo acquired Overture’ and ‘Overture was bought
by Yahoo’ describe the same event in order to include only one of them in a summary.
As a result, there is an increasing interest in modeling surface-level variability (Moldovan
and Rus 2001; Monz and de Rijke 2001; Condoravdi et al.2003; Durme et al. 2003). One
specific approach, Textual Entailment (Dagan and Glickman 2004), has drawn a lot of
attention in recent years as a generic framework for applied semantic inference (Bar-Haim
et al. 2006; Dagan, Glickman and Magnini 2006; Giampiccolo et al. 2007; Giampiccolo
et al. 2008; Bentivogli et al. 2009; Bentivogli et al. 2010). We follow the notions of this
paradigm for semantic inference in this work.

A major component in the modeling of surface-level variability consists of paraphrase
rules, pairs of language expressions that can replace each other in a sentence without
changing its meaning. Indeed, the above example about Yahoo! demonstrates a paraphrase.
Paraphrase rules range from synonyms, such as ‘purchase⇔ buy’, to complex expressions,
such as ‘kick the bucket⇔ die’ and ‘X manufactures Y⇔ Y is a product made by X’. In this
work we focus on paraphrase rules between two templates, text fragments with variables,
such as the last example. There are numerous paraphrases in a language and it would be
a laborious task to collect them all manually. This perception led to a substantial effort
of automatic discovery of paraphrase rules (Barzilay and McKeown 2001; Lin and Pantel
2001; Shinyama et al. 2002; Ravichandran and Hovy 2002; Barzilay and Lee 2003; Sekine
2005; Bannard and Callison-burch 2005; Zhao et al. 2008).

Following the Textual Entailment paradigm, a more general notion needed for semantic
inference is that of entailment rules (Dagan and Glickman 2004). An entailment rule is
a directional relation between two language expressions, where the meaning of one can
be entailed (inferred) from the meaning of the other. For example, the sentence ‘Yahoo
acquired Overture’ entails the meaning of the sentence ‘Yahoo owns Overture’, but not
vice versa. This semantic relation can be described by the entailment rule ‘X acquire
Y ⇒ X own Y’. Entailment rules provide a broad framework for representing and recog-
nizing surface-level variability and are a generalization of paraphrases, which correspond
to bidirectional entailment rules (e.g. ‘X purchase Y ⇔ X buy Y’).

Most methods for identifying Textual Entailment do not represent meanings explicitly.
Instead, entailment inferences are performed directly over lexical–syntactic expressions.1

Hence, NLP applications that require entailment inferences would largely benefit from
broad coverage knowledgebases of entailment rules (Bar-Haim, Szpektor and Glickman
2005; Bar-Haim et al. 2006). When discussing broad coverage resources, we refer to two
complementing targets. The first is that we would like such a knowledgebase to provide
from a handful to dozens of entailment rules for a large number of templates. Focusing on
verbs, such a rule-set may sum up to hundreds of thousands and even millions of rules,
given that a typical lexicon includes tens of thousands of words. As a second target, we
also expect from a broad coverage open domain resource to provide rules for each of the

1 See summaries of these studies in Bar-Haim et al. (2006), Dagan et al. (2006), Giampiccolo et al.
(2007, 2008) and Bentivogli et al. (2009, 2010).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 5

possible meanings of a template. For example, we expect to find for ‘X acquire Y’ both
‘X acquire Y ⇔ X buy Y’ and ‘X acquire Y ⇔ X learn Y’.

Aiming at a broad coverage knowledgebase construction, in this work we are interested
in exploiting the Web for automatically learning pairs of language expressions that particip-
ate in an entailment relation. The advantages of using the Web lie both in its sheer size – it is
the largest available textual resource, as well as in its highly heterogeneous content, which
should help in finding rules for the different meanings of target templates. The prominent
approach to Web-based acquisition of paraphrases involves the exploitation of sets of mul-
tiple context words, termed here anchor-sets, for the identification of sentences contain-
ing paraphrases (Ravichandran and Hovy 2002; Suchanek, Ifrim and Weikum 2006). An
anchor-set contains the main participants of an event or a fact. For example, the anchor-set
{X=‘Mendelssohn’, Y=‘incidental music’} characterizes the event ‘Mendelssohn wrote
incidental music’. Thus, under certain conditions, two sentences can be assumed to convey
the same meaning if they contain the same anchor-set. For example, ‘Mendelssohn wrote
incidental music’ and ‘Mendelssohn composed incidental music’, which both contain the
above anchor-set, depict the same event. From such pairs of sentences, paraphrases and
entailment rules, such as ‘X write Y ⇔ X compose Y’, are extracted. The main drawback
of such Web-based approaches is that they require that anchor-sets will be provided through
manual supervision.

Another problem of entailment relation acquisition in general is the identification of the
most appropriate structure of the lexical–syntactic templates that participate in a rule. Prior
work that addressed lexical–syntactic templates assumed a fixed template structure in the
form of a path between two nouns in the syntactic parse tree of a sentence (Lin and Pantel
2001; Shinyama et al. 2002). However, not all templates follow this structure. For example,
the syntactic structure of ‘X call Y indictable’ is not a path.

In this article, we address the two problems introduced above through a combination of
two different algorithms. The first is an unsupervised approach for anchor-set acquisition
from the Web, overcoming the main scalability limitation of prior Web-based methods.
The second algorithm finds the most general repeated template structures that are jus-
tified by the data, enabling flexible template structure discovery. Combining these two
algorithms, we present TEASE2, an unsupervised algorithm that extracts numerous anchor-
sets automatically and exploits them to learn a large number of entailment relations3 from
the Web. Our algorithm was applied to the acquisition of entailment relations between
verbal expressions. It successfully identified several dozen relations on average per each
randomly chosen expression. As our experiments show, TEASE is especially suitable to
open IE settings, in which entailment rules for various domains should be extracted quickly
and without supervision or additional effort, such as domain-specific corpora construction.
Examples of entailment relations learned by our algorithm are shown in Table 1 (see
additional examples in Table 5 (Section 5) and Table 9 (Section 7.2)).

2 The TEASE acronym stands for the two main phases in the algorithm: Template Extraction, TE;
and Anchor-Set Extraction, ASE.

3 In this work, we do not learn the entailment direction between the extracted template pairs. Recent
work suggest approaches for learning the direction of rules (Bhagat, Pantel and Hovy 2007;
Szpektor and Dagan 2008), but this task is out of the scope of the current article.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

6 I. Szpektor et al.

Table 1. Examples of correct entailment relations learned by the TEASE algorithm: each
learned template participates in an entailment relation with the input verb

Input template Learned templates

X sue Y X file lawsuit against Y
X blame Y Y is named in X lawsuit

X accuse Y X attack Y X condemn Y
X ’s attack on Y X smear Y
X file charges against Y X call Y indictable

Y lose to X X destroy Y
X defeat Y X beat Y X win Y

X victory over Y X conquer Y

X campaign for Y X insist on Y
X demand Y X push for Y X add for Y

X in favor for Y X call for Y
X call on to make Y X urge to impose Y

bring Y to X Y is played in X
X host Y Y is held in X X venue of Y

Y come to X X play host to Y

X prevent Y X exclude Y
X bar Y X deny Y

X preclude Y X deprive Y X denial of Y
X oppose Y X foreclose Y
X render Y inappropriate X suppress Y
Y is inappropriate in light of X X is limitation on Y

X seek Y X is entitled to Y
X receive Y X sue for Y
X claim Y X collect Y

X recover Y X suffer Y pay Y to X
X obtain Y Y compensate X
X seek recovery of Y X pursue claim for Y
give Y to X X accept Y

The rest of the article is outlined as follows. Section 2 reviews the exploitation of
paraphrases and entailment rules in applications and describes previous approaches to
automatic paraphrase acquisition and to learning template structure. Section 3 presents
a formal definition of the task and describes the overall structure of the TEASE algorithm.
Sections 4 and 5 describe in detail the two phases of the TEASE algorithm: anchor-set
extraction (ASE) and template extraction (TE). Sections 6 and 7 present the evaluation
methodology, the experiments we performed, their results, and a comprehensive error
analysis. The comparison with DIRT (Lin and Pantel 2001), another state-of-the-art un-
supervised large-scale acquisition algorithm, is also discussed. Section 8 concludes and
suggests future work.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 7

This work is an extension of the work presented in Szpektor et al. (2004), containing
a detailed description of the anchor-set extraction step and a significantly more efficient
algorithm for the template extraction step (including a complexity analysis). It also includes
a new evaluation, comparing TEASE to a manually constructed entailment rule resource
from WordNet, as well as additional analysis of our experiments.

2 Background and related work

Inferences about language variability were often handled by practical systems at a ‘shal-
low’ semantic level, due to the fact that robust semantic interpretation into logic-based
meaning-level representations is not broadly applicable. Until recently, there was no com-
mon framework for modeling variability in an application independent manner.
Consequently, these inferences were treated mostly independently within individual sys-
tems. For example, Lin and Pantel (2001) aimed at improving the coverage of Question
Answering systems by learning paraphrase rules, while Shinyama et al. (2002) focused on
the task of IE.

In recent years, Textual Entailment (Dagan and Glickman 2004) was proposed as a gen-
eric framework for recognizing language variability at a shallow semantic level. This ap-
proach is based on modeling entailment between language expressions, aiming to identify
that the meaning of one expression can be inferred from the meaning of the other. Sev-
eral studies applied entailment engines to NLP applications, such as Question Answering
(Harabagiu and Hickl 2006), IE (Romano et al. 2006), Text Summarization (Lloret et al.
2008) and Machine Translation (Mirkin et al. 2009), showing the benefits of a generic
inference engine to these tasks.

One of the prominent knowledge representations in Textual Entailment are entailment
rules (Bar-Haim et al. 2005). An entailment rule is a directional relation LHS ⇒ RHS,
where LHS and RHS are two templates, text fragments with variables, e.g. ‘X lose to Y ⇒
X play against Y’. An entailment rule is considered correct if (at least some) instantiations
of the LHS variables would entail the meaning of the RHS under the same variable instanti-
ation, the replacement of the template variables with concrete words or terms. For example,
‘X acquire Y ⇔ X buy Y’ is a correct rule (e.g. ‘Microsoft acquire Skype⇔Microsoft buy
Skype’), while ‘X manufacture Y ⇔ X buy Y’ is incorrect. A pair of templates 〈T1, T2〉
such that either ‘T1 ⇒ T2’, ‘T2 ⇒ T1’ or ‘T2 ⇔ T1’ is defined here as an entailment
relation, where the entailment direction is not specified. Another type of inference rules
that is used frequently in the literature is paraphrases (or paraphrase rules). There is no
precise definition of paraphrases in the literature but they are largely treated as ‘expres-
sions that mean the same thing’. In terms of entailment, we view paraphrases as a special
case of entailment rules where the two templates entail each other (in both directions),
e.g. ‘X acquire Y ⇔ X buy Y’.

To complete the description of entailment rules, we note two aspects. First, in our work
texts are represented at the syntactic level (we use the Minipar dependency parser; Lin
1998). Thus, a lexical–syntactic template is a connected sub-parse tree with variables at

some nodes, e.g. ‘X
subj
←−− prevent

obj
−→ Y ’ and ‘X

subj
←−− go

prep
−−→ to

mod−−→ Y ’. Second,
a correct entailment rule should be valid under some contexts, but not necessarily under
all contexts (Szpektor, Shnarch and Dagan 2007; Pantel et al. 2007; Szpektor et al. 2008;

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

8 I. Szpektor et al.

Androutsopoulos and Malakasiotis 2010). The reason is that many predicates are am-
biguous while entailment rules typically pertain to a single meaning of the predicate. For
example, ‘X acquire Y ⇔ X buy Y’ is valid under the instantiation {X=‘John’, Y=‘new
car’} but not under the instantiation {X=‘students’, Y=‘new language’}, for which a valid
entailment relation would be ‘X acquire Y ⇔ X learn Y’.

For a generic entailment inference system to be effective, a large-scale knowledgebase of
entailment rules is needed (Bar-Haim et al. 2006). As textual entailment is a relatively new
paradigm, prior work mostly concentrated on acquiring paraphrases. We focus our review
on the aspect of broad-coverage acquisition in order to present the inherent limitations of
previous research, and to show the motivations for our method. As there are no standard
benchmarks for paraphrase acquisition, quantitative results of different studies are usually
not comparable in a uniform way.

Paraphrase acquisition methods can be described in terms of the methodology they
are applying and in terms of the resources they utilize for extracting rules. A conveni-
ent way to construct a high-quality rule-set is to extract paraphrase and entailment rules
from machine-readable manually constructed lexicons, which also contain information
on synonyms and entailment relations between words, such as WordNet and FrameNet
(Miller 1995; Baker, Fillmore and Lowe 1998). Entailment rules are harvested from such
lexicons mainly by going over the manually specific relations that indicate entailment
relations (Mirkin et al. 2009; Ben Aharon, Szpektor and Dagan 2010). While this approach
generates high-quality rules, its limitations lie in the size and type of rules that can be
extracted. First, since annotating entailment relations is not easy, manually constructed
lexicons provide only a limited coverage of such relations. Second, in WordNet, which is
the most utilized manual resource, most of the annotated relations, such as synonyms and
hypernyms, refer to lexical substitutable relations, without arguments, and cannot include
rules with syntactic changes, such as ‘X buy from Y ⇔ Y sell to X’ (see Section 7.4 for a
comparison with our algorithm).

Indeed, to complement rule extraction from manually constructed resources, many stud-
ies attempted to extract rules from textual corpora, including bilingual corpora, regular
corpora and the Web. These studies include two main approaches for rule learning: (a)
sentence alignment (Shinyama et al. 2002; Ravichandran and Hovy 2002; Ibrahim, Katz
and Lin 2003; Sekine 2005; Zhao et al. 2008) and (b) distributional similarity (Lin and
Pantel 2001; Pekar 2006; Szpektor and Dagan 2008). The next subsections review these
approaches as they are presented in related work.

2.1 The sentence-alignment approach

The prominent approach for paraphrase learning from corpora is sentence alignment. This
approach finds, within sentences, linguistic structures, termed here templates, which share
the same lexical context elements, termed here anchors. For example, the phrases ‘Yahoo
bought Overture’ and ‘Yahoo acquired Overture’, within the sentences ‘Yahoo bought
Overture back in 2003’ and ‘Yahoo acquired Overture in September 2003’, respectively,
share the same set of anchors {X=‘Yahoo’, Y=‘Overture’}, suggesting that the templates
‘X buy Y’ and ‘X acquire Y’ might paraphrase each other. Obviously, this approach cannot
be applied to any arbitrary sentence pair. Indeed, in the example above, the two sentences,

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 9

from which the rule is extracted, convey similar meanings. In general, two steps are usually
performed within the sentence-alignment approach. The first step finds sentences that
share the same lexical contexts, as in the example above. This operation is termed here
as (monolingual) sentence alignment. The motivation behind sentence alignment lies in
the fact that two sentences that describe a similar event or fact are likely to paraphrase
each other. Such sentences may differ in their structure but have similar meaning, so that
the differences in structure may correspond to paraphrase rules (i.e. the obtained structures
can be interchangeably used in other sentences). After alignment has been performed, the
second step identifies the specific structures that paraphrase each other within the sentences
and extracts them as a paraphrase rule. We next describe the manifestation of these steps
in prior work.

2.1.1 Sentence-alignment step

In order to identify aligned sentence pairs easily and with high accuracy, some types
of corpora, which contain highly redundant information, have been used: monolingual
parallel corpora, such as multiple translations of the same text (Barzilay and McKeown
2001; Ibrahim et al. 2003), aligned bilingual corpora (Zhao et al. 2008), and comparable
corpora, such as corresponding articles from multiple news sources of the same time period
(Shinyama et al. 2002; Pang, Knight and Marcu2003; Barzilay and Lee 2003; Dolan, Quirk
and Brockett 2004; Sekine 2005). The prominent method for identifying pairs of aligned
sentences within corresponding texts in comparable/parallel corpora is to find sentences
with a significant number of identical words (Barzilay and McKeown 2001; Shinyama
et al. 2002; Barzilay and Lee 2003; Ibrahim, Katz and Lin 2003; Dolan et al. 2004).

While providing a highly accurate set of paraphrases, thanks to highly accurate sentence
alignment, the main drawback of using parallel or comparable corpora lies in their lim-
ited availability. There are rather few parallel electronic translations into the same target
language and, while there is an increasing number of news sources available on the Web,
processing only topically matched articles significantly reduces the corpus size (the same
largely holds for aligned corpora in different languages). Barzilay and Lee (2003) reported
∼6,500 paraphrase pairs extracted out of a 9-MB corpus of Middle-East news articles, and
Shinyama et al. (2002) reported 136 paraphrase pairs extracted out of∼300,000 newspaper
articles.

Another inherent problem in using these types of corpora is that they usually include
texts from one specific domain, such as the news domain, and thus can provide only
paraphrases that are used in that domain. For example, the verb ‘abduct’ is used in the
meaning of ‘kidnapping’ in news. However, ‘abduct’ is mainly used in the meaning of ‘a
type of muscle movement’ in medical domains. We therefore conclude that due to their
limited availability in size and domain coverage, comparable corpora cannot be the sole
resource for paraphrase acquisition.

Avoiding the use of parallel or comparable corpora, Glickman and Dagan (2003) de-
veloped statistical methods that match verb paraphrases within a regular corpus, meas-
uring the level of overlap between the anchors that instantiate each template. They ob-
tained several hundred verb paraphrases from a 15 million word corpus, providing res-
ults of a limited scale that suggest that much larger corpora are required for large-scale

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

10 I. Szpektor et al.

rule-sets. In a similar fashion, Sekine (2005) extracts rules between templates based on
shared pairs of Named-entity anchors. To increase coverage, his algorithm first cluster
templates with the same verb, where the anchor-set of the cluster is the disjunction of
the anchors of its members. Hence, the algorithm identifies paraphrase relations between
clusters of templates. The results are promising in terms of precision (around 80% on
average), but were focused only on financial relations related to acquisitions, mainly for
the verbs ‘buy’, ‘acquire’ and ‘purchase’, with no measure of coverage. To improve accur-
acy, Pekar (2006) learns rules only between templates related by local discourse. This
algorithm relies on discourse information as a reliable link between related templates.
It extract pairs of verb templates as candidates for an entailment rule if they share an
argument instantiation in occurrences within the same paragraph. For example, from the
two consecutive sentences ‘Mary bought a house’ and ‘The house belongs to Mary’, the
candidate entailment relations {‘X buy’, ‘belong to X’} and {‘buy X’, ‘X belong’} are
extracted. However, information from different documents in the corpus is ignored, drastic-
ally limiting the number of candidate rules that may be extracted from the given corpus.

In search for a larger corpus in which many sentences can be aligned, the Web comes
up as a natural candidate. It contains a great variety of expressions but also a lot of re-
dundant information which is needed in order to find paraphrases. However, an exhaust-
ive processing of the Web is not feasible and so sentence-alignment methods that were
used in the above studies could not be utilized. Duclaye, Yvon and Collin (2002) and
Ravichandran and Hovy (2002) attempted a ‘selective’ approach for learning paraphrases
from the Web. Their methods start with a few seed examples of known anchor-sets that are
manually provided for a target meaning. The choice of an anchor-set is such that all phrases
within sentences containing a seed anchor-set are likely to express a single meaning. For
example, the seed anchor-set {X=‘Mozart’, Y=‘1756’} is given as input in order to find
paraphrases for the semantic relation ‘X born in Y’. Web search engines are used to find
occurrences of the input anchor-sets, resulting in sentences that are supposed to contain
semantic relations equivalent to the target semantic relation (e.g. ‘X born in Y’). Templates
that express the relations between X and Y in the retrieved sentences are then extracted
and statistically ranked, e.g. ‘born in Y, X’ and ‘X born on Y’ from within the sentences
‘Born in 1756, Mozart began composing at the age of five’ and ‘Mozart was born on
1756 in Salzburg, Austria’. Both Duclaye et al. (2002) and Ravichandran and Hovy (2002)
conducted qualitative tests over a dozen or so examples, aiming more for precision (finding
correct paraphrase pairs) than for coverage. They did not provide quantitative results or
analysis, but only output examples of a few learned paraphrases. Duclaye et al. report an
average precision of 66.6% when only the 10% highest ranking templates are retained and
an average precision of 42.9% when the 44% highest ranking templates are retained.

The main limitation of the above Web-based approaches is the requirement for at least
one good input anchor-set per target meaning. Preparing a list of anchor-sets that provide
a reasonable coverage of different paraphrases for all possible semantic relations in broad
domains would be a huge task. In this work, we adopt the Web as our textual resource, due
to its huge size, its heterogeneous content, and the amount of redundant information, which
may help detect many entailment rules for different domains. However, our sentence-
alignment method identifies anchor-sets automatically from the Web in an unsupervised
manner, overcoming this limitation in prior work over the Web.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 11

2.1.2 Rule extraction step

The output of the first step of the sentence-alignment approach consists of pairs of sen-
tences which are assumed to contain phrases that express the same meaning. From these
pairs, the structures of the paraphrase rules should be extracted. Some methods extract only
pairs of constant lexical units (without variables) that paraphrase each other (Barzilay and
McKeown 2001; Glickman and Dagan 2003). Yet, many paraphrases cannot be expressed
by static lexical substitutions, for example ‘X prevent Y⇔X is for Y prevention’. In order
to allow a more general and flexible paraphrase representation, different methods provide,
as paraphrases, pairs of templates, consisting of constant terms and variables, which can
be placed anywhere in the text fragment. The templates are considered substitutable under
the same variable instantiations.

Previous work extracts two kinds of templates: linear templates, which are represented as
sequences of words and variables, and lexical–syntactic templates, which are represented
by parse sub-graphs where nodes can be constant words or variables. Several approaches
were taken to identify linear templates in corpora. Sekine (2005) extracted the words
between two named entities as candidate linear templates. Ravichandran and Hovy (2002)
extract linear templates by finding repeated text fragments with variables using suffix trees,
within variable-enhanced sentences. Zhao et al. (2008) extract linear templates in Chinese
that correspond to English parse sub-trees in an aligned bilingual corpus. Two instanti-
ated templates that correspond to the same instantiated English sub-tree are considered
paraphrasing. More complex types of structures are learned in Barzilay and Lee (2003)
and Pang et al. (2003). They learn linear paraphrases that are represented as finite state
automata. The different paths in an automaton represent different possible paraphrases
generated for the same event or fact. The structures represented by automata are usually
sentence bound and describe a quite specific type of event (such as a terrorist attack), thus
not capturing the more basic (or ‘atomic’) templates that can be combined to form larger,
sentence-wide, transformations. On the other hand, shorter linear templates cannot easily
represent long distance syntactic relations between words and variables in the template.

For example, the lexical–syntactic template ‘X
subj
←−− buy

prep
−−→ from

mod−−→ Y ’ hold a non-
consecutive relation between ‘buy’ and Y, which is difficult to express concisely with linear
templates. Thus, in this work, we follow the lexical–syntactic representation of templates
described next.

Several studies extract lexical–syntactic templates, represented by parse sub-graphs.
These templates are extracted based on the syntactic analysis of sentences, and are more
general than linear templates since they can capture more distant relations in a sentence.
Lin and Pantel (2001), Shinyama et al. (2002), Ibrahim, Katz and Lin (2003), Pekar (2006)
and Shinyama and Sekine (2006) extract as templates syntactic paths from sentence parse
graphs, where the nodes at the two ends of a path may be variables. For example, the path

templates ‘X
subj
←−− acquire

obj
−→ Y ’, ‘X

subj
←−− acquire

prep
−−→ in

mod−−→ Y ’ and ‘X
obj
←− ac-

quire
prep
−−→ in

mod−−→ Y ’ are extracted from ‘Yahoo acquired Overture in September 2003’.
Following the sentence-alignment approach, paraphrase relations between different paths
are identified when common anchors (context words) instantiate the template variables
in different sentences (Shinyama et al. 2002; Ibrahim et al. 2003; Shinyama and Sekine
2006). While being more general than linear templates, limiting the template structure only

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

12 I. Szpektor et al.

Table 2. Example for feature vectors, one for each slot, constructed by the DIRT algorithm
for two templates (scores are omitted for brevity). A significant amount of features are
shared between the two templates (in bold), indicating their semantic similarity

X find a solution to Y X solve Y

slot X slot Y slot X slot Y

commission strike committee problem
committee crisis clout crisis
government problem government mystery
legislator budget deficit petition woe
sheriff dispute sheriff murder

to paths between two nodes in a parse graph does not capture all possible paraphrases. For
example, ‘X accuse Y’ and ‘X call Y indictable’ are paraphrases, but the second template
is not a syntactic path between X and Y.

Sudo, Sekine and Grishman (2003) present a more general approach with respect to
template structure, considering any sub-graph of a sentence dependency parse graph as a
template candidate. This algorithm can learn any paraphrase that can be described by a
connected parse sub-graph. However, its processing time increases exponentially with the
size of the parse graphs it processes, because it extracts and evaluates every connected sub-
graph in the sentence parse. In our work, we propose an algorithm for learning a general
lexical–syntactic template structure, which is time and space efficient. Unlike Sudo et al,
our algorithm does not test every sub-graph but rather identifies the most general repeated
structure that is supported by the data.

2.2 The distributional similarity approach

Lin and Pantel (2001) present a notably different approach than sentence alignment, which
relies on matching separately single anchors instead of matching sets of multiple common
anchors in different sentences. Their method relies on the Distributional Hypothesis, which
states that words that occur in similar contexts tend to have similar meanings. Instead
of applying the Distributional Hypothesis to words, they apply it to paths in dependency
parse graphs. Their algorithm, called DIRT, constructs a feature vector for each end point
(variable slot) of each possible path in a parsed local corpus, where the features are the
words that fill the slot in the different occurrences of the path in the corpus. Two path
templates are marked as semantically related if they have similar vectors for both path ends.
Table 2 presents an example for this process: two templates whose semantic similarity is
indicated by the shared features within their corresponding feature vectors, which were
constructed from a corpus. The example demonstrates the difference between DIRT and
alignment-based algorithms, as DIRT decouples the instantiations of the X and Y slots,
and does not consider the complete template instantiations.

Matching of single anchors, relying on the general distributional similarity principle,
does not require repeated occurrences of sets of multiple anchors as do the other methods.
Consequently, a much larger number of paraphrases can be found in a regular medium-size
corpus. Lin and Pantel (2001) have constructed, from their corpus, a large knowledgebase

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 13

containing several million paraphrase rules. Indeed, DIRT is the most used algorithm for
lexical–syntactic entailment rules in entailment engines (Giampiccolo et al. 2007). Yet,
this method also suffers from certain limitations:

1. The structure of the templates that may participate in a rule is pre-defined, and was
limited to paths by Lin and Pantel (2001).

2. Accuracy seems more limited due to the weaker notion of similarity, compared to
sentence alignment based on the similarity of larger contexts.

3. As with previous methods that process a given local corpus, the coverage is limited
to the scope and particular domains of the corpus.

To conclude, prior work for automatically learning entailment rules from corpora is
limited in several respects. First, it appears that learning paraphrases from given local
corpora as the only resource is not sufficient to create a broad coverage knowledgebase of
paraphrases for various domains. On the other hand, the Web is a huge promising resource,
but earlier Web-based methods suffer serious scalability constraints, as they require a
supervised form of input (the anchor-sets). Furthermore, unlike algorithms that learn linear
paraphrases, which use efficient algorithms for finding repeated generalized templates in
the data, algorithms that learn lexical–syntactic paraphrases either use predefined structures
for templates or exhaustively search through all possible structures, which is not scalable.
In our work we attempt to address both the resource scalability issue, by providing an
unsupervised algorithm that learns rules from the Web, and the template structure issue,
by providing an algorithm that identifies the most general repeated lexical–syntactic struc-
tures, based on the given data.

3 The TEASE algorithm: unsupervised acquisition of entailment relations

In this section, we first discuss the goals we had in mind when designing the TEASE
algorithm. We then present the outline of the algorithm and the key linguistic structures
that are addressed by it: characteristic anchor-sets.

3.1 Goals and task

We address the task of learning entailment relations for a given lexical–syntactic input
template I , e.g. the relations learned for ‘X recover Y’ in Table 1. Following our analysis
of previous work, we aim at combining three complementing goals in order to scale up
learning of entailment relations. First, we want to exploit the Web as our textual resource.
Beyond being the largest existing corpus, it is highly heterogeneous, compared to local
corpora, and it is also extremely redundant. These aspects provide a reliable starting point
both for discovering entailment rules that might not appear in smaller corpora and for
discovering rules for different meanings of the input template.

Our second goal is to overcome the scalability limitations of previous work when using
the Web. These studies required an expensive manual input consisting of examples of valid
contexts (anchor-sets) for the input template. We aim at identifying such anchor-sets in
a completely unsupervised manner. To obtain wide coverage of entailment rules, we still
need an initial list of input lexical–syntactic templates. However, constructing such a list is

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

14 I. Szpektor et al.

easier than providing lists of anchor-sets for each input template. For example, an extensive
list of verbs and noun phrases (both single and multiword phrases) can be automatically
derived from a broad coverage lexicon or dictionary, such as WordNet (Miller 1995). The
syntactic structure of these lexical phrases can be automatically constructed, for example
by using sub-categorization frames described in WordNet or VerbNet (Kipper, Dang and
Palmer 2000).

Our third goal aims at keeping template structures as general as possible. In particular,
our algorithm efficiently learns template structures as syntactic trees without limitations
on their configuration. This is necessary since in many cases templates are trees with
more branches than just simple paths between the variables. For example, the template
‘interaction between X and Y ’, which is not a simple tree path, is a valid paraphrase of the
relation ‘X interact with Y’. Another example is ‘X take Y into custody’ as a paraphrase
of ‘X arrest Y ’.

Given the input template I , the output of the TEASE algorithm is a ranked list of
templates {Ti} where each template Ti is candidate to be in an entailment relation with
I . The higher the rank of a template, the more confident the algorithm is that 〈I, Ti〉 is an
entailment relation. An example of TEASE output for the input template ‘X finish Y’ is
the list {T1 = ‘X end Y’, T2 = ‘X complete Y’, T3 = ‘X win Y’}. The identification of
the entailment direction between the input template and each of the output templates (i.e.
understanding whether the direction is ‘I ⇔ Ti’, ‘I ⇒ Ti’ or ‘Ti ⇒ I’) is beyond the
scope of this article.

3.2 The TEASE algorithm outline

To present the TEASE algorithm outline, we first define a key linguistic structure: the
anchor-set. A template T is matched in a sentence s if T is embedded in the parse tree
of s. We then state that ‘T is matched in s’ or, equivalently, that ‘s is matched by T ’.
For example, the template ‘X acquire Y’ is matched in the sentence ‘HSBC will acquire a
stake in UTI Bank’. An anchor-set is a set of terms that appear in the sentence together
with the given template. In the above example, two possible anchor-sets are {X=‘HSBC’,
Y=‘stake’} and {X=‘HSBC’, Y=‘stake’, C1=‘UTI Bank’}. We term as slot anchors the
anchors that instantiate the template variables in the sentence, and they are labeled with
their corresponding template variables. For example, ‘HSBC’ and ‘stake’ are slot anchors
in the above example. The rest of the anchors, termed context anchors, appear in the
sentence as context words, e.g. ‘UTI Bank’ in the above example. They are labeled with
Ci, 1 ≤ i ≤ N, where N is the number of context anchors in the anchor-set. We say that an
anchor-set is minimal if it contains only slot anchors. We also say that a template is instan-
tiated by an anchor-set when the template’s variables are replaced by the corresponding
slot anchors of the anchor-set.

Usually, expressing a concrete event or fact requires a specific anchor-set AS together
with a template T , which AS instantiates. For example {X=‘BBC’, Y=‘Tony Blair’}
describes different events when it instantiates ‘X interview Y’ and when it instantiates
‘X criticize Y’. Yet, some anchor-sets hold the property of identifying the specific event
of fact without the need to specify the template T . An example for such an anchor-
set with respect to the template ‘X compose Y’ is {X=‘William Shakespeare’, Y=‘154

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 15

For each input template I:

1. ASE: extract characteristic anchor-sets for the input template

(a) Construct a sample corpus for the input template by retrieving sentences containing it
from the Web.

(b) Extract candidate anchor-sets from the sentences in the sample corpus.
(c) Filter out candidate anchor-sets that fail certain criteria.

2. TE: extract templates

(a) Construct a sample corpus by retrieving sentences containing the anchor-sets extracted in
the ASE phase.

(b) Extract repeated sub-structures in the sample corpus to be template candidates Ti.

3. Template Ranking: rank each extracted template Ti according to the confidence level in the
validity of the entailment relation 〈I, Ti〉.

Fig. 1. The TEASE algorithm outline.

sonnets’}. Sentences containing this anchor-set, e.g. ‘William Shakespeare penned 154
sonnets’, most likely refer to the lifetime achievement of Shakespeare in sonnet writing.
Thus, templates instantiated by this anchor-set, e.g. ‘X pen Y’ in the above example, would
most likely participate in an entailment relation with ‘X compose Y’. We term such anchor-
sets as characteristic of T . Following, in the TEASE algorithm, our goal is, given an input
template I , to find characteristic anchor-sets for I , which will enable us to discover new
templates that most likely participate in an entailment relation with I .

After having defined anchor-sets, we can outline the TEASE algorithm. For an in-
put template I , the TEASE acquisition method consists of three phases, as outlined in
Figure 1: the ASE phase (Section 4) automatically finds in the Web a substantial number
of characteristic anchor-sets for I; the TE phase (Section 5) utilizes the acquired anchor-
sets to find other templates, which are suggested as participating in an entailment relation
with the input template; finally, TEASE ranks the output templates (Section 5.3).

We note that like other algorithms that iterate between discovering related templates and
extracting their anchor-sets (Ravichandran and Hovy, 2002; Duclaye et al. 2002; Pantel
and Pennacchiotti, 2006), our algorithm also lends itself to a bootstrapping scheme. In
this scheme, more templates are found based on the current list of anchor-sets, and then
more anchor-sets are retrieved based on the new list of templates, and so on. In the next
two sections, we detail in depth the two phases of the TEASE algorithm. In our experi-
ments, we then analyze in depth only the first iteration of our algorithm over these two
phases (Section 7), which is the focus of this article; but we also demonstrate how the
bootstrapping scheme can be applied to improve the performance of the TEASE algorithm
(Section 7.2).

4 ASE: anchor-set extraction

Finding characteristic anchor-sets, based solely on the input template, is a difficult task.
Only a very small portion of all anchor-sets that instantiate the input template occurrences
in sentences are characteristic. Most anchor-sets are not characteristic, that is, they occur
with many predicates that do not necessary entail each other. For example, {X=‘Brown’,
Y=‘Blair’} is not a characteristic anchor-set for the input template ‘X accuse Y’, since it

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

16 I. Szpektor et al.

Table 3. Examples of correct characteristic anchor-sets learned for several input
templates. X and Y are the slot anchors. C1 is a context anchor

Input template Learned anchor-sets

{X=‘epa’, Y=‘national emission standard’, C1=‘asbestos’}
{X=‘canada agricultural products act’, Y=‘review tribunal’}

X establish Y {X=‘school district’, Y=‘breakfast program’}
{X=‘federal government’, Y=‘conservation corps’}
{X=‘erisa’, Y=‘minimum standards’}
{X=‘constantine’, Y=‘new rome’}

{X=‘laurie’, Y=‘numerous songs’}
{X=‘lewis carrol’, Y=‘alice’s adventures’}

X write Y {X=‘plato’, Y=‘detailed account’, C1=‘atlantis’}
{X=‘mendelssohn’, Y=‘incidental music’}
{X=‘shakespeare’, Y=‘great tragedies’}
{X=‘thomas malthus’, Y=‘essay’}

{X=‘katz equation’, Y=‘membrane potential’}
{X=‘eratosthenes’, Y=‘circumference’}

X calculate Y {X=‘nernst equation’, Y=‘equilibrium potential’}
{X=‘language model’, Y=‘probabilities’}
{X=‘following table’, Y=‘annual cost’}
{X=‘acos’, Y=‘arc cosine’}

could also be found in sentences such as ‘Gordon Brown met Tony Blair to discuss the
university tuition fees’ and ‘Brown praised Tony Blair as a stalwart leader in the fight
against terrorism’, for which the instantiated templates, ‘X meet Y’ and ‘X praise Y’ , do
not participate in an entailment relation with ‘X accuse Y’.

Previous methods that identified characteristic anchor-sets in a regular corpus cannot be
utilized by Web-based methods because they require processing the full corpus (Lin and
Pantel 2001; Sekine 2005; Pekar 2006). This is why prior Web-based methods relied on
manually given characteristic anchor-sets, as described in Section 2.1.1. For automatic un-
supervised acquisition we need refined criteria that identify the relatively few characteristic
anchor-sets within a sample of sentences containing the input template.

Given an input template I , the ASE algorithm outputs a list of anchor-sets, denoted
AS(I), that are assumed to be characteristic for the input template. Table 3 displays ex-
amples of output anchor-sets for several input templates. Figure 2 presents the main steps
of the ASE algorithm, which include the construction of a corpus from the Web, consisting
of sentences containing the template I , and identification and extraction of characteristic
anchor-sets from the retrieved corpus. We next describe in detail each of the three steps
presented in Figure 2.

4.1 Step 1: constructing a sample corpus

This step builds a sample corpus S , where each sentence s ∈ S is matched by I . It
consists of two sub-steps. The first sub-step utilizes a Web search engine to retrieve distinct

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 17

For an input template I:

1. Construct a sample corpus that consists of sentences containing I:

(a) Retrieve sentences from the Web using a query containing the template’s words.
(b) Retrieve more sentences from the Web using refined queries, based on the sentences re-

trieved at step (1.a).

2. Extract characteristic anchor-set candidates from the constructed corpus:

(a) Extract one minimal anchor-set, containing only the slot anchors, from each sentence in
the sample corpus.

(b) Extract one more anchor-set from each sentence, containing one context anchor in addi-
tion to the slot anchors, if possible.

3. Filter out candidates that fail certain criteria:

(a) Applying statistical thresholds over individual anchor-sets.
(b) Filtering anchor-sets that are redundant or inconsistent relative to other anchor-sets.

Fig. 2. The ASE algorithm outline.

sentences containing all the words in I . The collected sentences are then parsed using
Minipar. Finally, a parsed sentence s is added to S only if I is (syntactically) matched in
s. Instead of downloading the full documents and searching for sentences containing I ,
we analyze only the document snippets returned by the search engine, in order to increase
the processing speed. We utilize the Yahoo search engine API4, retrieving up to the top
1,000 snippets (the API limit) for the query containing the words in I . Each snippet is
then split into sentences using MXTERMINATOR (Reynar and Ratnaparkhi 1997) prior to
parsing it.

The second sub-step attempts to retrieve additional sentences that are matched by I ,
adding them to S . We aim to increase the size of S since the proportion of characteristic
anchor-sets in a given corpus is small. This sub-step first identifies terms and phrases
that are statistically associated with I in S , and will be used as query expansion terms
in additional queries. For this purpose, all noun phrases np in S that are not on a stop list
are extracted and sorted by:

tf · idf(np) = sentfS (np) log

(
Nweb

docfW (np)

)

where sentfS (np) is the number of sentences in S containing the noun phrase np, docfW (np)

is the estimated number of documents containing np as returned by the search engine,
and Nweb (the total amount of Web documents) is estimated by 1010 (Baeza-Yates and
Raghavan 2010). Finally, the top 20 noun phrases are chosen for the expansion process.
The chosen noun phrases have a relatively strong association with the input template, due
to the fairly high tf · idf score, and are likely to appear in sentences that demonstrate
typical usages of the input template. For example, for the input template ‘X prevent Y’, the
noun phrase ‘American Dental Association’, which indicates sentences on health topics,
was chosen. For each chosen noun phrase, the algorithm re-queries the Web for distinct
sentences that contain the chosen phrase in addition to all the words in the input template.

4 http://developer.yahoo.com/search/

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

18 I. Szpektor et al.

It then parses the sentences of the retrieved snippets and adds to S only sentences matched
by the input template, as in the first sub-step.

4.2 Step 2: extracting anchor-set candidates

This step extracts anchor-set candidates for the input template from the collected sample
corpus S , constructing the list of anchor-set candidates ASC(S). Consisting of two sub-
steps, the first sub-step extracts for every sentence s ∈ S one minimal anchor-set candidate
ass. The algorithm extracts the noun phrases (the head and its modifiers) of the variable
instantiations of I in s to be the slot anchors of ass. For example, the minimal anchor-set
{X=‘vitamin d’, Y=‘fractures’} was extracted for the input template ‘X prevent Y’ from
the sentence ‘vitamin d may prevent some fractures in elderly people’. An anchor-set is
not extracted if one of its anchors is on a stop list. For example, the anchor-set {X=‘he’,
Y=‘Lincoln’} is not extracted from ‘He killed Lincoln’ for the template ‘X kill Y’ because
‘he’ is on our stop list. The algorithm associates each slot anchor with the correspond-
ing variable in I , to be used later in the TE phase (Section 5) when aligning sentences
containing different anchor-sets.

The minimal anchor-set may be not sufficiently characteristic. To improve its specificity,
the second sub-step attempts to extract one more anchor-set candidate from each sentence
s by expanding the minimal anchor-set candidate, with one additional context anchor from
s. The context anchor chosen is the highest tf · idf scoring noun phrase in the sentence,5

if exists, where noun phrases that have already been chosen as slot anchors are ignored.
For example, the context anchor ‘elderly people’ was chosen from the previous example to
expand the minimal anchor-set into {X=‘vitamin d’, Y=‘fractures’, C1=‘elderly people’}.
We do not attempt to add more than one context anchor because our experiments showed
that most anchor-sets that contain two or more context anchors are too specific and typically
would not occur with other templates.

4.3 Step 3: filtering anchor-set candidates

This step filters out anchor-set candidates that are unlikely to be characteristic, based on
certain statistical criteria. The indicative feature of a characteristic anchor-set is that it
should be specific enough. We have investigated different statistical filters and found that
relatively simple criteria produced the best results for discriminating between characteristic
and non-characteristic anchor-sets. For each anchor-set candidate ASi ∈ ASC(S), the
following two filtering criteria are applied.

Absolute frequency threshold (filter 1). ASi is maintained only if docfW (ASi) is lower
than a threshold MaxAbsF (set to 15,000 in our experiments). If the anchor-set appears in
too many documents it usually means that the anchor-set is too generic and not sufficiently
characteristic.

5 The tf · idf score used here is the same as in Step 1.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 19

Conditional probability threshold (filter 2). ASi is maintained only if it holds that
Pr(I(ASi)|ASi) is higher than a threshold MinRelP r (set to 0.666 in our experiments),
where I(ASi) is the input template instantiated with ASi. Pr(I(ASi)|ASi) is estimated as:

Pr(I(ASi)|ASi) ≈
docfW (I(ASi))

docfW (ASi)
(1)

where docfW (I(ASi)) is estimated by docfW (I ∧ ASi), the number of documents on the
Web containing the terms of both the input template and all the anchors in ASi. This
approximation is done in order to make processing time feasible, and it requires just one
query to the Web without additional post-processing.

The conditional probability expresses a qualitative value of the relation between a char-
acteristic anchor-set and the input template I . Since the Web is highly redundant, we expect
that if I captures well the semantic relation between the anchors of ASi then it will be used
in several occasions to form sentences with ASi. Too low conditional probability indicates
that it is rather coincidental to find I in a sentence containing ASi. Hence, the input template
does not capture prominently enough the relation between the slot anchors of ASi.

It should be noted that we have chosen to use conditional probability as a filtering
criterion over the common point-wise mutual information pmi(I, ASi) = Pr(I(ASi))

Pr(ASi)·Pr(I)
. This

is because our measurement is not symmetric with respect to the anchor-set and the input
template. It is valid for the input template to be joined with many different anchor-sets,
either under the same sense or different senses of the template. On the other hand, to be
characteristic, an anchor-set should capture only one core meaning that correlates well with
one of the input template’s senses.

In addition to filtering each anchor-set based on its own qualities, we found that several
relations between different anchor-set candidates may result in either learning erroneous
templates in the subsequent TE phase or retrieving redundant information from the Web.
We handle these cases using the following three filters.

Choosing between minimal and expanded anchor-sets (filter 3). If, for a given sen-
tence, both the minimal anchor-set and the expanded anchor-set are retained, the minimal
anchor-set is discarded. The anchor-set candidate with more anchors is kept since it is more
characteristic for the described event.

Expanded anchor-set filtering (filter 4). Some anchor-sets contain anchors that are an
expanded version of noun-phrase anchors in other anchor-sets. For example, in {X=‘Los
Angeles Lakers’, Y=‘Boston Celtics’} ‘Los Angeles Lakers’ is an expanded version of
‘Lakers’ in {X=‘Lakers’, Y=‘Boston Celtics’}. Anchor-sets that are an expanded version
of other anchors-sets in ASC(S) are filtered out, since they would only retrieve sentences
that are already retrieved by the shorter anchor-set. The shorter anchor-set candidate is
preferred because otherwise there could be several expanded versions of the same anchor-
set, which return identical or nearly identical sentences. This in turn contributes to noise
for the subsequent TE phase. A special case is duplicate anchor-sets, where only one of
them is retained.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

20 I. Szpektor et al.

Permutation filtering (filter 5). Some anchor-sets are permutations over the variables of

other anchor-sets. For example, for the input template ‘X
subj
←−− beat

obj
−→ Y ’, the sentences:

• ‘the Los Angeles Lakers beat the Boston Celtics’
• ‘the Boston Celtics beat the Los Angeles Lakers’

produce the anchor-sets:

• AS1 ≡ {X=‘Los Angeles Lakers’, Y=‘Boston Celtics’}
• AS2 ≡ {X=‘Boston Celtics’, Y=‘Los Angeles Lakers’}

which are permutations of each other.
Unless the predicate described in the input template is a symmetric relation between the

variables, as in ’X meet with Y’, permutation anchor-sets indicate that there is no consistent
semantic relation between the slot anchors of the anchor-set. Therefore, templates that
are instantiated by these anchor-sets have no consistent semantic interpretation. In our
example, from the sentence ‘the Los Angeles Lakers lost to the Boston Celtics’ both the

template ‘X
subj
←−− lose to

obj
−→ Y ’, instantiated by AS1, and the template ‘Y

subj
←−− lose

to
obj
−→ X’, instantiated by AS2, can be extracted. Thus, the template in the sentence is

interpreted both as a synonym and as an antonym for the input template ‘X beat Y’. For
most predicates, which express an asymmetric relation between their arguments, this is an
undesired behavior that should be avoided. Hence, all anchor-sets that are permutations of
each other are discarded.

Finally, the list ASC(S), containing the remaining anchor-set candidates, is provided as
AS(I), the output of the ASE phase. Table 3 provides examples of anchor-sets extracted
by the ASE phase for several input templates. All anchor words are lower cased as part
of the extraction. Most anchor-sets are minimal and do not contain an additional context
anchor. There are many good characteristic anchor-sets extracted by the ASE phase, as
can be seen in Table 3. However, some extracted anchor-sets are too general, for example
due to badly estimated conditional probability Pr(I(ASi)|ASi), which falsely indicated the
input template as strongly related to an anchor-set. This happens due to the inaccurate
estimations for search-result counts within search engines. In addition, other anchor-sets
are unrelated to the template, and were extracted due to parse errors. Table 4 provides some
examples for such invalid anchor-sets.

5 TE: template extraction

Once anchor-sets are extracted for the input template I in the ASE phase, the TEASE
algorithm next tries to extract templates that are in an entailment relation with I . The
Template Extraction (TE) phase receives as input AS(I), the list of anchor-sets that are
assumed to be characteristic for the input template. The output of this phase is a list
of syntactic templates, denoted TE(I), which are candidates for holding an entailment
relation with the input template.

The TE phase is performed by first constructing a sample corpus S of sentences from the
Web containing the input anchor-sets. Then, a set of lexical–syntactic templates, which are
repeated in S , are extracted from S via a novel algorithm, which we call General Structure

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 21

Table 4. Examples of incorrect characteristic anchor-sets extracted by the ASE phase

Input template Incorrect anchor-sets

{X=‘definition screen’, Y=‘template’}
X establish Y {X=‘compiler’, Y=‘exception handler’}

{X=‘muslims’, Y=‘khaleefah’}

{X=‘reporters’, Y=‘15 times’}
X write Y {X=‘moses’, Y=‘ten commandments’}

{X=‘screenplay’, Y=‘short novel’}

{X=‘following table’, Y=‘annual cost’}
X calculate Y {X=‘spreadsheet’, Y=‘following items’}

{X=‘estimator’, Y=‘sample variance’}

Learning (GSL). The GSL algorithm builds a Compact Graph Representation (CGR) of
S and then extracts Least General Maximal Generalization (LGMG) templates from this
representation. Finally, the templates extracted from the GSL algorithm are ranked. We
next describe each of these steps in detail.

5.1 Constructing a sample corpus for the input anchor-sets

The first TE step constructs a sample corpus S of parsed sentences6 containing anchor-
sets from AS(I). For each anchor-set ASi ∈ AS(I) a Web search engine is utilized to
retrieve a set of distinct sentences, where each sentence contains all the anchors in ASi. The
sentences are taken from the snippets retrieved for a query containing the quoted anchor-
set terms. Each retrieved sentence s is parsed using Minipar, whose output represents the
syntactic dependency structure of the sentence. Then, every slot anchor in ASi is identified
in the parsed sentence and replaced with its corresponding variable node label of the input
template. The replacement by variable names enables the identification of repeated parse
sub-graphs in sentences that were retrieved for different anchor-sets. Finally, the parsed
sentence with replacements, which we denote by Pdep(s), is associated with ASi and added
to S .

For example, the sentences ‘Aspirin stops first heart attack’ and ‘vitamin C stopped hip
dysplasia in dogs’ were retrieved, respectively, for {X=‘aspirin’, Y=‘heart attack’} and

{X=‘vitamin C’, Y=‘hip dysplasia’}, two anchor-sets in AS(X
subj
←−− prevent

obj
−→ Y).

Replacing the slot anchors with the corresponding variable names obtained the parsed sen-

tences ‘X
subj
←−− stop

obj
−→ Y

post
−−→ first’ and ‘X

subj
←−− stop

obj
−→ Y

mod−−→ in
pcomp−n
−−−−−→ dogs’,

enabling the identification of the repeated sub-graph ‘X
subj
←−− stop

obj
−→ Y ’.

In our experiments, we found that retrieving sentences for anchor-sets was the most time-
consuming step of the TE phase. In order to decrease the processing time, not all anchor-
sets in AS(I) were processed. Instead, AS(I) was randomly sampled, without repetition,

6 We use S here as well for notation simplification but emphasize that in this section S refers to the
corpus generated at the TE phase and not to a single sentence, as used in the ASE phase.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

22 I. Szpektor et al.

for anchor-sets to process, until the number of sampled anchor-sets reached some limit (set
to 600 in our experiments).

5.2 The general-structure learning algorithm

The GSL algorithm is the core of the TE phase, which efficiently learns templates from
the corpus S . We first introduce two structures that are in the heart of the algorithm:
LGMG templates and CGR. We then describe the GSL algorithm and discuss its efficient
implementation.

5.2.1 Least general maximal generalization templates

Most prior work focused on extracting templates whose structure is a path between two
variables (see Section 2.1.2). However, a path is only one of possible valid structures for
a template, and limiting template structures only to paths may result in incorrect template
learning. For example, in the upper point of Figure 4, extracting only path templates would
yield ‘X take Y’ instead of ‘X take Y into custody’, whose structure is not a path but does
specify the appropriate template given the data. We aim at the right generalization level in
the template learning process: we want to learn templates that are general enough to cover
as much empirical data as possible, but, on the other hand, we do not want to perform
invalid generalizations. We note that in this article, our experiments and examples focus on
templates with two variables, yet the GSL algorithm described in this chapter can also be
applied to templates with more than two variables.

This problem has been widely studied in the machine learning literature. In particular,
learning the appropriate level of generalization of structured objects was investigated in In-
ductive Logic Programming (ILP) (Bergadano and Gunetti 1995). A classical key concept
within this paradigm is the least general generalization (LGG), which is defined as the least
general structure that subsumes a given empirical set of structures (e.g. logical formulas)
(Reynolds 1970; Kietz and Lubbe 1994; Markov and Pelov 1998). We propose here a
similar rationale, captured by a notion of an LGMG template, as described below.

Definition
A spanning template is a connected parse sub-graph that contains all the slot variables from

the input template.

The GSL algorithm learns spanning templates from the parse graphs in S . In this section,
we consider the notion template as referring to spanning templates.

Definition
For each template t, we define a support set, denoted by σ(t), which consists of all the

occurrences of t in S . Each occurrence of t is a sub-graph, isomorphic to t, and belongs
to some s ∈ S . We denote by as(t) the different anchor-sets that instantiate t in S .

Considering the example in Figure 3, the template ‘X
subj
←−− stop

obj
−→ Y ’ has a support

set that includes two occurrences (in the parse graphs G1 and G2).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 23

G1 : G2 : CGR(G1, G2) :

stop|1
subj

obj

stop|4
by

subj obj

absorbing|5 stop|1,4

(1,2)(4,6) subj

by(4,5)

obj(1,3)(4,7)

absorbing|5

X|2 Y |3 X|6 Y |7 X|2,6 Y |3,7

Fig. 3. Two parse trees and their CGR. The indexes on the nodes, e.g. |6, denote vertex labels or sets
of labels. The index pairs on the edges, e.g. (1, 2)(4, 6), denote edge labels or sets of labels. Nodes
and edges in bold indicate the LGMG template within the CGR graph.

G1 : G2 :

take|1
by

subj
obj

into

police|2 take|6 mod

subj
obj

into

yesterday|7

X|3 Y |4 custody|5 X|8 Y |9 custody|10

CGR(G1, G2) :

police|2 take|1,6
by(1,2) mod(6,7)

subj(1,3)(6,8) obj(1,4)(6,9) into(1,5)(6,10)

yesterday|7

X|3,8 Y |4,9 custody|5,10

Fig. 4. Two parse trees and their CGR, where the LGMG template (bolded nodes and edges) in the
CGR graph is not a path between the two variables.

Definition
A template t1 subsumes another template t2 if t1 is more general than t2, that is t1 is strictly

a sub-graph of t2. This relation is denoted by t1 ≺ t2. If t1 ≺ t2, then |σ(t1)| ≥ |σ(t2)|,
since every occurrence of t2 includes as a sub-graph an occurrence of t1.

For example, in Figure 3 the template ‘X stop Y’ subsumes ‘X stop Y by absorbing’.
We denote with T (S) the set of all templates that have at least minFreq occurrences

in S , i.e. t ∈ T (S) iff |σ(t)| ≥ minFreq. (In our experiments, we set minFreq = 2.)
The subsumption relation defines a partial order over T (S). Using this partial order, the
template set T (S) can be mapped onto a subsumption lattice similar to the lattices used in
ILP (Markov and Pelov 1998). On the top of this lattice reside the most general templates,
which are not subsumed (and therefore not preceded in the partial order) by any other

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

24 I. Szpektor et al.

template in T (S). Due to the requirement for spanning over all the input variables, the
most general templates are the (locally) minimal spanning trees that connect the anchor
variables (i.e. templates that cannot be further reduced without omitting a variable, e.g. the
template ‘X stop Y’ in Figure 3).

For each most general template t in T (S), we consider all the templates it subsumes that
have the same support set as t. We define the least general of these templates – the one that
does not subsume another template with the same support set – as an LGMG template.7 (t
itself can be an LGMG template if it does not subsume any template with the same support
set.) We note that for each most general template t in T (S) there exists one and only one
LGMG template. Otherwise, if there are two different LGMG templates t1 and t2 (each
contains elements not appear in the other), their combination is yet another template t3.
t3 is different than t1 and t2 (it contains elements from both templates), it is subsumed by
both, and also share their support set, since if both templates appear in each sentence in the
support set, their combination appears there too. Following, t3 is the LGMG template and
not t1 and t2.

For example, in Figure 3 the template ‘X stop Y’ is an LGMG template, since it cannot
be further expanded without decreasing the size of the support set. As another example, in
Figure 4 the most general template is the path ‘X take Y’. However, the LGMG template
would be ‘X take Y into custody’, since the support set of this template is the same as the
support set of the most general template by which it is subsumed.

The following formally defines LGMG templates:

Definition
A template t ∈ T (S) is an LGMG template, if the following conditions hold:

Condition A – Maximal Generalization: ∀t′ ∈ T (S) s.t. t′ ≺ t, |σ(t)| = |σ(t′)|.
Condition B – Least General Generalization: ∀t′ ∈ T (S) s.t. t ≺ t′, |σ(t)| > |σ(t′)|.

Condition A – Maximal Generalization ensures that further generalizations of an LGMG
template do not augment the support set and therefore we have a (locally) maximal gen-
eralization with respect to the empirical data (the support set). Notice that the maximal
generalization introduced by condition A is not global and many templates in T (S) may
have this property.

Condition B – Least General Generalization ensures that all the templates that an LGMG
template subsumes have smaller support sets, which means that LGMG templates cannot
be specified further without decreasing their support set. Therefore, an LGMG template is
the least general in each group of maximal generalization templates that are related through
the subsumption relation.

5.2.2 Compact graph representation

The CGR data structure was introduced in Szpektor et al. (2004), where it was used to
learn the structure of entailment relations. It was also used in Tanev and Magnini (2006),

7 In this term, ‘least general’ refers to the template structure while ‘maximal generalization’ refers
to the maximal size of the support set.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 25

where it was used to extract syntactic features for ontology population. In Tanev (2007) an
efficient CGR-based algorithm for syntactic pattern matching was described and exploited
for relation extraction (RE).

The purpose of CGR is to represent a set of labeled graphs by one aggregate structure.
In particular, in the context of Template Extraction, CGR represents the set of parsed
sentences S . In this case, CGR is denoted as CGR(S). In CGR(S), vertices labeled with
equal labels from all the graphs in S are merged into one generalizing vertex. Therefore,
each vertex label in S appears just once in the CGR. Consequently, there is only one vertex
for each slot variable. Moreover, all (derived) arcs with an identical label that connect
equally labeled vertices in the same arc direction are merged in one aggregate arc in
CGR(S).

Figure 3 exemplifies two parse trees G1, G2 (obtained for the input template ‘X pre-
vent Y’), as well as their CGR. The slot variable nodes in all the graphs are named X or
Y according to the variable in the input template that they are mapped to. The two vertices
labeled with ‘stop’ in G1 and G2 are merged into one vertex in CGR(S) with the same

label; in the same way, the two arcs ‘stop
subj
→ X’ are merged into one arc in the CGR.

The goal of CGR(S) is to facilitate detection of repeated connected components in S . To
achieve that, each vertex in the graphs from S should be uniquely identifiable in CGR(S).
To this end, we assign to each vertex in the graphs from S a unique integer identifier (id) in
S . For example, in Figure 3 the id of the vertex ‘stop’ in G2 is 4. Using these ids each arc
in S may also be represented uniquely through the ids of its initial and terminal vertices.
For example, the arc (‘stop’, Y) in G2 may be represented with the id pair (4,7).

To trace the original vertices and edges of the graphs from S within CGR(S), we further
annotate its vertices and edges with index sets. Each vertex in CGR(S) has a corresponding
index set that contains the ids of the vertices from S that are represented by this CGR vertex
(have the same label). In Figure 3, the vertex ‘stop’ in the CGR has a corresponding index
set {1,4}, since the vertices with ids 1 and 4 are represented by this CGR vertex. In the
same way, each arc in CGR(S) has a corresponding index set that contains the id pairs of

the edges represented by this aggregate edge. In Figure 3, the arc ‘stop
subj
→ X’ in the CGR

has a corresponding set of two id pairs {(1,2), (4,6)}, which indicates that arcs (1,2) and
(4,6) are represented by this aggregate arc.

Based on the index sets, CGR(S) contains the information needed to trace all shared
connected components in S . Since isomorphic structures in S coincide in CGR(S), we
can efficiently find the occurrences of each repeated substructure in S . In the context of
Template Extraction, we use this last property to efficiently trace repeated patterns that
span over the anchor variables and to collect statistics about their occurrences.

5.2.3 GSL – an efficient algorithm for learning LGMG templates

Following the definition of LGMG templates and CGR, the GSL algorithm can be sum-
marized as an algorithm that extracts LGMG templates from the CGR of the corpus S .
Following, we outline its algorithmic steps, which are fully detailed in Section 5.2.4 and in
the Appendix.

To first construct CGR(S), GSL initializes it to be an empty graph. Then, for each graph
s ∈ S , its vertices are first considered and next its edges. If a vertex v in s has the same

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

26 I. Szpektor et al.

label as an already existing vertex vcgr in CGR(S), then the id of v is added to the index set
of vcgr. If this label is missing from CGR(S), a new vertex that is labeled accordingly is
added to CGR(S) and the id of v is inserted into the index set of the new vertex. Arcs are
considered in a similar way.

After CGR(S) is constructed from the sample corpus S , GSL extracts all connected
templates that span over all slot variable nodes such that there is no other spanning tem-
plate that subsume them. Only the templates that occur at least minFreq times in S are
considered. Such templates are termed here most general spanning templates (MGST). By
definition an MGST template is a maximal generalization template. Graphically, an MGST
template is a (locally) minimal spanning tree for the input variable nodes. Once extracted,
every MGST template t′ is further expanded to the maximal sub-graph t containing t′ that
has the same support set as t′.

As a result of this algorithm, each extracted template satisfies the following: (i) It cannot
be expanded further while keeping the same number of occurrences. Therefore, condition
B – Least General Generalization from the LGMG definition – holds for t. (ii) The tem-
plate t has the same number of occurrences as the MGST template s that subsumes it. Since
s subsumes also all other spanning templates that subsume t, also condition A – Maximal
Generalization from the LGMG definition – holds. Therefore, t is an LGMG template.
Since each LGMG template contains an MGST template as a sub-graph, and all MGST
templates are iterated, the GSL algorithm extracts all LGMG templates in CGR(S).

For example, in Figure 3 the minimal spanning tree ‘X stop Y’ is an MGST template.
In Figure 4 ‘X take Y’ is an MGST template. The template ‘X stop Y’ (Figure 3) cannot
be further expanded and it is also an LGMG template. However, ‘X take Y’ (Figure 4) is
expanded by GSL into ‘X take Y into custody’, which is the LGMG template in the graph.

5.2.4 Empirical constraints and efficient implementation

In our experiments, we extract templates which have at least two occurrences in S (setting
minFreq = 2). This is because, following our algorithm, templates which appear only once
would be expanded to the whole sentence in which they appear. In addition, empirical
observations lead us to consider only templates in T (S) with the following linguistic
properties: (a) the template is a directed acyclic graph (DAG) with a single root; (b) the
template’s root coincides with the root of a (locally) minimal spanning tree between the
variables; (c) the root is a lexical node (not a Minipar clause node). From our observations,
we noticed that templates that do not have these properties are typically learned from
incorrectly parsed sentences.

Given an input template with N variables, in order to find minimal spanning trees, the
algorithm builds paths that end at each variable vertex in the CGR. Then, it constructs
trees from any N paths ending in different variables, which have a common ancestor,
generating spanning trees over the variable vertices. Next, each spanning tree is expanded
into the largest DAG which appears as many times as the spanning tree. In all the algorithm
stages, we use the index sets on the CGR vertices and edges to efficiently calculate the
occurrences of the paths, trees and DAGs. Under certain assumptions, the number of
operations necessary for the algorithm is estimated to be O(|w| · log|w|), where |w| is the

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 27

Table 5. Examples of correct templates learned for several input templates

Input template Learned templates

X set Y X promulgate Y
X develop Y X issue Y
X create Y X implement Y
X found Y X provide Y

X establish Y X enforce Y X make Y
X form Y X launch Y
X offer Y X institute Y
X release Y X for the establishment of Y

X who write Y X produce Y
X publish Y X pen Y
X compose Y X create Y
read Y by X X ’s Y

X write Y Y attributed to X X complete Y
perform Y by X X book of Y
X writer of Y X say in Y
selected Y of X X work include Y

X determine Y X measure Y
X compute Y X calculation of Y
X give estimate of Y X yield Y
X return Y X get Y

X calculate Y X assess Y X produce Y
X generate Y X according to Y
X recalculate Y X obtained from Y
X work out Y X evaluate Y

number of the words in the corpus. See the Appendix for detailed algorithm description
and efficiency analysis.

The learned templates are provided as the output list TE(I). Table 5 provides examples
of templates extracted by the TE phase for several input templates.

5.3 Template ranking

The final step of the TE phase ranks the template candidates in TE(I), extracted by the
GSL algorithm. The target of the ranking is to indicate which of the candidates is more
plausible to be correct: the higher the rank of a template, the more confident the algorithm
is that the template participates in an entailment relation with the input template.

Our ranking method is based on the number of different anchor-sets and sentences sup-
porting a template. The input is the list TE(I) and the output is an ordered list TEASE(I)

of the templates ti ∈ TE(I). We sort the different templates first by the number of different
anchor-sets that support each template, |as(ti)| and then by the number of the supporting
sentences, |σ(ti)|. This ranking method follows the motivation that since the anchor-sets
extracted are intended to be characteristics, the more anchor-sets supporting a template ti

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

28 I. Szpektor et al.

the more it is likely that ti is supported by a sufficient number of characteristic anchor-sets,
which indicate thatti participates an entailment relation with I .

6 Evaluation methodology and setting

We next proceed to a comprehensive evaluation of the TEASE algorithm. Despite the
many methods for automatic rule acquisition introduced in recent years, as described in
Section 2, there has not been a common accepted framework for their evaluation. A task-
based approach for evaluating automatically acquired rules is to measure their contribution
to the performance of specific NLP systems, such as QA (Ravichandran and Hovy 2002) or
IE (Sudo, Sekine and Grishman 2003; Romano et al. 2006). While measuring the impact of
learned rules on applications is highly important, it cannot serve as the primary approach
for evaluating acquisition algorithms, since NLP systems have many components that
address multiple phenomena, and thus it is hard to assess the effect of a single resource
in isolation.

Therefore, the predominant approach for evaluating the quality of rule acquisition al-
gorithms has been by human judgment of the learned rules (Lin and Pantel, 2001; Shinyama
et al. 2002; Barzilay and Lee 2003; Pang et al. 2003; Szpektor et al. 2004; Sekine 2005).
In this evaluation scheme, termed here the rule-based approach, a sample rule is correct or
not, i.e. whether they can think of reasonable contexts under which the rule holds. However,
coming up with appropriate contexts is not an easy task – a judge may legitimately fail in
thinking of a valid context that was caught by another judge. Indeed, only few earlier
studies reported inter-judge agreement level for this kind of evaluation, and those that did
reported rather low κ values (Carletta 1996), such as 0.54 (Barzilay and Lee 2003) and
0.55–0.63 (Szpektor et al. 2004). According to our experience, this approach turns out to
be problematic because the rule correctness criterion is not sufficiently well defined and is
hard to apply consistently.

These observations motivate a different approach, which is based on the evaluation of
instantiated rules in context. Such instance-based methodology has been formalized and
assessed in Szpektor et al. (2007). In another work, Pantel et al. (2007) also show improved
agreement (0.72 κ) for manually judging the correctness of a rule by looking at examples
for the rule’s application. In our work, we follow the instance-based evaluation scheme
and summarize it in Section 6.1 (the complete details are found in Szpektor et al. 2007).
We then proceed to describing the corresponding experimental setting for the TEASE
algorithm evaluation (Section 6.2). The evaluation results are presented and discussed in
Section 7.

We note that while our main experimental setup is based on manual evaluation, we do
think that a task-based evaluation can provide additional insights into the performance of
our algorithm. We thus also tested the performance of TEASE on an RE evaluation setup,
whose settings and results are presented in Section 7.2.

6.1 Instance-based evaluation methodology

In order to assess if a rule ‘L→R’ is correct, we should judge the validity of the applica-
tions of this rule: applications of a correct rule (within valid contexts for the rule) should
generate correct inferences. On the other hand, applications of an incorrect rule generate

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 29

incorrect inferences. For example, applying the correct rule ‘X compose Y ⇒ X write Y’
to ‘Mozart composed over 600 works’ generates the correct inference ‘Mozart wrote over
600 works’. In contrast, applying the incorrect rule ‘X read Y ⇒ X write Y’ to ‘He reads
the comics daily’ generates the incorrect inference ‘He writes the comics daily’.

Following, at the heart of the instance-based evaluation approach, human judges are
presented not only with a rule but rather with a few examples of the rule’s applications.
Instead of thinking up valid contexts for the rule, the judges just need to assess the rule’s
validity under the given context in each example.

To describe how a rule application is tested, we look at rule instantiations: given a
rule ‘L → R’ that is matched in a sentence, the phrase constructed by instantiating the
left template L with the matched arguments in the sentence is termed the left phrase.
Similarity, the phrase constructed by instantiating the right template R with the matched
arguments is termed the right phrase. For example, the left and right phrases generated for
the application of ‘X compose Y⇒ X write Y’ to ‘Mozart composed over 600 works during
his lifetime’ are ‘Mozart compose over 600 works’ and ‘Mozart write over 600 works’,
respectively (ignoring verb inflections). To evaluate a rule application to a sentence, the
question that assesses whether entailment holds is:

Qre: Is the right phrase entailed from the sentence? A positive/negative answer
corresponds to an ‘Entailment holds/No entailment’ judgment.

See examples 5–8 in Table 6 for cases where entailment does or does not hold.
While the above question provides the core entailment assessment, there are cases in

which we do not expect entailment to hold between the sentence and the right phrase. One
such case is when even the left phrase is not entailed from the sentence. This may occur
due to incorrect matching, following incorrect sentence analysis, or due to approximate
matching of the left template in the sentence, ignoring for example semantic aspects like
negation, modality and conditionals. Such issues could result in retrieved sentences that
match the left template but do not entail the left phrase (see examples 1 and 2 in Table 6).
While inappropriate matches of the rule’s left-hand side may happen and harm precision
of a whole system, such errors should be accounted for a system’s rule matching mod-
ule rather than for the rules precision. Thus, these applications should be ignored when
evaluating the rule’s correctness. The following question assesses this situation:

Qle: Is the left phrase entailed from the sentence? A positive/negative answer cor-
responds to a ‘Left entailed/not entailed’ judgment.

There is another case where we do not expect the rule to yield correct inference, even
if by itself it is a correct rule. This happens if the context of the sentences is invalid for
applying the rule. This may occur, for example, due to a mismatch between the mean-
ing of the predicate occurrence in the sentence and its meaning in the rule. This case is
demonstrated in examples 3 and 4 in Table 6. While many systems still apply rules without
verifying the context validity for the rules, context-sensitive rule application is an active
field of research (Pantel et al. 2007; Erk and Padó 2008; Szpektor et al. 2008) and we
are interested in measuring the expected performance of a rule-set for systems with and
without context-sensitive application capabilities. To capture this distinction, which allows

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

30 I. Szpektor et al.

Table 6. Rule evaluation examples and their judgment

Rule Sentence Judgment

1 X seek Y→X disclose Y If he is arrested, he can immediately seek bail. Left not entailed
Left phrase He seek bail

2 X clarify Y→X prepare Y He didn’t clarify his position on the subject. Left not entailed
Left phrase He clarify his position on the subject

3 X hit Y→X approach Y Earthquakes have hit Lebanon since ’82. Unrelated context
Right phrase Earthquakes approach Lebanon

4 X lose Y→X surrender Y Bread has recently lost its subsidy. Unrelated context
Right phrase Bread surrender its subsidy

5 X regulate Y→X reform Y The SRA regulates the sale of sugar. No entailment
Left phrase The SRA regulate the sale of sugar
Right phrase The SRA reform the sale of sugar

6 X resign Y→X share Y Lopez resigned his post at VW last week. No entailment
Left phrase Lopez resign his post at VW
Right phrase Lopez share his post at VW

7 X set Y→X allow Y The committee set the following refunds. Entailment holds
Left phrase The committee set the following refunds
Right phrase The committee allow the following refunds

8 X stress Y→X state Y Ben Yahia also stressed the need for action. Entailment holds
Left phrase Ben Yahia stress the need for action
Right phrase Ben Yahia state the need for action

us to optionally ignore irrelevant (unrelated) contexts when assessing rule correctness, the
judges are asked another question:

Qrc: Is the right phrase a likely phrase in English? A positive/negative answer
corresponds to a ‘Related/Unrelated context’ evaluation.

If the right phrase is not likely in English, then the given context was probably drawn
from a scenario that is not consistent with the meaning of the predicate in the rule. This is
inherently related to the problem of language polysemy, which we must take into account.

To conclude, for each example sentence for a rule, the judges are presented with the
given sentence and the left and right phrases. They are then asked the following ordered
sequence of questions, which determines rule validity in the given sentence: (1) Qle, (2)
Qrc, and (3) Qre. If the answer to a certain question is negative, then we do not need to
present the next questions to the judge: if the left phrase is not entailed then we ignore the
sentence altogether; and if the context is unrelated then the right phrase cannot be entailed
from the sentence and so the answer to Qre is already known as negative.

We compute the precision of a rule as the percentage of examples for which entail-
ment holds out of all ‘relevant’ examples. We can calculate the precision in two ways,
as defined below, depending on whether we ignore unrelated contexts or not (obtaining
lower precision if we do not). When actual systems answer an information need, such as a
query or question, unrelated contexts are sometimes not encountered thanks to additional
context which is present in the given input. In addition, context-matching methods, such as

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 31

presented by Pantel et al. (2007) and Szpektor et al. (2008), may be applied to avoid such
erroneous rule applications. Thus, we define the two measures:

Strict-Context Precision :
#Entailment holds

#Relevant context

Loose-Context Precision :
#Entailment holds

#Left entailed

where # denotes the number of examples with the corresponding judgment.
Finally, a rule is considered to be correct only if its precision is at least 80%, which

seems sensible for typical applied settings. This yields two alternative sets of correct rules,
corresponding to the Strict-Context and Loose-Context Precision measures. Even though
judges may disagree on specific examples for a rule, their judgments may still agree overall
on the rule’s correctness. We therefore expect the agreement level on rule correctness to be
higher than the agreement on judgments for individual examples.

6.2 Experimental setting

We applied the instance-based evaluation methodology to evaluate the TEASE algorithm.
For comparison, we applied the very same setting to the DIRT algorithm (Lin and Pantel
2001), whose output was available upon request from the authors.

For every given input template I , each algorithm provides a list of learned output tem-
plates {Oj}nI1 , where nI is the number of output templates learned for I . Each output
template is suggested as holding an entailment relation with the input template I , but the
algorithms (both TEASE and DIRT) do not specify the entailment directions. Thus, each
pair {I, Oj} induces two candidate directional entailment rules: ‘I→Oj’ and ‘Oj→I’.

6.2.1 Test set construction

The test set construction consists of three sampling steps needed in order to obtain a
manageable-size test: selecting a set of input templates for the two algorithms, selecting a
sample of output rules to be evaluated, and selecting a sample of rule applications (over a
sample of sentences) to be judged for each rule.

First, we randomly selected 30 transitive verbs out of the 1,000 most frequent verbs in
the Reuters RCV1 corpus.8 For each verb, we manually constructed a lexical–syntactic
input template by adding subject and object variables. For example, for the verb ‘seek’ we

constructed the template ‘X
subj
←−− seek

obj
−→ Y ’.

Next, for each input template I we considered the learned templates {Oj}nI1 from each
algorithm’s output. We then sampled 10% of the templates in each output list, limiting
the sample size to between 5 and 20 templates for each list (thus balancing between
sufficient evaluation data and judgment load). For each sampled template O we evaluated
both directional rules, ‘I→O’ and ‘O→ I’. In total, we sampled 209 templates out of the
TEASE output, inducing 418 directional rules.

8 Available at http://about.reuters.com/researchandstandards/corpus/

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

32 I. Szpektor et al.

Last, we randomly extracted a sample of example sentences for each rule ‘L → R’
by utilizing a search engine over the first CD of Reuters RCV1. First, we retrieved all
sentences containing all lexical terms within L. The retrieved sentences were parsed using
Minipar, keeping only sentences that syntactically match L. A sample of 15 matching
sentences was randomly selected, or all matching sentences were taken if fewer than 15
were found. Finally, an example for judgment was obtained from each sampled sentence
along with its generated left and right phrases, as described in Section 6.1. For example,
the left and right phrases generated for example 8 in Table 6 are ‘Ben Yahia stress the need
for action’ and ‘Ben Yahia state the need for action’, respectively. For TEASE, we did not
find sentences for 72 rules and, thus, we ended up with 346 unique rules that could be
evaluated (with 4,740 TEASE examples to be judged).

The same scheme was also applied to DIRT over the same 30 transitive verbs. Since
DIRT’s output has a long tail of templates with a low score and very low precision, when
sampling the 10% of templates in DIRT’s output lists, the templates whose score is below
a threshold of 0.1 were filtered out.9 For DIRT, there were 171 templates making 342
directional rules, 340 of which were unique. When matching sentences, 38 rules resulted in
no match, so 304 rules could be evaluated, eventually yielding 4295 associated sentences.

6.2.2 Assessment of the instance-based evaluation methodology

Two human judges evaluated the examples collected in the above setting. We randomly
split the examples between the judges. One hundred rules (i.e. 1,287 examples overall, from
TEASE and DIRT together) were cross annotated for agreement measurement. The judges
followed the procedure in Section 6.110 and the correctness of each rule was assessed based
on both its Strict-Context and Loose-Context Precision values.

We assessed the instance-based evaluation methodology by measuring the agreement
level between the judges. The κ values for the final correctness judgments of the shared
rules were 0.74 and 0.68 for the strict and loose evaluations. These κ scores are regarded as
‘substantial agreement’ and are substantially higher than published agreement scores and
those we managed to obtain using the standard rule-based evaluation approach discussed
in Section 6.

Table 7 illustrates some disagreements that were still exhibited within the instance-based
evaluation. The primary reason for disagreements was the difficulty to decide whether
a context is relevant for a rule or not, resulting in some confusion between ‘Unrelated
context’ and ‘No entailment’. This may explain the lower agreement for the Strict-Context
Precision, for which examples judged as ‘Unrelated context’ are ignored, while for the
Loose-Context both judgments are conflated and represent no entailment. Our findings
suggest that better ways for distinguishing related contexts may be sought in future research
for further refinement of the instance-based evaluation methodology.

9 The threshold was set following the advice of DIRT’s authors.
10 The complete guidelines to the judges can be viewed at:

https://sites.google.com/site/idanszpektor/ACL07 evaluation guidelines.doc?attredirects=0&d=1

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 33

Table 7. Examples for disagreement between the two judges

Rule Sentence Judge 1 Judge 2

X sign Y→X set Y Iraq and Turkey sign Entailment holds Unrelated context
agreement to increase
trade cooperation

X worsen Y→X slow Y News on the strike Unrelated context No entailment
worsened the situation

X get Y→X want Y He will get his parade Entailment holds No entailment
on Tuesday

7 Results and use case

An entailment engine would aim to utilize all its available resources for maximum cover-
age. These include rules learned from local corpora and rules from manually constructed
resources, such as WordNet (Bar-Haim et al. 2006; Giampiccolo et al. 2007; Giampiccolo
et al. 2008). Yet, until now, the Web was not utilized as a source for generating lexical–
syntactic entailment rules. In this evaluation, we want to show that TEASE may be added
to the pool of resources utilized by an entailment engine. Accordingly, our evaluation of
the TEASE algorithm has two goals. First, we want to show TEASE’s added value, which
is the capability of learning rules that can be extracted neither from a local corpus nor
from manually constructed resources. Our second goal is to show that TEASE’s quality
is not falling behind other unsupervised algorithms currently in use, in order to ensure
that adding TEASE output as part of the pool of available entailment-rule resources would
increase coverage without significantly hurting precision.

To this end, we compared TEASE with DIRT, the most widely used algorithm for
learning rules from a local corpus, and to WordNet, the prominent manual resource for
rules. We first compared TEASE and DIRT based on the manual evaluation setting de-
scribed in Section 6. We then show the results of applying TEASE (and DIRT) output
to an RE use case, in which the benefits of the approach taken by TEASE are further
discussed. To complete this evaluation, we provide detailed error analysis for the rules
learned by TEASE. Finally, we also compare TEASE’s output to entailment rules that can
be extracted from WordNet, to better understand the added value in TEASE’s Web-based
rule-set compared to manual resources.

7.1 DIRT comparison

We evaluated the quality of the entailment rules produced by TEASE and DIRT using
two scores: (1) micro-averaged Precision, the percentage of correct rules out of all learned
rules, and (2) average Yield, the average number of correct rules learned for each input
template I , as extrapolated based on the evaluated sample. We remind the reader that since
both DIRT and TEASE do not identify rule directionality, two distinct directional rules
are evaluated for each output template O, i.e. the rule ‘I→O’ and the rule ‘O→ I’ (see
Section 6.2.1). In addition, we measured the Precision and Yield scores at the template

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

34 I. Szpektor et al.

Table 8. Average Precision (P) and Yield (Y) at the rule and template levels

TEASE DIRT

P Y P Y

Rules
Strict-Context 28.4% 40.3 30.5% 33.5
Loose-Context 17% 24.1 18.6% 20.4

Templates
Strict-Context 38% 26.9 44% 22.6
Loose-Context 23.6% 16.8 27.3% 14.1

level, where an output template O is considered correct if at least one of the rules ‘I→O’
or ‘O→I’ is correct. Our results are presented in Table 8.

Addressing our second evaluation goal, the figures in Table 8 indicate that the quality
of DIRT and TEASE is very similar. Under the specific DIRT cutoff threshold chosen,
DIRT exhibits somewhat higher Precision while TEASE has somewhat higher Yield (recall
that there is no particular natural cutoff point for DIRT’s output). This means that adding
TEASE rules along side DIRT rules should not hurt performance.

Yet, our major finding from the evaluation annotations, addressing our first evaluation
goal, is the low overlap between TEASE and DIRT: only about 15% of the correct tem-
plates were learned by both algorithms. This shows TEASE’s added value, as this result
implies that the two algorithms largely complement each other in terms of coverage and
should be used in tandem. One explanation may be that DIRT is focused on the domain
of the local corpus used (news articles for the published DIRT knowledgebase), whereas
TEASE learns from the Web, extracting rules from multiple domains. We further demon-
strate this difference in our application use-case (Section 7.2), showing the applicability of
TEASE to open-domain IE, in which the target domain is not known in advance.

Since applications typically apply rules in a specific direction, the Precision for rules re-
flects their expected performance better than the Precision for templates. Obviously, future
improvement in precision is needed for unsupervised rule learning algorithms. Meanwhile,
manual filtering of the learned rules can prove effective within limited domains, where
our evaluation approach can be utilized for reliable filtering as well. The substantial yield
obtained by these algorithms suggests that they are indeed likely to be valuable for recall
increase in semantic applications.

We also measured whether O is a paraphrase of I , i.e. whether both ‘I → O’ and
‘O → I’ are correct. Only 20%–25% of all correct output templates were assessed as
paraphrases. This stresses the significance of evaluating directional rules rather than only
symmetric paraphrases, as was originally done for DIRT. Furthermore, it shows that in
order to improve precision, acquisition algorithms must identify rules directionality.

Finally, about 28% of all ‘Left entailed’ examples were evaluated as ‘Irrelevant context’,
yielding the large difference in precision between the Strict-Context and Loose-Context
measures. This result shows that in order to get closer to the strict precision, learning

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 35

algorithms and applications need to identify the relevant contexts in which a rule should
be applied.

7.2 Use case: relation extraction

Our main evaluation setup compared TEASE and DIRT by assessing the relations learned
for input templates that come from the domain of the DIRT knowledgebase we utilized,
namely the news domain. To further show the added value of TEASE, providing additional
coverage over DIRT and other local corpora rule-sets, we present in this subsection an
analysis of an experiment of applying TEASE to an open IE setting.

To this end, we summarize an experiment with TEASE for the task of RE on a data set
containing textual descriptions of protein interactions. This experiment, originally reported
in Romano et al. (2006), aims at extracting mentions of protein–protein interactions from a
given corpus with minimal supervision, using Textual Entailment as the relation detection
framework and TEASE rules providing the entailment knowledge. Textual Entailment is
highly suitable for RE since its goal is exactly to identify the different variations in which a
target semantic relation can be expressed. Before describing the experiment, we would like
to note two interesting features of the task at hand. First, it is situated in a different domain
than the news domain and thus shows how DIRT and TEASE would perform on a ‘domain
transfer’ task. Second, in our primary manual evaluation, no notion of absolute recall could
be provided, only the number of correct rules extracted. In the IE setting, however, all
protein interactions are annotated in a given test corpus, so recall can be measured. We
thus focus our analysis on the coverage performance of TEASE and DIRT for the task.

In order to detect mentions of protein–protein interactions, Romano et al. learned tem-
plates that have an entailment relation to the input template ‘X interact with Y’, which was
the only manual input provided to the system. Here, all learned templates were considered
as entailing the input template. The top 18 correct templates learned are shown in Table 9.
It is interesting to note that TEASE learned relevant templates for the protein interaction
domain also by finding anchor-sets in different domains, which use the same jargon, for
example referring to particle instantiations in physics. This shows a benefit of using the
Web, which covers many different domains, when a larger rule coverage for a target domain
can be achieved via related domains.

To measure the potential Recall of TEASE on this task, assuming perfect template
matching, Romano et al. manually inspected all protein interaction mentions that are an-
notated in the test data set. They identified all such mentions in which the interaction is
expressed by an entailing template which was learned by TEASE (see Romano et al. 2006

Table 9. The top 18 correct templates learned by TEASE for‘X interact with Y’

1. X bind to Y 7. X Y complex 13. X interaction with Y
2. X activate Y 8. X recognize Y 14. X trap Y
3. X stimulate Y 9. X block Y 15. X recruit Y
4. X couple to Y 10. X binding to Y 16. X associate with Y
5. Interaction between X and Y 11. X Y interaction 17. X be linked to Y
6. X become trapped in Y 12. X attach to Y 18. X target Y

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

36 I. Szpektor et al.

Table 10. The potential Recall of TEASE in terms of distinct pairs of interacting proteins
(out of 418 annotated pairs)

Experiment Pairs (%)

Input 39
Input+Iterative 49
Input+Iterative+Morph 63

for details). Both the number of mentions and the number of distinct interacting protein
pairs that are covered by the TEASE output were counted. This process results in an
upper bound for the Recall of a TEASE-based RE approach, reflecting the coverage of the
relation’s mentions by the TEASE output. In practice, somewhat lower recall is expected
for an actual due to imperfect syntactic template matching.

Table 10 presents the results of this analysis. The first line shows that utilizing the
templates learned by TEASE for the input template ‘X interact with Y’, a 39% Recall can be
reached. The second line shows the contribution of bootstrapping to Recall. Bootstrapping
(see Section 3.2) was performed by taking the top five output templates learned by TEASE
as input, and then learning additional entailment templates for them, which should entail
the original input template as well via transitivity. With the additional learned templates,
Recall increased by 10%. The final line in the table shows the contribution of improved
template matching, which identifies also morphological variations of each template, such
as nominalizations, in addition to syntactic variations.11 Assuming the usage of such a
matcher increases TEASE recall by additional 14%, reaching 63%. Thus, the potential
recall of TEASE on the protein interaction data set is estimated to be above 60%. This
indicates that significant coverage can be obtained using completely unsupervised learning
from the Web, as performed by TEASE. To demonstrate the extraction system Romano
et al. utilized a basic matcher that reached 18% Recall for the input template and 29%
Recall with bootstrapping. The precision for these two rule-sets was 62% and 42%, re-
spectively, showing that TEASE precision for this task is above average (28%, Table 8)
even with bootstrapping.

To complete this analysis, we extracted rules for ‘X interact with Y’ using the available
DIRT database. The resulting rules for the same protein interaction task yielded no correct
extractions (protein interactions) at all. The reason is that the DIRT database was learned
from a local corpus constructed from news articles. Thus, no rules that were useful for the
tested biomedical domain were learned. A local corpus for protein interaction could have
been utilized by the DIRT algorithm, but the effort spent for constructing and utilizing such
a corpus would have been much longer than the execution of TEASE for the target relation
over the Web. This indicates the added value of using the Web as a large heterogeneous
corpus, which is readily utilized for different domains in an open IE setup, whereas DIRT
relies on a specific corpus to be collected for each task. In addition, we also extracted
rules for ‘X interact with Y’ from WordNet (see rule generation description in Section 7.4),

11 Examples for such existing matchers are described in Bar-haim et al. (2007) and Szpektor and
Dagan (2007).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 37

Table 11. Distribution of reasons for learning incorrect templates by TEASE

Reason Percentage

Non-indicative anchor-set 62.0
Too-specific template 17.4
Partial template 1.0
Parse error 8.7
Annotation disagreement 10.9

which resulted only in one useful rule for the task, ‘X associate with Y’. This again shows
the benefit of a Web-based heterogeneous rule-set, since domain specific senses of ‘interact
with’, as well as their relationships, are not currently encoded in WordNet.

7.3 Error analysis

We next turn to analyze the reasons for learning incorrect templates by TEASE. To this end,
we analyzed the TEASE templates found as incorrect by out annotators. We partitioned
the reasons for such templates into five main categories: non-characteristic anchor set, too
specific template, partial template, parse error, annotation disagreement. The distribution
of errors for these relations is shown in Table 11. We next discuss each of these categories.

Non-characteristic anchor -set. Many erroneous templates are extracted due to anchor-
sets that are not characteristic, and thus occur with templates that are semantically related
but not necessarily in an entailment relation with the input template. Such examples are
〈X stand Y, X sit Y〉 via {X=‘elderly’, Y=‘upright’} and 〈X want Y, X get Y〉 via {X=‘dog’,
Y=‘cracker’}. In more acute cases, some of the anchor-sets are simply incorrect due to
parse errors, resulting in completely unrelated templates, e.g. 〈X calculate Y, X number Y〉
via the anchor-set {X=‘isotherms’, Y=‘equation’}.

Too-specific template. These templates are the result of a long complex sentence in
which the matched anchors are placed at distant parts of the parse trees. Thus, the resulting
template that includes them is too long and complex to be useful in a general case. For
example, ‘X worsen and destroy Y’ was learned for the input ‘X worsen Y’. While the
specific template may entail the input if in its rare occurrences, it is too specific to be
considered as correctly entailed by the input.

Partial template. These templates are the result of the definition of the LGMG templates
that are learned by the TEASE algorithm (Section 5.2.1): each node and edge in the
extracted template must appear in all occurrences of the path that this LGMG template gen-
eralizes. While improving over algorithms like DIRT, which look only for paths between
arguments, this constraint is sometimes too strict, preventing from learning the correct
templates. For example, the templates ‘X convince Y to quit’ and ‘X convince Y to stop’,
which should have been learned for ‘X stop Y ’, are not extracted. Instead, the partial path
template ‘X convince Y ’ is learned, because it occurs in more sentences than ‘X con-
vince Y to quit’ or ‘X convince Y to stop’, and thus cannot be extended to them via

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

38 I. Szpektor et al.

the GSL algorithm. Future work may investigate a softer template extension algorithm to
address this limitation. This is especially important due to the significant harmful effect of
partial templates when utilizing a rule-set, since partial templates occur in texts much more
than complete templates (Szpektor and Dagan 2008).

Parser errors. Whenever the parser incorrectly parses a sentence, this erroneous inform-
ation may indirectly affect all of the above categories, for example extracting an incorrect
anchor set, or producing a partial template. However, in this category we focus only on
templates that are unrelated to the input template because of the wrong tree structure. For
example, the template ‘X involve Y’ was learned for ‘X seek Y’ due to several parse errors
that placed the anchor-sets in incorrect positions in the sentence tree. In a more general
note, many pages on the Web may add more noise than valid content. Therefore, some
pre-filtering, such as removing snippets with bad parse trees, may significantly improve
the extraction quality of the TEASE algorithm.

Annotation disagreement. While the annotation task improved with the instance-based
methodology we used, annotators still make mistakes, and we found that to be about 10%
of the cases. These templates are usually correct only for rare contexts, in which the typical
contexts found in the corpus, and thus the annotators miss the correct contexts under which
the rules are correct. This is, of course, expected from this type of annotation, as stated
in Szpektor et al. (2007), where the selected corpus for examples indicates the types of
contexts for under which the rules should be judged, assuming other contexts are not
as interesting. Some examples for such correct relations are 〈X set Y, X change Y〉 and
〈X seek Y, X call for Y〉.

7.4 WordNet comparison

To further analyze the added value of our approach in terms of coverage, we compared
TEASE’s output with the lexical–syntactic entailment rules that can be extracted from
WordNet12 (Miller 1995). To this end, we derived from WordNet templates that are in
entailment relation with our input test templates as follows:

1. The lexical element of an input template is extracted. For example, ‘acquire’ is

extracted as the lexical element of ‘X
subj
←−− acquire

obj
−→ Y ’.

2. Lexical entailment relations are acquired from WordNet. For example,
〈acquire, buy〉.

3. Templates are generated by replacing the lexical element in the input template with
the terms acquired in the previous step. For example, the entailment relation

〈X
subj
←−− acquire

obj
−→ Y , X

subj
←−− buy

obj
−→ Y 〉 is generated.

Since WordNet does not specify the syntactic changes involved in applying the lexical
rules extracted from it, we performed a basic substitution between the two terms in step 3.
Thus, in step 2 we restricted ourselves to learning substitutable lexical rules, whose terms

12 We used WordNet 3.0.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 39

Table 12. Correct templates that were learned by TEASE and cannot be extracted from
WordNet

Input template Correct templates by TEASE not in WordNet

X
subj←−− demand

obj−→ Y X
subj←−− seek

obj−→ Y , X
subj←−− want

obj−→ Y

X
subj←−− leave

obj−→ Y X
subj←−− enter

obj−→ Y , X
subj←−− return to

obj−→ Y

X
subj←−− write

obj−→ Y X
subj←−− produce

obj−→ Y , X
subj←−− complete

obj−→ Y

X
subj←−− establish

obj−→ Y X
subj←−− develop

obj−→ Y , X
subj←−− propose

obj−→ Y

X
subj←−− tell

obj−→ Y X
subj←−− warn

obj−→ Y , X
subj←−− teach

obj−→ Y

X
subj←−− acquire

obj−→ Y X
subj←−− eye

obj−→ Y , Y
subj←−− subsidiary

of−→ X

X
subj←−− name

as−→ Y X
subj←−− appoint

obj−→ Y , X
subj←−− make

desc−−→ Y

X
subj←−− kill

obj−→ Y X
subj←−− claim

obj−→ life
of−→ Y , Y

subj←−− die
in−→ X

can indeed be substituted one for the other in a sentence without changing its meaning
and without the need to further change its syntactic structure (with respect to argument
positions). To this end, we considered the hypernymy semantic relation between verb
synsets, e.g. ‘buy back⇒ buy’. On top of that, all terms in each synset entail each other.
Since we do not care for the direction of entailment, we generated both entailing relations
and entailed relations. In addition, we generated relations based on all possible chains of
the above two lexical relations.

We measured the percentage of lexical–syntactic relations extracted by TEASE that
also appear in the lexical–syntactic relations extracted from WordNet. We found that on
average, about 60% of the correct templates extracted by TEASE cannot be extracted
by WordNet. This figure emphasizes the added coverage obtained by using corpus-based
extraction methods such as TEASE over using WordNet alone (and likely other manually
constructed resources). Table 12 presents examples for rules learned by TEASE that were
not acquired from WordNet. Some of these examples include templates with substitutable
relations between the lexical elements of the two templates, showing that WordNet is lack-
ing in directional entailment relations, such as 〈warn, tell〉, especially regarding informal
language or slang, e.g. 〈eye, acquire〉. However, there are also examples that involve syn-

tactic changes to argument positions on top of the lexical change, e.g. 〈X
subj
←−− kill

obj
−→ Y ,

Y
subj
←−− die

in−→ X〉. Such information is currently not part of WordNet’s database.
Following our last example, as a final analysis we took into consideration also non-

substitutable entailment relations in WordNet, such as cause, even though WordNet cannot
turn them into correct lexical–syntactic rule (e.g. for 〈kill, die〉 above). To this end, we
compared only the lexical part of the rules learned by TEASE and by WordNet and found
that about 53% of the correct TEASE rules cannot be extracted from WordNet. This
indicates that non-substitutable relations, which may involve complex syntactic changes,
are still rather scarce in WordNet. We note that 53% is a lower bound, since some of
the TEASE rules that are considered incorrect in this experiment may be so only due
to incorrect argument mapping, i.e. incorrectly learning the lexical–syntactic entailment

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

40 I. Szpektor et al.

relation 〈X
subj
←−− kill

obj
−→ Y , X

subj
←−− die

in−→ Y 〉), even though the entailment relation
between the lexical parts of the two templates is correct.

8 Conclusions and discussion

This article presented TEASE, the first fully unsupervised algorithm for the acquisition
of entailment relations from the Web. The algorithm provides several improvements over
prior work. First, our unsupervised approach for acquiring characteristic anchor-sets over-
comes the main scalability limitation of prior Web-based work, in which manual input
of seed anchor-sets is required for each input template. Second, in the template-extraction
phase, the GSL algorithm enables to efficiently learn entailment relations between arbitrary
lexical–syntactic templates, without any a priori restriction on template structure. Rather,
the template structure is learned in an unsupervised way from the data, which is used to
discover the entailment relations.

Our experiments show that the quality of TEASE rules is comparable to those of DIRT,
the most commonly used large-scale rule base. However, the rules learned by the two
algorithms are complementary, as DIRT extracts rules from a local corpus, typically of a
specific domain, while TEASE learns rules for many different senses of a template from
the heterogeneous content of the Web. We thus conclude that it is best to use these two
algorithms in tandem. In addition, we showed that TEASE learns many entailment relations
that cannot be found in WordNet. Finally, in use case experiment of extracting mentions
of protein interactions, we demonstrated the potential of TEASE to learn many of the
entailment rules needed to cover the different ways of expressing this target relation.

Our work suggests interesting directions for future research. First, while the focus of
this article is to increase the scalability of Web-based rule acquisition, a following step
would be to further improve the quality of the acquired rules. As shown in prior work,
incorporating additional features for filtering entailment between predicates, on top of
distributional similarity, could improve the quality of the filtered rule-set. This is typically
done under a supervised framework (Berant, Dagan and Goldberger 2012; Weisman et al.
2012). Similarly, the accuracy of characteristic anchor-sets could be further improved using
supervised learning, i.e. learning a classifier for detecting the characteristic attributes of
anchor-sets. For concrete action predicates, e.g. ‘acquire’, ‘celebrate’ and ‘write’, this
is less of a problem since dozens of characteristic anchor-sets can be detected with our
algorithm. But for predicates such as ‘want’ or ‘think’ this is important due to the rel-
ative scarcity of characteristic anchor-sets. Last, using typed templates (Schoenmackers
et al.2010; Nakashole, Weikum and Suchanek 2012) may additionally improve the accur-
acy of the extracted rules.

Second, the rule structure may be improved. One research line could be identifying the
direction of the entailment relations learned by TEASE, using directional measures such
as in Chklovski and Pantel (2004), Bhagat et al. (2007), Szpektor and Dagan (2008) and
Kotlerman et al. (2010). In addition, in this work we propose one way to efficiently learn
more general template structures than could be obtained in most prior work, namely a
dependency path. It would be interesting to explore and compare other complementary ap-
proaches for generalizing and extending the template structure, include lexical

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 41

generalization (Mausam et al. 2012) and dependency paths for single-argument templates
(Szpektor and Dagan 2008).

Finally, the TEASE algorithm was designed to harness the Web as a textual resource.
However, the methodologies used in the algorithm are not limited for the Web. We propose
to adapt TEASE to process local corpora, in order to test whether the methodologies we
developed for the Web are similarly effective for such corpora.

Acknowledgments

This work was partially supported by ISF grant 1095/05, the IST Programme of the
European Community under the PASCAL Network of Excellence IST-2002-506778, and
the ITC-irst/University of Haifa collaboration.

References

Androutsopoulos, I., and Malakasiotis, P. 2010. A survey of paraphrasing and textual entailment
methods. Journal of Artificial Intelligence Research 38: 135–87.

Baeza-Yates, R., and Raghavan, P. 2010. Chapter 2: next generation web search. In S. Ceri, and M.
Brambilla (eds.), Search Computing, pp. 11–23. Lecture Notes in Computer Science, vol. 5950.
Berlin/Heidelberg: Springer.

Baker, C. F., Fillmore, C. J., and Lowe, J. B. 1998. The berkeley framenet project. In Proceedings of
the 36th Annual Meeting of the Association for Computational Linguistics and 17th International
Conference on Computational Linguistics, Vol. 1 (ACL ’98), pp. 86–90. Stroudsburg, PA:
Association for Computational Linguistics.

Bannard, C. J., and Callison-burch, C. 2005. Paraphrasing with bilingual parallel corpora. In Meeting
of the Association for Computational Linguistics, Ann Arbor, Michigan.

Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B., and Szpektor, I. 2006.
The second PASCAL recognising textual entailment challenge. In Second PASCAL Challenge
Workshop for Recognizing Textual Entailment, Venice, Italy.

Bar-haim, R., Dagan, I., Greental, I., and Shnarch, E. 2007. Semantic inference at the lexical-
syntactic level. In National Conference on Artificial Intelligence, Vancouver, British Columbia,
Canada.

Bar-Haim, R., Szpektor, I., and Glickman, O. 2005. Definition and analysis of intermediate
entailment levels. In Proceedings of the ACL Workshop on Empirical Modeling of Semantic
Equivalence and Entailment, Ann Arbor, Michigan.

Barzilay, R., and Lee, L. 2003. Learning to paraphrase: an unsupervised approach using multiple-
sequence alignment. In North American Chapter of the Association for Computational Linguistics,
vol. cs.CL/0304, Stroudsburg, PA, USA.

Barzilay, R., and McKeown, K. R. 2001. Extracting paraphrases from a parallel corpus. In Meeting
of the Association for Computational Linguistics, Toulose, France, pp. 50–57.

Ben Aharon, R., Szpektor, I., and Dagan, I. 2010. Generating entailment rules from FrameNet. In
Proceedings of the ACL 2010 Conference Short Papers, pp. 241–6. Uppsala, Sweden: Association
for Computational Linguistics.

Bentivogli, L., Dagan, I., Dang, H. T., Giampiccolo, D., and Magnini, B. 2009. The fifth
PASCAL recognizing textual entailment challenge. In Proceedings of the TAC 2009 Workshop,
Gaithersburg, Maryland, USA.

Bentivogli, L., Clark, P., Dagan, I., Dang, H. T., and Giampiccolo 2010. The sixth PASCAL
recognizing textual entailment challenge. In Proceedings of the TAC 2010 Workshop,
Gaithersburg, Maryland, USA.

Berant, J., Dagan, I., and Goldberger, J. 2012. Learning entailment relations by global graph structure
optimization. Computational Linguistics 38(1): 73–111.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

42 I. Szpektor et al.

Bergadano, F., and Gunetti, D. 1995. Inductive Logic Programming: From Machine Learning to
Software Engineering. Cambridge, MA: MIT Press.

Bhagat, R., Pantel, P., and Hovy, E. H. 2007. LEDIR: an unsupervised algorithm for learning
directionality of inference rules. In Empirical Methods in Natural Language Processing, Prague,
Czech Republic, pp. 161–70.

Carletta, J. 1996. Assessing agreement on classification tasks: the Kappa statistic. Computational
Linguistics 22(2): 249–54.

Chklovski, T., and Pantel, P. 2004. VerbOcean: mining the web for fine-grained semantic verb
relations. In D. Lin and D. Wu (eds.), Empirical Methods in Natural Language Processing,
Association for Computational Linguistics, Barcelona, Spain, pp. 33–40.

Condoravdi, C., Crouch, D., de Paiva, V., Stolle, R., and Bobrow, D. G. 2003. Entailment,
intensionality and text understanding. In Proceedings of the HLT-NAACL 2003 Workshop on Text
Meaning, Stroudsburg, PA, USA.

Dagan, I., and Glickman, O. 2004. Probabilistic textual entailment: generic applied modeling of
language variability. In PASCAL Workshop on Learning Methods for Text Understanding and
Mining, Grenoble, France.

Dagan, I., Glickman, O., and Magnini, B. 2006. The PASCAL recognising textual entailment
challenge. In J. Quiñonero-Candela, I. Dagan, B. Magnini, and F. d’Alché-Buc (eds.), Machine
Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and
Recognising Tectual Entailment, Lecture Notes in Computer Science, Vol. 3944, pp. 177–90.
Berlin: Springer.

Dolan, B., Quirk, C., and Brockett, C. 2004. Unsupervised construction of large paraphrase corpora:
exploiting massively parallel news sources. In International Conference on Computational
Linguistics, Stroudsburg, PA, USA.

Duclaye, F., Yvon, F., and Collin, O. 2002. Using the web as a linguistic resource for learning
reformulations automatically. In Language Resources and Evaluation, Las Palmas, Spain,
pp. 390–96.

Durme, B. Van, Huang, Y., Jupść, A., and Nyberg, E. 2003. Towards light semantic processing
for question answering. In Proceedings of HLT/NAACL Workshop on Text Meaning 2003,
Stroudsburg, PA, USA.

Erk, K., and Padó, S. 2008. A structured vector space model for word meaning in context. In
Empirical Methods in Natural Language Processing, Stroudsburg, PA, USA, pp. 897–906.

Giampiccolo, D., Dang, H. T., Magnini, B., Dagan, I., Cabrio, E., and Dolan, B. 2008. The forth
PASCAL recognizing textual entailment challenge. In Proceedings of the TAC 2008 Workshop,
Gaithersburg, Maryland, USA.

Giampiccolo, D., Magnini, B., Dagan, I., and Dolan, B. 2007. The third PASCAL recognizing textual
entailment challenge. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, Prague, Czech Republic.

Glickman, O., and Dagan, I. 2003. Identifying lexical paraphrases from a single corpus: a case study
for verbs. In Recent Advances in Natural Language Processing (RANLP), Borovets, Bulgaria.

Harabagiu, S., and Hickl, A. 2006. Methods for using textual entailment in open-domain question
answering. In Meeting of the Association for Computational Linguistics, Sydney, Australia,
pp. 905–12.

Hermjakob, U., Echihabi, A., and Marcu, D. 2003. Natural language based reformulation resource
and web exploitation. In E. M. Voorhees and L. P. Buckland (eds.), Proceedings of the 11th Text
Retrieval Conference (TREC 2002). Gaithersburg, MD: NIST.

Ibrahim, A., Katz, B., and Lin, J. 2003. Extracting structural paraphrases from aligned monolingual
corpora. In Proceedings of the Second International Workshop on Paraphrasing (IWP-2003),
Sapporo, Japan.

Jacquemin, C. 1999. Syntagmatic and paradigmatic representations of term variation. In Meeting of
the Association for Computational Linguistics, College Park, Maryland, USA.

Kietz, J.-U., and Lubbe, M. 1994. An efficient subsumption algorithm for inductive logic
programming. In ICML, New Brunswick, NJ, USA.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 43

Kipper, K., Dang, H. T., and Palmer, M. S. 2000. Class-based construction of a verb lexicon. In
National Conference on Artificial Intelligence, Austin, Texas, USA, pp. 691–6.

Kotlerman, L., Dagan, I., Szpektor, I., and Zhitomirsky-Geffet, M. 2010. Directional distributional
similarity for lexical inference. Natural Language Engineering 16(4): 359–89.

Lin, D. 1998. Dependency-based evaluation of Minipar. In Proceedings of the Workshop on
Evaluation of Parsing Systems at LREC 1998, Granada, Spain.

Lin, D., and Pantel, P. 2001. Discovery of inference rules for question answering. Natural Language
Engineering 7(4): 343–60.

Lloret, E., Ferrández, Ó., Muñoz, R., and Palomar, M. 2008. A text summarization approach under
the influence of textual entailment. In Natural Language Understanding and Cognitive Science,
Barcelona, Spain, pp. 22–31.

Markov, Z., and Pelov, N. 1998. A framework for inductive learning based on subsumption lattices. In
F. Giunchiglia (ed.), Artificial Intelligence: Methodology, Systems, and Applications, Proceedings
of the 8th International Conference (AIMSA 98), pp. 341–52. Lecture Notes in Computer Science,
vol. 1480. Sozopol, Bulgaria: Springer.

Mausam, M. S., Bart, R., Soderland, S., and Etzioni, O. 2012. Open language learning for information
extraction. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL ’12),
pp. 523–34. Stroudsburg, PA: Association for Computational Linguistics.

Miller, G. A. 1995. WordNet: a lexical database for English. Communications of The ACM 38: 39–41.
Mirkin, S., Dagan, I., and Shnarch, E. 2009. Evaluating the inferential utility of lexical–semantic

resources. In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL
2009), pp. 558–566. Athens, Greece: Association for Computational Linguistics.

Moldovan, D., and Rus, V. 2001. Logic form transformation of WordNet and its applicability to
Question Answering. In Proceedings of ACL 2001, Toulose, France, pp 394–401.

Monz, C., and de Rijke, M. 2001. Light-weight entailment checking for computational semantics. In
Proceedings of the Third Workshop on Inference in Computational Semantics (ICoS-3), Italy.

Nakashole, N., Weikum, G., and Suchanek, F. 2012. Patty: a taxonomy of relational patterns with
semantic types. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP–CoNLL’12),
pp. 1135–45. Stroudsburg, PA: Association for Computational Linguistics.

Pang, B., Knight, K., and Marcu, D. 2003. Syntax-based alignment of multiple translations:
extracting paraphrases and generating new sentences. In North American Chapter of the
Association for Computational Linguistics, Edmonton, Canada.

Pantel, P., Bhagat, R., Coppola, B., Chklovski, T., and Hovy, E. 2007. ISP: learning inferential
selectional preferences. In Proceedings of North American Association for Computational
Linguistics/Human Language Technology Conference (NAACL HLT 07), Rochester, New York.

Pantel, P., and Pennacchiotti, M. 2006. Espresso: leveraging generic patterns for automatically
harvesting semantic relations. In Proceedings of the 21st International Conference on
Computational Linguistics and the 44th Annual Meeting of the Association for Computational
Linguistics, pp. 113–20. Stroudsburg, PA: Association for Computational Linguistics.

Pekar, V. 2006 (June). Acquisition of verb entailment from text. In Proceedings of the Human
Language Technology Conference of the NAACL, Main Conference, New York City, USA,
pp. 49–56.

Ravichandran, D., and Hovy, E. H. 2002. Learning surface text patterns for a Question Answering
system. In Meeting of the Association for Computational Linguistics, Philadelphia, PA, pp. 41–7.

Reynar, J. C., and Ratnaparkhi, A. 1997. A maximum entropy approach to identifying sentence
boundaries. In Proceedings of the fifth conference on Applied natural language processing,
pp. 16–9. Stroudsburg, PA: Association for Computational Linguistics.

Reynolds, J. C. 1970. Transformational systems and the algebraic structure of atomic formulas.
Machine Intelligence 5: 135–51.

Romano, L., Kouylekov, M., Szpektor, I., Dagan, I., and Lavelli, A. 2006. Investigating a generic
paraphrase-based approach for relation extraction. In Conference of the European Chapter of the
Association for Computational Linguistics, Trento, Italy.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

44 I. Szpektor et al.

Schoenmackers, S., Etzioni, O., Weld, D. S., and Davis, J. 2010. Learning first-order horn
clauses from web text. In Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing (EMNLP ’10), pp. 1088–98. Stroudsburg, PA: Association for
Computational Linguistics.

Sekine, S. 2005. Automatic paraphrase discovery based on context and keywords between NE pairs.
In The 3rd International Workshop on Paraphrasing, Jeju Island, South Korea.

Shinyama, Y., and Sekine, S. 2006. Preemptive information extraction using unrestricted relation
discovery. In North American Chapter of the Association for Computational Linguistics, New
York City, USA.

Shinyama, Y., Sekine, S., Sudo, K., and Grishman, R. 2002. Automatic paraphrase acquisition from
news articles. In Proceedings of Human Language Technology Conference (HLT 2002), San
Diego, CA, USA.

Suchanek, F. M., Ifrim, G., and Weikum, G.. 2006. Combining linguistic and statistical analysis to
extract relations from web documents. In Knowledge Discovery and Data Mining, Philadelphia,
USA, pp. 712–7.

Sudo, K., Sekine, S., and Grishman, R. 2003. An improved extraction pattern representation model
for automatic IE pattern acquisition. In Meeting of the Association for Computational Linguistics,
Sapporo, Japan, pp. 224–31.

Szpektor, I., and Dagan, I. 2007. Learning canonical forms of entailment rules. In Recent Advances
in Natural Language Processing (RANLP), Borovets, Bulgaria.

Szpektor, I., and Dagan, I. 2008. Learning entailment rules for unary templates. In International
Conference on Computational Linguistics, Manchester, UK, pp. 849–56.

Szpektor, I., Dagan, I., Bar-Haim, R., and Goldberger, J. 2008 (June). Contextual preferences.
In Proceedings of ACL-08: HLT, pp. 683–91. Columbus, OH: Association for Computational
Linguistics.

Szpektor, I., Shnarch, E., and Dagan, I. 2007. Instance-based evaluation of entailment rule
acquisition. In Meeting of the Association for Computational Linguistics, Prague, Czech Republic.

Szpektor, I., Tanev, H., Dagan, I., and Coppola, B. 2004. Scaling web based acquisition of entailment
patterns. In Empirical Methods in Natural Language Processing, Barcelona, Spain, pp. 41–8.

Tanev, H. 2007. Unsupervised learning of social networks from a multiple-source news corpus. In
Proceedings of the Workshop Multi-source Multilingual Information Extraction held at RANLP
2007, Borovets, Bulgaria.

Tanev, H., and Magnini, B. 2006. Weakly supervised approaches for ontology population. In
Conference of the European Chapter of the Association for Computational Linguistics.

Weisman, H., Berant, J., Szpektor, I., and Dagan, I. 2012. Learning verb inference rules from
linguistically-motivated evidence. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning,
(EMNLP-CoNLL ’12), pp. 194–204. Stroudsburg, PA: Association for Computational Linguistics.

Zhao, S., Wang, H., Liu, T., and Li, S. 2008. Pivot approach for extracting paraphrase patterns from
bilingual corpora. In Meeting of the Association for Computational Linguistics, Columbus, Ohio,
USA, pp. 780–88.

Appendix

A Detailed algorithm for extracting LGMG templates

We here describe in detail the algorithm for extracting LGMG templates, which was in-
troduced in Section 5.2.3 as part of the GSL algorithm. The input is a sample corpus S of
sentences from the Web containing anchor-sets that were extracted for the input template
in the ASE phase. For each sentence s ∈ S , s is parsed by Minipar and each anchor was
replaced by its corresponding variable name.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 45

A.1 Step 1: extracting minimal spanning trees

For each graph s ∈ S, we find all the roots of the different minimal spanning trees for the
anchor variables in s (templates that cannot be further reduced without omitting a variable).
According to our empirical constraints every learned template is an extension of such a
spanning tree in some graphs in S (see Section 5.2.4). We construct for each minimal
spanning tree sts, which was found in s, a string description of that tree, denoted desc(sts).
The string description is constructed in such a way that isomorphic trees have the same
description. We note that two roots of different templates may merge in the same root node
in CGR(S). However, these two roots differ in their index sets, since the support sets of
their templates (the template occurrences in S) are different. For example, the templates

‘X
gen
←−− acquisition

of
−→ Y ’ and ‘Y

gen
←−− acquisition

by
−→ X’, which both participate in

an entailment relation with ‘X
subj
←−− acquire

obj
−→ Y ’, share the same root ‘acquisition’ in

CGR(S). Yet, their support sets are different, as the templates occur in different sentences.
Thus, the index set of the root ‘acquisition’ in each template is different. We construct a
map HS whose keys are the different tree descriptions desc(st), where st denotes a set of
isomorphic trees. The value of HS (desc(st)) is the root node r of these isomorphic trees
in CGR(S) together with the set of indices of r from the various occurrences in S of
all isomorphic trees associated with st. Every LGMG template originates from a set of
isomorphic minimal spanning trees st and, thus, it is associated with one and only one
string description. Hence, at the end of this step, the value of every entry in HS , which
consists of a root node r and a specific index set idx, corresponds to one and only one
LGMG template. From here on, we address the set of isomorphic trees st as a single tree
for ease of reading, since it is represented by a single root node with an index set.

A.2 Step 2: expanding the minimal spanning trees to LGMG templates

Every minimal spanning tree st, which is obtained from a CGR(S) root node r and an
associated index set idx (an HS entry extracted in the previous step), is expanded to the
maximal directed acyclic sub-graph rooted in r that has the same number of occurrences
in S as st. To do this, we mark the root tree r and propagate markers on the vertices that
are descendants of r. Before proceeding, we have to introduce the definition of associated
path. Informally, each path in CGR(S) is an aggregation of one or more associated paths
in S .

Definition
We say that a path a in an individual tree s ∈ S is associated with a path p from CGR(S),

if and only if:

1. For each vertex va ∈ a there exists a vertex vp ∈ p, such that id(va) ∈ index(vp). We
then say that the vertex va corresponds to vp.

2. Moreover, for each edge ea = (va1, va2, l) ∈ a there exists an edge with the same
label from p, ep = (vp1, vp2, l), such that (id(va1), id(va2)) ∈ index(ep). We say that
the edge ea corresponds to ep.

3. In a, the vertices and edges appear in the same order as their corresponding vertices
and edges in p.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

46 I. Szpektor et al.

Each directed path p in CGR(S) that begins in r is represented via a marker M, which
holds information about:

• ve(M) – the end vertex of p.
• The path between r and ve(M), denoted by path(M).
• The set idx(M), which contains the indices of the end vertices of the paths associ-

ated with p.

We use a processing queue Q′, which stores the markers corresponding to the paths that
cannot be further expanded, and a queue Q, which contains markers for paths that may be
further expanded. For each minimal spanning tree st obtained in the previous step with a
root r in CGR(S) and an index set of the root occurrences idx, the following algorithm is
repeated:

1. Q = {}, Q′ = {}.
2. Create a new marker Mr for which: ve(Mr) = r, idx(Mr) = idx, path(M) = {r}.
3. Add Mr to Q.
4. While Q is not empty:

(a) Flag=false.
(b) Take the next marker in Q and assign it to M.
(c) For each v′, a child of ve(M) s.t. (ve(M), v′) ∈ Ecgr:

i Create a new marker M ′ and initialize its fields in the following way:
ve(M

′) = v′

idx(M ′) = {j|(i, j) ∈ index(ve(M), v′), i ∈ idx(M)}
path(M ′) = append(path(M), v′)

ii If idx(M ′) contains |idx| elements, add M ′ at the end of Q; Flag=true13

(d) If Flag=false, add M at the end of Q′.

At the end of the algorithm, the markers in Q′ represent the paths that form a template t

rooted in r that occurs as many times as the minimal spanning tree st.

A.3 Algorithm efficiency

To simplify our reasoning, we will calculate the efficiency in the case where all parsed
sentences in S are trees in which no slot variable appears more than once. This is the
structure of vast majority of the resulting parsed sentences in S . We denote with |MST | the
number of the different minimal spanning trees in CGR(S), with |Vs| the number of vertices
in a tree s, and with |VS | the number of vertices in the tree collection S . In the first step of
the algorithm, we find the root of the spanning tree in every s ∈ S and generate its textual
description. This step can be performed in a time linear in the number of nodes in s, O(|Vs|),
and for all trees, in time O(|VS |). Using a hash table with ordered keys as an implementation
of the map HS , we can construct the different index sets of every root of minimal spanning
tree in time O(|VS | · log2|VS |). The extraction of the different pairs of root and index-
set from HS is in time O(|MST |). In the second step, we extract an LGMG template

13 This step ensures that we expand the paths while the size of their support set in S is equal to the
size of the support set of the minimal spanning tree st, which is equal to |idx|.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

Acquisition of entailment relations from the Web 47

for each root of a minimal spanning tree r by simultaneously tracing paths in CGR(S)

that start at r. The basic operation when tracing paths is the expansion of markers, in
which the most time-consuming process is the calculation of the index-set of the expanded
markers: idx(M ′) = {j|(i, j) ∈ index(ve(M), v′), i ∈ idx(M)}. In this calculation, for each
arc in S , denoted via pair of indices (i, j), we have to find if i ∈ idx(M). If the index-
sets are ordered, at most log2(|idx(M)|) comparisons are needed to do this.We note that
|idx(M)| < |VS |, the number of the vertices in S . In addition, since we consider tree
structures, we pass at most once through each arc from S while expanding markers. Since
the number of arcs is less than |VS |, the number of comparisons for constructing each
template is O(|VS | · log2|VS |). Using |MST | as the number of the minimal spanning trees,
we obtain a time complexity of O(|MST | · |VS | · log2|VS |). Taking into account the time
complexity estimation of the two algorithm steps, we obtain a bound of O(|VS |+ |MST |+
|MST | · |VS | · log|VS |) = O(|MST | · |VS | · log2|VS |). The number of the minimal sub-trees
that span over variables is bounded by the size of the language lexicon, by the number
of types of syntactic relations and the maximal depth of the syntactic constructions. In
any natural language, these parameters are bounded by constants; therefore, the number
of possible spanning trees can be considered bounded by a constant. Considering this, we
can ignore |MST | in the complexity formula and obtain as a final complexity the estimate
O(|VS | · log2|VS |).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324913000156
Downloaded from https:/www.cambridge.org/core. Universita Degli Studi di Trento, on 19 Jun 2017 at 19:47:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324913000156
https:/www.cambridge.org/core

