
Under review as a conference paper at ICLR 2024

ENHANCEMENT OF GNN’S EXPRESSIVE
POWER VIA RECONSIDERING MODAL LOGIC

Anonymous authors
Paper under double-blind review

ABSTRACT

Since AC-GNNs, in which nodes only gather information from their neighbors
to update features at every layer, are limited in their expressive power, numer-
ous models have been proposed to enable GNNs to go beyond Weisfeiler-Lehman
(WL) test. However there still a lack of effective methods to measure these mod-
els’ expressive power: for a specific task, it is still difficult to figure out whether
the model is competent for the task. We tackle this problem by finding equiva-
lent Boolean classifiers logic for models. By checking whether the task is able
to be expressed as model’s equivalent Boolean classifiers logic formula, we can
be aware of whether the model is competent for task. We propose a framework
for AC-GNNs, denoted as l-div AC-GNNs, to enhance the expressive power. To
be more specific, we classify node’s neighbors according to existence of different
length of paths from node’s neighbors to itself. To find l-div AC-GNNs’ equivalent
Boolean classifiers logic, we introduce the l-div graded modal logic and prove that
a Boolean logical classifiers can be expressed by l-div graded modal logic if and
only if there exists a l-div AC-GNN which is able to capture it. In this paper, three
properties are defined for a framework: invariance and equivariance, approxima-
tion and logic expressive power, we proved l-div AC-GNNs are possessing with
these properties. A series of tasks have been implemented to validate our theo-
retics, the results of experiments demonstrate the validities of both our method to
measure models’ expressive power and expressive power of l-div AC-GNNs.

1 INTRODUCTION

Graph neural networks (GNNs) (Merkwirth & Lengauer, 2005)(Hamilton et al., 2017)(Velickovic
et al., 2017) have become recently become popular and powerful methods with a wide range of ap-
plications, for graph representation learnig, as social and financial networks(Yang et al., 2021),
molecule classification for chemomatics(Dreier et al., 2000), knowledge graph(Yasunaga et al.,
2021) analysis and Web page ranking (Qi & Davison, 2009). Most GNNs follow neighborhood
aggregate-conbine (or message passing) strategy, as at each iteration node will gather feature infor-
mation of its neighbors’ to update its new feature representation (Scarselli et al., 2008). Since the
expressive power of aggregate-conbine GNNs(we denote as AC-GNN) is bounded by bounded by
the one-dimensional Weisfeiler-Lehman (1-WL) test (Xu et al., 2018), there still substantial tasks
that Message-passig GNNs will fail to accomplish. In this paper, we propose a new framework
for AC-GNN (denoted as l-div AC-GNN) to enhance the expressive power of represent AC-GNN,
through establishing connection with model theory formulas to understand its expressive power.

Xu (Xu et al., 2018) has revealed the the theoretical connection between expressive power of GNN
and the Weisfeiler-Lehman (WL)(Douglas, 2011) test algorithm. At each iteration WL algorithm
gather color of nodes’ neighbors’ color to update node color, and it will decide whether a pair of
graph is isomorphism by checking whether there is bijection between the label of each node of two
graphs. We found out that WL test algorithm sometimes decides some pairs of non-isomorphism
graphs is isomorphism because it lacks the ability to recognize different type of node’s neighbors.
Based on this, we have proposed a new graphs isomorphism test algorithm we call it l-div color
refinement algorithm, it classifies node’s neighbors according to whether the neighbor is node’s ith
hop neighbor. The ability to discriminate different types of neighbor enable l-div color refinement
provably to distinguish more non-isomorphism graphs than Weisfeiler-Lehman (WL) test algorithm.

1

Under review as a conference paper at ICLR 2024

Recently, several directions has been proposed to enhance GNN’s expressive power:(1) adding ran-
dom feature into model (Vignac et al., 2020)(Sato et al., 2019) (2) transform GNNs into higher-order
(i.e. k-WL with k 3) (Maron et al., 2018)(Maron et al., 2019) (3) adding local pre-defined graph sub-
structures information as additional features (Bouritsas et al., 2022)(A New 2022); Different from
these work, based on l-div color refinement algorithm, we propose a general framework solution
for every AC-GNN to enhance its expressive power to capture neighborhood structural properties
of graphs. For most of these models, they sacrifice complexity of computation or accuracy (due
to adding randomness into model) in exchange for higher expressive power. However, our frame-
work overcomes this limitation compared with methods in (1), adding randomness will effect on
the accuracy, our framework is able to stay invariant for same input features while doesn’t require
high computational complexity and still go beyond WL-test. Compared with methods in (2), k-
GNN and k-foreloard GNN for example, with improvement of expressive power, the space and time
complexity will also grow exponentially, as requiring O(nk+1) time complexity and O(nk) space
complexity. Compared with methods in (3), most methods still require high space complexity and
time complexity and may only be fit for limited application, our framework is suitable for every
AC-GNN and preserve time complexity and space complexity for O(2l−1nk).

Pablo (Barceló et al., 2020) show the connection between First logic and AC-GNNs and has charac-
terized exactly every formula that can be captured by AC-GNNs if and only if it expressed as graded
logic. In order to enhance formula expressive power, We propose l-div graded logic while we have
proved every graded logic can be expressed by l-div graded logic. It refines graded logic binary
relation E(x, y) into E(i2,···il)(x, y). Also, we have establish the relationship between l-div graded
logic and l-div AC-GNN, by proving that every formula that can be expressed by l-div AC-GNNs
if and only if it can be expressed as l-div graded logic. Therefore, to evaluate whether the l-div
framework is competent for a task, we just have to check whether the task is able to expressed by
l-div graded logic.

The following are our main contributions:

(1)We have proposed a new algorithm l-div color refinement for graphs isomorphism test, and proved
it is more powerful than WL-test.

(2)We have proposed a new framework as l-div AC-GNNs, and proved it is at most as powerful
as l-div color refinement algorithm, hence the framework is more expressive than AC-GNNs. We
proposed three properties that improved framework should qualified, and proved l-div AC-GNNs
has the properties.

(3)We have proposed the l-div graded logic, and proved every formula that can be expressed by
l-div AC-GNNs if and only if it can be expressed as l-div graded logic, and propose a procedure for
evaluating whether the model is fit for the task.

(4) We proposed a new framework for model to measure their expressiveness power by finding their
equivalent modal logic. We have found the equivalent modal logic for k-GNN,local k-GNN, GSN
ESAN and SPD-WL.

We experimentally validate our theoretical result by showing the result of task for AC-GNNs and l-
div AC-GNNs. In particular, we use synthetic graph data to detect whether the node is contained by
triangle which can be expressed by 2-div graded logic while not by graded logic. As the result, the
three common AC-GNNs: GCN, GIN, TAG struggle to fit the training data while 2-div AC-GNNs
is able to generalize with 100 % accuracy. For counting number of triangles that node is contained,
even though the task can not be expressed by 2-div graded model logic, the performances of 2-div
AC-GNNs are still better than AC-GNNs.

2 A NEW HIERARCHY OF NODE’S NEIGHBOR CLASSIFICATION

In this section, we will introduce the hierarchy of node’s in-neighbor classification based on node’s
local structure of the graph. Let graph G⃗ = (V, E⃗) be a directed graph with node set V and directed
edges set E⃗, n = |V | represents the number of nodes. We only consider simple directed graph and
node’s in-neighbors, since every simple undirected graph G=(V,E) can be regarded as directed graph
with node set V and edge set E⃗ = {

−−−→
(v, u),

−−−→
(u, v)|(u, v) ∈ E}, and simplify in-neighbor as neighbor.

2

Under review as a conference paper at ICLR 2024

Figure 1: An overview of our classification for nodes’ neighbors. v1,v2,v3,v5 are v’s 1-hop neigh-
bors and v4 is v’s 2-hop neighbor. Also v1,v2,v3,v5 are classified into two different 1-hop neighbors
types as 1hop 2(0) in-neighborhood: v2,v3,v5 and 1hop 2(1) in-neighborhood: v1, which will pro-
vide more information for model to capture node’s local structure.

The set of N (v) = {u ∈ V |
−−−→
(v, u) ∈ E⃗} denotes in-neighbors of a vertex v. Denote A ∈ Nn×n

as the adjacency matrix of graph G⃗where au,v ∈ A represents there are au,v edge
−−−→
(u, v) from

node u to node v. In the following,we define notions of the sets of node’s neighborhoods and the
adjacency matrix induced by them, which are connected with node’s local structure. If not specially
mentioned, we denote direct graph as G = (V,E) instead of G⃗ = (V, E⃗) and regard undirected
graph as a directed graph with edge set E⃗ = {

−−−→
(v, u).

Definition 2.1 (K-Hop Neighborhood). Node u is said to be node v’s k − hop neighborhood, if the
length of the shortest directed path from u to v equals to K. We denote the set of u as Nk−hop(v) or
N(v) when k=1.

Definition 2.2 (K-Hop L(i(K+1)···iL) Neighborhood). Node u is said to be node v’s k −
hop L(i(K+1)···iL) neighbor (i(k+1) · · · il ∈ (0, 1)L−K), then for any t (K + 1 ≤ t ≤ L), it = 1
if and only if then there exists directed path with length t from u to v, else if it = 0 then there
does not exist any directed path with length t from u to v. Denote the set of u as Nk−hop

L(i1,i2···it)
(v) or

NL(i1,i2···it)
(v) when k=1.

Definition 2.3 (K-Hop L(i(K+1),i(K+2)···iL) Induced Adjacency Matrix). Given a graph with adja-
cency matrix A, CallAk the k-hop adjacency matrix and denote k−hop l(i(k+1),i(k+2)···iL) adjacency

matrix as Ak
l(i(k+1),i(k+2)···il)

where (Ak
l(i(k+1)···il)

)u,v = 0 if and only if u /∈ Nk−hop
l(i(k+1)···il)

(v), else

(Ak
L(i(k+1)···il)

)u,v = 1 if u ∈ Nk−hop
L(i(k+1)···il)

(v).

Definition 2.4. We define operator MaskA(·) and Mask∼A(·) as follow:

MaskA(X)i,j =

{
0 if ai,j = 0

xi,j if ai,j ̸= 0
(1)

Mask∼A(X)i,j =

{
xi,j if ai,j = 0

0 if ai,j ̸= 0
(2)

Also, we define the direct product of operator MaskA(·) as: MaskA⊙B(·) =MaskA(MaskB(·))
and Mask∏k

i=1 ⊙Ai
(·) =MaskAk⊙Ak−1⊙···⊙A1

(·)

Lemma 2.1. Let G⃗ be a graph with adjacency matrix A. The number of walks from u to v in G⃗ with
length k is (Ak)u,v

Theorem 2.1. Given sequence (i(k+1), i(k+2) · · · , il) ∈ (0, 1)(l−k), a graph G = (V,E) with
induced adjacency matrix A and t(k + 1 ≤ t ≤ l), define (At)(i(k+1)··· ,il) = At if it = 1 , else
(At)(i(k+1)··· ,il) =∼ At if it = 0, then AK

L(i(k+1)··· ,il)
=Mask∏L

t=K+1 ⊙(At)
(i(k+1)··· ,il)(A

K)

The proofs of lemma 1 and theorem 1 are provided in Appendix C.

3

Under review as a conference paper at ICLR 2024

Figure 2: Figure 2 shows how to compute 1 − hop 2(0) and 1 − hop 2(1) induced adjacency
matrix A2(0) , A2(1) : First, compute 2-hop induced adjacency matrix A2 to generate operator
MASK(A2)(0)(·) and MASK(A2)(1)(·),then by theorem 1. we are able to gain 1 − hop 2(0) and
1− hop 2(1) induced adjacency.

3 L-DIV GRADED MODEL LOGIC

3.1 INTRODUCTION OF GRADED MODEL LOGIC

Over a graph, first order (FO) logic classifier regards every node as a ”term”. If every node has
a label as label(x), consider a formula classifier α(x) that is formed with atomic formulas: x =
y, E(x, y), label(x), boolean connectives: ∧,¬ as ”and” and ”not” and quantifiers ∃ as Boolean
classifiers. Also, first order (FO) logic is able to represent the boolean connectives ∨,→,↔ as
“or”,“implies” and “iff” respectively. Consider the formula with one free variable as follow:

β(x) := Yellow(x) ∧ ∃y
(
E(x, y)

)
∧ ∃z

(
E(x, z) ∧ Red(z)

)
∧ ¬(y = z) (3)

The logic classifier is True iff node x’s label is yellow and has at least two neighbors while at least
one of them whose label is red. The extension FOC of first order logic replaces the quantifiers by
counting quantifiers: ∃≥p,∀≥p like the following formula:

γ(x) := Yellow(x) ∧ ∃≥4y[E(y, x) ∧Green(y)] (4)

Since FOC is too powerful to make connection with GNN, FOC2 is introduced to restrict the
expressive power by allowing at most two of the variables are used in the formula, the set of formula
is denoted as FOC2

Since any node for a fixed number L of layers in an AC-GNN is not able to learn any information
further than at distance L in the graph, hence there exists formula α ∈ FOC2 that is not able to be
captured by any GNN with a fixed number L of layers.
Proposition 1. (Barceló et al., 2020) There is an FOC2 classifier that is not captured by any AC-
GNN

Therefore, pablo introduced graded modal formulas to restrict formula expressive power. Graded
modal formulas are formed with propositional variables p, q · · · , boolean connectives ∧,¬ as ”and”
and ”not”, and the unary modal operators ♢⩾n for n > 1, the set Graded modal formulas is denoted
as LGML.

A model(Helfand, 1975) for graph is a triple M = (V,R,W), where V is a non-empty set of nodes,
R is a binary relation on V, in graph xRy usually denotes there is an directed edge from node y to
x, and W is a valuation, which is a function mapping a subset of V to every proposition letter. For
example, if there is a path (v1, v2, · · · vn), we can define W (v1, v2, · · · vn) to denote the length of
the path. We can see graded modal formulas is formed in a familiar way for the atomic formula
W (v1, v2, · · · vn) = q and boolean connectives ¬ ∧ , and the modal operators is defined as follow:

M, v |= ♢nφ ⇐⇒ ∄=v1 . . . vn
∧

1≤i≤n

(vRvi ∧M,vi |= φ) (5)

4

Under review as a conference paper at ICLR 2024

In direct perceiving, graded modal formula only allows formula to check the property of node’s
neighbor or itself, which is similar to the framework of GNNs. Hence if there is not a path from x
to y, then formula α is not able to be expressed by graded modal formulas.

Definition 3.1. A GNN classifier A captures a logical classifier φ(x) if for every graph G and node
v in G, it holds that A(G, v) = true if and only if (G, v) |= φ.

Proposition 2. ((Barceló et al., 2020)) A logical classifier is captured by AC-GNNs if and only if it
can be expressed in graded modal logic.

Figure 2 point out that some logical classifiers like checking whether node is contained by a triangle
can not be expressed by graded modal logic. It intrigues us to ask the following question:

1. Can we structure a new logic classifiers that is more expressive than graded modal logic?

2. What kind of GNNS is able to capture the new logic classifiers?

We will answers to the first question in the next subsections and the second question in the next two
sections.

3.2 L-DIV GRADED LOGIC

Review the reason why GNNs fails in checking whether node is contained by a triangle, we found
out the reason is that GNNs lack the ability to discriminate different neighbor. Hence we consider the
formula with atomic formulas: X = Y,E(0)(x, y), E(1)(x, y), label(x) as Boolean classifiers, and
else same as logic FO, E(0)(x, y) is True iff y ∈ N2(0)(x) and E(1)(x, y) is True iff y ∈ N2(0)(x),
we call the logic classifier as 2−div FO. Since E(x, y) = E(0)(x, y)∨E(1)(x, y), every formulas
in FO can be expressed by 2− div FO. For example,

α(x) := ∃y[E(x, y) ∧ ∃z(E(z, x) ∧ E(y, z))] (6)

Formula α(x) is evaluated to be true if node x is contained in a triangle in a undirected graph. We
can express it by 2− div FO:

α(x) := ∃y[(E(0)(x, y)∨E(1)(x, y))∧∃(z(E(0)(z, x)∨E(1)(z, x))∧(E(0)(y, z)∨E(1)(y, z)))] (7)

There are three terms x,y,z in α(x), however it is possible to express an equivalent formula with
fewer variables:

α′(x) := ∃y(E(1)(x, y)) (8)

Equation (8) inspires us that some formulas that cannot be expressed by FOC2 is able to be ex-
pressed by 2 − div FOC2. Hence it is possible to extend the logic of formula in FOC2, that
some formula can be expressed within less variables. Based on this idea, same as 2 − div FO,
replace atomic formulas withX = Y,El(i2,i3···il)(x, y), label(x), where E(i2,i3···il)(x, y) is true iff
y ∈ Nl(i2···il)

(x), and for the rest same as FOC2, we denote the logic as l − div FOC2.

We now can answwer the first question by introducing l-div graded modal logic, same as graded
modal logic, the model for l-div graded modal logic is M = (V,Rl(i2···il)

,W), where V is a
non-empty set of nodes, Rl(i2···il)

is a binary relation on V, in graph xRl(i2···il)
y denotes y ∈

Nl(i2···il)
(X), and W is a valuation, which is a function mapping a subset of V to every letter. Graded

modal formulas is formed with the atomic formula W (v1, v2, · · · vn) = q and boolean connectives
¬ ∧ , and the modal operators is defined as follow:

M, v |= ♢n
l(i2···il)

φ ⇐⇒ ∄=v1 . . . vn
∧

1≤i≤n

(vRl(i2···il)
vi ∧M,vi |= φ) (9)

Theorem 3.1. If l ≤ 2, every FO formula that can be expressed by (l+1)-div graded modal logic
classifier can also be expressed by l-div graded modal logic classifier

Corollary 3.1. If l ≤ 2, every formula FO that can be expressed by graded modal logic is able to
be expressed by l-div graded modal logic.

Theorem 3.2. Each l-div graded modal logic classifier is captured by a l-div AC-GNN.

5

Under review as a conference paper at ICLR 2024

Algorithm 1 L-Division Color Refinement
Input:Directed graph G = (V,E,XV), deep of division: l, the number of iteration T
Output:Labels of nodes
Initialize: c(0)v ← hash(Xv)(∀v ∈ V), t = 1
While not converged or t ≤ T
ctv ← hash(ct−1

v , {{ct−1
w : w ∈ Nl(i2,i3···il)

(v)}}), ∀v ∈ V, (i2, i3 · · · il) ∈ (0, 1)l−1, t = t+ 1

Figure 3: It shows the process for color refinement and 2-neighbor division color refinement. The
color of color refinement, which is as powerful as 2-WL, operating on pair of two graphs for each
node will always be the same, meaning that color refinement is not able to distinguish this pair of
non-isomorphism graphs.While in 2-neighbor division color refinement, the neighbors of node v
in two graphs are distributed into different multiset, the color for each graph will not be the same,
meaning that 2-neighbor division color refinement is able to distinguish this pair of non-isomorphism
graphs

4 NEIGHBOR L-DIVISION COLOR REFINEMENT ALGORITHM

Color refinement algorithm, also known as the 1-dimensional Weisfeiler-Leman algorithm, is widely
used for detecting whether a pair of graphs are isomorphic. It starts with node’s initial feature as
node’s color, then update the color by gathering information from node’s neighbors, and combine
them along with node’s previous color, the algorithm stops when it convergences or reaches the
largest iterations. FOCk is the fragment of FOC, which consists of all formulas that contain at most
k distinct variables. Graph A,B is said as Ck − equivalent, denoted as A ≡k

C B, if any formula
α ∈ FOCK , and any set of nodes SA in graph A that |SA| = k, there exists set of nodes SB with
|SB | = k, that satisfies α(SA) = α(SB). Color refinement algorithm is strongly connected with
FOC2,
Proposition 3. (Immerman and Lander).For two graphsA andB, A ≡2

CB if, any only if, color
refinement does not distinguish A and B.
Proposition 4. (Cai, Furer, andImmerman).For two graphs A and B, A ≡k

C B if, and only if,
k-WL does not distinguish A and B.

We extend color refinement algorithm and propose l-div color refinement algorithm to enhance algo-
rithm’s expressive power in distinguishing non-isomorphism graphs. It discriminates node’s neigh-
bors by distributing different types of node’s neighbors into different multisets, injective hash func-
tion makes it sure that node with different node’s neighbors can be discriminated by the algorithm.
Figure 3 shows that there’s a pair of non-isomorphism graphs that 2-div color refinement algorithm
is able to distinguish, while color refinement fails.
Lemma 4.1. For l ≥ 2, there exists a pair of non-isomorphic graphs that l-division color refinement
algorithm outputs ”possibly isomorphic” while (l+1)-division color refinement algorithm outputs
”non-isomorphic”

6

Under review as a conference paper at ICLR 2024

Theorem 4.1. For l ≥ 2, (l+1)-division color refinement algorithm is strictly more powerful than
l-division color refinement algorithm.
Corollary 4.1. 2-neighbor division color refinement algorithm is strictly more powerful than color
refinement algorithm.

5 NEIGHBOR DIVISION FRAMEWORK

In this section, we will answer the second question: What kind of GNNS is able to capture l-div
graded logic classifiers. Denote h(i)v as the representation of node v in layer i. An aggregate-combine
GNN which follows neighborhood aggregation strategy, then update representation by combining
neighborhood information and former representation as follow:.

m(i)
v = AGGREGATE(i)

(
{{h(i−1)

u : u ∈ N (v)}}
)

(10)

h(i)v = COMBINE(i)
(
h(i−1)
v ,m(i)

v

)
(11)

A common choice for aggregation function is to sum node’s neighbors’ representation, hence every
iteration of AC-GNNs can be expressed as:

h(i)v = σ(h(i−1)
v ·W i

1 +
∑

u∈N(v)

h(i−1)
u ·W i

2 + Ci) (12)

Characteristically, we focus on how to enhance the expressive power more than 1-WL test. By
reviewing the task of detecting triangle, the shortcoming of AC-GNNs is that them ignore node’s
neighbors’ local structure information. A natural improvement for AC-GNNs is to classify node’s
neighbors into different categories. Formally, we propose L-division framework for AC-GNN, mak-
ing the model competent in distinguishing node’s neighbors with different local structure to enhance
model’s expressive power, the aggregation and combination function are as follow :

mv
(i,l(i2···il)) = AGGREGATE(i)({{h(i−1)

u : u ∈ Nl(i2···il)(v)}}) (13)

h(i)v = COMBINE(i)
(
h(i−1)
v , {m(i,l(i2···il))

v }
)

(i2 · · · il) ∈ (0, 1)l−1 (14)

If the choice of aggregate and combination function is to sum up the representation in each category,
the framework can also be expressed as:

h(i)v = σ(h(i−1)
v ·W i

1 +
∑

(i2···il)∈(0,1)l−1

∑
u∈Nl(i2···il)(v)

h(i−1)
u ·W i

(i2···il) + Ci) (15)

To answer the second question, we still have to prove that l-div framework is able to capture l-div
graded modal logic. We represent two defination to investigate their relationship.
Definition 5.1. (Equivalent logic): We define the set of all logical classifiers that the GNN can
captures as GNN’s equivalent logic, denote as tp(GNN).
Definition 5.2. For two GNN1 and GNN2, we say GNN2 is logically more expressive than
GNN1, iff tp(GNN1) ⊆ tp(GNN2).
Theorem 5.1. A logical classifier is captured by l-Div-AC-GNNs if and only if it can be expressed
in l-div graded modal logic.

Comparing with original AC-GNNs, it is appropriate for improved framework to be assumed that
the ouput should not be deviated from the output by its original AC-GNNs. Therefore to describe
this ability we define three properties that the framework should inherit

Property 1. Invariance and Equivariance: In graph-level task, permutation σ for a AC-GNN is
said to be invariant, if ∀ = (V,E,X) with |V | = n, denote A as indeuced adjacency matrix and
σ(G) = (σ(V), σ(E), σ(X)) with indeuced adjacency matrix σ(A), AC −GNN(σ(G)) = AC −

7

Under review as a conference paper at ICLR 2024

Figure 4: Given a formula as α(x) = ∃≥2y(Green(y) ∧ E(x, y)), max aggregator will fail in
capturing α for the first pair of graphs. And mean and max will fail for the second pair of graphs

GNN(G), the permutation set containing all such σ is denoted as SAC−GNN
I (n). Same argument,

In node-level task, permutation σ for a AC-GNN is said to be equivariant, if ∀ = (V,E,X) with
|V | = n, AC −GNN(σ(G)) = σ(AC −GNN(G)), the permutation set containing all such σ is
denoted as SAC−GNN

E (n). Denote the the permutation set of improved framewrok AC −GNNimp

as SAC−GNNimp

I (n) and SAC−GNNimp

E (n). We say AC −GNNimp inherits invariance and equiv-
ariance, if ∀n ∈ N,SAC−GNN

I (n) ⊆ SAC−GNNimp

I (n), SAC−GNN
E (n) ⊆ SAC−GNNimp

E (n)

Property 2. Approximate: Given ∀ graph with feature G⃗ = (V, E⃗,X) and parameter setting
Θ for acertain AC-GNN, denote the improved framework of AC-GNN as AC − GNNimp, then
there exists a parameter setting Θimp for AC − GNNimp that the output of AC-GNN is equal to
AC−GNNimp. Foemally, ∀G = (V,E,X), ∀Θ, ∃Θimp, AC−GNN(G) = AC−GNNimp(G).

Property 3. Logic Expressive Power: For ∀ AC-GNN, tp(AC −GNN) ⊆ tp(AC −GNNimp)

Definition 5.3. For any set X and X ′ = X
⋃
x is a set and We say an AC-GNN is of countable

additivity, if at every layer i its aggregate function has the property as:

AGGREGATE(i)(X ′) = AGGREGATE(i)(X) +AGGREGATE(i)({x}) (16)

Theorem 5.2. Given AC-GNN of countable additivity, then its l-div framework inherits three Prop-
erties above.

6 LOGIC EXPRESSIVE POWER OF AGGREGATORS

Figure 4 shows the logic power of aggregators as sum,mean and max, . Consider formula for node v
φ = ♢≥2, sum aggregator is able to capture the graded logic classifier. However, in figure 3 it shows
that there are some graded logic classifier that mean and max aggregator. To explore the expressive
power of GNNs which follows mean and max aggregator, we limit the modal operator in graded
modal logic by replacing the counting quantifiers by quantifiers as:

M,w |= ♢′φ ⇐⇒ ∃v(Rwv ∧M,v |= φ) (17)
We denote the set of Logical classifier formula as L′

GML

Theorem 6.1. Logical classifier L′
GML can be captured by AC-GNNs which uses mean and max

aggregator .

7 EXPERIMENTAL RESULT

In this section, we utilize synthetic data to perform experiment to validates theorem that a for our
theory. There are few questions that we wish to validate through experiments:

(1): Is l-div framework able to capture l-div graded modal logic?

(2): Is sum aggregator able to capture counting quantifier while sum ∃≥n and does GNN with

mean or max aggregator fail in capturing counting quantifier?

8

Under review as a conference paper at ICLR 2024

(3): Will the extra layers of GNN obstruct GNN’s logic expressiveness.

Logic Expressiveness Of L-Div GNN The aim of this experiment is to show the expressiveness of
2-division GNN. We perform the experiment using common model GIN,GCN,GAT and their 2-div
frameworks. We designed two task as:(1) detecting whether a node is contained by a triangle (2)
counting the number of triangles that contains the node, to show that 2-div GNN is able to learn
a very simple node classifier α which can be expressed by l-div graded modal logic while graded
modal logic cannot. We generate two different type graph as erdos renyi graph and random regular
graph with 4000,5000,6000 nodes. Table F shows the result of task 1: model GIN,GCN,GAT is
not able to perfectly solve the task. However, their 2-div frameworks achieves 100% accuracy in
the task. It shows that 2-div GNN is able to capture the formula of task 1, which can be expressed
by 2-div graded modal logic. Table F shows the result of task 2: even though task 2 cannot be
expressed by 2-div graded modal logic the performance of GIN’s,GCN’s,GAT’s 2-div frameworks
are still better than themselves’. This experiment validates theorem 5.1.

Logic Expressiveness Of aggregator To answer the second question, we designed task 3 to detect
whether node is contained by at least two triangles. The task is able to be expressed by 2-div graded
modal logic but not by 2-div Logical classifier 2 − div L′

GML. We used GIN with sum, mean and
max aggregators to solve the task, Table F shows the result of task 3: aggregators mean and max
is not able to perfectly solve the task and their : accuracy results are surprisingly concordant while
sum aggregator achieves 100% accuracy in the task 3. It validates that aggregators mean and max is
not able to capture counting quantifier while sum aggregator is able to.

Logic Expressiveness Of aggregator To answer the third question, we use 2-div GIN with different
layers to solve task 3. Table F shows the results: 2-div GIN achieves 100% accuracy in the task
3 with number of layers 1,2,3. It shows the extra layers of GNN will not obstruct GNN’s logic
expressiveness. All the datas are provided in appendix.

REFERENCES

Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo Silva.
The logical expressiveness of graph neural networks. In 8th International Conference on Learning
Representations (ICLR 2020), 2020.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2022.

Brendan L Douglas. The weisfeiler-lehman method and graph isomorphism testing. arXiv preprint
arXiv:1101.5211, 2011.

Birgit Dreier, David J Segal, and Carlos F Barbas III. Insights into the molecular recognition of the
5-gnn-3 family of dna sequences by zinc finger domains. Journal of molecular biology, 303(4):
489–502, 2000.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Eugene Helfand. Theory of inhomogeneous polymers: Fundamentals of the gaussian random-walk
model. Journal of Chemical Physics, 62, 1975.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. arXiv preprint arXiv:1812.09902, 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

Christian Merkwirth and Thomas Lengauer. Automatic generation of complementary descriptors
with molecular graph networks. Journal of chemical information and modeling, 45(5):1159–
1168, 2005.

Xiaoguang Qi and Brian D Davison. Web page classification: Features and algorithms. ACM
computing surveys (CSUR), 41(2):1–31, 2009.

9

Under review as a conference paper at ICLR 2024

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks
for combinatorial problems. Advances in Neural Information Processing Systems, 32, 2019.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
gio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
neural networks with structural message-passing. Advances in neural information processing
systems, 33:14143–14155, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Liangwei Yang, Zhiwei Liu, Yingtong Dou, Jing Ma, and Philip S Yu. Consisrec: Enhancing
gnn for social recommendation via consistent neighbor aggregation. In Proceedings of the 44th
international ACM SIGIR conference on Research and development in information retrieval, pp.
2141–2145, 2021.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa-gnn:
Reasoning with language models and knowledge graphs for question answering. arXiv preprint
arXiv:2104.06378, 2021.

10

Under review as a conference paper at ICLR 2024

A INTRODUCTION OF MODAL THEORY

A.1 MODAL LOGIC

We now use the following symbols to define terms and formulas:

(1) logical symbols: boolean connectives ∧,∨,¬,→,↔ as ”and”, ’or”, ”not”, ”implies” ”iff” re-
spectively. While every boolean connectives can be expressed by ∧,∨,¬,=.

(2)the boolean quantifiers ∀,∃ as ”for all” and ”there exists”.

(3)constant symbols: usually denoted as c.

(4)function symbols: usually denoted as W with subscripts.

(5)relation symbols : usually denoted as R with subscripts.

(6)symbol = as and ”equal”

Definition A.1. A term is defined as follows:

(1)variable and constant are terms

(2)if W is an function symbol and t1 · · · tm are terms, then W (t1 · · · tm) is a term.

Definition A.2. A formula is defined as follows:

(1): if t1 · · · tm are terms and R is a relation symbols function, then t1 = t2 and R(t1 · · · tm) are
formulas.

(2)If φ and ψ are formulas then φ ∧ ψ,φ ∨ ψ,¬ψ,φ→ ψ,φ↔ ψ are formulas.

(3)If x is a variable and ψ is formulas, then ∀xψ(x) and ∃xψ(x) are formulas.

For any terms t1 · · · tm and constant C, we regard R(t1 · · · tm),t1 = t2 and W (t1 · · · tm) = C as
atomic formula.

Proposition 5. Every formula in modal logic is formed by atomic formula and boolean connectives

Model logic is formed with model and language which is a set of formulas. For graph, model is
defined as follow:

Definition A.3. In graph, A model (or structure) A is usually formed as < V,R,W >, V is a
nonempty set, usually denotes the set of graph nodes, R are relation symbol where for a graph R
usually represents the information of graph edges set and W are function symbol which usually
represents nodes’ features.

A.2 GRADED MODAL THEORY

Graded modal formulas are usually formed with propositional variables p, q, . . ., boolean connec-
tives ∧,¬ and modal operators:♢≥n for n ≥ 1. The language is usually denoted as LGML.

B METHOD TO MEASURE GNN’S EXPRESSIVENESS

Since XUer,(2019 a) propose that AC-GNN is bound by 1-WL, substantial frameworks have been
proposed dedicating to enhance GNN’s expressive power. However, there’s still puzzlement that
whether the framework is competent for a specific task. Sometime high expressive power framework
has been choose which might cause high computational cost. To solve this problem, We now propose
a framework to measure model’s expressiveness: For given GNN, find its equivalent modal logic.
For any given task, if the task is able to be transferred into GNN’s equivalent modal logic then the
GNN is competent for the task. Hence the key segment is to find model’s equivalent modal logic.
Here we roughly classify these improved framework into 3 categories and proposed a framework for
their equivalent modal logic, please see appendix C for the details.

11

Under review as a conference paper at ICLR 2024

B.1 EQUIVALENT MODAL LOGIC FOR HIGH-ORDER GNN

Based on high order k-WL or folklore k-WL tests, for k ≥ 2, these GNNs regard k-tuple of nodes as
a new unit node in the framework.(k-GNN’s and local k-GNN’s equivalent modal logics are provided
in Appendix) The modals for these GNNs are usually as form:Mhigh−order =< V k, Ri,W >,
where V k usually is the k-tuple set, Ri usually is a 2-placed relation on V k. For example, in k-WL
test, Riv,ω)(1 ≥ i ≥ k) is true if ω ∈ Ni(v) where Ni(v) = {(v1 · · · , w, vi+1 · · · vk)|w ∈
V,w ̸= vi} is v′s i-th neighborhood. W is an m-placed function that normally represents induced
graph G[v] comparing with every contant graph set H = {ht} that W (v, Ht) is true iff G[v] = Ht.
Modal logic formula on Mhigh−order are normally form with atomic formulas W (v, Ht), boolean
connectives ∧,¬, and graded modal operator

M,v |= ♢n
i φ ⇐⇒ ∄=v1 . . .vn

∧
1≤l≤n

(R(v,vl)) ∧M,vl |= φ) (18)

B.2 EQUIVALENT MODAL LOGIC FOR SUBSTRUCTURE-BASED

Substructure-based GNNs usually enhance expressive power by appending node’s local substruc-
ture information (Graph Substructure Networks equivalent modal logics are provided in Appendix)
Given a graph G, the modals for these GNNs are usually as form:Msub =< V,R,W >, where V
usually is the node set, R usually is a 2-placed relation on V , R(V,Ω) is true iff (v, ω) ∈ E. W
is an m-placed function that normally represents node’s local substructure information comparing
with selected constant graph set H = {ht} that W (v,Ht) is true iff node v is contained in Ht or
W has form as W (v,Ht, p) where p is a constant, W (v,Ht, p) is true iff the number of different
nodes set Si while v ∈ Si and induced graphG[Si] is isomorphic toHt is p. Modal logic formula on
Msubstructure−based are normally formed with atomic formulas W (v, Ht) or W (v,Ht, p), boolean
connectives ∧,¬, and graded modal operator

M, v |= ♢nφ ⇐⇒ ∄=v1 . . . vn
∧

1≤l≤n

(Ri(v, vl)) ∧M,vl |= φ) (19)

B.3 EQUIVALENT MODAL LOGIC FOR GRAPH TRANSFORMATION

Graph transformation GNNs usually enhance expressive power by transforming graph into a new
graph by predefination and caculate the output by aggregating across all the transformed graphs. (
Equivariant Subgraph Aggregation Networks modal logics are provided in Appendix) Given a graph
G, the modals for these GNNs are usually as form:Mtrans =< V,Ri > and transforming policy
πi(1 ≥ i ≥ k), where V usually is the node set. Denote the identical transformation policy as π0,Ri

usually is a 2-placed relation on V , Ri(V,Ω)(0 ≥ i ≥ k) is true iff node v and ω is connected in
graph πi(G). Modal logic formula on Mtrans are normally formed with boolean connectives ∧,¬,
and graded modal operator

M, v |= ♢n
i φ ⇐⇒ ∄=v1 . . . vn

∧
1≤l≤n

(Ri(v, vl)) ∧M,vl |= φ) (20)

C WEISFEILER-LEHMAN TEST AND MODAL LOGIC FOR RECENTLY
PROPOSED VARIANTS

C.1 1-DIMENSIONAL WEISFEILER-LEHMAN TEST(1-WL)

Given two graph G = (V1, E1) and H = (V2, E2), G and H are considered to be isomorphic if
there is a bijection φ between V1 and V2 that preserves nodes’ adjacencies: (E1(v1, ω1) if and only if
E2(φ(v1), φ(ω1))). 1-dimensional Weisfeiler-Lehman test is a algorithm calculating color for each
node inG andH . If there is a bijection between the color of two graphs. The algorithm will consider
two graphs to be isomorphic. First, the color of each node is initialized to be the degree of node.
Then, for each iteration of the algorithm, a tuple of color that containing node’s predecessor color
and the multiset of the node’s neighbors’ predecessor color will be compressed by a hash function.

Let ST
v be the node set of graph G that the distance from node v is at most t and G(ST

v) be a
induced graph by node set ST

v . Notice if the largest number of iteration is T, then the color of

12

Under review as a conference paper at ICLR 2024

Algorithm 2 1-dimensional Weisfeiler-Lehman test(1-WL)
Input:graph G = (V,E), the largest number of iteration:T
Output:color of nodes
Initialize:
c
(0)
v ← hash(degree(v))(∀v ∈ V)

While: not converged or number of iteration t ≤ T
ctv ← hash(ct−1

v , {{ct−1
w : w ∈ N (v)}}) ∀v ∈ V

Figure 5: 4 different initialized color in 3-dimensional Weisfeiler-Lehman test

node v is determined by induced graph G(ST
v). Hence for every connected graph, there exists T

that G[ST
v] = G for any node V. This implies 1-dimensional Weisfeiler-Lehman test will finally

converge for every connected graph. If there’s not a bijection between color of two graphs, then two
graphs are definitively not isomorphic. However, there exists a pair of non-isomorphic graphs that
share the same canonical form, however, the algorithm will determine two graphs are isomorphic.

C.2 K-DIMENSIONAL FRAMEWWORK

C.2.1 K-DIMENSIONAL WEISFEILER-LEHMAN TEST

Given a graph G = (V,E), k-dimensional Weisfeiler-Lehman test regrads v = (v1, · · · vk) ∈ V k

as a k-tuple. Define v⃗(i, ω) ∈ V k as a k-tuple that replaces vi by ω and ⃗v[i, ω] ∈ V k is said to be
v⃗’s i-neighbor denoted as v⃗[i, ω] ∈ Ni(v⃗). In k-dimensional Weisfeiler-Lehman test, every k-tuple’s
initialized color is based on the induced graph G[v1, · · · vk]. Specifically two k-tuples is initialized
with the same color if and only if they have same induced graph G[v1, · · · vk]. For example, as the
figure 5 shows, there are 4 different initialized color in 3-dimensional Weisfeiler-Lehman test.

C.2.2 K-DIMENSIONAL GRAPH NEURAL NETWORKS

Morris et al.(2019) proposed the framework of k-dimensional Graph Neural Networks based on
the k-dimensional Weisfeiler-Lehman test(k-WL). The model considers every k-element subset v⃗ ∈
V (G)k over node set V (G). Due to restriction of computation complexity and GPU memory, v⃗’s
i-neighbors Ni(v⃗) are combined into one neighbor set as:

N(v⃗) = {ω⃗ ∈ [V (G)]k | |v⃗ ∩ ω⃗| = k − 1} (21)

If ω⃗ ∈ N(v⃗), let ω⃗/v⃗ denotes the unique node t that t ∈ ω⃗, t /∈ v⃗. The local neighborhood is defined
asNL(v⃗) = {ω⃗|ω⃗ ∈ N(v⃗), (ω⃗/v⃗, v⃗/ω⃗) ∈ E(G)} and global neighborhoodNG(v⃗) = N(v⃗)/NL(v⃗).

Denote χt
k(v⃗) as the feature for tuple v⃗ at layer t. The feature χ0

k(v⃗) is initialized by a one-hot en-
coding feature function of the induced graph G[v⃗] with input features. In k-GNN χt(v⃗) is computed
by:

χt
k(v⃗) = σ(χt−1

k (v⃗) ·W (t)
1 +

∑
⃗ω∈NL(v⃗)∪NG(v⃗)

χt−1
k (ω⃗) ·W (t)

2 +Ct) (22)

To prevent overfitting, Morris et al.(2019) proposed the local k-GNN as:

χt
k(v⃗) = σ(χt−1

k (v⃗) ·W (t)
1 +

∑
ω⃗∈NL(v⃗)

χt−1
k (ω⃗) ·W (t)

2 + Ct) (23)

13

Under review as a conference paper at ICLR 2024

Algorithm 3 k-dimensional Weisfeiler-Lehman test(k-WL)
Input:graph G = (V,E), the largest number of iteration:T
Output:color of k-tuple V k

Initialize:
c
(0)
v⃗ ← hash(G[v1, · · · vk])(∀v⃗ ∈ V k)

While: not converged or the number of iteration t ≤ T
ctv⃗ ← hash(ct−1

v⃗ , {{ct−1
w⃗ : w⃗ ∈ Ni(v⃗)}}) ∀v⃗ ∈ Nk

C.2.3 EQUIVALENT MODAL LOGIC

Given a graph G, we define the modal induced by k-GNN as Mk−GNN =<
V k, Ek, Fk−GNN , {Hk} >, V k is the k-tuple set, Ek is a 2-placed relation on V k and
Ek(v⃗, ω⃗) is true iff |v⃗ ∩ ω⃗| = k − 1, Fk−GNN is an 2-placed function that Fk−GNN (v⃗, Hk) is
true iff G[v⃗] = Hk, {Hk} is a set of constant k nodes graph corresponding to {G[v⃗]|v⃗ ∈ V k}. The
language is Graded modal formulas LGML, with atomic formulas:Fk−GNN (v⃗, Hk). And modal
operatior ♢ which is defined as :

M, v⃗ |= ♢nφ ⇐⇒ ∄=v⃗1 · · · v⃗n
∧

1⩽i⩽n

(E(v⃗, v⃗i)) ∧M, v⃗i |= φ) (24)

Same argument, we define the modal induced by local k-GNN as Mk−GNN =<
V k, Ek−local, Fk−GNN , {Hk} >, except for Ek−local(v⃗, ω⃗) is true iff v⃗ ∩ ω⃗| = k − 1 and
(ω⃗/v⃗, v⃗/ω⃗) ∈ E(G), the rest is same as k-GNN logic.
Theorem C.1. k-GNN is able to capture k-GNN logic, local k-GNN is able to capture local k-GNN
logic.

Proof. For every k-GNN formula φ(v⃗), let sub(φ) = (φ1, · · ·φn) be a sequences of subformula of
φ(v) that every subformula v⃗)i is formed as atomic formula: F (V⃗) = Hk

i or like φi = φj ∧ φl,
φi = ¬φj or φi = ♢≥Nφj for j, l < i and φn = φ. Formally construct a k-GNN or local k-GNN
with n layers and the aggregation and combine function is as equation ?? or ??, W t

1 and W t
2 are two

n× n matrixs and Ct is a n− length vector. For 1 ≤ t ≤ n, every layer are defined as follow:

if φt = Fk−GNN (v⃗, Hk) , then let W t
1(t, t) = 1

if φt = φj ∧ φk, then let W t
1(j, t) = 1, W t

1(k, t) = 1 and Ct(i) = −1
if γt(x) = ¬γk, then let W t

1(j, t) = −1 and Ct(i) = −1
if γt(x) = ♢≥Nγj , then let W t

2(j, t) = 1 and Ct(i) = N − 1

and all the rest of values in the ‘t-th iteration of W t
1 ,W

t
2 , C

t are 0. Activation function σ(x) =
min(max(0, x), 1). Then it is easy to prove such k-GNN and local k-GNN is able to capture
formula φ(v⃗).

Theorem C.2. 3-GNN and local 3-GNN is competent for detecting triangle task.

Proof. Let H0 be a complete graph with 3 nodes and φ(v⃗) = (F (v⃗) = H0). Notice φ(v⃗) can be
expressed by 3-GNN and local 3-GNN logic and let α(v0) = ∃v⃗∈V k,v0∈v⃗(φ(v⃗)). Hence α(v0) is
true iff node v0 is contained by a triangle.

C.3 GRAPH SUBSTRUCTURE NETWORKS(GSN)

Bouritsas et al. (2022) proposed a variant framework based on WL as Graph Substructure Net-
works(GSN) that is able to capture the structure of the underlying graph. To take the frame-
work into application, first we need to specify a set of (small) selected connected graphs H =
{H1, · · ·Hk}.Given a graph G = (V, E), the extra node feature are defined as follow:

xVHi
(v) := | {G[S] : S ⊂ V, G[S] ≃ Hi, v ∈ S} |, i ∈ [dH] . (25)

14

Under review as a conference paper at ICLR 2024

xVHi
(v) represents the number of induced graphs that contain node v while are isomorphism to Hi.

xVH,i(v) are combined into a vector xV (v) = [xVH1
(v), · · ·xVHk

(v)] as node’s extra Substructure
feature. Denote χt−1

G (v) as node v′s feature at layer t, the aggregation and combine function can be
denoted as follow:

χt
G(v) := σ

(χt−1
G (v),xV(v)) ·W t

1 ,
∑

u∈NG(v)

(χt−1
G (u),xV(u)) ·W t

2 + Ct

 (26)

C.3.1 EQUIVALENT MODAL LOGIC

Given a graph G, we define the modal induced by Graph Substructure Networks as MGSN =<
V,E, FGSN , {Hi}, N >, V is the node set, E is a 2-placed relation on V and for E(v, ω) is true
iff (v, ω) ∈ E, FGSN is an 2-placed function that FGSN (v,Hi) = x

(
Hi
v), {Hk} is a set of constant

graphs corresponding to the selected connected graphs in Graph Substructure Networks framework.
The language is Graded modal formulas LGML, with atomic formulas: FGSN (v,Hi) ≥ q(q ∈
N). The modal operatior is defined as :

M,v |= ♢nφ ⇐⇒ ∄=v1 . . . vn
∧

1⩽i⩽n

(E(v, vi)) ∧M, vi |= φ) (27)

Theorem C.3. Graph Substructure Networks is able to capture Graph Substructure Networks logic.

Proof. For every Graph Substructure Networks formula φ(v), let sub(φ) = (φ1, · · ·φn) be a se-
quences of subformula of φ(v) that every subformula i is formed as atomic formula: v = ω,
FGSN (v,Hi) = q or like φi = φj ∧ φl, φi = ¬φj or φi = ♢≥Nφj for j, l < i and φn = φ.
Formally construct a Graph Substructure Network with n layers and the aggregation and combine
function is as equation ,W t

1 and W t
2 are two (n+ k)×n matrixs and Ct is a n− length vector. For

1 ≤ t ≤ n, every layer are defined as follow:

if φt = (FGSN (v,Hi) ≥ q) then let W t
1(i+ n, t) = 1 and Ct(i) = −q + 1

if φt = φj ∧ φk, then let W t
1(j, t) = 1, W t

1(k, t) = 1 and Ct(i) = −1
if φt = ¬φk, then let W t

1(k, t) = −1 and Ct(t) = −1
if φt = ♢≥Nφj , then let W t

2(j, t) = 1 and Ct(i) = −N + 1

and all the rest of values in the ‘t-th iteration of W t
1 ,W

t
2 , C

t are 0. Activation function σ(x) =
min(max(0, x), 1). Then it is easy to prove such Graph Substructure Networks is able to capture
formula φ(v).

Theorem C.4. Graph Substructure Networks is competent for detecting triangle task.

Proof. Let H0 be a complete graph with 3 nodes and φ(v) = (FGSN (v,H0) ≥ 1). Notice φ(v)
can be expressed by Graph Substructure Networks logic. Hence φ(v) is true iff node v is contained
by a triangle

C.4 EQUIVARIANT SUBGRAPH AGGREGATION NETWORKS (ESAN)

Bevilacqua et al. (2022) proposed a new framework of graph neural networks, called as Equivariant
Subgraph Aggregation Networks. Based on the predefined policy π, the network first generates a
set of graphs BπG = {{G1, · · · , Gm}} given a graph G = (V,E). Every Gi = (V,Ei) in BG shares
the same node set V , but different in edges set Ei. The initial color χ0

Gi
(v) for every node is based

on policy π and input features. The aggregation and combine function can be expressed as follow:

χt
Gi
(v) = σ1

χt−1
Gi

(v) ·W t
(1,i) +

∑
u∈NGi

(v)

χt−1
Gi

(u) ·W t
(2,i) + χt−1

G (v) ·W t
1 +

∑
u∈NG(v)

χt−1
G (u) ·W t

2 + Ct
i


(28)

χt
G(v) = σ2(χ

t
Gi
(v)) (29)

15

Under review as a conference paper at ICLR 2024

C.4.1 EQUIVALENT MODAL LOGIC

Given a graph G, we define the modal induced by Equivariant Subgraph Aggregation Networks as
MESAN =< V,E, πi >, V is the node set, πi is an 1-placed function that map the node v ∈ G to
the corresponding node in graph Gi. π0 is define as identical function as map node v ∈ G to itself,
let G0 = π0(G) = G. E is a 2-placed relation on V and for 0 ≤ i ≤ m, E(πi(v), πi(ω)) is true iff
(πi(v), πi(ω)) ∈ Ei.

The equivalent language formulas LESAN are built up using boolean connectives ¬,∧, and the
modal operators ♢n,i is defined as:

M,v|= ♢n,i{φ} ⇐⇒ ∃ ̸=v1 . . . vn
∧

1⩽j⩽n(E(πi(v), πi(vj)) ∧M,πi(vj) |= φ)(30)

Theorem C.5. Equivariant Subgraph Aggregation Networks is able to capture Equivariant Sub-
graph Aggregation logic.

Proof. For every Equivariant Subgraph Aggregation formula φ(v), let sub(φ) = (φ1, · · ·φn) be
a sequences of subformula of φ(v) that every subformula i is formed as formula: φt = φj ∧ φl,
φt = ¬φj or φt = ♢n,iφj for j, l < i and φn = φ. Formally construct a Graph Substructure
Network with n layers and the aggregation and combine function is as equation ??, W t

(1,i), W
t
(2,i),

W t
1 andW t

2 are n×nmatrixs and Ct
i are n− length vectors. For 1 ≤ t ≤ n, every layer are defined

as follow:

if φt = φl ∧ φk, then let W t
1(k, t) = 1, W t

1(l, t) = 1 and Ct
i (t) = −1

if φt = ¬φk, then let W t
1(k, t) = −1 and Ct(t) = −1

if φt = ♢n,i{φl} and i = 0, then let W t
2(l, t) = 1 and Ct

j(t) = −n+ 1 for 1 ≥ j ≥ m

if φt = ♢n,i{φl} and i ̸= 0, then let W t
(2,i)(l, t) = 1 and Ct

i (t) = −n+ 1

and all the rest of values in the ‘t-th iteration ofW t
(1,i),W

t
(2,i),W

t
1 andW t

2 are 0. Activation function
σ1(x) = min(max(0, x), 1), σ2(x) = max(x). Then it is easy to prove such Graph Substructure
Networks is able to capture formula φ(v).

Theorem C.6. Equivariant Subgraph Aggregation Networks is competent for detecting triangle
task.

Proof. Notice if node ω is node v’s 2(1) neighbor, node v is node ω’s 2(1) Neighbor. Define the
policy π1 as follow: if node ω is node v’s 2(1) neighbor, (π1(v), π1(ω)) ∈ E1. By theorem for 2-div
network, Equivariant Subgraph Aggregation Networks is competent for detecting triangle task.

C.5 SHORTEST PATH DISTANCE WL(SPD-WL)

SPD-WL is variant version of DSS-WL designed to solve biconnectivity problems. Given a graph
G = (V,E), SPD-WL chooses the shortest path distance as the policy. The aggregation function of
SPD-WL algorithm can be expressed as:

χt
G(v) := hash(χt−1

G (v), {{χt−1
G (u) : u ∈ NG(v)}, {{χt−1

G (u) : disG(v, u) =

2}}, · · · , {{χt−1
G (u) : disG(v, u) = n− 1}}, {{χt−1

G (u) : disG(v, u) =∞}}).(31)

C.5.1 EQUIVALENT MODAL LOGIC

Given a graph G, we define the modal induced by Shortest Path Distance WL as MESAN =<
V, {DISi} >. V is the node set, DISi is a 2-placed relation on V and DISi(v, ω) is true iff the
distance of node v and ω equals to i.

16

Under review as a conference paper at ICLR 2024

The equivalent language formulas LESAN are built up using boolean connectives ¬,∧, and the
modal operators ♢n,i is defined as:

M,v|= ♢n,i{φ} ⇐⇒ ∃ ̸=v1 . . . vn
∧

1⩽j⩽n(DISi(v, vj) ∧M, vj |= φ)(32)

Theorem C.7. Equivariant Subgraph Aggregation Networks is able to capture Equivariant Sub-
graph Aggregation logic.

Proof. The Shortest Path Distance network can be expressed as:

χt
G(v) := σ(χt−1

G (v) ·W t
1 +

∑
i

∑
disG(v,u)=i

χt−1
G (u) ·W t

2,i + Ct). (33)

For every Shortest Path Distance network formula φ(v), let sub(φ) = (φ1, · · ·φn) be a sequences
of subformula of φ(v) that every subformula i is formed as formula: φt = φj ∧ φl, φt = ¬φj or
φt = ♢n,iφj for j, l < i and φn = φ. Formally construct a Shortest Path Distance Network with n
layers and the aggregation and combine function is as equation , W t

1 , W t
(2,i) are n× n matrixs and

Ct are n− length vectors. For 1 ≤ t ≤ n, every layer are defined as follow:

if φt = φl ∧ φk, then let W t
1(k, t) = 1, W t

1(l, t) = 1 and Ct
i (t) = −1

if φt = ¬φk, then let W t
1(k, t) = −1 and Ct(t) = −1

if φt = ♢n,i{φl}, then let W t
(2,i)(l, t) = 1 and Ct(t) = −n+ 1 for 1 ≥ j ≥ m

and all the rest of values in the ‘t-th iteration of W t
1 , W t

(2,i) and Ct are 0. Activation function
σ1(x) = min(max(0, x), 1). Then it is easy to prove such Graph Substructure Networks is able to
capture formula φ(v).

D PROOFS

In this section we will provide all the proof of lemmas, theorems and propositions. We will restate
them for the convenience.

D.1 PROOFS OF HIERARCHY OF NODE’S NEIGHBOR CLASSIFICATION

Lemma D.1. Let G⃗ be a graph with adjacency matrix A. The number of walks from u to v in G⃗ with
length k is (Ak)u,v

Proof. When K=1, (Ak) is adjacency matrix A, hence (A)u,v represents the number of edges from
node u to node v. lemma 1 holds when k=1.

Assume lemma 1 holds when K=k, (A)ku,v represents the number of walks from u to v in G⃗ with
length k, since the number of walks from u to v in G⃗with length k+1 equals to the sum of the number
of edges ⃗(u, i), for all node i, multiplies the number of walks from i to v which is

∑|V |
i=1 au,i · (A)ki,v .

Note that
∑|V |

i=1 au,i · (A)ki,v = (A)(k + 1)u,v , hence lemma 1 holds when K=k+1.

Theorem D.1. Given sequence (i(k+1), i(k+2) · · · , il) ∈ (0, 1)(l−k), a graph G = (V,E) with
induced adjacency matrix A and t(k + 1 ≤ t ≤ l), define (At)(i(k+1)··· ,il) = At if it = 1 , else
(At)(i(k+1)··· ,il) =∼ At if it = 0, then AK

L(i(k+1)··· ,il)
=Mask∏L

t=K+1 ⊙(At)
(i(k+1)··· ,il)(A

K)

Proof. When L=K, Mask∏L
t=k+1 ⊙(At)

i(k+1),i(k+2)···iL (·) is identical operator, while Ak
Li1,i2···it

=

AK is K-hop adjacency matrix, so theorem holds when L=K.

17

Under review as a conference paper at ICLR 2024

Assume theorem 1 holds when L=l(l¿k), that is Ak
li(k+1),i(k+2)···iL

=

Mask∏l
t=k+1 ⊙(At)i1,i2··· ,il (Ak)(K = i1 < i2 < · · · < it ≤ l). Hence if

(Mask∏l
t=k+1 ⊙(At)i1,i2··· ,il (Ak)(K = i1 < i2 < · · · < it ≤ l))(u,v) = 1, then

u ∈ N
L(i(K+1),i(K+2)···il)

k−hop (v), else u /∈ N
L(i(K+1),i(K+2)···il)

k−hop (v)

Consider when L=l+1(l¿k), if i(l+1) = 0, (Ak
li(k+1),i(k+2)···i(l+1)

)(u,v) = 1 implies u ∈

N
L(i(K+1),i(K+2)···i(l+1))

k−hop (v) , while as lemma 1 indicates (A(l+1))u,v the number of walks from
node u to node v with length l+1, then there does not exist walk from node u to node v with length
l+1, hence if (A(l+1))u,v = 0 then there does not exist any directed walk from node u to node v with
length l+1, notice that operator

Mask∏l+1
t=k+1 ⊙(At)

i1,i2··· ,i(l+1) (·) =Mask
(Al+1)

i1,i2··· ,i(l+1) (Mask∏l
t=k+1 ⊙(At)i1,i2··· ,il (·))

(34)
and

(Mask
(Al+1)

i1,i2··· ,i(l+1) (A
k
li(k+1),i(k+2)···i(l)

))(u,v) = (Ak
li(k+1),i(k+2)···i(l)

)(u,v) (35)

if (A(l+1))(u,v) = 0, which implies that u ∈ N
L(i(K+1),i(K+2)···i(l+1))

k−hop (v). Else
(Mask

(Al+1)
i1,i2··· ,i(l+1) (A

k
li(k+1),i(k+2)···i(l)

))(u,v) = 0,if (A(l+1))(u,v) > 0, which also means that

u ∈ N
L(i(K+1),i(K+2)···i(l+1))

k−hop (v). Hence theorem 1 holds when i(l+1) = 0.

Same argument, if i(l+1) = 1, then (Ak
li(k+1),i(k+2)···i(l+1)

)(u,v) > 0 means there

does exists walk from node u to node v with length l+1, hence if (A(l+1))u,v = 0
then there does not exist any directed walk from node u to node v with length l+1,
and (Mask

(Al+1)
i1,i2··· ,i(l+1) (A

k
li(k+1),i(k+2)···i(l)

))(u,v) = (Ak
li(k+1),i(k+2)···i(l)

)(u,v),if

(A(l+1))(u,v) = 1, implies that u ∈ N
L(i(K+1),i(K+2)···i(l+1))

k−hop (v). Else
(Mask

(Al+1)
i1,i2··· ,i(l+1) (A

k
li(k+1),i(k+2)···i(l)

))(u,v) = 0, if (A(l+1))(u,v) = 0, which also

means that u ∈ N
L(i(K+1),i(K+2)···i(l+1))

k−hop (v).Hence theorem 1 holds when L = l(l > K).

D.2 PROOFS OF L-DIV GRADED MODEL LOGIC

Theorem D.2. If l ≥ 2, every FO formula that can be expressed by (l+1)-div graded modal logic
classifier can also be expressed by l-div graded modal logic classifier

Proof. Given l-div graded modal logic formula φ, let sub(φ) = (φ1, · · · , φN) be enumeration of
sub-formulas where φi is formed by φj and connectives for j < i and φN = φ. Assume theorem
holds for every formula when N ≤ n, for every formula that its enumeration of sub-formulas is
(φ1, · · · , φn, φn+1):

If φN+1 = ¬φi or φn+1 = φi ∧ φj for i, j ≤ n, the theorem obviously holds.

If φN+1 =M,v |= ♢n
l(i2···il)

φi for i ≤ n. We have:

M, v |= ♢n
l(i2···il)

φ ⇐⇒
∨

0≤i≤n

(M,v |= ♢i
l(i2···il,0)

∨M,v |= ♢n−i
l(i2···il,1)

) (36)

Hence the theorem holds when for every formula when N ≤ n + 1, therefore If l ≤ 2, every FO
formula that can be expressed by (l+1)-div graded modal logic classifier can also be expressed by
l-div graded modal logic classifier.

Corollary D.1. If l ≥ 2, every formula FO that can be expressed by graded modal logic is able to
be expressed by l-div graded modal logic.

18

Under review as a conference paper at ICLR 2024

Proof. Notice if l ≥ 2, every formula FO that can be expressed by 2-div graded modal logic is able
to be expressed by l-div graded modal logic and:

M, v |= ♢nφ ⇐⇒
∨

0≤i≤n

(M,v |= ♢i
l(0)
∨M,v |= ♢n−i

l(1)
) (37)

Hence every formula FO that can be expressed by graded modal logic is able to be expressed by
2-div graded modal logic.

D.3 PROOFS OF NEIGHBOR L-DIVISION COLOR REFINEMENT ALGORITHM

Lemma D.2. For l ≥ 2, there exists a pair of non-isomorphic graphs that l-division color refinement
algorithm outputs ”possibly isomorphic” while (l+1)-division color refinement algorithm outputs
”non-isomorphic”

Proof. For l ≥ 2, consider the following pair of graphs: l+1 circles with l+2 in length and l+2 circles
with l+1 in length.

Theorem D.3. For l ≥ 2, (l+1)-division color refinement algorithm is strictly more powerful than
l-division color refinement algorithm.

Proof.

Lemma D.3. For two node color refine algorithms L1 and L2, each algorithm will allot every node
v a color as col(v)L1 and col(v)L2 , if there exists a surjection φ(·) that φ(col(v)L2) = col(v)L1 ,
then L2 is more powerful than L1.

Proof. Two node color refine algorithms L1 and L2 will decide the pair of graphs (G,G′) is iso-
morphism if there exists a surjection ψ(·) that col(v) = ψ(col(v′)) for every node v ∈ G, v′ ∈ G′,
Since node color refine algorithm is invariant, for a pair of isomorphism graphs, node color refine
algorithm will always decide the pair of graphs is isomorphism. Hence if there exists a function φ(·)
that φ(col(v)L2) = col(v)L1 for node in both (G,G′) and algorithm L2 decide the pair of graphs
is isomorphism, then there exists a surjection ψ2(·) that colL2(v) = ψ2(col

L2(v′)) for every node
v ∈ G, v′ ∈ G′, hence we can define ψ1(·) = ψ2(φ(·)) , then ψ2(·) that colL2(v) = ψ1(col

L2(v′))
for every node v ∈ G, v′ ∈ G′, and algorithm will L1 decide the pair of graphs is isomorphism, so
L2 is more powerful than L1.

Recall of the iteration of l-div algorithm:

ctv ← hash(ct−1
v , {{ct−1

w : w ∈ Nl(i2,i3···il)
(v)}}), ∀v ∈ V, (i2, i3 · · · il) ∈ (0, 1)l−1 (38)

for every t, construct a multisets surjection φt
l+1 as:

φt
l+1(c

t−1
v , {{ct−1

w : w ∈ Nl+1(i2,i3···il,il+1)
(v)}}) = (ct−1

v , {{ct−1
w : w ∈ Nl+1(i2,i3···il,0)

(v) or w ∈ Nl+1(i2,i3···il,1)
(v)}}) = (ct−1

v , {{ct−1
w : w ∈ Nl

(i2,i3···il)}}(v))(39)

since hash() is an injective, hence there exists φ′t
l+1(cl+1(v)

t) = cl(v)
t. Denote the output color

from (l+1)-division color refinement algorithm and l+-division color refinement algorithm as cl+1(v)
and cl(v), then there exists φ′

l+1(cl+1(v)) = cl(v), by lemma C.2 , (l+1)-division color refinement
algorithm is strictly more powerful than l-division color refinement algorithm

D.4 PROOFS OF NEIGHBOR DIVISION FRAMEWORK

Theorem D.4. A logical classifier is captured by l-Div-AC-GNNs if and only if it can be expressed
in l-div graded modal logic.

Proof. −→ We wiil proof if a FO formula can be expressed l-div-graded modal logic, then there
exists a l-div-AC-GNN to satisfy.

Given a l-graded modal logic with formula as γ(x), we can decompose γ(x) as a squence of γi(), de-
note as sub(γ) = (γ1, γ2, · · · γT) and γ = γT , every γk is formed as the the following one:color(x)

19

Under review as a conference paper at ICLR 2024

, ¬γi ,γi ∧ γj ,¬γ, γi(x) ∨ γj and ♢≥N
l(i2,i3,···il)

γi (i, j ≤ k), where if γi() is subformula of γj() then
i ≤ j.
We will construct a T-layers l-div-AC-GNN Model with feature vectorX ∈ (0, 1)V×T andXi

(v,t) =

1(Xi
(v,t) is node v’s tth component of feature x at layer i) means v| = γi otherwise X(v,T)=0. Since

γ = γT , we will only need to make sure X(T,v) = 1 if and only if v| = γ. Hence, for each layer i,
we define a l-div-AC-GNN’s with aggregation and combine functions as follow:

m(i,((i2,i3··· ,il))
v = AGGREGATE(i,((i2,i3··· ,il))(Xi

v) =
∑

u∈N(i2,i3··· ,il)(v)

(Xi
u) (40)

COMBINE(Xi
v, {m(i,((i2,i3··· ,il))}) = σ(Xi

vA+
∑

(i2,i3··· ,il)∈(0,1)l−1

m(i,((i2,i3··· ,il))
v B(i2,i3··· ,il)+c)

(41)
A,B ∈ RT×T are learnable matrix and c ∈ RT is learnable vector, Let RELU activation function
σ(x) = min(max(0, x), 1). The parameter of A,B,c are defiined as followed:

if γi = Color(x), then let A(i,i) = 1

if γi = γj ∧ γk, then let A(j,i) = 1, A(k,i) = 1 and ci = −1
if γi = ¬γj , then let A(j,i) = −1 and ci = 1

if γi(x) = ♢≥N
l(i2,i3,···il)

γi, then let B(i2,i3··· ,il)
(j,i) = 1 and ci = N − 1

and the rest of value not mentioned in the ith columns of A,B,c are 0.

We now prove that model Ml−div is able to capture logic γ. Given a colored directed graph G⃗,
set initial feature X0

v = (X0
(v,1), X

0
(v,2) · · ·X

0
(v,T)) that X0

(v,t) = 1 iff γi is fundamental logic (as
color(x)) and v| = γi else X0

(v,t) = 0. After T rounds iteration, as equation (41) and (42), we will
prove equation (43) holds:

when t ∈ {1, 2 · · · , i}, Xi
(v,t) = 1 if v| = γiotherwiseX

i
v = 0 (42)

That means after at least t rounds iteration, l-div-AC-GNN is able to capture γt. By equation (41)
and (42), the iteration expression of Xi

(v,t) is

Xi
(v,t) = σ(Xi

vA+
∑

(i2,i3··· ,il)∈(0,1)l−1

∑
u∈N(i2,i3··· ,il)(v)

(Xi
u)B

(i2,i3··· ,il) + c) (43)

When t=1,γ1 has one subformula as γ1 is color(), if γi(x) = Color(x), then A(1,1) = 1 and the
rest parameter of 1th columns equals to 0 as A(i,1) = 0(i ≤ 2), B(i,1) = 0 and c(1) = 0, equation
(44) can be rewritten as

X1
(v,1) = σ(X0

(v,1)) (44)

Given initial feature X0
(v,1) = 1 if color(v) is true and X0

(v,1) = 0 otherwise, hence equation (43)
holds when t=1. Assume equation (43) holds when t=k, we now prove it holds when t=k+1, γk+1

can be expressed by (γ1, γ2, · · · γk) as follow

Case 1: if γk+1(x) = Color(x), it is same argument as γ0(x), hence equation (43) holds.

Case 2:if γk+1(x) = γi ∧ γj(i, j ≤ k + 1), then A(i,k+1) = 1, A(j,k+1) = 1 and ck+1 = −1,also
A(t,k+1) = 0 for every 1 ≤ t ≤ T, i, j ̸= t and B

(i2,i3··· ,il)
r,k+1 = 0 for every 1 ≤ r ≤ T and

(i2, i3 · · · , il) ∈ (0, 1)l−1. Xk+1
(v,k+1) can be expressed as

Xk+1
(v,k+1) = σ(Xk

(v,i) +Xk
(v,j) − 1) (45)

By the assumption equation (43) holds when t=k, then Xk
(v,i) = 1 and Xk

(v,j) = 1 iff v| = γi and

v| = γi. Since RELU activation function is σ(x) = min(max(0, x), 1), if Xk+1
(v,k+1) = 1, then we

20

Under review as a conference paper at ICLR 2024

can deduce Xk
(v,i) +Xk

(v,j) − 1 ≥ 1, hence Xk
(v,i) = 1 and Xk

(v,j) = 1 while indicating v| = γi and

v| = γi, then v| = γk+1 . On the other hand, ifXk+1
(v,k+1) = 0, we can deduceXk

(v,i)+X
k
(v,j)−1 < 1,

hence either Xk
(v,i) = 0 or Xk

(v,j) = 0, indicating v| ̸= γi or v| ≠ γi, hence v| ̸= γk+1. Now we
have proved equation (43) holds when γk+1(x) = γi ∧ γj(i, j ≤ k + 1).

Case 3:if γk+1(x) = ¬γi(i, j ≤ k+ 1), then A(j,i) = −1 and ci = 1. Xk+1
(v,k+1) can be expressed as

Xk+1
(v,k+1) = σ(−Xk

(v,i) + 1) (46)

By the assumption equation (43) holds when t=k, thenXk
(v,i) = 0 iff v| ≠ γi. Since RELU activation

function is σ(x) = min(max(0, x), 1), ifXk+1
(v,k+1) = 1, then we can deduce−Xk

(v,i)+1 ≥ 1, hence

Xk
(v,i) = 0 while indicating v| ≠ γi, then v| = γk+1 . On the other hand, if Xk+1

(v,k+1) = 1, we can
deduce −Xk

(v,i) + 1 < 1, hence Xk
(v,i) = 1, indicating v| = γi, hence v| ≠ γk+1. Now we have

proved equation (43) holds when γk+1(x) = ¬γi(i, j ≤ k + 1).

Case 4: if γk+1(x) = ♢≥N
l(i2,i3,···il)

γi, then B(i2,i3··· ,il)
(i,k+1) = 1 and ci = N − 1, also A(t,k+1) = 0

for every 1 ≤ t ≤ T and B
(i′2,i

′
3··· ,i

′
l)

r,k+1 = 0 for every 1 ≤ r ≤ T , (i′2, i
′
3 · · · , i′l) ∈

(0, 1)l−1while(i′2, i
′
3 · · · , i′l) ̸= (i2, i3 · · · , il) and B(i2,i3··· ,il)

(r,k+1) = 0 for every 1 ≤ r ≤ T, r ̸= i.

Xk+1
(v,k+1) can be expressed as:

Xk+1
(v,k+1) = σ(

∑
u∈N(i2,i3··· ,il)(v)

Xi
u −N + 1)) (47)

By the assumption equation 43 holds when t=k, then Xi
u = 1 iff u| = γi . Since RELU

activation function is σ(x) = min(max(0, x), 1), if Xk+1
(v,k+1) = 1, then we can deduce∑

u∈N(i2,i3··· ,il)(v)
Xi

u−N +1) ≥ 1, hence the number of node in set {u | u ∈ NLi1,i2···it
(v), u| =

σi} is at least N, by ?? v| = γk+1 . On the other hand, if Xk+1
(v,k+1) = 0, we can deduce∑

u∈N(i2,i3··· ,il)(v)
Xi

u−N +1) < 1, hence the number of node in set {u | u ∈ NLi1,i2···it
(v), u| =

σi} is at most N-1, by ?? v| ≠ γk+1. Now we have proved equation 43 holds when γk+1(x) =
∃≥N (E(i2,i3,···il)(x, y) ∧ γi(y)).

Now we have proved equation 43 when t=k+1, hence at T th layer, we have XT
(v,T) = 1 if v| = γT

otherwise Xi
v = 0, that means can capture l-div graded modal logic classifier γ, since γ is arbitrary,

then every l-div graded modal logic classifier can be captured by a l-Div-AC-GNN.

⇐=: We only need to prove that if a logical classifier is not able to be expressed by l-div graded
modal logic then it cannot be captured by l-Div-AC-GNN.

Theorem D.5. Given simple, directed and node-colored graph G⃗ and G⃗′, then for any l-div AC-
GNN with that maps two graph G⃗ and G⃗′ to same features if l-neighbor division color refinement
algorithm decides G⃗ and G⃗′ are isomorphism.

Proof. We will show that if node u and u′ in G⃗ and G⃗′ gets same labels at t iteration ctu = ctu′ ,
for any l-div AC-GNN will always obtains same features for node u and u′ htu = htu′ at t layer.
Suppose at t layer, there exists node u and u′ l-div AC-GNN obtains different features htu = htu′

and AC-GNN gets same features from layer t − 1 to 0, but l-neighbor division color refinement
algorithm assigns node u and u′ the same label at t layer. Since different multisets get different new
labels for every iteration, at t iteration in l-neighbor division color refinement algorithm, node u and
u′ gets same labels ctu ≤= ctu′, indicating that

(ct−1
u , {{ct−1

v : v ∈ N(i2,i3···il)(u)}, (i2, i3 · · · il) ∈ (0, 1)l−1}) = (ct−1
u′ , {{ct−1

v : v ∈
N(i2,i3···il)(u

′)}, (i2, i3 · · · il) ∈ (0, 1)l−1})(48)

21

Under review as a conference paper at ICLR 2024

On the other hand, at layer t in l-div AC-GNN

(ht−1
u , {{ht−1

v : v ∈ N(i2,i3···il)(u)}, (i2, i3 · · · il) ∈ (0, 1)l−1}) = (ht−1
u′ , {{ht−1

v : v ∈
N(i2,i3···il)(u

′)}, (i2, i3 · · · il) ∈ (0, 1)l−1})(49)

By the assumption, we have ht−1
v = ht−1

v′ for every node in G⃗ and G⃗′, since the same neighborhood
features, neighborhood and GNN are applied to generates the same features htu = htu′ at tth layer.
In this way, We prove that l-div AC-GNN obtains same features for node u and u′ if them gets
same labels at t iteration in l-neighbor division color refinement algorithm. This means there exists
a mapping htv = ψ(ctv) for node v in G⃗ and G⃗′. Therefore, we have

(htu, {{htv : v ∈ N(i2,i3···il)(u)}, (i2, i3 · · · il) ∈ (0, 1)l−1}) = (ψ(ct−1
u), {{ψ(ctv) : v ∈ N(i2,i3···il)(u

′)}, (i2, i3 · · · il) ∈ (0, 1)l−1})
(50)

Therefore, if l-neighbor division color refinement algorithm decides G⃗ and G⃗′ are isomorphism,
then for every iteration node u and u′ in G⃗ and G⃗′ gets same labels, the output of G⃗ and G⃗′ in l-div
AC-GNN will get same features.

To prove this theorem, we have the definition as follow:

Definition D.1. (l-div g-bisimulations) We define l-div graded logic model as M =
(W,El(i2,i3···il)

, V) where W is a non-empty set of states, E(i2,i3···il) is a binary relation set on
W write as xE(i2,i3···il)y, xE•

(i2,i3···il)Y denote xE(i2,i3···il)y for all y ∈ Y if xE(i2,i3···il)y is true
then¬xE(i′2,i

′
3···i′l)y is true iff (i2, i3 · · · il) ̸= (i′2, i

′
3 · · · i′l) and valuation V is a function assigning a

subset of W to every proposition letter. Based on g-bisimulations, we propose l-div g-bisimulations:
Given two models M = (W,E, V) and M ′ = (W ′, E′, V ′) , l-div g-bisimulations between M and
M ′ is a tuple of Z = (Z1, Z2, · · ·) relation Zn ⊆W ×W ′ satisfying the following requirements:

1. Z is non-empty;

2. if xZnx
′ , then x| = p iff x′| = p, for all proposition letters p;

3. if xZnx
′ and xE•

(i2,i3···il)Y , then there exists Y ′ ∈W ′ with Y ZnY
′ and x′E•

(i2,i3···il)Y
′

4. if xZnx
′ and x′E•

(i2,i3···il)Y
′, then there exists Y ∈W with Y ZnY

′ and xE•
(i2,xZix′i3···il)Y

5. if xZnx
′ then for every 1 ≤ m ≤ n

(a) for every x ∈ X there exists x′ ∈ X ′ with {x}Zn{x′}, and

(b) for every x′ ∈ X ′ there exists x ∈ X with {x}Zn{x′}.

If there is a l-div g-bisimulation Z between M and M0 as wZ, we denote as M,ω ⇌l−div
g M ′, ω′ .

The l-div graded modal type of a state is the set of all graded modal formulas it satisfies: tpl(ω) =
{φ ∈ LGML, ω| = φ}; if necessary we record the model M in which ω lives as a subscript: tpl(ω).
Two states ω, v are l-div graded modally equivalent if tpl(ω) = tpl(v) denote as ω ≡l−div

g v.

Lemma D.4. Let M and M ′ be two ω-saturated models, and let ω ∈ W , ω′ ∈ W ′ .Then
M,ω ⇌l−div

g M ′, ω′ iff ω ≡l−div
g ω′

Proof. ⇒: Assume it holds for degree(φ) ≤ k if there exists a l-div g-bisimulations between
M and M ′, to prove it holds for degree(φ) ≤ k + 1, it is obvious that if φ,ψ ∈ tpl(ω) then
¬φ,φ∧ψ ∈ tpl(ω) hence the atomic and boolean cases are trivial. For modal case, if ω| = ∃≥nv(φ∧
E(i2,i3···il)(ω,v)), there exists |Y | ∈ 2W xE•

(i2,i3···il)V and V | = φ, since M,ω ⇌l−div
g M ′, ω′, by

the definition of l-div g-bisimulations, there exists |Y | ∈ 2W for ω′E•
(i2,i3···il)V

′ and V ZnV
′, as

V ZnV
′ hence V ′| = φ for degree(φ) ≤ k, then ω′| = ∃≥nv′(φ ∧ E(i2,i3···il)(ω′,v′)) for ω′, hence

22

Under review as a conference paper at ICLR 2024

it holds for degree(φ) ≤ k + 1, as tpl(ω) =
⋃

1≤k {φ ∈ LGML, ω| = φ, degree(φ) = k}, this
implies M,ω ⇌l−div

g M ′, ω′ ⇒ ω ≡l−div
g v.

⇐:assume that for every finite set W and W’, define the tuple of bijection relation Z =
(Z0, Z1, Z2, · · ·) as follow:

(1){ω}Z0{ω′}
(2) vZnv

′ iff vZn−1v
′ or {t}Zi−1{t′} E(i2,i3···il)(t, v),E(i2,i3···il)(v

′, t′) and tpl(v) = tpl(v
′)

First we will prove if {t}Zi−1{t′} E(i2,i3···il)(t, v) there exists v′ that E(i2,i3···il)(v
′, t′) and

tpl(v) = tpl(v
′). Assume ωE•

(i2,i3···il)V
(i2,i3···il) and |V | = n(i2,i3···il), define the set of every

type tp(V (i2,i3···il)) as:

{T (i2,i3···il)
1 , · · ·T (i2,i3···il)

s } = {tp(v)|v ∈ V (i2,i3···il)} T
(i2,i3···il)
i ̸= T

(i2,i3···il)
j if i ̸= j (51)

and number of every type n(i2,i3···il)i :

ni = |{v ∈ V |tp(v) = T
(i2,i3···il)
i }| (52)

If E(i2,i3···il)(ω, v), then there exists i that tp(v) = T
(i2,i3···il)
i , since ω ≡l−div

g v, any φ ∈ tp(v)
we have ω| = ∃≥niv(φ ∧ E(i2,i3···il)(ω, v)), hence ω′| = ∃≥niv′(φ ∧ E(i2,i3···il)(ω

′, v′)), so
when i=1 there exists a set of ω′’s E(i2,i3···il) neighbor v ∈ V ′ that E(i2,i3···il)(v

′, t′) and
tpl(v) = tpl(v

′). Assume it holds when i=k, then tpl(t) = tpl(t
′) same argument as i=1,

t| = ∃≥niv(φ ∧ E(i2,i3···il)(t, v)) implies t′| = ∃≥niv′(φ ∧ E(i2,i3···il)(t
′, v′)), there exists v′ that

E(i2,i3···il)(v
′, t′) and tpl(v) = tpl(v

′). Notice that we can swap t and t’, so there exists a bijection
relation between E(t) and E(t’) for (t, t′) ∈ Zn−1, we donote the bijection relation as Zneighbor

n−1 .
Notice that Zn = Zn−1

⋃
Zneighbor
n−1 , hence for every ω ≡l−div

g ω′ we can construct the bijection
relation Z in between M and M’.

Since W and W’ are based on connected graph, there exists n that Zn =W ×W ′ We now prove that
Zn is l-div g-bisimulations, obvious item 1 is qualified, for item 2 there exists certain i for vZnv

′

that (v, v′) /∈ Zi−1 and (v, v′) ∈ Zi then tpl(v) = tpl(v
′) hence x| = p iff x′| = p.

For item 3,4 if {v}Zn{v′}, there exists certain i that (v, v′) /∈ Zi−1 and (v, v′) ∈ Zi, if vE•Q, since
Zi is bijection, for every q ∈ E(i2,i3···il)(Q) there is a unique q′ that {q}Zi{q′}, by the defintion
E(i2,i3···il)(v

′, q′) and tpl(q) = tpl(q
′), denote the set of q′ as Q′, hence v′E•Q′ and QZiQ

′, notice
Zi ⊆ Zn, hence QZnQ

′. Hence Zn satisfies item 3,4.

For item 5, it obviously holds for Z0, if XZnX
′ then for every x ∈ X there exists certain i that

Xi−1Zi−1X
′
i−1 x ∈ Xi−1 and XiZiX

′
i x /∈ Xi, then there exists a unique x’ that Xi−1Zi−1X

′
i−1

x′ ∈ X ′
i−1. Swapping the position of x and x’ will imply b. Hence Zn satisfies item 5. Now on we

have proved Zn is l-div g-bisimulations.

Proposition 6. The Compactness Theorem (Malcev)Let be countable, and let D be a countably
incomplete ultrafilter over a set I. Then for every family Ψ, i ∈ I , of models for , the ultraproduct∏

D i is ω-saturated.

Theorem D.6. (Invariance). Assume that L1 is countable. An L1-formula α(x) is (equivalent to the
translation of) a l-div graded modal formula iff it is invariant under l-div g-bisimulations.

Proof. ⇒ has been proved in lemma D.4. For the⇐, if α(ω) is invariant under l-div g-bisimulations,
construct the set of l-div graded formula consequence of α(ω) as follow:

Φl−g(α) = {φ|φ(ω)| = α(ω), φ ∈ Ll−div g} (53)
Notice that α(ω) is l-div graded formula iff α(ω) ∈ Φl−g(α), specifically, for any model M and ω,
formulaM | = Φl−g(α)[ω]⇒ M | = α(ω) implies α(ω) is l-div graded formula.

If for any model M and ω, M | = Φl−g(α)[ω] ⇒ M,ω| = ¬α, then ¬α(ω) ∈ Φl−g(α) ⇒ α(ω) ∈
Φl−g(α). Hence if α(ω) is not l-div graded formula, for any ω, M | = Φl−g(α)[ω], there exists

23

Under review as a conference paper at ICLR 2024

N, v, N | = Φl−g(α)[v] and N, v| = α, since M,N is ω−saturated [proposition6], consider the
ω−saturated extension of (N+, v) and (M+, ω), then tpl−div

M+ (ω) = tpl−div
N+ (v) ⇒ M+, ω ⇌l−div

g
N+, v. Since M and N is ω−saturated models, {α(ω)} is finite and N, v| = α. Hence we have
N+, v| = α, which implies M+| = α(ω) then M | = α(ω), hence α(ω) ∈ Φl−g(α) ,α(ω) is l-div
graded formula.

Theorem D.7. Let M and M’ be graph G0’s and G1’s l-div graded models, then l-division color
refinement algorithm decides G0 and G1 are isomorphism if and only if M and M’ are under l-div
g-bisimulations.

Proof. ⇐= If M and M’ are under l-div g-bisimulations, then there exists a bijection v0Zv1 between
node set V0 and V1 in G0 and G1. We will prove if v0Zv1 then the output color of v0 and v1 are
the same. By item 2 in2.4, the initial of v0 and v1 are the same. Assume at layer t, the color of
v0 and v1 are the same, then by item 3 and 4 in2.4,(ct−1

v0 , {{ct−1
w0

: w ∈ Nl(i2,i3···il)
(v0)}}) and

(ct−1
v1 , {{ct−1

w1
: w ∈ Nl(i2,i3···il)

(v1)}}) are the same. Hence, it holds at layer t+1. Then the
output color of v0 and v1 are the same.l-division color refinement algorithm decide G0 and G1 are
isomorphism =⇒ If l-division color refinement algorithm decidesG0 andG1 are isomorphism, then
there exists a bijection v0Zv1, we will prove it is l-div g-bisimulations.

For item 1, it is obviously non-empty

For item 2, since the color of v0 and v1 are the same, which indicating that their initial of v0 and v1
are the same. Hence v0| = p iff v1| = p.

For item 3 and 4, if xZnx
′ and xE•

(i2,i3···il)Y and there does not exist Y ′ ∈ W ′ with Y ZnY
′ and

x′E•
(i2,i3···il)Y

′. Then recall the equation of iteration in l-division color refinement algorithm:

ctv ← hash(ct−1
v , {{ct−1

w : w ∈ Nl(i2,i3···il)
(v)}}), ∀v ∈ V, (i2, i3 · · · il) ∈ (0, 1)l−1 (54)

Then the color of v0 and v1 will not be same, hence item 3 and 4 holds.

For item 5, for every v0 ∈ V0, Z will maps V0 to V1 and v0 to v1, since Z is a bijection, then v1 ∈ V1,
hence item 5 holds

We now prove if a formula can be captured by a l-div GNN then it can be expressed by l-div graded
modal logic: assume there is a formula α can be captured by a l-div GNN but cannot be expressed
by l-div graded modal logic then by theorem D.6 α there is a pair of graphs G0 and G1 and node
v0 ∈ G0 and v1 ∈ G1, then there is a l-div g-bisimula between their induced models M and M’
but M, v0| = α ,M ′, v1| ≠ α. By theorem D.7, l-division color refinement algorithm decides G0

and G1 are isomorphism . And by theorem D.5, the outputs of any l-div GNN for G0 and G1 will
always be the same which means l-div GNN is not able to capture α.Therefore we have proved both
directions of the theorem, hence a logical classifier is captured by l-Div-AC-GNNs if and only if it
can be expressed in l-div graded modal logic.

Theorem D.8. Given a AC-GNN of countable additivity, then its l-div framework inherits three
Properties: invariance and equivariance, approximate and logic expressive power .

Proof. Given an AC-GNN of countable additivity with T layers whose aggregate and combine func-
tion is as follow, the feature of node v at layer t is denoted as xt(v):

xt(v) = COMB(xt−1(v), AGGRE({{xt−1(ω), ω ∈ N(v)}})) 1 ≥ t ≥ T (55)

Denote the feature of node v at layer t in AC-GNN’s l-div framework as x′t(v), we will prove its l-div
framework inherits three Properties: invariance and equivariance, approximate and logic expressive
power:

mt
l(i2···il)

(v) = AGGREt({{x′t−1(ω), ω ∈ Nl(i2···il)
(v)}})) 1 ≥ t ≥ T (56)

24

Under review as a conference paper at ICLR 2024

x′t(v) = COMBt(xt−1(v),
∑

(i2···il)∈(0,1)l−1

mt
l(i2···il)

(v))) 1 ≥ t ≥ T (57)

Invariance and Equivariance: Given an AC-GNN, we will prove its the l-div framework will
inherit its invariance and equivariance. In graph level task, let SAC−GNN

I (n) denoted AC-
GNN’S invariance permutation set and final output as AGGREgraph−levelv∈V (x

t(v)). Then
∀σI ∈ SAC−GNN

I (n), for every node v denote σI(v) as σI maps v to, then :

AGGREgraph−levelv∈V (x
T (σI(v))) = AGGREgraph−levelv∈V (x

T (v)) (58)

By equation 58

x′t(σI(v)) = COMBt(xt−1(σI(v)),
∑

(i2···il)∈(0,1)l−1

AGGREt({{x′t−1(ω), ω ∈ Nl(i2···il)
(σI(v))}}))

=COMB(xt−1(σI(v)), AGGRE({{xt−1(ω), ω ∈ N(σI(v))}})) = xt(σI(v))(59) Therefore

AGGREgraph−levelv∈V (x
′T (σI(v))) = AGGREgraph−levelv∈V (x

′T (v)) (60)

In node level task, let SAC−GNN
E (n) denoted AC-GNN’S equivariance permutation set . Then

∀σE ∈ SAC−GNN
E (n), then :

xT (σE(v)) = σE(x
T (v)) (61)

x′t(σE(v)) = COMBt(xt−1(σE(v)),
∑

(i2···il)∈(0,1)l−1

AGGREt({{x′t−1(ω), ω ∈ Nl(i2···il)
(σE(v))}}))

=COMB(xt−1(σE(v)), AGGRE({{xt−1(ω), ω ∈ N(σI(v))}})) = xt(σE(v))(62) Therefore

x′T (σE(v)) = σE(x
′T (v)) (63)

Equation 61 and 64 imply that σI ∈ S
AC−GNNl−div

I (n) and σE ∈ S
AC−GNNl−div

E (n). Now we
have proved that AC-GNN’s l-div framework inherits porperty of invariance and equivariance.

Approximate: Since for all layer t, AC-GNN of countable additivity, then:

AGGRE({{x′t−1(ω), ω ∈ N(v)}})) =
∑

(i2···il)∈(0,1)l−1

AGGRE({{xt−1(ω), ω ∈ Nl(i2···il)
(v)}})

=
∑

(i2···il)∈(0,1)l−1 mt
l(i2···il)

(v)(64)

hence x′t(v) = xt(v) for every node at each layer, therefore l-div framework inherits porperty of
Approximate.

E PROOF OF LOGIC EXPRESSIVE POWER OF AGGREGATORS

Theorem E.1. Logical classifier L′
GML can be captured by AC-GNNs which uses mean and max

aggregator .

Therefore

Proof. Let aggre({{x}})(aggre(x) = max({{x}}) or aggre(x) = mean({{x}}) denoted ag-
gregator. By definition, construct an AC-GNN which will iterate the as follows:

Xt
v = σ(Xt−1

v At + aggreu∈N(v)({{xt−1
u }})Bt + ct) (65)

At, Bt are learnable matrix and ct is learnable vector, Let RELU activation function

σ(x) = min(max(0, x), 1). The parameter of At, Bt, ct are defiined as followed:

25

Under review as a conference paper at ICLR 2024

random regular erdos renyi

Method 4000 5000 6000 4000 5000 6000

GCN 67± 0.87 51.9± 0.5 63± 1.08 58.5± 4.38 51.2± 1 64.75± 0.75
2−Div GCN 100 100 100 100 100 100

GIN 68.13± 2 48.8± 2.1 62.33± 0.84 64.62± 0.62 54.6± 1.7 64.58± 0.42
2−Div GIN 100 100 100 100 100 100

TAG 65± 2 49.5± 3.4 63.5± 0.33 61.12± 0.99 53.8± 0.1 65.75± 0.42
2−Div TAG 100 100 100 100 100 100

Table 1: Accuracy(%) of detecting triangle

random regular erdos renyi

Method 4000 5000 6000 4000 5000 6000

GCN 66.38± 1.13 49.3± 0.1 36.25± 1 59.88± 1.74 47.5± 0 37.08± 0.5
2−Div GCN 99.38± 0.63 96.7± 0.1 94± 0.83 95± 0.37 91.4± 2.4 80.92± 2

GIN 66.88± 2.49 48.9± 0.6 34.58± 2.84 60.25± 2.25 46.5± 0.9 35.42± 2.75
2−Div GIN 99.88± 0 99.8± 0.2 99.33± 0.25 99.25± 0.37 98.8± 0.2 98.75± 0.42

TAG 63.75± 4 49.5± 2.3 36.17± 2.9 60.88± 4 48.6± 2.1 38.5± 4.3
2−Div TAG 99.62± 0 98.6± 0.5 97.83± 1.16 96.25± 1.13 94.8± 4.6 84.67± 2.75

Table 2: Accuracy(%) of counting number of triangles

if γi(x) = Color(x), then let A(i,i) = 1

if γi(x) = γj ∧ γk, then let A(j,i) = 1, A(k,i) = 1 and ci = −1

if γi(x) = γj ∨ γk, then let A(j,i) = 1 and A(k,i) = 1

if γi(x) = ♢′γj , then let Bt
(j,i) = 1 and ci = N − 1

and all the whule values in the ‘t-th iteration of At, Bt, ct are 0. Then it is easy to prove AC-GNN

Logic Expressive Power: ∀α ∈ tp(AC − GNN), α(v) is true iff xT (v) = 1 and α(v) is false
iff xT (v) = 0, by property Approximate, we have xT (v) = x′T (v), therefore ∀α ∈ tp(AC −
GNN), α ∈ tp(AC −GNNl−div), implying that tp(AC −GNN) ⊂ tp(AC −GNNl−div)

F DETAILS FOR EXPERIMENTAL SETTING AND RESULTS

We utilize synthetic data to perform experiment to validate our result. We perform the experi-
ment using common model GIN,GCN,GAT and their 2-division version. Our experiments were
implemented in the PyTorch Geometric library (Fey & Lenssen, 2019) and DEEP GRAPH LI-
BRARY (Minjie & Gan 2021) and utilize networkx to generate synthetic graphs, severally with
4000,5000,6000 nodes with 0.006,0.005,0.004. Probabilities to generate edges: train set with 60%
nodes of size,val set with 20% nodes of size and test set with 20% nodes of size. We generate
two different type graph as erdos renyi graph and random regular graph. The number of layer in
experiment 1 and 2 in Table F and F is 2, for experiment 3 is 1.

erdos renyi graph: Erdos renyi graphs are random graphs with the number N of nodes and the
probabilities p the generate edges while N and p have been set up beforehand. In this experiment we
roughly maintain the number of edges in different graphs to be equal.

26

Under review as a conference paper at ICLR 2024

random regular erdos renyi

Method aggregator 4000 5000 6000 4000 5000 6000

GIN
mean 51.88± 2.25 55.2± 1.5 70.33± 3.25 58.37± 6.25 59.2± 0.4 75.42± 0.5
max 51.88± 2.25 55.2± 1.5 70.33± 3.25 58.37± 6.25 59.2± 0.4 75.42± 0.5
sum 56± 6.37 58.2± 4.5 70.33± 3.25 58.37± 6.25 59.2± 0.4 75.42± 0.5

2− div GIN
mean 71.37± 0.87 70.9± 0.8 68.17± 3.17 65.75± 3 65.7± 2.6 73.92± 0.33
max 71.37± 0.87 70.9± 0.8 68.17± 3.17 65.75± 3 65.7± 2.6 73.92± 0.33
sum 100 100 100 100 100 100

Table 3: Accuracy(%) of detecting triangle with different aggregators

random regular erdos renyi

layer aggregator 4000 5000 6000 4000 5000 6000

1
mean 71.37± 0.87 70.9± 0.8 68.17± 3.17 65.75± 3 65.7± 2.6 73.92± 0.33
max 71.37± 0.87 70.9± 0.8 68.17± 3.17 65.75± 3 65.7± 2.6 73.92± 0.33
sum 100 100 100 100 100 100

2
mean 71.5± 0.25 69.5± 1.6 66.5± 3.25 69.25± 1.38 64.8± 2.4 73± 2.92
max 71.5± 0.25 69.5± 1.6 66.5± 3.25 69.25± 1.38 64.8± 2.4 73± 2.92
sum 100 100 100 100 100 100

3
mean 70.62± 0.5 68.3± 0.7 64.2± 3.16 70.1± 1.25 66.2± 0.32 73± 1.72
max 70.62± 0.5 68.3± 0.7 64.2± 3.16 70.1± 1.25 66.2± 0.32 73± 1.72
sum 100 100 100 100 100 100

Table 4: Accuracy(%) of detecting triangle with different layers

27

Under review as a conference paper at ICLR 2024

random regular erdos renyi

Method aggregator 4000 5000 6000 4000 5000 6000

GIN
mean 64.58± 0.42 74.4± 4.5 79± 1.5 62.33± 0.84 75.4± 1.3 77.62± 1.51
max 64.58± 0.42 74.4± 4.5 79± 1.5 62.33± 0.84 75.4± 1.3 77.62± 1.51
sum 64.58± 0.42 74.4± 4.5 79± 1.5 62.33± 0.84 75.4± 1.3 77.62± 1.51

2− div GIN
mean 71.5± 0.25 69.5± 1.6 66.5± 3.25 69.25± 1.38 64.8± 2.4 73± 2.92
max 71.5± 0.25 69.5± 1.6 66.5± 3.25 69.25± 1.38 64.8± 2.4 73± 2.92
sum 100 100 100 100 100 100

Table 5: Accuracy(%) of detecting triangle with different aggregators

random regular graph: A regular graph is a graph where each node has the same number of
neighbors. In this experiment we roughly use N × p to set up the degree.

In undirected graph, if node v is contained by a triangle, then there exists a walk (v, v1, v2, v).
Notice v1 is v′s 2(1) neighbor, therefore a node is contained by a triangle if and only if there
exists v′s 2(1) neighbor. So task 1 can be expressed by 2-div graded modal logic as α1:

α1(x) = ♢≥1y (66)

Also we can deduce the formula node v is contained by at least two triangles can be expressed as:

α1(x) = ♢≥3y (67)

Hence Task 3 can be expressed by 2-div graded modal logic. There are also supplement experiment
for experiment 3 with 2 layers.

28

	INTRODUCTION
	A NEW HIERARCHY OF NODE'S NEIGHBOR CLASSIFICATION
	L-DIV GRADED MODEL LOGIC
	INTRODUCTION OF GRADED MODEL LOGIC
	L-DIV GRADED LOGIC

	Neighbor L-Division Color Refinement Algorithm
	NEIGHBOR DIVISION FRAMEWORK
	Logic expressive power of aggregators
	EXPERIMENTAL RESULT
	Introduction of Modal theory
	Modal logic
	Graded Modal Theory

	METHOD TO MEASURE GNN'S EXPRESSIVENESS
	Equivalent modal logic for high-order GNN
	Equivalent modal logic for substructure-based
	Equivalent modal logic for graph transformation

	Weisfeiler-Lehman Test And Modal Logic For Recently Proposed Variants
	1-dimensional Weisfeiler-Lehman test(1-WL)
	K-Dimensional Framewwork
	k-dimensional Weisfeiler-Lehman test
	k-dimensional Graph Neural Networks
	Equivalent Modal Logic

	Graph Substructure Networks(GSN)
	Equivalent Modal Logic

	Equivariant Subgraph Aggregation Networks (ESAN)
	Equivalent Modal Logic

	 Shortest Path Distance WL(SPD-WL)
	Equivalent Modal Logic

	PROOFS
	PROOFS OF HIERARCHY OF NODE’S NEIGHBOR CLASSIFICATION
	PROOFS OF L-DIV GRADED MODEL LOGIC
	PROOFS OF Neighbor L-Division Color Refinement Algorithm
	Proofs Of Neighbor Division Framework

	PROOF OF LOGIC EXPRESSIVE POWER OF AGGREGATORS
	DETAILS FOR EXPERIMENTAL SETTING AND RESULTS

